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Section de Mathématiques Professeur Anders Karlsson

Spanning Trees in Discrete Tori, Hypercubic Lattices and
Circulant Graphs

THESE
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The more I learn, the more I realise how much I don’t know.
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1 Introduction
The number of spanning trees of a finite graph is an interesting invariant which arises in many
various fields. A spanning tree is an efficient way to connect a set of nodes such as computers,
telephone lines, railroads, fiber-optic cable, cities, without redundancy in the network and in an
economical way. While studying electrical resistor networks, Kirchhoff established in 1847 the matrix
tree theorem relating the number of spanning trees in a graph to the determinant of the associated
combinatorial Laplacian [18]. A graph can represent an electrical network, that is, the edges represent
the wires and the vertices the junctions at which the wires are connected with one another. The
number of spanning trees of the corresponding graph measures the network reliability and is related
to the effective resistances of the network, see for instance [5, 7, 27]. Spanning trees are also of
interest in theoretical chemistry, as a graph can represent the connectivity of atoms that constitute
the conjugation network of an unsaturated molecule. The number of spanning trees of such labelled
molecular graphs gives the complexity of a molecular structure and enables to classify them, as the
most complex structure possesses the highest number of spanning trees, see [8, 17, 23]. Spanning trees
also appear in graph theoretical problems, such as counting Hamiltonian walks [11], can sometimes
enumerate the dimer coverings of a graph [16] and as a special value of the Tutte polynomial [1, 29].
The number of spanning trees is as well interesting in statistical physics. It corresponds to the limit
q→ 0 of the partition function of the q-state Potts model [14, 30]. Spanning trees have applications
in quantum field theory as well since they are related to the Feynman graph polynomials which define
the integrand of a Feynman integral [6].

Considering an increasing sequence of graphs converging in some sense to some infinite graph,
one can study the asymptotic behaviour of the number of spanning trees. The rescaled logarithm of
the lead term of it is referred as the tree entropy by Lyons [20]. This quantity is also of interest in
physics in the calculation of the thermodynamic limit in different lattices, such as square, honeycomb
and triangular lattices [26]. As we study the next terms in the asymptotic development of the number
of spanning trees, interesting terms appear such as the regularized determinant associated to the
limiting object, see [24].
One type of graphs, circulant graphs, are of particular interest as they appear in various contexts, see
for instance [19, 22]. They are also known as multi-loop networks. In this thesis we mainly consider
circulant graphs which have first generator equal to 1, that is, they begin with a cycle. It turns out
that this is not too restrictive since for a given circulant graph, if one of his generators is relatively
prime to the number of vertices, then it is isomorphic to a circulant graph with first generator equal
to 1.

Below we define a graph and its related notions, then state the matrix tree theorem, its proof and
an example to illustrate it. In the following sections, theta functions, heat kernels, inversion formulas
and spectral zeta functions are discussed. In the last section, we briefly describe the results obtained
in the thesis.

1.1 Graphs
Following Serre’s definition [25], a graph G consists of a set of vertices V(G), a set of edges E(G)
and two maps

E(G) −→ V(G)× V(G) E(G) −→ E(G)

e 7−→ (o(e), t(e)) e 7−→ ē
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such that for all edge e ∈ E(G), ¯̄e = e, ē 6= e and o(e) = t(ē). The edge ē is called the inverse edge of
e, the vertices o(e) and t(e) are respectively the origin and the terminus of e. An orientation of the
graph G is a subset E(G)+ of the edge set E(G) such that E(G) = E(G)+ t E(G)+, where the union
is disjoint. The couple (V(G), E(G)) with an orientation E(G)+ and a map E(G)+ −→ V(G)×V(G)
defines an oriented graph. Two vertices v1, v2 ∈ V(G) are said to be adjacent if there exists an edge
e ∈ E(G) such that v1 = o(e) and v2 = t(e). Let n ∈ N>3 and {ik}

n
k=1 ⊂ {1, . . . ,Card(E(G))}. The

graph G contains an n-cycle if there exists a sequence of n edges ei1 . . . ein such that t(eik) = o(eik+1)
for all k ∈ {1, . . . , n − 1}, and t(ein) = o(ei1). An n-path is defined similarly without the condition
t(ein) = o(ei1). A graph is connected if any two vertices are the extremities of at least one path. A
tree is a connected graph without cycles. A spanning subgraph of G is a couple (V(G), F(G)) with
the same vertex set as G and such that F(G) ⊂ E(G). A spanning tree is thus a spanning subgraph
of G without cycles. The combinatorial Laplacian on G defined as an operator acting on the space
of functions f : V(G)→ R is given by

∆Gf(v) =
∑

e∈E(G):
o(e)=v

(f(v) − f(t(e))).

The combinatorial Laplacian has a matrix representation given by the difference of the degree matrix
and the adjacency matrix, namely ∆G = DG−AG. Let n denote the cardinal of the vertex set V(G).
These matrices are n × n matrices with rows and columns indexed by the vertices v1, . . . , vn of G.
The degree of a vertex v ∈ V(G) is defined by

deg(v) = Card{e ∈ E(G) such that o(e) = v}.

The degree matrix DG = (Dij) is defined by Dii = deg(vi) and Dij = 0 for i 6= j. The adjacency
matrix AG = (Aij) is defined by

Aij = −Card{e ∈ E(G) such that o(e) = vi and t(e) = vj}.

In this thesis, we mainly consider three types of graphs that we describe below, namely hypercubic
lattices, discrete tori and circulant graphs.

• Let n1, . . . , nd be non-zero positive integers. The d-dimensional hypercubic lattice L(n1, . . . , nd)
is defined by the d-fold cartesian product of the ni-path graphs for i = 1, . . . , d.

Figure 1: The 2-dimensional lattice L(11, 7).

• A d-dimensional discrete torus is defined by the quotient Zd/ΛZd where Λ is a d×d invertible
integer matrix with nearest neighbours connected.
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Figure 2: The discrete torus Z/nZ× Z/blogncZ with n = 43.

• Let 1 6 γ1 6 · · · 6 γd 6 bn/2c be integers. The circulant graph CΓn generated by the set
Γ = {γ1, . . . , γd} on n vertices labelled by the elements of Z/nZ is the 2d-regular graph such
that each vertex v ∈ Z/nZ is connected to v − γi mod n and to v + γi mod n, for all
i ∈ {1, . . . , d}.

(a) C1,3,7,17
88 (b) C1,3,7,15,21

47

Figure 3: Examples of circulant graphs.

1.2 Matrix tree theorem
In 1847, Kirchhoff established the matrix tree theorem which relates the number of spanning trees to
the determinant of the combinatorial Laplacian. We follow the proof given in [13].

Theorem 1.1. Let G be a connected labelled graph. Then all cofactors of the Laplacian matrix ∆G are
equal and their common value is the number of spanning trees in G, τ(G). More precisely, we have that

τ(G) =
det∗∆G
|V(G)|

where det∗ ∆G is the product of the non-zero eigenvalues of the Laplacian.

To show the matrix tree theorem we need the two following results:
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Lemma 1.2 (Cauchy-Binet theorem). Let A be a k×n matrix and B a n×k matrix with k 6 n. Then

det(AB) =
∑

J

det(A(J)) det(B(J)) (1)

where J = (j1, . . . , jk), 1 6 j1 < · · · < jk 6 n runs through all such multi-indices, A(J) denotes the
matrix formed from A using columns J and B(J) denotes the matrix formed from B using rows J in that
order.

Lemma 1.3. Let A be an n × n matrix such that the row sums and column sums of A are all zero,
then all cofactors of A are equal.

This result can be shown using Cramer’s rule. Considering the equation AX = 0 we have that
X = (1, . . . , 1) is a solution by hypothesis. Let B be the submatrix consisting of the first n−1 columns
and rows of A and consider the system (BY)i = Ain where Ain, i = 1, . . . , n − 1, are the elements
of the last column of A, then Y = (−1, . . . ,−1) is a solution. Using this solution in Cramer’s rule
gives the equality between all cofactors of the last row of the matrix A. This procedure can be done
for any row of A which gives the equality between all the cofactors of A.

Proof of the matrix tree theorem. Assume that G has no multiple edges and no loops. Let |V(G)| = p
and |E(G)| = q. Since G is connected, for every vi ∈ V(G), i = 1, . . . , p, there exists a yj ∈ E(G),
j = 1, . . . , q, such that vi = o(yj) or vi = t(yj). Let N be the p×q incidence matrix of G defined by

Nij
..=

{
1 if vi = o(yj) or vi = t(yj)
0 otherwise . (2)

Let E be the p×q matrix obtained from N by replacing one of the two ones by −1 in each column of
N. Then we have that ∆G = EET . Indeed, (EET )ii =

∑q
k=1 E

2
ik = deg(vi) and for i 6= j, (EET )ij = −1

if vi and vj are adjacent, and 0 otherwise. Let H be a spanning subgraph of G with p vertices and
p − 1 edges. From the submatrix of E corresponding to H, we remove an arbitrary row, that we call
the k-th, which corresponds to the vertex vk. This forms a square matrix, F, of order p− 1.
Suppose H is not a tree, thus it is disconnected since he has p vertices and p − 1 edges. So there
exists a component of H which does not contain vk. Each column of F represents an edge of H and
has exactly one 1 one −1 and 0 elsewhere. So the sum of the rows corresponding to the vertices of
this component is the 0-row because they must all have a 1 and a −1 in their columns since they are
connected to each other. These rows are thus linearly dependent and so det(F) = 0.
Suppose now that H is a tree. We relabel the edges and vertices in the following way. Let u1 6= vk
be an endpoint of H and let y1 ∈ E(G) be such that o(y1) = u1. Let u2 6= vk be an endpoint of
H − u1 and y2 ∈ E(G) such that o(y2) = u2. We continue relabelling in this way with ui being an
endpoint of H− {u1, . . . , ui−1} and yi ∈ E(G) being such that o(yi) = ui until the last vertex left is
vk. So we obtain a new matrix F ′ which is lower triangular since ui cannot be connected to yj with
j > i by construction and with 1 or −1 on the diagonal. Thus, |det(F ′)| = |det(F)| = 1 because F ′ is a
permutation of rows and columns of F.
Let E1 be the (p−1)×q matrix obtained from E without his first row. Let ∆G(i|j) denote the Laplacian
matrix where row i and column j are removed. To evaluate the first cofactor of the Laplacian, L11,
given by

L11
..= (−1)1+1 det(∆G(1|1)) = det(E1E

T
1 ),
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we apply Cauchy-Binet theorem, that is

L11 =
∑

J

(det(E1(J)))
2

with J = (j1, . . . , jp−1) such that 1 6 j1 < · · · < jp−1 6 q. The (p − 1) × (p − 1) matrix E1(J)
corresponds to the matrix F previously defined with determinant equals to ±1 or 0 depending on
whether the corresponding graph is a spanning tree or not. As a consequence, the sum over all the
possibilities gives the number of spanning trees of G. The equality between all cofactors comes from
Lemma 1.3 since the sum of all the rows and columns of L is 0. Thus,

τ(G) = Lij

where Lij, i, j = 1, . . . , p, denote the cofactors of ∆G. The cofactors can be expressed in terms of
the eigenvalues of the Laplacian. Let λi, i = 0, . . . , p − 1, denote the eigenvalues of ∆G. Since G is
connected, the Laplacian has exactly one zero eigenvalue, λ0 = 0. The characteristic polynomial of
the Laplacian, χ(t), is given by

χ(t) = t(t− λ1) · · · (t− λp−1) = t
p + . . .+ t(−1)p−1

p−1∏

i=1

λi. (3)

Denote by ∆G,i, i = 1, . . . , p, the columns of ∆G and by Γi, i = 1, . . . , p, the canonical vectors of Rp,
such that (Γi)j = δij. Let ftk , k > 1, denote a polynomial in t which can be factorised by tk. By
developing the characteristic polynomial with respect to the columns ∆G,i, i = 1, . . . , p, we get

χ(t) = det(tI− ∆G)

= det [tΓ1 − ∆G,1, tΓ2 − ∆G,2, . . . , tΓp − ∆G,p]

= t det [Γ1, tΓ2 − ∆G,2, . . . , tΓp − ∆G,p] − det [∆G,1, tΓ2 − ∆G,2, . . . , tΓp − ∆G,p]

= t(− det [Γ1, ∆G,2, . . . , tΓp − ∆G,p] + ft)

− (t det [∆G,1, Γ2, . . . , tΓp − ∆G,p] − det [∆G,1, ∆G,2, . . . , tΓp − ∆G,p])

= (−1)p−1
p∑

i=1

det [∆G,1, . . . , ∆G,i−1, Γi, ∆G,i+1, . . . , ∆G,p] t+ ft2

= (−1)p−1
p∑

i=1

(−1)i+i det(∆G(i|i))t+ ft2 .

