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Abstract

Attention mechanisms extract regions of interest from image data, in order to
reduce the amount of information to be analyzed by time—consuming processes such
as image transmission, robot navigation, and object recognition. In this paper two
such mechanisms are described. The first one is an alerting system which extracts
moving objects in a sequence through the use of multiresolution representations.
The second one detects regions in still images which are likely to contain objects
of interest. Two types of cues are used and integrated to compute the measure of
interest. First, bottom—up cues result from the decomposition of the input image
into a number of feature and conspicuity maps. The second type of cues is top—down,
and 1s obtained from a—priori knowledge about target objects, represented through
invariant models. Results are reported for both the alerting and the attention

mechanisms, using cluttered and noisy scenes.

Subject terms: computer vision, visual attention, invariant object representa-

tions, alerting, multi-resolution.



1 Introduction

At the basis of all object recognition techniques is a correspondence problem be-
tween a set of features extracted from the image and a number of models. Given
the exponential complexity of this problem, it is of fundamental importance that
the features describing the input data be the most compact and discriminative. The
use of image segmentation and grouping algorithms only partially solves this issue,
since their results are very sensitive to noise and to the background underlying the
targets. As a result, the high amount of image primitives that must be considered
for the matching process still represents a major limitation to real-time applications.

For these applications, there is the need for further information selection mecha-
nisms, that identify a limited number of regions in the image, containing the most
relevant information. Since any measure of relevance highly depends on the appli-
cation at hand, ad—hoc techniques must be designed for each problem. For most
applications, however, a number of heuristics exist, that allow to identify relevant
parts of the image in a general-purpose way. The first one is object’s motion:
moving objects represent for instance the major source of information for dynamic
obstacle avoidance in robot navigation. The second one is object’s saliency: re-
gions containing information that statistically differs from the background is likely
to identify objects on which the actions of a robot, such as grasping, are to be
defined. These two relevance criteria are also applicable in other fields, such as
automatic surveillance, and more generally, tasks based on human interaction such
as image retrieval from data-bases and image transmission for teleconferencing [17].

Both relevance criteria have been widely studied in human vision. In dynamic

scenes, the generation of ocular/attention shifts is highly influenced by an alerting



signal corresponding to the detection of object’s motion. This allows to foveate on
the moving object, and to keep its image stabilized in the fovea through smooth
pursuit (tracking) eye movements [6]. In static scenes, visual saliency represents
the major information source for the generation of ocular saccades, as well as for
shifts of internal attention [10].

Figure 1 shows the proposed implementation for these two mechanisms. The
alerting subsystem, described in more detail in chapter 2, is responsible for detect-
ing relevant regions in the time—varying case. It is based on a pyramidal represen-
tation of the input sequence, and it allows to rapidly locate moving objects, and
to extract a compact approximation of their shape. The attention subsystem, de-
scribed in chapter 3, is responsible for detecting regions of interest in static images.
This is done by integrating bottom—up and top—down attentional cues into a single
representation called the saliency map through a relaxation process. Bottom-—up
cues are obtained by extracting a number of feature (F-maps) and conspicuity maps
(C-maps). Top—down cues are provided by comparing the images with objects of

interest represented through an associative memory.

Insert Figure 1 about here

Several ways to connect the alerting and attention subsystems can be designed,
depending on the task at hand. For autonomous robots, for instance, priority must
be given to the alerting subsystem, since moving objects represent possible obstacles
for the robot. If no moving objects are detected, the saliency map computed by the
attention subsystem will be used, allowing the robot to explore partially unknown

environments. In this case, it is important to prevent the attention system from



repeatedly selecting the same regions. This can be done by storing each new saliency
map in a long—term memory called the history map [10]. This map can then be
used as an inhibitory input to the integration process, allowing new regions to be

