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FIGURE-GROUND SEPARATION: 
EVIDENCE FOR ASYNCHRONOUS PROCESSING 

IN VISUAL PERCEPTION? 

P.-Y. BURGI 

Artificial Intelligence and Vision Group 
Computing Science Center, University of Geneva 

12 rue du Lac, CH-1207 Geneva, Switzerland 

ABSTRACT 

The performance of the human visual system in extracting noisy figures from a noisy 
background is astonishingly good. Even in situations of very poor contrast, boundaries 
emerge clearly. Conversely, typical edge detectors fail to give good results for su ch images. 
In an anempt to explain the discrepancies in these performances we have developed a neu­
ral nelwork model relying on IWO assumptions, both of which are based on neurophysio­
logical findings. FirsLly, the processing of visuaJ informal.Îon is considered ta be asynchro­
nous: stimuli are delayed accordingly to their intensity. Secondly, emergent boundaries 
have the property of producing coherent responses corresponding to the (near)-simulta­
neous responses of cells in the cortical orientation columns. Results show thal such neural 
network can indeed benefit from the asynchrony wben treating images with ratio signal-ta­
noise particularly low. 

1. Introduction 

Resolution of the figure-ground separation problem is essential in a visual system. 
Generally this problem implies that contours separating objects from background are ex­
tracted. For synthetic images where background and objects have distinct light intensities 
this problem is easily solvable, especially if there is no noise. However, this problem be­
cornes thorny when noise is added or when natural images are used. Techniques of segmen­
tation robust to noise have been developed1.2.3 but are not discussed here. Until now, no ev­
idence has been found that such techniques are biologically plausible. Conversely, lateral 
inhibitary neuronal networks perfonning high pass filtering are known ta exist and are 
commonly found in biological systems. In particular, on-center off-surround receptive 
fields as weIl as Gabor-like oriented filters are found in the human visual system. Further­
more, orientation columns found in the primary cortex are qui te suited for cooperative 
mechanisms relaxing the constraint of building contours by using local infonnation only. 

Another aspect of perception known for a long time is the relation between latency 
of responses of retinal ganglion ceIls and light intensity. For images with low signal-to­
noise ratio it is hypothesized that this relation can somehow alleviate the resolution of the 
figure-ground separation problem. In addition, a generalization of the relation between la­
tency and response amplitude is done. Owing to the introduction of latencies this approach 
is termed as asynchronous by opposition ta conventional approaches where no such tem-
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poral constraint is ineorporated, thus called synehronous. 
On the basis of this neurophysiological evidence an architecture has been developed 

and a comparison study made between synchronous and asynchronous approaches. It will 
be shown in particular that for this specifie figure-ground separation problem the asynehro­
nous approaeh perfonns better than the synehronous one. 

2. Model 

The various elements involved in the resolution of the figure-ground separation 
problem are now diseussed. There are two main cornerstanes for this study. First, a relation 
between the brightness of a picture element and the latency of the response it produces is 
supposed to exist; a direct consequence of this brightness-Iatency relationship for images 
containing regions varying in intensity is that processing must be considered asynehronous 
as visual infonnation is not treated in one step. Second, near-simultaneous spatially-distant 
featural responses are supposed to reflect global structures found in the image; contours be­
ing of particular interest in the figure-ground separation task, oriented image columns were 
chosen ta support mechanisms detecting simultaneity in responses. Oriented image col­
umns are sets of connected points crossing the image from one end ta the other along a spe­
cifie orientation. 

Models yielding the asynchrony as weIl as representing image columns are thus re­
quired. Both are described separately in the next two sections while their integration in a 
general architecture eomprising the different processing levels eonstitutes a third section. 

2.1 Origin of the Asynchrony 

For decades it has been weIl known to psychologists that there exists a dependenee 
of visuallatency on light intensity4. Il1ustrations of this phenomenon are the Hess effect and 
the Pulfrieh effect. The Hess effect, first reported by Carl von Hess in 1904, is a monoeular 
illusion in which a difference in target luminance causes a change in the relative apparent 
location of two laterally moving targets5• The Pulfrich stereo-effect, deseribed in 1922 by 
Carl Pulfrich, is easily experienced when wearing two different lenses, one being dark gray 
and the other clear: the image coming in from the dark lens is perceived a little later than 
the image coming in from the elear lens; this latency induces a stereoscopic visual illusion 
when an observer is looking at a swinging pendulum bob. Visual latencies appear also in 
reaction times for stimuli with varying physical intensity6.7 and for different contrasts8.9• 