Since all cofactors are equal, it comes

χ(t) = (−1)p−1pLijt+ ft2 . (4)

By identifying the coefficient in t in equations (3) and (4), it follows that

τ(G) = Lij =
1
p

p−1∏

i=1

λi.
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Example. To illustrate the matrix tree theorem, we consider the following graph on 5 vertices.
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Figure 4: The butterfly graph.

The Laplacian matrix associated to the butterfly graph is

∆ =




2 −1 −1 0 0
−1 2 −1 0 0
−1 −1 4 −1 −1
0 0 −1 2 −1
0 0 −1 −1 2




with eigenvalues given by 0, 1, 3, 3, 5. As a consequence of the matrix tree theorem, there are 9
spanning trees that we enumerate in the figure below.

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

2

4

0 1

3

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

2

4

0 1

3

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

2

4

0 1

3

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

2

4

0 1

3

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

2

4

0 1

3

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

2

4

0 1

3

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

2

4

0 1

3

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

2

4

0 1

3

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

2

4

0 1

3

Figure 5: The 9 spanning trees of the butterfly graph.

In this thesis, we study the number of spanning trees in the previously mentioned graphs in section
1.1. The matrix tree theorem expresses it as a product of n terms, n being the number of vertices of
the graph. Therefore as n grows, it becomes difficult to estimate it. In the following section we define
the theta function of a graph which contains the spectral information and establish theta inversion
formulas relating it to the modified I-Bessel function, see [9, 10, 15].
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1.3 Theta functions, heat kernels and theta inversion formulas
Let λk, k = 0, 1, . . . , n − 1, be the eigenvalues of the combinatorial Laplacian on a graph G with n
vertices. The theta function of G is defined by

θG(t) =

n−1∑

k=0

e−λkt.

By considering the heat equation below we can express the theta function in terms of a series of
modified I-Bessel functions,

(∆G + ∂t)f(t, x) = 0.
The heat kernel KG(t, x) is the unique bounded solution to the heat equation such that KG(0, x) =
δ0(x) for all x where δ0 is the delta function, that is δ0(0) = 1 and δ0(x) = 0 for x 6= 0. Hence it
can be written as

KG(t, x) = e
−t∆Gδ0(x).

Denote by φk, k = 0, 1, . . . , n− 1, the orthonormal eigenvectors of the combinatorial Laplacian. The
delta function is expressed in the eigenbasis as

δ0 =

n−1∑

k=0

φk(0)φk,

implying that the heat kernel is given by

KG(t, x) =

n−1∑

k=0

e−λktφk(0)φk(x).

Following [15], we solve the heat equation on the discrete line Z and on the discrete n-cycle Z/nZ.

Heat kernel on Z

On Z, the heat equation is
(∆Z + ∂t)KZ(t, x) = 0

where the combinatorial Laplacian is given by

∆Zf(x) = 2f(x) − (f(x− 1) + f(x+ 1)).

We solve the heat equation by Fourier transform. Let g(t,ω) =
∑
x∈Z KZ(t, x)eixω. We have

∆Zg(t,ω) =
∑

x∈Z
(2KZ(t, x) − (KZ(t, x− 1) + KZ(t, x+ 1)))eixω = (2− 2 cosω)g(t,ω).

The Fourier transform of the heat equation is thus

(2− 2 cosω)g(t,ω) + ∂tg(t,ω) = 0, g(0,ω) = 1,

which is solved by g(t,ω) = e−(2−2 cosω)t. As a consequence, the heat kernel on Z is given by

KZ(t, x) =
1
2π

∫π

−π

g(t,ω)e−ixωdω =
1
2π
e−2t

∫π

−π

e2t cosωe−ixωdω = e−2tIx(2t)
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where Ix is the modified I-Bessel function of order x given by

Ix(t) =
1
2π

∫π

−π

et cosω cos(ωx)dω.

Heat kernel on Z/nZ

The heat kernel on the n-cycle is n-periodic in x, that is

KZ/nZ(t, x+ n) = KZ/nZ(t, x).

Thus it is given by

KZ/nZ(t, x) =
∑

k∈Z
KZ/nZ(t, x+ kn) = e

−2t
∑

k∈Z
Ix+kn(2t).

On the other hand, since the n-cycle is the Cayley graph of the group Z/nZ with generators −1 and
1, the eigenvectors of the Laplacian are given by the characters

χk(x) = e
2πikx/n, k = 0, 1, . . . , n− 1,

with corresponding eigenvalues λk = 2− 2 cos(2πk/n), k = 0, 1, . . . , n− 1. Thus the heat kernel can
be expressed as

KZ/nZ(t, x) =
1
n

n−1∑

k=0

e−(2−2 cos(2πk/n))te2πikx/n.

As a consequence of the two derivations of the heat kernel on Z/nZ, we deduce

1
n

n−1∑

k=0

e−(2−2 cos(2πk/n))te2πikx/n = e−2t
∑

k∈Z
Ix+kn(2t).

By letting x = 0 gives the the beautiful theta inversion formula on Z/nZ,

1
n

n−1∑

k=0

e−(2−2 cos(2πk/n))t = e−2t
∑

k∈Z
Ikn(2t).

Theta inversion formula on Z/n1Z× · · · × Z/ndZ

Let Λ = diag(n1, . . . , nd) be a diagonal matrix with positive integer coefficients. Let k = (k1, . . . , kd),
x = (x1, . . . , xd) ∈ Zd/ΛZd and kΛ = Λ−1k. The eigenvectors of the Laplacian on the discrete torus
Zd/ΛZd are given by

gkΛ(x) = e
2πi〈kΛ,x〉

where 〈·, ·〉 denotes the usual inner product. Denote by ei, i = 1, . . . , d, the canonical basis of Zd.
Since each vertex x ∈ Zd/ΛZd is connected to his nearest neighbours, that is x is adjacent to x− ei
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and to x+ei, for all i = 1, . . . , d, the eigenvalues on Zd/ΛZd are obtained by applying the Laplacian
on the eigenvectors gkΛ(x):

λk = 2d− 2
d∑

i=1

cos(2πki/ni) where k ∈ Zd/ΛZd.

On the other hand, the heat kernel on the cartesian product of graphs is the product of the heat
kernels on each graph. Thus, the theta inversion formula on Zd/ΛZd is

θZd/ΛZd(t) =
∑

k∈Zd/ΛZd
e−(2d−2

∑d
i=1 cos(2πki/ni))t = e−2dt

∑

k∈Zd

d∏

i=1

niIkini(2t).

More generally, on a d-dimensional discrete torus Zd/ΛZd where Λ is a d × d invertible integer
matrix non-necessarily diagonal, the theta inversion is stated in [10, Proposition 5] as

θZd/ΛZd(t) =
∑

v∈Λ∗Zd/Zd
e−(2d−2

∑d
i=1 cos(2πvi))t = |detΛ|e−2dt

∑

y∈ΛZd

d∏

i=1

Iyi(2t) (5)

where Λ∗Zd is the dual lattice of ΛZd defined by

Λ∗Zd = {y ∈ Rd|〈x, y〉 ∈ Zd, ∀x ∈ ΛZd}.

Theta inversion formula on the circulant graph Cγ1,...,γd
n

The circulant graph Cγ1,...,γd
n is the Cayley graph of the group Z/nZ with generators −γi and γi,

i = 1, . . . , d, thus the eigenvectors of the Laplacian are the characters

χk(x) = e
2πikx/n, k = 0, 1, . . . , n− 1.

Consequently, the eigenvalues are given by

λk = 2d− 2
d∑

i=1

cos(2πkγi/n), k = 0, 1, . . . , n− 1.

In the special case of circulant graphs with first generator equal to 1, one can show that CΓn, Γ =
{1, γ1, . . . , γd−1} is isomorphic to the discrete torus Zd/ΛΓZd where ΛΓ is the following matrix

ΛΓ =




n −γ1 · · · −γd−1

Id−10


 ,

Id−1 being the identity matrix of order d− 1. From the theta inversion formula on the discrete torus
(5), we deduce the theta inversion formula for CΓn

θCΓn(t) =

n−1∑

k=0

e−(2d−2 cos(2πk/n)−2
∑d−1
i=1 cos(2πγik/n))t

= ne−2dt
∑

(k1,...,kd)∈Zd
Ink1−

∑
d−1
i=1 γiki+1

(2t)
d∏

i=2

Iki(2t).
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1.4 Spectral zeta function
Let λk, k > 0, denote the eigenvalues of the Laplace-Beltrami operator ∆M = −

∑d
i=1 ∂

2/∂x2i on a
d-dimensional manifold M. The theta function, also called the partition function in [28], is defined
for <(t) > 0 by

ΘM(t) =

∞∑

k=0

e−λkt.

The spectral zeta function onM is defined as the Mellin transform of the theta function and converges
for <(s) > d/2

ζM(s) =
1
Γ(s)

∫∞

0
(ΘM(t) − 1)tsdt

t
=
∑

λk 6=0

1
λsk
.

It can be shown that the spectral zeta function admits a meromorphic continuation to the whole
complex plane and is analytic at 0, see [28]. Consequently, one can define the regularized determinant
of ∆M as

log det∗∆M = −ζ ′M(0).

1.5 Results
Below, we summarise the results obtained in this thesis.

• In Asymptotics for the number of spanning trees in circulant graphs and degenerating
d-dimensional discrete tori, page 22, we extend the method from [9] to two other types of
graphs. First we derive asymptotics for the number of spanning trees in a sequence of circu-
lant graphs C1,γ1,...,γd−1

n which improves the results in [3, 12]. The second part of the paper
concerns a sequence of d-dimensional discrete tori Zd/ΛZd, with Λ a positive integer matrix,
when |detΛ| tends to infinity but with dimensions not all growing at the same rate. In [9],
the sequence of discrete tori considered Zd/ΛnZd, Λn being a d × d integer matrix, is such
that detΛn → ∞ and Λn/(detΛn)

1/d → A ∈ SLd(R) as n → ∞. In the present work, this
condition does not hold anymore.

• In A formula for the number of spanning trees in circulant graphs with non-fixed generators and
discrete tori, page 50, we consider circulant graphs of the form C

1,γ1n,...,γd−1n
βn , where 1 6 γ1 6

· · · 6 γd−1 6 bβ/2c are integers. We derive a closed formula for the number of spanning trees
as a product of β values of a function of the eigenvalues on the subgraph Cγ1...,γd−1

β . This
improves a result from [32]. The technique used here is also applied to d-dimensional discrete
tori Zd/ΛZd, where Λ is the diagonal integer matrix Λ = diag(α1, . . . , αd−1, n), which leads
to a formula of a product of det(A) terms of a function of the eigenvalues on the subgraph
Zd−1/AZd−1, where A = diag(α1, . . . , αd−1). These formulas are interesting when n is larger
than the other parameters of the graphs. As a consequence of these results, the tree entropy of
these sequences of graphs is derived.

• In Spanning trees in directed circulant graphs and cycle power graphs, page 59, we find closed
formulas for the number of spanning trees in directed circulant graphs with generators depend-
ing linearly on the number of vertices, that is

−→
C
p,γ1n+p,...,γd−1n+p
βn . This improves the results

from [31], and partially answers an open question posed in [2]. In the second part of the paper,
we derive a formula for the number of spanning trees in the n-th and (n− 1)-th power graphs
of the βn-cycle as a product of bβ/2c terms.
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• In Asymptotics for the determinant of the combinatorial Laplacian on hypercubic lattices, page 70,
we compute asymptotics for the determinant of the Laplacian on a sequence of d-dimensional
orthotope square lattices as the number of vertices tends to infinity. This is done by expressing
the theta function of these graphs in terms of the theta function of d-dimensional discrete tori
and then using the asymptotics results from [9]. We also compute asymptotics for the number
of spanning trees in the quartered Aztec diamond.