selected.
2 Alerting mechanism in dynamic scenes

The goal of the alerting subsystem is to rapidly detect and locate moving objects,
and to represent them through compact masks approximating their shape. Differ-
ential methods are based on the substraction of subsequent frames in order to get
rid of the static background and to process only the moving regions of the image.
Examples of this method are proposed in [15] [3] [1]. In [15], after performing the
difference between successive frames, a 2—D median filter is applied on the differ-
ence image in order to smooth the mask boundaries and eliminate small regions.
Despite the action of the median filter, the resulting mask appears oversegmented.
In [3], spatio-temporal derivatives of three subsequent images are used in order to
label image pixels as either dynamic or static by means of maximum-a—posteriori
(MAP) regularization. In order to speed up the convergence, deterministic relax-
ation is used rather than a stochastic one. However, this technique is still highly
computationally intensive. The method proposed in [1] is based on global thresh-
olds followed by a local refinement step based on MAP techniques, but the resulting
masks do not match our requirements in terms of compactness and localization with
respect to the moving objects. Another differential method is based on background
substraction, but requires an updated model of the static background in order to

isolate dynamic objects [7].



The proposed approach is based on simple temporal differences of subsequent
frames and requires only two frames in order to obtain satisfactory results. The key
data structure is a low—pass pyramid [8] [9]: Iiyy(t),l =0,...,L (where L 4+ 1 is the
number of pyramid levels), which is built for each input image frame I ,(¢). The
pyramid is computing by using a set of S—splines basis functions, given their compact
support [16]. A corresponding number of temporal derivatives Dlxyy(t) are then
computed, possibily through simple image differences (thus involving only 2 frames).
From each temporal derivative, two complementary quantities are extracted: its
magnitude, and the locations of sign changes. High magnitude values are located at
moving objects boundaries, while significant sign changes occur in textured patches
located at the interior of moving objects [5]. Significant sign changes are represented

by binary images, whose values 1/)lx7y € {0, 1} are defined as follows:

1§ — 1 if Dir+m,y+n(t) : Dlx+u,y+v (t) < _791 (1)
©y 0 otherwise ,

where ¢; is a fixed threshold computed according to the sequence noise and m, n, u, v
€ {—1,0,1}. Values of 1/)lx7y = 1 thus express the presence of significant (< —v)

sign changes in a 3x3 window centered at pixel z,y. Given the complementarity

l

=y, these two factors are locally combined together

between the measures Dlxyy and v

through a maz operator, in order to form primary motion—detection estimates:

Ey = max{| Dy ,(t)],¢5 , }. (2)

High-resolution levels of Ei‘,y detect temporal changes with a high spatial local-
ization, but may only yield information at the object boundaries. Lower—resolution
levels help to provide compact and unique masks for each moving object, by filling

in regions of constant grey level.



Multiple-resolutions motion—detection estimates Ei‘,y are combined through a
coarse—to—fine pyramidal relaxation process. Its goal is to locally propagate the
pixel values horizontally within each level as well as wvertically, across contiguous
levels of the pyramid. The “vertical” component of the relaxation process combines
information at location (z, y) of level {41 with that at locations (2¢+14, 2y+7j), i,j €
{0,1} at the higher resolution level {. The “horizontal” component consists of a
diffusion process within each pyramid level, to fill in gaps and reduce noise.

The updating rule of the vertical component is defined by an additive term

i‘,y . Alxyy. The first term Ci‘,y is a scaling factor which allows the image to remain
in its dynamic range after the increment (cf. definition of ’yﬁyy in eq. 4). The
factor Alxyy is defined as a function of D!, If Dl;;;y/z is smaller than a threshold
Y2 (proportional the estimated image noise), then Alxyy is the quadratic function
—ky - (Dlx‘!'y1 — 792)2. Otherwise, Alxyy =g (Dlx‘!'y1 — ko - 792), where g(-) is a sigmoidal
function, and k1, ks are positive constants ensuring first and second order continuity
of Alxyy at ¥5. This algorithm corresponds to pushing the values of the estimates
Ei‘,y further towards a bimodal distribution image, which is then staightforward to
threshold.