Such latencies have also been measured physiologically but the literature is scarce 
about that topic, particularly for primates. Nevertheless, physiological recordings have 
been perfonned on the Pulfrich effect for the catlO. Furthennore, the latency-Iuminance re­
lation under dark and light adaptation has been determined on retinal units of the bullfrog 
retina l1 , of the marine toad Bufo marinusl2 and of the cat l3 . For the dark-adapted condition, 
Chapman reported a simple linear function relating reciprocal of latency of the first impulse 
to the logarithm of light luminance; other functions have also been proposedl 4• 

By merely considering cells ta be leaky integrators and information transmitted be-
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tween cells coded in spike frequency it is possible ta explain the light intensity-Iatency re­
lation. Frequency modulation is largely used in neuronal structures of the brain to code re­
sponse amplitudes by train of spikes. When receiving a spike on excitatory synapses, cells 
increase their membrane potential; conversely, between spikes, their membrane potential 
diminishes due to leakages. Clearly, a train of spikes makes the membrane potential in­
crease and decrease; after a while there is a convergence towards an average value. In such 
conditions, one is naturally led ta consider the problem of determining for a given frequen­
cy wh en the cell will frrst reach a fixed threshold. The time needed for that is the latency of 
the cell. It can easily be shown that the relation between frequency and latency is nonlinear 
and mimics neurophysiological dataI5 • It must be noted that the relation frequency-Iatency 
holds also when spikes are replaced by constant potentials whose amplitude has for value 
the frequency of the spikes. However, to have a good correspondence, the period separating 
spikes must be negligible with respect to the cell time constantI6. For the retina the depen­
dence of latencies on light intensity seems to be induced by specifie chemical mechanisms 
in the photareceptorsI2, but this fact will not change the logic presented in this paper. In 
summary, low frequencies or low potentials have correspondingly much larger latencies 
than those brought out by high frequencies or high potential; this observation is generalized 
to aIl neuronal structures. For this generalization it interesting to note that Cattell (1885) 
demonstrates psychologically that the intensity of electric shock or of light yield similar ef­
fects on reaction time4• 

For a system composed ofvarious levels ofprocessing, the relation amplitude-Iaten­
cy has an obvious effect: asynchrony. Indeed, signaIs with differing amplitudes are con­
verted inta trains of spikes of corresponding frequencies before being fed into the first level 
of processing. Cells pertaining to this level will yield output signaIs with differing latencies. 
Subsequent levels will thus be fed with signaIs arriving at different times, those correspond­
ing to high amplitudes coming earlier than those with lower amplitudes. This distribution 
of information over time forms asynchronous data flows between the different levels of 
processing. The aim of this paper is to show that for a given architecture such data flows 
produce results differing from those that would be obtained with conventional synchronous 
approach where no time differences would be taken into account. Before presenting the ar­
chitecture allowing a comparison between the two approaches, namely synchronous versus 
asynchronous, the question of cooperation must be addressed. 

2.2 Towards a Cooperative Model 

From a point of view of signal processing, it is rather obvious that local information 
is sel dom sufficient. A very simple example is shown in Figure 1 where gaussian noise has 
been added ta an edge. While the vertical edge is clearly perceived when the whole image 
is displayed, a reduced view as seen through a window is hardly enough ta accurately de­
termine the position of the edge. 
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C: 

window 

B: 
~ . . , .'" slice 

position 

Figure 1 : A: Gaussian noise of standard deviation 35 bas been added on a step of height 25. The resulting 
signal-lo-noise ratio (SNR) is 0.5. In spite of the low SNR, position of the edge between the dark and bright 
part is clearly perceived. Image size is 128 x 128; B: Image shown in A has been windowed and perception 
of the edge is very dim and inaccurale. Image size is Il x 128; C: Slice of B showing the brightness in function 
of the position. In this graph the posilion of the edge does not appear anymore. 

With respect to this example it is easy to comprehend that a system can benefit from 
using spatially-distant information along an orientation. It is interesting to note that long 
range connections between cells corresponding to different locations but sensitive to same 
orientations are known to exist in the primary visual cortex17.18. Cooperative models based 
on the columnar architecture found by HubeI and Wiesell9 and using long-range receptive 
fields have been developed20. A recent approach makes use of the synchronization of oscil­
latory responses among columns21 . Such cooperative interactions have been physiological­
ly measured on the cat22 . 