• In Low temperature ratchet current, page 90, we give an explicit expression for the low tem-
perature ratchet current in a multilevel system and its limit as the number of states goes to
infinity. The calculation is reduced to evaluating the number of spanning trees in a directed
graph, which is given by the Tutte matrix tree theorem. This problem is a continuation of [21]
where the authors found numerical values for the ratchet current while in this work we derive
a formula which is consistent with numerics.

• In A formula for the energy of circulant graphs with two generators, page 95, we give a formula
for the energy in circulant graphs C1,γ

n . This problem has interesting applications in theoretical
chemistry, see for example [4].
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Asymptotics for the number of spanning trees in
circulant graphs and degenerating d-dimensional

discrete tori∗

Justine Louis

1 December 2014

Abstract

In this paper we obtain precise asymptotics for certain families of graphs, namely circulant
graphs and degenerating discrete tori. The asymptotics contain interesting constants from num-
ber theory among which some can be interpreted as corresponding values for continuous limiting
objects. We answer one question formulated in a paper from Atajan, Yong and Inaba in [1] and
formulate a conjecture in relation to the paper from Zhang, Yong and Golin [23]. A crucial
ingredient in the proof is to use the matrix tree theorem and express the combinatorial Lapla-
cian determinant in terms of Bessel functions. A non-standard Poisson summation formula and
limiting properties of theta functions are then used to evaluate the asymptotics.

1 Introduction
The number of spanning trees of a finite graph is an interesting invariant which has many ap-
plications in different fields such as network reliability (for example see [9]), statistical physics
[18], designing electrical circuits; for more applications see [10]. In 1847 Kirchhoff established the
matrix tree theorem [15] which relates the number of spanning trees τ(G) in a graph G with |V(G)|
vertices to the determinant of the combinatorial Laplacian on G by the following relation

τ(G) =
1

|V(G)|
det∗∆

where det∗ ∆ is the product of the non-zero eigenvalues of the Laplacian on G.
One type of graphs, so-called circulant graphs, also known as loop networks, has been much

studied. Let 1 6 γ1 6 · · · 6 γd 6 bn/2c be positive integers. A circulant graph Cγ1,...,γd
n is

the 2d-regular graph with n vertices labelled 0, 1, . . . , n − 1 such that each vertex v ∈ Z/nZ is
connected to v ± γi mod n for all i ∈ {1, . . . , d}. Figure 1 illustrates two examples. The problem
of computing the number of spanning trees in these graphs can be approached in several ways.
One of the first results, proved by Kleitman and Golden [16], see also [4] and [20], states that
τ(C1,2

n ) = nF2n, where Fn are the Fibonacci numbers. Boesch and Prodinger [5] computed the
number of spanning trees for different classes of graphs with algebraic techniques using Chebyshev
polynomials. Zhang, Yong and Golin [21, 23] used this technique for circulant graphs. The same
authors showed in [22] that the number of spanning trees in circulant graphs with fixed generators

∗published in Annals of Combinatorics, 19(3):513–543, 2015. The author was supported in part by the Swiss NSF grant
200021 132528/1.
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satisfies a recurrence relation, that is τ(Cγ1,...,γd
n ) = na2n where an satisfies a recurrence relation

of order 2γd−1. This was also proved combinatorially later by Golin and Leung in [11]. They
extended their method to circulant graphs with non-fixed generators in [12]. In [1], Atajan, Yong
and Inaba improved the order of the recurrence relation for an and found the asymptotic behaviour
of an, i.e. an ∼ cφn, where c and φ are constants which are obtained from the smallest modulus
root of the generating function of an. They again improved this in [2] by finding an efficient way
of solving the recurrence relation of an.
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Figure 1: The circulant graphs C1,2
7 and C1,3

13 .

In this work we are interested in studying the asymptotic behaviour of the number of spanning
trees in circulant graphs with fixed generators and in d-dimensional discrete tori. This will be
done by extending the work of Chinta, Jorgenson and Karlsson in [6] and [7] to these cases. In
their papers, the authors developed a technique to compute the asymptotic behaviour of spectral
determinants of sequences of discrete tori Zd/ΛnZd where Λn is a d × d integer matrix such
that detΛn → ∞ and Λn/(detΛn)1/d → A ∈ SLd(R) as n → ∞. The two families of graphs
which will be considered here do not satisfy this condition. An important ingredient is the theta
inversion formula (see Proposition 2.1 below) which relates the eigenvalues of the combinatorial
Laplacian to the modified I-Bessel functions. The method then consists in studying the asymptotics
of integrals involving these Bessel functions. In the first part of this work we apply it to the case
of circulant graphs with fixed generators. We will prove the following theorem:

Theorem 1.1. Let CΓn be a circulant graph with n vertices and d generators independent of n given
by Γ ..= {1, γ1, . . . , γd−1}, such that 1 6 γ1 6 · · · 6 γd−1 6 bn2 c, and let det∗ ∆CΓn be the product of
the non-zero eigenvalues of the Laplacian on CΓn. Then as n→ ∞

log det∗∆CΓn = n

∫∞

0
(e−t − e−2dtIΓ0 (2t, . . . , 2t))

dt

t
+ 2 logn− log cΓ + o(1)

where cΓ = 1+
∑d−1
i=1 γ

2
i and

IΓ0 (2t, . . . , 2t) =
1
2π

∫π

−π

e2t(cosw+
∑d−1
i=1 cos(γiw))dw

is the d-dimensional modified I-Bessel function of order zero.

The function IΓ0 appearing in the lead term is a generalization of the 2-dimensional J-Bessel
function in [17] and will be defined in section 2.4.
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Theorem 1.1 can be compared to Lemma 2 of Golin, Yong and Zhang in [13] where they find the
lead term of the asymptotic number of spanning trees. With our method we derived also the second
term of the asymptotic. These are consistent with numerics given in [22, 1] by these authors. In
particular, this answers one of their open problems stated in the conclusion of [1] that asks whether
we can find out the exact value of the asymptotic constants. Indeed we show that

c2 =
1
cΓ
.

Let Λn be a d × d invertible diagonal integer matrix. In the second part of this work we
extend the method used in [6] to study, in two different cases, the asymptotic behaviour of spectral
determinants of a sequence of d-dimensional degenerating discrete tori, that is, the Cayley graphs
of the groups Zd/ΛnZd with respect to the generators corresponding to the standard basis vectors
of Zd. In the first case, it is degenerating in the sense that d − p sides of the torus are tending
to infinity at the same rate while p sides tend to infinity sublinearly with respect to the d − p
sides. More precisely, let αi, i = 1, . . . , p, and βi, i = 1, . . . , d − p, be positive non-zero integers
and an be a sequence of positive integers, the matrix Λn considered is then given by Λn =
diag(α1an, . . . , αpan, β1n, . . . , βd−pn). In the first case, an goes to infinity sublinearly with
respect to n, that is

an

n
→ 0 as n→ ∞.

In the second case, the size of the p sides of the torus stay constant (an = 1 for all n) while
the d − p other sides go to infinity at the same rate. The matrix considered, denoted by Λ0

n, is
therefore given by Λ0

n = diag(α1, . . . , αp, β1n, . . . , βd−pn). Figure 2 illustrates an example.

Figure 2: The discrete torus Z/nZ× Z/blogncZ with n = 43.

Let M be an r× r invertible matrix. We define the spectral or Epstein zeta function associated to
the real torus Rr/MZr, for <(s) > r/2 by

ζRr/MZr(s) =
1

(2π)2s
∑

k∈Zr\{0}
(kTM−1k)−s.

It has an analytic continuation to the whole complex plane except for a simple pole at s = r/2.
The regularized determinant of the Laplacian on the real torus Rr/MZr is then defined through
the spectral zeta function evaluated at s = 0 by

log det∗∆Rr/MZr = −ζ ′Rr/MZr(0).

From now on, the matrices A, B and Λ will denote:

A = diag(α1, . . . , αp), B = diag(β1, . . . , βd−p), Λ = diag(α1, . . . , αp, β1, . . . , βd−p).
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We will prove the two following theorems.

Theorem 1.2. Let det∗ ∆Zd/ΛnZd be the product of the non-zero eigenvalues of the Laplacian on
the discrete torus Zd/ΛnZd. Then as n→ ∞

log det∗∆Zd/ΛnZd = nd−papn det(Λ)cd −

(
n

an

)d−p (
det(Λ)(4π)d/2Γ(d/2)ζRp/A−1Zp(d/2) + o(1)

)

where cd is the following integral

cd =

∫∞

0

(
e−t − e−2dtI0(2t)d

) dt
t
.

We recall the special values for the gamma function for odd d, Γ(d/2) = (d−2)!!
√
π/2(d−1)/2,

and for even d, Γ(d/2) = (d/2− 1)!.

Theorem 1.3. Let det∗ ∆Zd/Λ0
nZd be the product of the non-zero eigenvalues of the Laplacian on

the discrete torus Zd/Λ0
nZd. Then as n→ ∞

log det∗∆Zd/Λ0
nZd = nd−p det(B)

det(A)−1∑

j=0

∫∞

0

(
e−t − I0(2t)d−pe−(2(d−p)+λj)t

) dt
t

+ 2 logn− ζ ′Rd−p/BZd−p(0) + o(1)

where λj, j = 0, 1, . . . ,det(A) − 1, are the eigenvalues of the Laplacian on Zp/AZp given by

{λj}j = {2p− 2
p∑

i=1

cos(2πji/αi) : ji = 0, 1, . . . , αi − 1, for i = 1, . . . , p}.

The second term in Theorem 1.2 is new in the asymptotic development which comes from the
degeneration. In Theorem 1.3 the terms are similar to the usual ones appearing in the asymptotic
behaviour of spectral determinants (see [6] and [7]). As mentioned above the last term is the
logarithm of the spectral determinant of the Laplacian on the real torus Rd−p/BZd−p where p
dimensions are lost because of the degeneration of the sequence of tori. Indeed one can rescale
the discrete torus by dividing the number of vertices per dimension by n. Therefore the d-
dimensional sequence of discrete tori converges in some sense to the (d − p)-dimensional real
torus Rd−p/BZd−p.

Example. To illustrate Theorem 1.2 we consider the graphs Z3/ΛnZ3 where

Λn =



blognc 0 0

0 n 0
0 0 n


 .

Then as n→ ∞

log det∗∆Z3/ΛnZ3 = c3n
2blognc−

(
n

blognc

)2( 1
π
ζ(3) + o(1)

)
.

This work is structured as follows. In subsection 2.1 we define the combinatorial Laplacian, and
then the spectral zeta function and the theta function in subsection 2.2. In subsection 2.3 we
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recall some results on modified I-Bessel functions and in the next subsection we define the d-
dimensional modified I-Bessel function which will be used in the computation of the asymptotics
for the circulant graphs. In the two next subsections we recall some upper bounds on modified
I-Bessel functions and briefly describe the method used in [6]. In section 3 we show Theorem
1.1 and compare the results with other papers. In section 4 we treat the case of the degenerating
sequence of tori, show Theorems 1.2 and 1.3 and give some examples. In the last section we
formulate a conjecture on the number of spanning trees in C1,n

5n , for n > 2.

Acknowledgements: The author gratefully thanks Anders Karlsson for valuable discussions,
comments and a careful reading of the manuscript. The author also thanks Fabien Friedli for
useful discussions. The author is grateful to the referees for useful comments.

2 Preliminary results
2.1 Laplacians
We define a d-dimensional discrete torus to be the quotient Zd/MZd where M is an invertible
d×d matrix with coefficients in Z and a d-dimensional real torus by the quotient Rd/CZd where
C ∈ GLd(R). Let C∗ be the matrix generating the dual lattice of CZd defined by

C∗Zd = {y ∈ Rd|〈x, y〉 ∈ Z, ∀x ∈ CZd}

where 〈·, ·〉 is the usual inner product, which satisfies the two following conditions:

• span(C) = span(C∗)

• CTC∗ = 1.