At the end of this algorithm the pyramid contains multiple-resolution binary
masks Mi‘,y of the moving objects. Thanks to the diffusion component of the re-
laxation process, the shape of these regions tends to adapt to the shape of the
underlying objects. However, given their dependency on temporal derivatives com-
puted over multiple frames (> 2), and given the existence of non—zero values of Ei‘,y

on uncovered background, the shape of these regions is generally larger than the un-

derlying objects. A refinement process is thus required, to extract a more accurate



representation of the object shapes. To this end, the assumption is made that the
shape of the objects is approximately convex. A convex polygonal approximation of
the object’s contour can then be computed for each region, in a coarse-to—fine way.

Within each region R! identified by a coarse-resolution mask M. [ > 0, all points

Y7

K! = {(z,y) € R')| DL, |> 93, V2L > ¥4} of high spatio—temporal gradients

Y | T,y

are selected, where V? is the Laplacian operator and 93, ¥4 are fixed thresholds.
The polygonal approximation for the underlying object is then obtained through
the convex hull of the set K/. This representation obtained at a coarse level [ is
then propagated to higher-resolution levels of the pyramid. This can be done very
efficiently by restricting the convex hull computation at level { — 1 in a search win-
dow defined as the region enclosed in the convex hull at level [ projected to the level
[—1.

This method has been successfully tested on a variety of real indoors and outdoors
image sequences (teleconference, traffic scenes, corridor scenes, etc.). The choice
of the four parameters ¥, ¥, 93, ¥4 appears not to be critical. Although ad-hoc
variations within a range 5% may lead to slight improvements, a fixed set of values
(91 = 50,92 = 25,93 = 25,494 = 30) provided satisfactory results for all sequences.

Figure 2 reports the results obtained by the alerting system on two image se-
quences, showing for each sequence: the motion masks Mi‘,y (for { = 0) and
the polygonal approximations for the refined masks, respectively at a coarse level
(I = 3), and at the highest resolution level (I = 0). It can be seen that, also for
complex, non—convex objects such as the walking person, the final results correctly

outline the shape of the moving object.



‘Insert Figure 2 about here

3 Visual attention in static scenes

The goal of the visual attention system is to select regions of interest from the
analysis of static scenes. Previous work has been done in two directions. On one
hand, biologically—plausible models have been proposed, which simulate human
performance on synthetic test images [2] [12]. On the other hand, algorithms have
been proposed for the extraction of salient locations in real images [14] [4]. However,
salient locations are in these cases identified with simple features, such as corners
and edges. In the proposed approach, regions of interest can be computed on the
basis of more global properties. This makes 1t suitable for applications dealing
with complex images, containing noisy, textured objects. As shown in figure 1, the
attention system integrates two main components, called bottom—up and top—down,

which are described in the following sections.

3.1 The bottom—up subsystem

The bottom—up subsystem extracts salient regions according to data—driven cri-
teria. This is done in three stages: (i) extraction of a number of feature maps
ka,y k =1,..., K, representing the input image according to different criteria; (ii)
computation of a corresponding number of conspicuity maps (C-maps) C’ﬁyy which
enhance regions containing features that largely differ from their surround; and
(iil) integration of the C—Maps into a single saliency map Sy ,, which identifies the
selected regions.

From each RGB image, two chromatic and three achromatic feature maps are



computed (K = 5). The chromatic ones are obtained through color-opponency
filters, whose spatial profile is a 2-D Gaussian: F;fyd/green =Ryy— G5,y and
Fxb,l;je/yeuow =By, - w, where R'G’'B’ are the normalized RG B compo-
nents of the image, convolved with a Gaussian operator.