In our model we make use of oriented image columns within which a cooperative 
mechanism operates. Along an image column this cooperative mechanism detects the co­
herency possibly existing among cell responses. Following the ide a that there is a corre­
spondence between ceIl responses and spike frequencies, which usually follows a sigmoi­
dal function, there'is also a dependence between cell responses and the latency for the ap­
pearance of the first spike. Thus they are two effects influencing the measure of similarity 
between responses, namely the frequency and the latency. To express these two factors, cell 
responses are represented by vectors whose length is related to the frequency and whose 
angle is related to the latency. This conversion, called vector conversion, is illustrated in 
Figure 2. Latency being deduced from frequency there is obviously a redundancy in this 
transformation. The function chosen for converting frequency into vector magnitude is lin­
ear with a range defined by the maximum and minimum values fixed by the sigmoidal func­
tion. Vector angles are chosen to vary linearly with latencies in the range [0, 1t] to avoid 
cancellation of vectors pointing in opposite directions. This situation would correspond to 
inhibitory connections which are not wanted. 
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1 Vil = G(frequency) 

e. = H(latency) 
1 

Example: 

f} > f 2 > f3 

Figure 2 : Illustration of the vector conversion. There is a linear relation between spike frequency f and vector 
magnitude 1 VI as well as between latency and veclor angle e. The exarnple shows how the veclOrs corre­
sponding 10 three different frequencies are disposed. 

Measuring the coherency among responses for a specifie image coIumn is made in 
three stages: Ci) convert responses into vectors according to the previous rules; Cii) caIcuIate 
the vectorial sum of the vectors determined in the previous step. The resulting vectar gives 
a measure of strength of the responses along an image column with a weak measure of the 
extent of spreading of the vectors; (iii) make a measurement of the dispersion of the ail the 
vectors with respect to the resulting vector calculated in the previous step. The dispersion 
of n vectars of Iength 1 vil and angle Si with respect ta a resulting vector of length Ry and 
angle SR is measure by applying the follow:lng definition *: 

v 
n 

C = Ry' I!Vi!coSCSRv-S) (1) 
i = 1 

As the angle of the vectors is reIated ta the appearance of the first spikes, the mea­
sure of dispersion c corresponds to determining the temporal coherency between responses 
(aIong a specifie image column). It is cIear that ceil responses with particularly strong val­
ues are favored as their corresponding vectors have small angles and great magnitudes. This 
goes with the spirit that signaIs coming first, thus the strongest ones, couId exert a stronger 
action than those coming next. 

2.3 Architecture 

There are two questions relative to the present system architecture whose task is to 
extract edges separating a figure from a background. Firstly, what are the different levels 
of processing? SecondIy, how is the asynchrony disposed? To allow an evaluation of the 
results of the synchronous versus asynchronous approaches two steps are necessary: (i) the 
core of the synchronous architecture, based on knowledge in neurophysiology and signal 
processing fields, is designed; Cii) latencies and possibly temporal integration are consid-

•. A similar definition is use<! by Rao and Schunck (1991) la measure the flow orientation coherence of veclars 
corresponding la gradienLS23. 
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ered. Thus, introducing the asynchrony will just be a matter of adding new elements on a 
structure devised for the synchronous processing. Note that the type of image to be pro­
cessed has the constraint that the foreground brightness is distinct from the background 
brightness. Images relying only on spatial infonnation are not considered. 

2.3.1 Synchronous Architecture 

While optimized filters have been designed to extract edges24, the architecture pro­
posed herein (Figure 3) is inspired from the hum an visual system and is restricted to three 
levels. 

The first level of processing is a high pass isotropie filtering consisting of a small 
on-center and a large off-surround structure. This level corresponds physiologically to the 
ganglion cells in the retina25,26. By using appropriate functions this level of processing can 
demonstrate adaptive properties like the Weber-Fechner law as shown by Grossberg27• In 
our model we make use of linear filtering which does not take into account this law. 

The second level implements anisotropie filtering by means of even Gabor filters. 
This level has its physiological correspondence in the visual cortex28,29,30. Results of this 
stage are half-rectified by imposing the rule that positive signaIs are unaltered in their trans­
mission while negative responses are completely attenuated. 

Finally, the third level applies a measure of coherency among responses taken along 
an image column whose orientation corresponds to the orientation of the anisotropie filter 
which was used to obtain them. Physiological evidence for this level has already been dis­
cussed in the previous section 2.2. 