The eigenfunctions of the Laplace-Beltrami operator −
∑d
j=1 ∂

2/∂x2j on the real torus are given
by φ(x) = exp(2πi〈µ, x〉), for some µ ∈ Rd, with the condition that the opposite sides of the
parallelogram generated by CZd are identified. So for all x ∈ Rd we have φ(x + CZd) = φ(x).
Hence exp(2πi〈µ,CZd〉) = 1 and therefore 〈µ,CZd〉 ∈ Z if and only if µ = C∗m for m ∈ Zd. It
follows that the eigenvalues are given by

λm = (2π)2µTµ = (2π)2‖C∗m‖2 with m ∈ Zd. (1)

Let V(Zd/MZd) be the set of vertices of the torus Zd/MZd and f : V(Zd/MZd) → C. The
combinatorial Laplacian on Zd/MZd is defined by

∆Zd/MZdf(x) =
∑

y∼x

(f(x) − f(y))

where the sum is over the vertices adjacent to x.
Recall Proposition 5 of [7]:

Proposition 2.1. Let λv, with v ∈ M∗Zd/Zd, be the eigenvalues of ∆Zd/MZd . The following
formula holds for t ∈ R>0

|det(M)|
∑

y∈MZd
e−2dtIy1(2t) . . . Iyd(2t) =

∑

v∈M∗Zd/Zd
e−tλv

where Iyi is the modified I-Bessel function of order yi.
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2.2 Spectral zeta function and theta function
In this section we define the spectral zeta function and the theta function and give the relations
that will enable us to compute the asymptotics in sections 3 and 4.
Let {λj}j>0 be the eigenvalues of the combinatorial Laplacian, respectively the Laplace-Beltrami
operator, on a discrete torus, respectively a real torus, T, with λ0 = 0. The associated theta
function on T is defined by ∑

j

e−λjt. (2)

It will be denoted by θT (t) when T denotes a discrete torus and by ΘT (t) when T denotes a real
torus. The relation in Proposition 2.1 is then called the theta inversion formula on Zd/MZd. The
associated spectral zeta function on a real torus T is defined for <(s) > d/2 by

ζT (s) =
∑

j6=0

1
λsj
.

It is related to the theta function through the Mellin transform:

ζT (s) =
1
Γ(s)

∫∞

0
(ΘT (t) − 1)tsdt

t

where the −1 in the integral comes from the fact that the zero eigenvalue is kept in the definition
of the theta function, and where Γ(s) =

∫∞
0 e−ttsdt/t is the gamma function.

Let M ∈ GLd(R) be a matrix. By splitting the above integral one can show that the zeta function
admits a meromorphic continuation to s ∈ C (see section 2.6 in [6]). By differentiating ζRd/MZd
and evaluating at s = 0, one has

ζ ′Rd/MZd(0) =
∫ 1

0
(ΘRd/MZd(t) − |det(M)|(4πt)−d/2)dt

t
+ Γ ′(1)

−
2
d
|det(M)|(4π)−d/2 +

∫∞

1
(ΘRd/MZd(t) − 1)dt

t
. (3)

In section 3 a limiting torus will be the circle S1 = R/Z. In this case it is convenient to split the
integral at cΓ . The spectral zeta function is defined for <(s) > 1/2:

ζS1(s) =
1
Γ(s)

∫∞

0
(ΘS1(t) − 1)tsdt

t

=
1
Γ(s)

∫cΓ
0

(
ΘS1(t) −

1√
4πt

)
ts
dt

t
+

1
Γ(s)

∫cΓ
0

(
1√
4πt

− 1
)
ts
dt

t

+
1
Γ(s)

∫∞

cΓ

(ΘS1(t) − 1)tsdt
t

=
1
Γ(s)

∫cΓ
0

(
ΘS1(t) −

1√
4πt

)
ts
dt

t
+

1
Γ(s)

(
c
s−1/2
Γ√

4π(s− 1/2)
−
csΓ
s

)

+
1
Γ(s)

∫∞

cΓ

(ΘS1(t) − 1)tsdt
t
.

This defines a meromorphic continuation of ζS1 to the whole complex plane, hence the limit of
ζS1(s) at s = 0 exists. Near s = 0 the gamma function behaves as 1/Γ(s) = s+O(s2). Therefore

ζ ′S1(0) =
∫cΓ
0

(
ΘS1(t) −

1√
4πt

)
dt

t
−

1√
πcΓ

− log cΓ + Γ
′(1) +

∫∞

cΓ

(ΘS1(t) − 1)dt
t
. (4)
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As mentioned in the introduction, we notice that for a real torus T the regularized determinant of
the Laplacian, det∗ ∆T , is defined by the following identity (for more details see [19]):

log det∗∆T = −ζ ′T (0).

Let s ∈ C with <(s) > d/2, and M = diag(m1, . . . ,md) be a positive diagonal matrix. Using (1),
the zeta function can be rewritten as

ζRd/MZd(s) =
1

(4π2)s
∑

(k1,...,kd)∈Zd\{0}

1(∑d
i=1 k

2
i/m

2
i

)s . (5)

Let ζ be the Riemann zeta function. In the case of the circle R/βZ the eigenvalues of the Laplacian
are given by λj = (2π)2(j/β)2 for j ∈ Z, so the spectral zeta function is related to the Riemann
zeta function by

ζR/βZ(s) = 2(β/2π)2sζ(2s).

Using the special values of the Riemann zeta function ζ(0) = −1/2 and ζ ′(0) = −(1/2) log(2π),
the derivative evaluated at zero is given by

ζ ′R/βZ(0) = 4 log(β/2π)ζ(0) + 4ζ ′(0) = −2 logβ. (6)

In particular for the unit circle S1 = R/Z, one has

ζ ′S1(0) = 0. (7)

2.3 Modified I-Bessel functions
Let Ix be the modified I-Bessel function of the first kind of index x. For positive integer values of
x, Ix(t) has the following series representation

Ix(t) =

∞∑

n=0

(t/2)2n+x

n!Γ(n+ 1+ x)
(8)

and the integral representation

Ix(t) =
1
2π

∫π

−π

et cosθ cos(θx)dθ.

For negative values of x we have that Ix(t) = I−x(t) for all t.
From Theorem 9 in [14] which is a special case of Proposition 2.1, we have the theta inversion
formula on Z/mZ, that is, for every integer m > 0 and all t,

e−t
∑

k∈Z
Ikm(t) =

1
m

m−1∑

j=0

e−(1−cos(2πj/m))t. (9)

The two following propositions give some results on the asymptotics of the I-Bessel function. The
first result has been proved in [6].

Proposition 2.2. Let b(n) be a sequence of positive integers parametrised by n ∈ N such that
b(n)/n→ β > 0 as n→ ∞. Then for any t > 0 and non-negative integer k > 0, we have

lim
n→∞

b(n)e−2n2tIb(n)k(2n2t) =
β√
4πt

e−(βk)2/(4t).
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Proposition 2.3. Let an be a sequence of positive integers tending to infinity sublinearly with respect
to n. Then we have that

lim
n→∞

ane
−2n2t

∑

k∈Z
Iank(2n2t) = 1.

Proof. From the theta inversion formula on Z,

ane
−2n2t

∑

k∈Z
Iank(2n2t) = 1+

an−1∑

j=1

e−4 sin2(πj/an)n
2t.

If an is even,
an−1∑

j=1

e−4 sin2(πj/an)n
2t = e−4n2t + 2

an/2−1∑

j=1

e−4 sin2(πj/an)n
2t.

If an is odd,
an−1∑

j=1

e−4 sin2(πj/an)n
2t = 2

(an−1)/2∑

j=1

e−4 sin2(πj/an)n
2t.

Since e−4n2t → 0 as n → ∞ both cases behave the same, so we only treat the case where an is
odd. Using the fact that sin x > x/2 for all x ∈ [0, π/2], we have

(an−1)/2∑

j=1

e−4 sin2(πj/an)n
2t 6

(an−1)/2∑

j=1

e−π
2j2tn2/a2

n

6
∞∑

j=1

e−π
2jtn2/a2

n =
1

eπ
2tn2/a2

n − 1
→ 0

since n/an → ∞ as n→ ∞.

Proposition 2.4. For all x > 2,
∫∞

0

(
e−t − e−xtI0(2t)

) dt
t

= argcosh(x/2).

Proof. Setting x = 0 in (8), we have

I0(2t) =
∑

n>0

t2n

(n!)2
.

It follows
∫∞

0
e−xt(I0(2t) − 1)dt

t
=

∫∞

0
e−xt

∑

n>1

t2n

(n!)2
dt

t

=
∑

n>1

(2n− 1)!
(n!)2

1
x2n

.

Let y = 1/x2 with y 6 1/4, so the above is equivalent to the following sum
∑
n>1 y

n(2n−1)!/(n!)2.
Let Cn = Cn2n/(n+1) = (2n)!/(n+1)!n! be the Catalan numbers, n > 0, where Cnm = m!/n!(m−
n)! is the binomial coefficient. The generating function of the Catalan numbers is given by

∑

n>0

Cny
n =

2
1+
√
1− 4y

. (10)
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The integration over y of the above leads to

∑

n>0

Cn

n+ 1
yn+1 = log(1+

√
1− 4y) −

√
1− 4y+ constant.

Taking the limit y→ 0 on both sides gives the constant = 1− log 2. Hence,

∑

n>0

Cn

n+ 1
yn+1 = y+

∑

n>2

(2n− 2)!
(n!)2

yn

= log(1+
√

1− 4y) −
√

1− 4y+ 1− log 2.

Let αn = Cn−1/n = (2n − 2)!/(n!)2, n > 2, and α1 = 1, and let g(y) = log(1 +
√
1− 4y) −√

1− 4y+ 1− log 2. So the previous equation can be written as
∑

n>1

αny
n = g(y).

So (10) is equivalent to ∑

n>1

nαny
n−1 = g ′(y).

Finally,

∑

n>1

(2n− 1)!
(n!)2

yn =
∑

n>1

(2n− 1)αnyn

= 2y
∑

n>1

nαny
n−1 −

∑

n>1

αny
n

= 2yg ′(y) − g(y)

= log

(
2

1+
√
1− 4y

)
.

Writing the above in terms of x gives for all x > 2,
∫∞

0
e−xt(I0(2t) − 1)dt

t
= log

x

2
+ log(x−

√
x2 − 4).

Notice that the above is the generating function of the Catalan numbers, and therefore is equal to
log(

∑
n>0 Cnx

−2n).
Using the following integral identity for all x ∈ C with <(x) > 0

∫∞

0

(
e−t − e−xt

) dt
t

= log x

one has ∫∞

0

(
e−t − e−xtI0(2t)

) dt
t

= log

(
x+
√
x2 − 4
2

)
= argcosh(x/2).
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2.4 d-dimensional modified I-Bessel function
Let m,p1, . . . , pd be positive integers. By analogy with the two-dimensional J-Bessel function
defined in [17] we define the d-dimensional modified I-Bessel function of order m, Ip1,...,pd

m (u1, . . . ,

ud), by the generating function e
∑d
i=1 ui cos(pit), that is

e
∑d
i=1 ui cos(pit) =

∞∑

m=−∞
Ip1,...,pd
m (u1, . . . , ud)e

imt.

In our computation we will only need u1 = . . . = ud = 2n2t so we set u1 = . . . = ud = u. We
have

Ip1,...,pd
m (u, . . . , u) =

1
2π

∫π

−π

∑

(µ1,...,µd)∈Zd

d∏

i=1

Iµi(u)e
i(

∑d
i=1 µipi−m)tdt.

The integral is non-zero only for
d∑

i=1

µipi = m. Let (µ1, . . . , µd) = (M1, . . . ,Md) be a particular

solution, then the set of solutions is given by

µ1 =M1 −

d∑

i=2

piki, µi =Mi + p1ki, i = 2, . . . , d, k2, . . . , kd ∈ Z.

So we have

Ip1,...,pd
m (u, . . . , u) =

∑

(k2,...,kd)∈Zd−1

IM1−
∑
d
i=2 piki

(u)

d∏

i=2

IMi+p1ki(u).