The achromatic feature maps are obtained through differential operators applied
on the intensity image I, ,. These operators correspond to a bank of filters, defined

by the oriented Gaussian 1st derivative:

u —u? —v?
D N =——. — .
GD1(z,y,9) p exp [20127] exp [205 ] , (3)
where v = zcos?d + ysind and v = —xsiny + ycosd. This filter is used at 16

different orientations to provide both the local orientation feature map: F;Zjem =
argmaxy {l;y * GDi(z,y,9)}, and the edge magnitude feature map: F\W" =
maxy {Iy, * GDi(x,y,¥)}. The same derivatives are used to compute a third
achromatic feature map defining the local curvature, obtained through the diver-
gence operator on the normalized gradient of I: F7'\)"™ = div [”gﬁﬁ] .

The five feature maps described above are processed by a “conspicuity” opera-
tor to assign a bottom—up measure of interest to each location. This measure is
obtained by comparison of local values of the feature maps to their surround. To

this end, another bank of multiscale, difference of oriented Gaussians (DOOrG)

filters is used. Both Gaussians Gy, G;{yf are elliptic rather than isotropic, with

a fixed eccentricity factor Z—i’ = % This property defines a preferential direction
¥ for the filter which allows to better detect oriented blob-like regions from the
feature maps. The coefficients of each Gaussian component are normalized by the

constraint Zu,v Gy = Zu,v GZ{J = 1, so that the overall filter has zero DC com-

ponent, yielding zero response to a constant feature map. The scale ratio of the

10



two Gaussians is also fixed: % = 3. Three different values of ¢, are used for
each filter, thus giving three classes of multiscale filters. As for the GD; filters, each
DOOrG filter is also computed at multiple (8) orientations.

To get rid of the sign of the response, and to increase the contrast, the results of
the convolution are rectified and squared. This corresponds to computing a bank
of multiscale conspicuity maps, for three values of the scale parameter ¢; and eight
orientations ¥;: Cﬁyy(ai,ﬁj) = (ka,y * DOOrGy 4(0;,7;))?. In order to obtain a

unique conspicuity map for each feature, the o;, ¥; parameters are factored out by

taking the local maximum: C’ﬁyy = maxiyj{nyy(Ui, U;)}.
3.2 The integration process

The next stage of bottom—up attention requires the integration of the C-maps into
a single saliency map S. This is done through a non-linear relaxation process which
reduces noise, and increases the coherence of the different C-maps in an incremental
way. The saliency map is then obtained by thresholding the average value of the
C-maps, once a convergence criterion is satisfied.

At each iteration of the relaxation process, the value of each C’ﬁyy(t) is updated
by an additive factor: 75 (¢)- AL (¢). The term vf  is a scaling coefficient defined
by:

k : k
‘ {M—Cw if Ak >0 @

Yoy = Cﬁyy —m  otherwise |
where m, M are respectively the minimum and maximum values of all C-maps. This
coefficient guarantees that the update will keep new values of C’ﬁyy(t +1) within the
original range [m, M].

The quantity Af;,y represents the most important part of the increment; 1t is

obtained by minimizing an energy functional E(¢) through a gradient—descent pro-

11



cedure: Af,yy = —%. The energy function is the linear combination of four
different functions: E = 2?21 Ai i, where each F;,i = 1,...,4 represents a mea-
sure of “incoherence” of the configuration of the C-maps, and A;;¢i = 1,...,4 are
weighting coefficients used to normalize Af;,y in range [0, 1].