.... 
;::l 
0-
c: ..... 

isotropie filtering 
anisotropie filtering 
rectification 
vector conversion 
coherence detection 

Figure 3 : Synchronous processing to detect contours separating a foreground from a background. Outputs 
give, for a specifie orientation, values of coherence witbin image co)umns. 

2.3.2 AsynchronoLls Architecture 

Two elements are now introduced and complete the synchronous architecture de­
scribed in the previous section. 

First of aIl, latencies are added, requiring the addition of a stage which con verts 
brightness infonnation into latencies before filtering is applied (Figure 4). SignaIs entering 
the system are thus deIayed according to their intensity and once they have appeared they 
keep their value, replacing the original value set 10 zero; this corresponds to sustained re­
sponses. The appearance of su ch signaIs is thus temporally distributed and produces a dy­
namic data flow; this flow makes outputs vary along time. 

Secondly, aIl responses of the coherence detection stage are temporally integrated. 
The reason for that stage relies on the direct relation existing between the dynamic data 
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flow and the image structure. The foreground being supposedly brighter than the back­
ground, the data flow will first reflect the foreground structure even if noise is added to such 
images.Thus, there exists a specifie period during whieh there is a trade-offbetween the ap­
pearance of the image structure and the degree of noise. Coneretely, this means that an op­
timum filtering oceurs. No assumption being made on the image it is not quite obvious to 
deeide when this optimum is reached. One way of avoiding this deeision is ta assume that 
this optimum in filtering yields responses whieh subsist even when they are integrated. This 
solution is illustrated in Figure 4. Note that for the synchronous case this specifie period 
does not exist as information from both background and foreground are simultaneously 
considered. 

.... 
=' c... 
s:: ..... 

isotropie filtering 
anisotropie filtering 
rectification 
vector conversion 
coherence detection 

temporal 
integration 

Figure 4: Asynchronous processing based on the architecture given in Figure 3 but with two supplementary 
stages: latencies computation and temporal integration. Hatcbed arrows stand for the dynamic data flow. 

3. ResuJts 

Comparison between synchronous and asynchronous approaches is made for two 
noisy images. Parameters are defined for the isotropie and anisotropie stages. There is one 
supplementary parameter needed for the asynchronous approach. Indeed, the asynchronous 
processing would require that each time new information appears its action on the output 
would have to be determined. However, for reasons of computational cast, a sampling time 
value must be fixed. While there is no inferior limit to this value except for the computa­
tionul cost, a large value would lead ta the synchronous case (Figure 7). 

Both images have 128 x 128 pixels with the background filling the left half and the 
foreground filling ~he right half. Thus there is a edge in the middle to be located (Figure SA 
and Figure 6A). Background and foreground are deteriorated with additive noise. In the 
first image the noise has a gaussian distribution while in the second it has an uniform dis­
tribution. Both images have the same signal-ta-noise ratio (SNR) but the one with the uni­
forrn noise has a smaller contrast. Results in Figure SB and Figure 6B show values of co­
herence along the vertical image columns. The higher the coherence is, the whiter it ap­
pears. When the edge is correctly detected the peak-to-peak ratio indicated on the right in 
Figure SC and Figure 6C is greater than 1. Interestingly, synchronous processing yields 
peaks in the values of coherency which do not correspond to the edge between background 
and foreground while the asynchronous processing yields the highest peak rightfully in the 
middle. These results demonstrate the superiority of the asynchronous processing on the 
synchronous version. To illustrate the effect of varying the sampling time different values 
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have been chosen to process the image asynchronously with gaussian noise. Results shown 
in Figure 7 make clear that an increase in the sarnpling time value yields a decrease in the 
performance, the limit case of such variations corresponding ta the synchronous process­
ing. 