Let Γ ..= {1, γ1, . . . , γd−1} be a set of integral parameters, and k1 ∈ N. We set M1 = nk1,
M2 = . . . = Md = 0, p1 = 1, pi = γi−1, i = 2, . . . , d, then the d-dimensional modified I-Bessel
function of order nk1 and parameters set Γ is given by

IΓnk1
(u, . . . , u) ..= I1,γ1,...,γd−1

nk1
(u, . . . , u) =

∑

(k2,...,kd)∈Zd−1

Ink1−
∑
d−1
i=1 γiki+1

(u)

d∏

i=2

Iki(u)

which has the integral representation

IΓnk1
(u, . . . , u) =

1
2π

∫π

−π

eu(cosw+
∑d−1
i=1 cos(γiw))e−ink1wdw. (11)

Since I−n(u) = In(u), notice that

IΓ−nk1
(u, . . . , u) = IΓnk1

(u, . . . , u). (12)

2.5 Upper bounds for I-Bessel functions
Recall Remark 4.2 in [6]: For all t > 0 the following upper bound holds:

0 6 ne−n2tI0(n
2t) 6 Ct−1/2 (13)

for some positive constant C.
Recall Lemma 4.6 in [6]:
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Lemma 2.5. Fix t > 0 and non-negative integers x and n0. Then for all n > n0, we have the
uniform bound

0 6
√
n2te−n

2tInx(n
2t) 6

(
n0t

x+ n0t

)n0x/2

=

(
1+ x

n0t

)−n0x/2

6 1.

2.6 Method
The method developed in [6] consists in studying the asymptotic behaviour of the Gauss transform
of the theta function evaluated at zero in order to obtain the product of the Laplacian eigenvalues.
This leads to the two following theorems which are adapted from Theorem 3.6 in [6]. They express
the logarithm of the determinant of the combinatorial Laplacian on the corresponding discrete
torus in terms of integrals of theta and I-Bessel functions. The study of the asymptotics of these
integrals will therefore lead to the asymptotic behaviour of the number of spanning trees.
In the case of the circulant graph we have:

Theorem 2.6. We have the identity

log
( ∏

λj 6=0

λj

)
= nIΓd +HCΓn

where
IΓd =

∫∞

0

(
e−t − e−2dtIΓ0 (2t, . . . , 2t)

) dt
t

and
HCΓn = −

∫∞

0

(
θCΓn(t) − ne

−2dtIΓ0 (2t, . . . , 2t) − 1+ e−t
) dt
t
.

And in the case of the diagonal discrete torus we have:

Theorem 2.7. We have the identity

log
( ∏

λj 6=0

λj

)
= det(Λn)I{αi}

p
i=1

d +HΛn

where

I{αi}
p
i=1

d =

∫∞

0


e−t − e−2dtI0(2t)d−p

∑

(k1,...,kp)∈Zp

p∏

i=1

Ikiαian(2t)


 dt

t

and

HΛn = −

∫∞

0


θΛn(t) − e−2dtI0(2t)d−p

∑

(k1,...,kp)∈Zp

p∏

i=1

Ikiαian(2t) − 1+ e−t

 dt

t
. (14)

3 Asymptotic behaviour of spectral determinant on circulant
graphs

3.1 Computation of the asymptotics
Let 1 6 γ1 6 · · · 6 γd−1 6 bn/2c be positive integers and CΓn denote the circulant graph where
Γ ..= {1, γ1, . . . , γd−1} is the set of generators. In this work we only consider circulant graphs with
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Figure 3: The lattice
(

7 −2
0 1

)
Z2.

first generator equals to 1. In this case one can verify that CΓn is isomorphic to the d-dimensional
discrete torus Zd/ΛΓZd where ΛΓ is the following matrix

ΛΓ =




n −γ1 · · · −γd−1

Id−10




where Id−1 is the identity matrix of order d − 1. Indeed, all the points on the lattice ΛΓZd are
identified according to the numbers, where the nearest neighbours are connected to each other.
Denote by ei, i = 1, . . . , d, the canonical basis of Zd. Then 0 ∈ Zd is connected to ei and −ei for
i = 1, . . . , d. For v ∈ Z/nZ, all the points ve1 + ΛΓZd are identified to v. Hence 0 is connected
to 1. Since −e1 = (n − 1)e1 − ΛΓe1, 0 is connected to n − 1. Using that ei+1 = γie1 + ΛΓei+1,
i = 1, . . . , d − 1, 0 is connected to γi for all i = 1, . . . , d − 1. Finally, −ei+1 = −γie1 − ΛΓei+1,
i = 1, . . . , d − 1, so that 0 is connected to −γi mod n, for all i = 1, . . . , d − 1. Similarly, all
v ∈ Z/nZ are connected to v ± γi mod n for all i = 1, . . . , d. Therefore the quotient Zd/ΛΓZd
with nearest neighbours connected to each other is isomorphic to the circulant graph CΓn. Figure
3 illustrates the lattice corresponding to the circulant graph C1,2

7 represented in Figure 1. The fact
that the matrix is almost diagonal simplifies the expression of the theta function. Indeed from
Proposition 2.1 the theta function on CΓn is given by

θCΓn(n
2t) = ne−2dn2t

∑

(k1,...,kd)∈Zd
Ink1−

∑
d−1
i=1 γiki+1

(2n2t)

d∏

i=2

Iki(2n2t).

Rewriting it in terms of the d-dimensional modified I-Bessel function defined in section 2.4 we
get

θCΓn(n
2t) = ne−2dn2t

∑

k1∈Z
IΓnk1

(2n2t, . . . , 2n2t).

A circulant graph is the Cayley graph of a finite abelian group, so the eigenvectors of the Laplacian
on CΓn are the characters

χj(x) = e
2πijx/n, j = 0, 1, . . . , n− 1.

By applying the Laplacian on the characters, we obtain the eigenvalues

λj = 2d− 2 cos(2πj/n) − 2
d−1∑

i=1

cos(2πγij/n), j = 0, 1, . . . , n− 1.
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Therefore, by definition of the theta function (2) it can also be written as

θCΓn(n
2t) =

n−1∑

j=0

e−(2d−2 cos(2πj/n)−2
∑d−1
i=1 cos(2πγij/n))n2t

=

n−1∑

j=0

e−4(sin2(πj/n)+
∑d−1
i=1 sin2(πγij/n))n

2t. (15)

Proposition 3.1. With the above notation we have for all t > 0,

lim
n→∞

θCΓn(n
2t) = ΘS1(cΓ t)

where ΘS1 is the theta function on the circle S1 = R/Z given by

ΘS1(t) =
1√
4πt

∞∑

k=−∞
e−k

2/(4t).

Proof. From the theta inversion formula on Z/mZ (Theorem 10 in [14]) we have for any z ∈ C,
and integers x and m > 0,

∞∑

k=−∞
Ix+km(z) =

1
m

m−1∑

j=0

ecos(2πj/m)z+2πijx/m. (16)

Using the expression of the theta function in terms of I-Bessel functions, it follows that for all
n > 1 and t > 0,

|θCΓn(n
2t)| = |ne−2dn2t

∑

(k2,...,kd)∈Zd−1

1
n

n−1∑

j=0

e2n
2t cos(2πj/n)−2πij

∑d−1
i=1 γiki+1/n

d∏

i=2

Iki(2n2t)|

6
d∏

i=2

∑

ki∈Z
e−2n2tIki(2n2t)

n−1∑

j=0

e−2n2t(1−cos(2πj/n))

6
n−1∑

j=0

e−8π2ctj2 6
n−1∑

j=0

e−c
′tj 6 1

1− e−c ′t

where c ′ > 0. In the second inequality we used the fact that for all v ∈ [0, π], (1 − cos v)/v2 > c,
with c = 1/2− π2/24 > 0, and e−t

∑
x∈Z Ix(t) = 1.

It follows that
lim
n→∞

θCΓn(n
2t) =

∑

k1∈Z
lim
n→∞

ne−2dn2tIΓnk1
(2n2t, . . . , 2n2t). (17)

Let k1 > 0. From the integral representation of the d-dimensional I-Bessel function we have

ne−2dn2tIΓnk1
(2n2t, . . . , 2n2t) =

1
2πk1

∫πnk1

−πnk1

eiwe−2n2t(d−cos(w/(nk1))−
∑d−1
i=1 cos(γiw/(nk1)))dw.

Since (1− cos v)/v2 > c > 0 for all v ∈ [0, π], we have that

n2(d− cos(w/(nk1)) −
d−1∑

i=1

cos(γiw/(nk1))) > c (w/k1)2
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for all w ∈ [0, πnk1]. Hence for all n > 1,

|ne−2dn2tIΓnk1
(2n2t, . . . , 2n2t)| 6 1

2πk1

∫πnk1

−πnk1

e−2tcw2/k2
1dw 6 1

2πk1

∫∞

−∞
e−2tcw2/k2

1dw =

√
2
πct

.

We also have that

lim
n→∞

n2(d− cos(w/(nk1)) −
d−1∑

i=1

cos(γiw/(nk1))) =
cΓ

2
(w/k1)

2.

So by the Lebesgue dominated convergence Theorem, we have for all k1 > 0

lim
n→∞

ne−2dn2tIΓnk1
(2n2t, . . . , 2n2t) =

1
2πk1

∫∞

−∞
e−cΓ tw

2/k2
1 eiwdw

=
1√

4πcΓ t
e−k

2
1/(4cΓ t). (18)

Let k1 = 0. From the integral representation of the d-dimensional I-Bessel function we have

ne−2dn2tIΓ0 (2n2t, . . . , 2n2t) =
1
2π

∫πn

−πn

e−2n2t(d−cos(w/n)−
∑d−1
i=1 cos(γiw/n))dw.

With the same argument as in the case k1 > 0 we can apply the Lebesgue dominated convergence
Theorem and we get

lim
n→∞

ne−2dn2tIΓ0 (2n2t, . . . , 2n2t) =
1
2π

∫∞

−∞
e−cΓ tw

2
dw

=
1√

4πcΓ t
. (19)

Putting (18) and (19) in (17) and using (12), the result follows.

Proposition 3.2. With the above notation we have

lim
n→∞

∫ 1

0
(θCΓn(n

2t) − ne−2dn2tIΓ0 (2n2t, . . . , 2n2t))
dt

t

=

∫ 1

0

(
ΘS1(cΓ t) −

1√
4πcΓ t

)dt
t
.

Proof. For a given positive integer k1 > 1, let Dk1 denote the following set

Dk1 = {(k2, . . . , kd) ∈ Zd−1 : |nk1 −

d−1∑

i=1

γiki+1| 6 nk1/2}

and let Dck1
= Zd−1 \ Dk1 denote the complement of Dk1 . From the theta inversion formula we

have

θCΓn(n
2t) − ne−2dn2tIΓ0 (2n2t, . . . , 2n2t)

= 2ne−2dn2t
∞∑

k1=1

∑

(k2,...,kd)∈Zd−1

Ink1−
∑
d−1
i=1 γiki+1

(2n2t)

d∏

i=2

Iki(2n2t)

= 2ne−2dn2t
∞∑

k1=1

[ ∑

(k2,...,kd)∈Dck1

+
∑

(k2,...,kd)∈Dk1

]
Ink1−

∑
d−1
i=1 γiki+1

(2n2t)

d∏

i=2

Iki(2n2t).
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Since the modified Bessel function Ik is decreasing in the index k [8], for (k2, . . . , kd) ∈ Dck1
,

Ink1−
∑
d−1
i=1 γiki+1

(2n2t) = I|nk1−
∑
d−1
i=1 γiki+1|

(2n2t) 6 Ink1/2(2n
2t).

Using that e−2n2t
∑
k∈Z Ik(2n2t) = 1, it follows that

2ne−2dn2t
∞∑

k1=1

∑

(k2,...,kd)∈Dck1

Ink1−
∑
d−1
i=1 γiki+1

(2n2t)

d∏

i=2

Iki(2n2t) 6 2ne−2dn2t
∞∑

k1=1

Ink1/2(2n
2t).

Using Lemma 2.5, for all n > n0 the above is less or equal than
√

2
t

∞∑

k=1

(
1+ k

4n0t

)−n0k/4

6
√

2
t

1
(1+ 1/(4n0t))n0/4 − 1

6
√
2(4n0)

n0/4tn0/4−1/2. (20)

For (k2, . . . , kd) ∈ Dk1 , we have

|nk1 −

d−1∑

i=1

γi|ki+1|| 6
nk1

2
.