FEy represents the local inter—-map incoherence, 1.e. the fact that different C-
maps enhance different, conflicting regions of the image. This energy term is
computed through the sum of local “variances” across different C-maps: E; =
nyy >k (C’ﬁyy — % >on C’ﬁyy)z. The second energy component represents the intra—
map incoherence, i.e. the inadequacy of each C-map as a representation of a few
convex regions of attention. This is evaluated through the overall response of the
Laplacian operator: Es = >, nyy (VzCﬁyy)z. To avoid the fact that the regions
of attention may grow to include an excessive portion of the image, the third en-
ergy component penalizes a configuration of C-maps whose overall activity is too
high. This forces the C-maps to share a limited amount of global activity, through
a competitive relation between each local value Cﬁ,y and the average value of all
pixels which are located outside a local neighborhood N(z,y) centered on (z,y):
Es =57, nyy(nyy —m) - Z(u,v)QN(x,y)(Cg,v — m). The fourth energy measure
is introduced to force the values of the C-maps to either one of the extrema of the
range [m, M]. E4 is thus proportional to the distance of each C’ﬁyy to both extrema:
Ey=3, ,(CE, —m)- (M —CE).

The updating term ’yﬁyy (t)- Af,yy(t) computed through this algorithm depends on
the values of the coefficients A;,i = 1,...,4. By appropriately assigning these values

it is possible to force the updating term in directions which favor specific energy

components. However, this requires a-priori knowledge on the image which is not

12



always available. For this reason, these parameters are assigned values that give
equal importance to each energy component, i.e. A; = % -(maxy 4 k |% L.
This method has been used for a large number of different images (currently about
one hundred). For most of them, a dozen iterations are sufficient to rapidly converge,
i.e. to reduce the absolute value of the updating terms below a fixed threshold, set
to 0.01. At convergence, the average sum of the C-maps % Zle C’ﬁyy is taken as
the saliency map S. Thanks to the contribution of the fourth energy component
to the updating term, the values of the saliency map are almost binary. For this
reason, even if the convergence criterion is not perfectly satisfied, the relaxation

process is always stopped after only 12 iterations, and the results of S are binarized

by thresholding at the middle of the range [m, M].

Insert Figure 3 about here ‘

Figure 3 shows the results on some synthetic images, used as visual search ex-
periments on human vision. The selected regions allow to reproduce well-known
pop—out phenomena. Figure 4 shows the results of the integration process on some
real images. The attention regions are correctly located at some of the major fore-
ground objects. It should be noticed that only a limited number of regions can be
detected in two of these images. This is a consequence of the 3rd energy component,
which penalizes an excessive total size in the regions of attention. Since these two
images contain several foreground objects, only a few of them could be selected at
once. One technique for the retrieval of the remaining ones is to use the history
map introduced in section 1. This map stores the results of previous saliency maps,

and can be used as a further input to the relaxation process, which penalizes loca-

13



tions belonging to previous attention regions. In this way, the system can select an

unlimited number of attention regions in an iterative way (cf. [10] for more details).

Insert Figure 4 about here ‘

3.3 The top—down subsystem

The top—down attention subsystem uses knowledge about the task to select the
regions of the image most likely to contain objects of interest. This is done by
learning descriptions of target objects through distributed associative memories
(DAM) [13]. The top—down measure of interest at a location (, y) is then computed
in terms of the similarity of the image contents at that location with the stored
models.

In order to ensure some degree of invariance to the representation of the tar-
gets, a preprocessing step is required, based on the complex—log (or log—polar)
transform of the image [13]. Given a center point (xp, yo) of the transform, a com-
plex number is used to represent it in a compact way in the polar-log domain

zo = &g + jyo. This transform maps a point (z,y) of the image into the coordi-

nates z = log(y/(z — 20)2 + (y — ¥0)?) + jatan(i:zg ). This transformation allows
to simulate the focal /peripheral fields of an image, and maps scalings and rotations
into translations along the real and imaginary axes respectively. These shifts can
be factored out by considering the energy spectrum | F(u,v) | of the complex-log
image.

The components of | F(u,v) | are ordered in a vector x representing the input

stimulus to the DAM. During the learning phase, the DAM finds an association

14



matrix M between a set of input stimuli x5, and their class yp. If all stimulus and
response vectors are written in two matrices X and Y, M is defined by Y = MX,
and is solved by minimizing ||[MX — Y||?. This corresponds to M = YX* where
X+t = (XTX)"*XT is the Moore—Penrose generalized inverse of the matrix X.