A: 

without noise 

B: 
synchronous processing 

with vectorial coherence detection 

C: 

0.74 

SNR =0.1 

with noise 

asynchronous processing 
with vectorial coherence detection 

2.1 

Figure 5 : A: Gaussian noise of standard deviaùon 79 has been added on a step of heighl 25; B: Cohereney 
detection in vertical image columns. For lhe asynchronous processing, sampling a10ng lime of 2 ms; C: Slices 
of B. with numbers on the righl indicating the worSI peak-to-peak ratio. Images 128 x 128; isotropie tiller Il 
x Il; anisotropie fïlters 21 x 21, aspect ratio 0.5. Brightness range is [0 .. 255] corresponding lO lhe 1ateney 
range [22 ms .. 2 ms]. NOle Lhal due lO lhe reproduction on paper maybe lhe edge in A is nOI visible. 
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A: 

B: 

C: 

without noise 

synchronous with vectorial 
coherence detection 

SNR = 0.12 

0.9 

with noise 

asynchronous with vectorial 
coherence detection 

1.5 

Figure 6: A: Unifonn noise of range 50 bas been added on a step of beight 5; B: Coherency detection in ver­
tical image columns. For the asynchronous processing, sampling a10ng time of 1 ms; C: Slices of B, with 
numbers on the right indieating the worst peak-to-peak ratio. Image 128 x 128; isotropie filter Il x Il; aniso­
tropie filters 21 x 21, aspect ratio 0.5. Brightness range is [0 .. 255] corresponding Lü the latency range 
[22 ms .. 2 ms]. Note that due 10 the reproduction on paper maybe the edge in Ais not visible. 
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/:::"t 0.5 ms 2.0 ms 

2.3 2.1 

/:::"t 4.0 ms 6.0 ms 

1.2 1 

Figure 7 : Noisy slep as in Figure 5 (Gaussian noise and SNR=O.l). Effecl of varying the sampling along lime 
on the performance; values are shown above graphs. Performance is measured as the peak-IO-peak ratio with 
the values shown on the righl of the graphs. Increasing sampling lime diminishes the asynchrony, the limit 
being the synchronous case. FiIter parameters as in Figure 5. 

45 



4. Discussion 

While the model has been physiologically oriented it only crudely mimics reality. 
Stress has been more heavily laid on concepts rather than on details. A more faithful model 
would not only estimate latencies in the fIrst and last leveis but aiso at the different stages 
in-between. This would require more sophisticated processing as receptive fields would re­
ceive asynchronous signaIs. Spikes would have to be considered individually imposing a , 
higher computational cost. Yet small differences in phases between signaIs impinging on 
receptive fields wouId not produce great differences in responses. 

About the concept of rime two points must be touched on which are of particular in­
terest for those who work in image processing. They invoive respectively two questions: 

Are thresholds equivalent ta sampling rime values? . 
. SampIing rime values are just an artifact of modeling reality. The ideal case would be to 
consider a conrinuous flow, corresponding to continuously varying a threshold. By defIni­
tion thresholds are discrete values and thus the cOITespondence with the temporal model 
would not hold. Another point of view is that thresholding needs ta fIx values above which 
signaIs are kept and below which signaIs are suppressed. With the temporal flow the system 
does not need ta decide anything about signaIs; it just receives them as they arrive accord­
ingly to Iatencies deterrnined by a generallaw. 

Would preprocessing be equivalent ta temporal precedence? 

Temporal precedence happens every time the data flow is considered asynchronous and 
sorne data arrive before other. In the present case points of high brightness appear before 
those of low brightness. One possible interpretation would be that strong signaIs are fa­
vored as they come fust and cou Id exert sorne specifIc action first. It terms of image pro­
cessing this favoring would be equivalent to multiplying signal amplitudes with coeffi­

cients whose value would be greater for strong amplitudes and sm aller for weaker ones. 
Nevertheless the comparison would stop short here. Using the temporal approach means 
that flltering is appIied according to a structure implicit to the image. This structure is re­
flected through temporal precedence of sorne data over others. ConverseIy, image process­
ing techniques first preprocess signals and then apply fIltering on the image without taking 
into account any structure. 

In spite of the seemingly elusive aspect of temporal precedence we believe it could 
play a main roIe also in competitive mechanisms. While our CUITent results point out the 
index of coherency for every image column, the positions of contours have still to be de­
Iirnited. Competitive mechanisms are thus required and Iatencies are thought ta be of im­
portance for that task. Other evidence that the infonnation contained in the neuronal Iatency 
is very efficient for the resolution of sorne competitive problems, like the winner-take-all 
one, has indeed been reported31 • 
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5. Conclusions 

The evidence tends to establishing that images containing points of differing bright­
ness produce asynchronous data flows. When such flows are processed through a classical 
architecture with the supplementary constraint that responses are integrated temporally, we 
can show an increase in the robustness of processing images of low SNR. This result gives 
strong evidence that the figure-ground separation problem can benefit from asynchronous 
processing. 
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