Since 1 6 γ1 6 · · · 6 γd−1, it follows that

nk1

2
6
d−1∑

i=1

γi|ki+1| 6 γd−1(d− 1) max
i∈{2,...,d}

|ki|

so that
max

i∈{2,...,d}
|ki| >

nk1

2(d− 1)γd−1
. (21)

Let Sd−1 denote the set of permutations of {2, . . . , d}. By ordering the ki’s in the second summation
we obtain

|2ne−2dn2t
∞∑

k1=1

∑

(k2,...,kd)∈Dk1

Ink1−
∑
d−1
i=1 γiki+1

(2n2t)

d∏

i=2

Iki(2n2t)|

= |2ne−2dn2t
∞∑

k1=1

∑

σ∈Sd−1

[ ∑

(k2,...,kd)∈Dk1
|kσ(2)|<···<|kσ(d)|

+
∑

(k2,...,kd)∈Dk1
|kσ(2)|=···=|kσ(d)|

]
Ink1−

∑
d
i=2 γσ(i)−1kσ(i)

(2n2t)

d∏

i=2

Ikσ(i)(2n
2t)|

Using inequality (21) and the fact that Ik is decreasing in k, we have

Ikσ(d)
(2n2t) = I|kσ(d)|(2n

2t) 6 Ink1/(2(d−1)γd−1)(2n
2t)
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hence the above is less or equal than

2ne−2n2t
∞∑

k1=1

Ink1/(2(d−1)γd−1)(2n
2t)

×
∑

σ∈Sd−1

∑

(kσ(2),...,kσ(d−1))∈Zd−2

(
|e−2n2t

∑

kσ(d)∈Z
Ink1−

∑
d
i=2 γσ(i)−1kσ(i)

(2n2t)|

×
d−1∏

i=2

e−2n2tIkσ(i)
(2n2t)

)
. (22)

Using the theta inversion formula (16) with m = γσ(d)−1 and x = nk1 −
∑d−1
i=2 γσ(i)−1kσ(i), we

have that

|e−2n2t
∑

kσ(d)∈Z
Ink1−

∑
d
i=2 γσ(i)−1kσ(i)

(2n2t)|

=
1

γσ(d)−1
|

γσ(d)−1−1∑

k=0

e−2n2t(1−cos(2πk/γσ(d)−1))+2πik(nk1−
∑d−1
i=2 γσ(i)−1kσ(i))/γσ(d)−1 | 6 1.

Putting the above in (22) and using that e−2n2t
∑
k∈Z Ik(2n2t) = 1, the second summation is less

or equal than

2ne−2n2t
∞∑

k1=1

Ink1/(2(d−1)γd−1)(2n
2t)(d− 1)!

6
√
2(d− 1)!(4(d− 1)γd−1n0)

n0/(4(d−1)γd−1)tn0/(4(d−1)γd−1)−1/2 (23)

for all n > n0, where we used Lemma 2.5 in the second inequality. Inequalities (20) and (23)
together lead to

|θCΓn(n
2t) − ne−2dn2tIΓ0 (2n2t, . . . , 2n2t)|

6
√
2(4n0)

n0/4tn0/4−1/2 +
√
2(d− 1)!(4(d− 1)γd−1n0)

n0/(4(d−1)γd−1)tn0/(4(d−1)γd−1)−1/2

which is integrable on (0, 1) with respect to the measure dt/t for all n > n0 = 2(d − 1)γd−1 + 1.
The proposition then follows from the Lebesgue dominated convergence Theorem and from the
pointwise convergence.

Recall the following lemma from [6]:

Lemma 3.3. For n ∈ R, we have the asymptotic formula
∫ 1

0
(e−n

2t − 1)dt
t

= Γ ′(1) − 2 logn+ o(1) as n→ ∞.

Proposition 3.4. With the above notation we have that

lim
n→∞

∫∞

1

(
θCΓn(n

2t) − 1
) dt
t

=

∫∞

1

(
ΘS1(cΓ t) − 1

)dt
t
.
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Proof. From Proposition 3.1 we have for all t > 0, the pointwise limit

lim
n→∞

θCΓn(n
2t) − 1 = ΘS1(cΓ t) − 1.

From (15) we have

θCΓn(n
2t) = 1+

n−1∑

j=1

e−4 sin2(πj/n)n2t
d−1∏

i=1

e−4 sin2(πγij/n)n
2t.

Since the product on i is smaller than 1, we have

θCΓn(n
2t) 6 1+

n−1∑

j=1

e−4 sin2(πj/n)n2t = 1+ 2
bn/2c∑

j=1

e−4 sin2(πj/n)n2t.

Using the elementary bound

sin(πx) > πx
(
1− π2x2/6

)
> cπx

for all x ∈ [0, 1/2], where c = 1− π2/24 > 0, we have

θCΓn(n
2t) − 1 6 2

bn/2c∑

j=1

e−4c2π2j2t 6 2
∞∑

j=1

e−djt =
2

edt − 1
6 2

1− e−d
e−dt,

for all t > 1, where d = 4c2π2 > 0. Since it is integrable on (1,∞) with respect to the measure
dt/t, the proposition follows from the Lebesgue dominated convergence Theorem.

Proposition 3.5. With the above notation we have

lim
n→∞

∫∞

1
ne−2dn2tIΓ0 (2n2t, . . . , 2n2t)

dt

t
=

1√
πcΓ

.

Proof. By definition, we have

IΓ0 (2n2t, . . . , 2n2t) =
∑

(k2,...,kd)∈Zd−1

I−
∑
d−1
i=1 γiki+1

(2n2t)

d∏

i=2

Iki(2n2t).

From Lemma 2.5 we have the uniform upper bound

ne−2n2tI−
∑
d−1
i=1 γiki+1

(2n2t) 6 1√
2t
.

Hence
ne−2dn2tIΓ0 (2n2t, . . . , 2n2t) 6 1√

2t
(e−2n2t

∑

k∈Z
Ik(2n2t))d−1 =

1√
2t

which is integrable on (1,∞) with respect to the measure dt/t. By the Lebesgue dominated
convergence Theorem it follows that

lim
n→∞

∫∞

1
ne−2dn2tIΓ0 (2n2t, . . . , 2n2t)

dt

t
=

∫∞

1

1√
4πcΓ t

dt

t
=

1√
πcΓ

.
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Since
∫∞
1 e−n

2tdt/t converges to zero as n→ ∞, putting Lemma 3.3 and Propositions 3.2, 3.4
and 3.5 together in Theorem 2.6 leads to the asymptotic of the HCΓn term as n→ ∞:

HCΓn = 2 logn−

∫cΓ
0

(ΘS1(t) −
1√
4πt

)
dt

t
− Γ ′(1) −

∫∞

cΓ

(ΘS1(t) − 1)dt
t

+
1√
πcΓ

+ o(1).

Using equation (4) we can then rewrite:

HCΓn = 2 logn− ζ ′S1(0) − log cΓ + o(1) as n→ ∞.

Since ζ ′
S1(0) = 0 (7) we get

HCΓn = 2 logn− log cΓ + o(1) as n→ ∞

and so

log det∗∆CΓn = n

∫∞

0
(e−t − e−2dtIΓ0 (2t, . . . , 2t))

dt

t
+ 2 logn− log cΓ + o(1) as n→ ∞

which proves Theorem 1.1.

3.2 Asymptotic number of spanning trees and comparison of the results
Notice that in the trivial case d = 1, the cycle has n spanning trees so log det∗ ∆Cn = logn2. On
the other hand, from Proposition 2.4

∫∞

0
(e−t − e−2tI0(2t))

dt

t
= 0

and so the right hand side of the asymptotic development is 2 logn. Therefore the theorem is
verified in this particular case.
From Kirchhoff’s matrix tree theorem and Theorem 1.1, the number of spanning trees in the circu-
lant graph CΓn with Γ = {1, γ1, . . . , γd−1} is asymptotically given by

τ(CΓn) =
n

cΓ
enI

Γ
d+o(1) as n→ ∞. (24)

The lead term can be rewritten as

IΓd =

∫∞

0
(e−t − e−2dtIΓ0 (2t, . . . , 2t))

dt

t
= log(2d) +

∫∞

0
e−2dt(1− IΓ0 (2t, . . . , 2t))

dt

t
.

From the integral representation of IΓ0 (11) and writing the exponential as a series one has

∫∞

0
e−2dt(1− IΓ0 (2t, . . . , 2t))

dt

t
= −

1
2π

∫∞

0
e−2dt

∞∑

n=1

2n

n!

∫π

−π

(cosw+

d−1∑

i=1

cos(γiw))
ndwtn

dt

t

= −
1
2π

∞∑

n=1

1
dn

1
n

∫π

−π

(cosw+

d−1∑

i=1

cos(γiw))
ndw

=
1
2π

∫π

−π

log

(
1−

cosw+
∑d−1
i=1 cos(γiw)

d

)
dw

=

∫ 1

0
log(sin2(πw) +

d−1∑

i=1

sin2(πγiw))dw+ log
2
d
.
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Hence the lead term is given by

IΓd = log 4+

∫ 1

0
log(sin2(πw) +

d−1∑

i=1

sin2(πγiw))dw

which corresponds to Lemma 2 of [13].
As mentioned in the introduction, the authors show in [22] that the number of spanning trees in
a circulant graph is given by

τ(Cγ1,...,γd
n ) = na2n

where an satisfies a recurrence relation which behaves asymptotically as cφn for some constants
c and φ which can be determined numerically. Comparing with (24) it follows that

c2 =
1
cΓ

which is numerically verified with the values in Table 1 in [22]. This answers to one of the
questions asked in the conclusion of [1].

4 Asymptotic behaviour of spectral determinant on degener-
ating tori

We consider the sequence of d-dimensional discrete tori described in the introduction. For sim-
plicity, we denote by θΛn the theta function associated to Zd/ΛnZd. It is given by

θΛn(t) =
∑

λj

e−λjt

where

{λj}j=0,1,...,det(Λn)−1 = {2d− 2
p∑

i=1

cos(2πmi/(αian)) − 2
d−p∑

i=1

cos(2πm ′i/(βin)) :

mi = 0, 1, . . . , αian − 1, i = 1, . . . , p and m ′i = 0, 1, . . . , βin− 1, i = 1, . . . , d− p}

are the eigenvalues of the combinatorial Laplacian on Zd/ΛnZd. From the theta inversion formula
on Zd/ΛnZd (Proposition 2.1) we have for all t > 0

θΛn(t) =

(
p∏

i=1

αiane
−2t

∑

k∈Z
Ikαian(2t)

)(
d−p∏

i=1

βine
−2t

∑

k∈Z
Ikβin(2t)

)
. (25)

4.1 Computation of the lead term when an grows sublinearly with respect
to n

Let cd be the integral below. A numerical estimation of it is discussed in section 7.2 of [6].

cd =

∫∞

0

(
e−t − e−2dtI0(2t)d

) dt
t
.
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The lead term of log det∗ ∆Zd/ΛnZd in Theorem 2.7 is given by

det(Λn)I{αi}
p
i=1

d = det(Λn)

∫∞

0

(
e−t − e−2dtI0(2t)d−p

∑

(k1,...,kp)∈Zp

p∏

i=1

Ikiαian(2t)
)dt
t

= det(Λn)cd − det(Λn)

∫∞

0
e−2dtI0(2t)d−p

∑

(k1,...,kp)∈Zp\{0}

(
p∏

i=1

Ikiαian(2t)

)
dt

t

= nd−papn det(Λ)cd −

(
n

an

)d−p
det(B)

∫∞

0
J(an, t)dt

where in the last equality the integration variable t is changed into a2nt and J(an, t) is given by

J(an, t) ..=
1
t

(
ane

−2a2
ntI0(2a2nt)

)d−p ∑

(k1,...,kp)∈Zp\{0}

p∏

i=1

(
αiane

−2a2
ntIkiαian(2a2nt)

)
.

From Proposition 2.2 we have that

lim
n→∞

ane
−2a2

ntI0(2a2nt) =
1√
4πt

and
lim
n→∞

αiane
−2a2

ntIkiαian(2a2nt) =
αi√
4πt

e−α
2
ik

2
i/(4t).

From the definition of the zeta function (5), we have that
∫∞

0

1
(4πt)d/2

∑

(k1,...,kp)∈Zp\{0}
e−

∑p
i=1 α

2
ik

2
i/(4t)dt

t
=

1
πd/2

Γ(d/2)
∑

(k1,...,kp)∈Zp\{0}

1
(
∑p
i=1 α

2
ik

2
i)
d/2

= (4π)d/2Γ(d/2)ζRp/A−1Zp(d/2).