Once the matrix M has been constructed, it can be used on a novel stimulus
vector x’ to produce a classification through an output vector y’. Through a sta-
tistical interpretation of DAMs in terms of multiple linear regression, a coefficient
of determination R? = (var(x’) — RSS) /var(x’), is obtained for each association
produced by the DAM on an unknown stimulus x’, where RSS is the residual sum
of squares [13]. The value of R? € [0, 1] evaluates the quality of the association: it
is 1 for a perfect association, and 0 when no correlation exists between the stimulus
and the produced response.

The top—down measure of interest is given by the R? measure, representing the
“quality” of the recognition. In order to avoid the application of the DAM to all
vectors X, , centered at each location (u, v) of the input image, a number of relevant
“indexing” points is required. These points are given by the bottom—up subsystem,
and are obtained by detecting a limited number of peaks {(z;, ¥),i = 1,...,@} in
the saliency map 5, after just two iterations of the relaxation process. In order to
spread the results of the R? measures over a neighborhood centered on each point
(25,9:), and to obtain a distributed representation for the top—down map T, the

values R?(x;,y;) are convolved with an isotropic Gaussian filter:

Q 2 — )2
|:_(l‘—l‘l) +(y yl) (5)

Tx,y = Z R2($ia yz) - eXp 952
T

i=1
The top—down map T can directly be integrated with the bottom—up system by

modifying the updating rule of the relaxation process (c¢f. previous section). The

15



updating term of the modified rule is given by the product between the scaling
coeflicient 'y’;yy(t) defined similarly to the previous section, and a new term @f,yy(t) =
[ozAf,yy(t) + (1 — @)(27% 4(t) — 1)] . The parameter a € [0, 1] determines the relative
importance assigned to the bottom—up and top—down subsystems.

Figure 5 shows the results obtained for a DAM trained to recognize instances of
the pen and the white—ink bottle. The top—down map shows a very low R? value at
one peak of the saliency map, corresponding to an unknown object (the cup). The
final saliency map obtained by integrating the top—down map with the relaxation
process is shown in fig. 5.d. For comparison, the saliency map obtained from the
bottom—up system alone is shown in 5.e. The top—down information forces the
relaxation process to suppress the region containing the unknown object, although
this would have been selected by the bottom—up process, to the expense of the

white—1nk bottle.

Insert Figure 5 about here

4 Conclusions

In this paper two types of attention mechanisms have been described. The first
one analyzes a multi—resolution representation of the spatio—temporal derivatives
of an image sequence in order to extract the location and shape of moving objects.
The second one processes still images, and discriminates between their features
to extract regions containing objects of interest. Although both mechanisms are
mostly based on a data—driven approach, it has been shown that it is possible to

customize the system through the use of a—priori knowledge of target objects.

16



Both mechanisms use highly distributed, though iterative computations (cf. pyra-
midal relaxation and integration of C-maps). However, the number of iterations
required for both of them is very limited, being set to a fixed value. The remaining
steps are based on simple filtering operations. The overall system can thus be easily
implemented using specialized hardware, providing an effective tool to reduce data
and computation time for further processes.

Applications of these mechanisms are currently being done in two directions. The
alerting system is used for automatic highway—control problems [6]. Tt allows to
count the number of vehicles, providing the initial data for a tracking system which
computes vehicle kinetic functions such as trajectory, velocity and acceleration.
The attention system is used in several contexts: for defect detection from natural
surface images, and for applications of object recognition of man-made objects. The
availability of the attention system improves the performance of object recognition
in multiple ways. Obviously, it reduces the amount of data to process. Most
importantly, however, it allows to hypothesize the presence of a single object within
each region of attention, which leads to a huge reduction in the complexity of the
matching process. This can be exploited in the use of efficient recognition schemes,

such as geometric hashing.
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