So as n→ ∞,
∫∞

0
J(an, t)dt = det(A)(4π)d/2Γ(d/2)ζRp/A−1Zp(d/2) + o(1).

The exchange of the limit as n goes to infinity with the integral over t can be justified using the
same argument as in the proof of Proposition 4.2 below on (0, 1) and Lemma 4.3 with inequality
(13) on (1,∞). Hence as n→ ∞ the lead term behaves as

det(Λn)I{αi}
p
i=1

d = nd−papn det(Λ)cd −

(
n

an

)d−p (
det(Λ)(4π)d/2Γ(d/2)ζRp/A−1Zp(d/2) + o(1)

)
.

Remark. To find one more term in the asymptotic development we would need to show that one
can exchange the limit as n→ ∞ with the integration over t of

a2n(J(an, t) − (4π)d/2Γ(d/2)ζRp/A−1Zp(d/2)).

We were not able to do that. One way of proving this is to find an upper bound of the above
for all n which is integrable over t on (0,∞) and apply the Lebesgue dominated convergence
Theorem. This means that we need a sharp integrable upper bound of e−tIν(t). To the best of our
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knowledge, the best upper bound of e−tIν(t) is given in [3] and is not sharp enough. Assuming
that one can exchange the limit with integration, the asymptotic development would be as n→ ∞:

log det∗∆Zd/ΛnZd = nd−papn det(Λ)cd

−

(
n

an

)d−p
det(Λ)(4π)d/2

[
Γ(d/2)ζRp/A−1Zp(d/2)

+
1
a2n

(
− (d+ 4)Γ(d/2+ 1)ζRp/A−1Zp(d/2+ 1)

+
4
3
Γ(d/2+ 3)

p∑

i=1

x2i
∂2

∂x2i
ζRp/A(x)−1/2Zp(d/2+ 1)

∣∣∣∣∣
xi=α

2
i

i=1,...,p

)
+ o

(
1
a2n

)]

where A(x) is the diagonal matrix A(x) ..= diag(x1, . . . , xp).

4.2 Computation of the lead term when an is constant
When an = 1, the lead term is given by

det(Λn)I{αi}
p
i=1

d = det(Λn)

∫∞

0

(
e−t − e−2dtI0(2t)d−p

∑

(k1,...,kp)∈Zp

p∏

i=1

Ikiαi(2t)
)dt
t
.

From the theta inversion formula (9) we have for i = 1, . . . , p

αie
−2t

∑

ki∈Z
Ikiαi(2t) =

αi−1∑

ji=0

e−(2−2 cos(2πji/αi))t.

Hence

det(Λn)I{αi}
p
i=1

d = nd−p det(B)

det(A)−1∑

j=0

∫∞

0

(
e−t − I0(2t)d−pe−(2(d−p)+λj)t

) dt
t

where

{λj}j = {2p− 2
p∑

i=1

cos(2πji/αi) : ji = 0, 1, . . . , αi − 1, for i = 1, . . . , p},

j = 0, 1, . . . ,det(A) − 1, are the eigenvalues of the Laplacian on Zp/AZp.

4.3 Asymptotic behaviour of the second term
In this section we compute the asymptotics of the HΛn term when an indifferently goes to infinity
sublinearly with respect to n or is constant. To do this we change the integration variable t into
n2t in (14)

HΛn = −

∫∞

0

(
θΛn(n

2t) − det(Λn)e
−2dn2tI0(2n2t)d−p

∑

(k1,...,kp)
∈Zp

p∏

i=1

Ikiαian(2n2t) − 1+ e−n
2t
)dt
t
.
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Proposition 4.1. With the above notation, we have for all t > 0,

lim
n→∞

θΛn(n
2t) = ΘRd−p/BZd−p(t).

Proof. The theta function (25) with the change of variable is given by

θΛn(n
2t) =

(
p∏

i=1

αiane
−2n2t

∑

k∈Z
Ikαian(2n2t)

)(
d−p∏

i=1

βine
−2n2t

∑

k∈Z
Ikβin(2n2t)

)
.

From Proposition 2.3 we have that

lim
n→∞

p∏

i=1

αiane
−2n2t

∑

k∈Z
Ikαian(2n2t) = 1

and from Proposition 2.2 we have

lim
n→∞

d−p∏

i=1

βine
−2n2tIkβin(2n2t) =

d−p∏

i=1

βi√
4πt

e−(βik)
2/(4t).

The proposition follows if we can exchange the limit with the sum. This can be justified in the
same way as the proof of Proposition 5.2 in [6].

Proposition 4.2. With the above notation, we have that

lim
n→∞

∫ 1

0

(
θΛn(n

2t) − det(Λn)e
−2dn2tI0(2n2t)d−p

∑

(k1,...,kp)∈Zp

p∏

i=1

Ikiαian(2n2t)
)dt
t

=

∫ 1

0

(
ΘRd−p/BZd−p(t) −

det(B)

(4πt)(d−p)/2

)
dt

t
.

Proof. From Propositions 4.1, 2.2 and 2.3 we have the pointwise convergence:

lim
n→∞

θΛn(n
2t) − det(Λn)e

−2dn2tI0(2n2t)d−p
∑

(k1,...,kp)∈Zp

p∏

i=1

Ikiαian(2n2t)

= ΘRd−p/BZd−p(t) −
det(B)

(4πt)(d−p)/2
.

We have

θΛn(n
2t) − det(Λn)e

−2dn2tI0(2n2t)d−p
∑

(k1,...,kp)∈Zp

p∏

i=1

Ikiαian(2n2t)

=

( ∑

(k1,...,kp)∈Zp

p∏

i=1

αiane
−2n2tIkiαian(2n2t)

)( ∑

(k1,...,kd−p)

∈Zd−p\{0}

d−p∏

i=1

βine
−2n2tIkiβin(2n2t)

)
.

The first product of the above can be bounded using Proposition 2.3. Indeed we have that for all
i = 1, . . . , p there exists an ni,0 such that for all n > ni,0

αiane
−2n2t

∑

ki∈Z
Ikiαian(2n2t) <

3
2
.
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The second product can be rewritten in d−p sums with exactly r of the ki which are non-zero and
d−p−r which are zero. Since the (k1, . . . , kd−p) = 0 is taken off the sum, we have 1 6 r 6 d−p.
Let n0 = max16i6p ni,0. From inequality (13) and Lemma 2.5 we have that for t > 0 and all
n > n0 the above is less equal than

2d−p det(B)
d−p∑

r=1

Cd−p−rt−(d−p)/2
r∏

i=1

∞∑

ki=1

(
1+ βiki

2n0t

)−n0βiki/2

6 2d−p det(B)
d−p∑

r=1

Cd−p−rt−(d−p)/2
r∏

i=1

1
(1+ βi/(2n0t))

n0βi/2 − 1

6 2d−p det(B)
d−p∑

r=1

Cd−p−rt−(d−p)/2

(
r∏

i=1

(βi/(2n0))
n0βi/2

)
trn0 min16i6d−p βi/2.

Hence if we choose n0 = 2(d−p)/min16i6d−p βi+1 the above is integrable on (0, 1) with respect
to the measure dt/t. The proposition then follows from the Lebesgue dominated convergence
Theorem.

We now study the convergence of the integral over (1,∞). The theta function can be written
as the product of two theta functions, that is

θΛn(n
2t) = θdiag(β1n,...,βd−pn)(n

2t)θdiag(α1an,...,αpan)(n
2t).

The first theta function can be bounded using Lemma 5.3 in [6] that we recall below.

Lemma 4.3. Let

θabs(t) = 2
∞∑

j=1

e−cj
2t

with c = 4π2(1− π2/24)2. Let n0 be a positive integer. Then for any t > 0 and n > n0 we have the
bound

θdiag(β1n,...,βd−pn)(n
2t) 6

d−p∏

i=1

(
1+ e−4n2

0t + θabs(t/(4β2
i))
)
.

It is easy to verify that similarly the second theta function can be bounded by the following

θdiag(α1an,...,αpan)(n
2t) 6

(
1+ e−4t + θabs(t)

)p
. (26)

Therefore it follows that θΛn(n2t)− 1 is dt/t-integrable on (1,∞). So by the Lebesgue dominated
convergence Theorem we can exchange the limit and integral. Hence the following proposition is
proved:

Proposition 4.4. With the above notation we have that

lim
n→∞

∫∞

1

(
θΛn(n

2t) − 1
) dt
t

=

∫∞

1

(
ΘRd−p/BZd−p(t) − 1

) dt
t
.

Proposition 4.5. With the above notation we have that

lim
n→∞

∫∞

1
det(Λn)e

−2dn2tI0(2n2t)d−p
∑

(k1,...,kp)∈Zp

p∏

i=1

Ikiαian(2n2t)
dt

t
=

2
d− p

det(B)

(4π)(d−p)/2
.
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Proof. Combining (13) with (26) we have

det(Λn)e
−2dn2tI0(2n2t)d−p

∑

(k1,...,kp)∈Zp

p∏

i=1

Ikiαian(2n2t) 6 Ct−(d−p)/2(1+ e−4t + θabs(t))
p

for some constant C > 0, which is dt/t-integrable on (1,∞). The result follows from the pointwise
convergence and from the Lebesgue dominated convergence Theorem.

Since
∫∞
1 e−n

2tdt/t→ 0 as n→ ∞, the asymptotic of the HΛn term then follows from Lemma
3.3, Propositions 4.2, 4.4 and 4.5:

HΛn = 2 logn−

∫ 1

0

(
ΘRd−p/BZd−p(t) −

det(B)

(4πt)(d−p)/2

)
dt

t
− Γ ′(1)

−

∫∞

1

(
ΘRd−p/BZd−p(t) − 1

) dt
t

+
2

d− p

det(B)

(4π)(d−p)/2
+ o(1) as n→ ∞.

Rewriting it in terms of the spectral zeta function with the help of equation (3) yields

HΛn = 2 logn− ζ ′Rd−p/BZd−p(0) + o(1) as n→ ∞. (27)

The calculation of the lead term in section 4.2 together with equation (27) gives Theorem 1.3. For
the case where an grows sublinearly with respect to n, the error in the lead term, (n/an)d−po(1),
is bigger than the H term (27), therefore the asymptotic is given by

log det∗∆Zd/ΛnZd = nd−papn det(Λ)cd−

(
n

an

)d−p (
det(Λ)(4π)d/2Γ(d/2)ζRp/A−1Zp(d/2) + o(1)

)

as n→ ∞.

4.4 Examples
The following examples are here to illustrate the general formula and to highlight the interesting
constants appearing in some particular cases. In the examples below, αi and βi denote non-zero
positive integers.

4.4.1 Example with p = 1 and d = 2

Let Λn = diag(αan, βn) be a sequence of diagonal matrices where an grows sublinearly with
respect to n. In [6] the authors showed that c2 = 4G/π where G is the Catalan constant. Then as
n→ ∞

log det∗∆Z2/ΛnZ2 = nanαβ
4G
π

−
n

an

(
β

α

π

3
+ o(1)

)
.

4.4.2 Example with p = 1 and any d

Let Λn = diag(αan, β1n, . . . , βd−1n) be a sequence of diagonal matrices where an grows sublin-
early with respect to n. Then as n→ ∞

log det∗∆Zd/ΛnZd = nd−1an det(Λ)cd −

(
n

an

)d−1(
β1 · · ·βd−1

αd−1
2
πd/2

Γ(d/2)ζ(d) + o(1)
)

where ζ is the Riemann zeta function.

45



4.4.3 Example with an constant and p = d − 1

Let Λ0
n = diag(α1, . . . , αd−1, βn) be a sequence of diagonal matrices. From (6), −ζ ′R/βZ(0) =

2 logβ. Using Proposition 2.4 one has as n→ ∞

log det∗∆Zd/Λ0
nZd = nβ

det(A)−1∑

j=0

argcosh

(
1+ λj

2

)
+ 2 logn+ 2 logβ+ o(1)

where

{λj}j = {2(d− 1) − 2
d−1∑

i=1

cos(2πji/αi) : ji = 0, 1, . . . , αi − 1, for i = 1, . . . , d− 1},

j = 0, 1, . . . ,det(A) − 1, are the eigenvalues of the Laplacian on Zd−1/AZd−1.

4.4.4 Example with an constant, p = 1 and d = 3

Let Λ0
n = diag(α,β1n,β2n) be a sequence of diagonal matrices. From section 6.3 in [6], we have

that
−ζ ′R2/diag(β1,β2)Z2(0) = 2 log(β2η(iβ2/β1)

2)

where η is the Dedekind eta function defined for z ∈ C with =(z) > 0 by

η(z) = eπiz/12
∞∏

n=1

(1− e2πinz).

Hence as n→ ∞

log det∗∆Z3/Λ0
nZ3 = n2β1β2

α−1∑

j=0

∫∞

0

(
e−t − I0(2t)2e−(6−2 cos(2πj/α))t

) dt
t

+ 2 logn+ 2 log(β2η(iβ2/β1)
2) + o(1).

Using the special value of η at z = i, η(i) = Γ(1/4)/(2π3/4), one has for the special case
β1 = β2 =: β the asymptotic behaviour as n→ ∞

log det∗∆Z3/Λ0
nZ3 = n2β2

α−1∑

j=0

∫∞

0

(
e−t − I0(2t)2e−(6−2 cos(2πj/α))t

) dt
t

+ 2 logn+ log(β2Γ(1/4)4/(16π3)) + o(1).

5 A comment on circulant graphs with non-fixed generators∗

In [13, 23] the authors considered circulant graphs with non-fixed generators. In [13] they computed
the lead term of the asymptotic number of spanning trees. It is conceivable that the techniques used
here could be extended to improve their result and compute the second term. In [23] they computed
the exact number of spanning trees in C1,n

βn for β ∈ {2, 3,4, 6, 12} via Chebyshev polynomials, but

∗At the time of reviewing this paper, this conjecture has been proved and will appear in a forthcoming paper.
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were not able to generalize to other values of β. We propose a conjecture for the case β = 5:
For all n > 2,

τ(C1,n
5n ) =

n

5



(
9−
√
5+

√
70− 18

√
5

4

)n
+

(
9−
√
5+

√
70− 18

√
5

4

)−n

+
1−
√
5

2




2

×



(
9+
√
5+

√
70+ 18

√
5

4

)n
+

(
9+
√
5+

√
70+ 18

√
5

4

)−n

+
1+
√
5

2




2

.

Notice that the coefficients in the formula can be expressed in terms of integrals involving modified
I-Bessel function. Indeed, let

Jβk =

∫∞

0

(
e−t − e−2t(2−cos(2πk/β))I0(2t)

) dt
t
, k = 1, . . . , β− 1.

Then from Proposition 2.4, the above can be rewritten as

τ(C1,n
5n ) =

n

5

(
enJ

5
1 + e−nJ

5
1 +

1
2
(1−
√
5)
)(

enJ
5
2 + e−nJ

5
2 +

1
2
(1+
√
5)
)

×
(
enJ

5
3 + e−nJ

5
3 +

1
2
(1+
√
5)
)(

enJ
5
4 + e−nJ

5
4 +

1
2
(1−
√
5)
)
.

Therefore for other values of β the general formula might have the form

τ(C1,n
βn) =

n

β

β−1∏

k=1

(
enJ

β
k + e−nJ

β
k + αβk

)
, for all n > 1,

where αβk are coefficients which are not known for β > 7.
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A formula for the number of spanning trees in circulant
graphs with non-fixed generators and discrete tori∗

Justine Louis

15 December 2014

Abstract

We consider the number of spanning trees in circulant graphs of βn vertices with generators
depending linearly on n. The matrix tree theorem gives a closed formula of βn factors, while we
derive a formula of β− 1 factors. Using the same trick, we also derive a formula for the number
of spanning trees in discrete tori. Moreover, the spanning tree entropy of circulant graphs with
fixed and non-fixed generators is compared.

1 Introduction
A spanning tree of a connected graph G is a connected subgraph of G without cycles with the
same vertex set as G. The number of spanning trees in a graph G, τ(G), is an important graph
invariant and is widely studied. It can be computed from the well-known matrix tree theorem due
to Kirchhoff (e.g. see [1]). Let G be a graph on n vertices labelled by v1, . . . , vn. The adjacency
matrix A of G is defined by the n × n matrix in which (A)ij = 1 if vi and vj are adjacent and
(A)ij = 0 otherwise. The degree matrix D is defined by the n × n diagonal matrix in which the
diagonal element (D)ii is the degree of the corresponding vertex vi. In this paper we only consider
2d-regular graphs, so that D = 2dIn, where In is the n × n identity matrix. The combinatorial
Laplacian matrix ∆G of a 2d-regular graph on n vertices G is defined by

∆G = 2dIn −A.

The matrix tree theorem states that
τ(G) =

1
n
det∗∆G (1)

where det∗ ∆G denotes the product of the non-zero eigenvalues of the Laplacian on G. In this
paper we prove closed formulas for τ(G) for two types of graphs in terms of eigenvalues of the
Laplacian on a subgraph of G. The formulas are particularly interesting when the number of
vertices is larger than the other parameters of the graph.

Let 1 6 γ1 6 · · · 6 γd 6 bn/2c be positive integers. A circulant graph Cγ1,...,γd
n is the 2d-

regular graph with n vertices labelled 0, 1, . . . , n− 1 such that each vertex v ∈ Z/nZ is connected
to v± γi mod n for all i ∈ {1, . . . , d}. The first type of graphs studied is the circulant graph with
the first generator equal to one and the d− 1 others linearly depending on the number of vertices,
that is C1,γ1n,...,γd−1n

βn , where 1 6 γ1 6 · · · 6 γd−1 6 bβ/2c and β are integers. Two examples

∗published in Bulletin of the Australian Mathematical Society, 92(3):365–373, 2015. The author was supported in part
by the Swiss NSF grant 200021 132528/1.
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are illustrated in Figure 1 below. It is known that the number of spanning trees in circulant
graphs with n vertices satisfies a linear recurrence relation with constant coefficients in n, this
has been shown by Golin, Leung and Wang in [4]. For β ∈ {2, 3,4, 6, 12}, closed formulas have
been obtained by Zhang, Yong and Golin in [8] where the authors used techniques inspired from
Boesch and Prodinger [2] using Chebyshev polynomials. As noted in [8] this method does not
work for other values of β. In section 2, we derive Theorem 2.1 in a simple way which gives a
closed formula for all integer values of β. This gives an answer to an open question in [3] and [8]
and proves the conjecture stated in [6]. The second type of graphs studied is the d-dimensional
discrete torus defined by the quotient Zd/ΛZd, where Λ is a diagonal integer matrix, with nearest
neighbours connected. In the last section, we deduce the tree entropy for a sequence of non-fixed
generated circulant graphs and compare it to the one with fixed generators.

(a) C1,n
5n with n = 10 (b) C1,3n,4n

12n with n = 4

Figure 1: Examples of circulant graphs.

Acknowledgements: The author thanks Anders Karlsson for encouraging and helpful discussions
and support. The author also thanks the anonymous referee for useful comments which improved
the quality of the paper.

2 Spanning trees in circulant graphs with non-fixed genera-
tors

Let V(G) be the set of vertices of a graph G and f : V(G) → R a function. To derive the eigenvalues
of the Laplacian it is more convenient to use the variant definition of the combinatorial Laplacian
defined as an operator acting on the space of functions, that is

∆Gf(x) =
∑

y∼x

(f(x) − f(y))

where the sum is over all vertices adjacent to x. Since the circulant graph C1,γ1n,...,γd−1n
βn is the

Cayley graph of the group Z/βnZ, the eigenvectors of the Laplacian are given by the characters

χk(x) = e
2πikx/(βn), k = 0, 1, . . . , βn− 1,
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where x ∈ Z/βnZ. Therefore the eigenvalues are given by (see also [1, Proposition 3.5])

λk = 2d− 2 cos(2πk/(βn)) − 2
d−1∑

m=1

cos(2πkγm/β), k = 0, 1, . . . , βn− 1. (2)

Theorem 2.1. Let 1 6 γ1 6 · · · 6 γd−1 6 bβ/2c be positive integers and µk = 2(d − 1) −
2
∑d−1
m=1 cos(2πkγm/β), k = 1, . . . , β − 1, be the non-zero eigenvalues of the Laplacian on the

circulant graph Cγ1,...,γd−1
β . For all n ∈ N>1, the number of spanning trees in the circulant graph

C
1,γ1n,...,γd−1n
βn is given by

τ(C1,γ1n,...,γd−1n
βn ) =

n

β

β−1∏

k=1

(
(µk/2+1+

√
µ2
k/4+ µk)

n+(µk/2+1−
√
µ2
k/4+ µk)

n−2 cos(2πk/β)
)
.

Remark. It would be interesting to see if this pattern appears in other types of graphs, that is,
the number of spanning trees could be expressed in terms of the eigenvalues of the Laplacian on
a subgraph of the original graph.

Proof. Applying the matrix tree theorem (1) to the graph C1,γ1n,...,γd−1n
βn , with eigenvalues given by

(2), gives

τ(C1,γ1n,...,γd−1n
βn ) =

1
βn

βn−1∏

k=1

(
2d− 2 cos(2πk/(βn)) − 2

d−1∑

m=1

cos(2πkγm/β)
)
.

Since there are n spanning trees in the cycle C1
n, we have

n = τ(C1
n) =

1
n

n−1∏

k=1

(2− 2 cos(2πk/n)). (3)

The product over k = 1, . . . , βn − 1 can be split as a product over multiples of β, that is k = βk ′

with k ′ = 1, . . . , n− 1, and over non-multiples of β, that is k = k ′ + lβ with k ′ = 1, . . . , β− 1 and
l = 0, 1, . . . , n− 1. The product over the multiples of β reduces to equation (3), so it follows that

τ(C1,γ1n,...,γd−1n
βn ) =

n

β

βn−1∏

k=1
β-k

(
2d− 2 cos(2πk/(βn)) − 2

d−1∑

m=1

cos(2πkγm/β)
)

=
n

β

β−1∏

k=1

n−1∏

l=0

(
2d− 2 cos(2π(k+ lβ)/(βn)) − 2

d−1∑

m=1

cos(2π(k+ lβ)γm/β)
)

=
n

β

β−1∏

k=1

n−1∏

l=0

(
2 cosh(Argcosh(d−

d−1∑

m=1

cos(2πkγm/β))) − 2 cos(2πk/(βn) + 2πl/n)
)
. (4)

We now evaluate the product over l by the following calculation

n−1∏

l=0

(2 cosh θ− 2 cos((ω+ 2πl)/n)) = e−nθ
n−1∏

l=0

(e2θ − 2 cos((ω+ 2πl)/n)eθ + 1)

= e−nθ
n−1∏

l=0

(eθ − ei(ω+2πl)/n)(eθ − e−i(ω+2πl)/n). (5)
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The complex numbers ei(ω+2πl)/n and e−i(ω+2πl)/n for l = 0, 1, . . . , n− 1 are the 2n roots of the
following polynomial in eθ

e2nθ − 2enθ cosω+ 1 = 0.
Therefore the product (5) is equal to

e−nθ(e2nθ − 2enθ cosω+ 1) = 2 cosh(nθ) − 2 cosω.

Using this relation in (4) with θ = Argcosh(d−
∑d−1
m=1 cos(2πkγm/β)) and ω = 2πk/β, we have

τ(C1,γ1n,...,γd−1n
βn ) =

n

β

β−1∏

k=1

(
2 cosh(nArgcosh(d−

d−1∑

m=1

cos(2πkγm/β))) − 2 cos(2πk/β)
)
. (6)

The theorem then follows by expressing the formula in terms of the eigenvalues on Cγ1,...,γd−1
β

and from the relation Argcosh x = log(x +
√
x2 − 1) for x > 1. Indeed, writing µk = 2(d − 1) −

2
∑d−1
m=1 cos(2πkγm/β), we have that

τ(C1,γ1n,...,γd−1n
βn ) =

n

β

β−1∏

k=1

(
2 cosh(nArgcosh(1+ µk/2)) − 2 cos(2πk/β)

)

=
n

β

β−1∏

k=1

(
2 cosh(n log(1+ µk/2+

√
µ2
k/4+ µk)) − 2 cos(2πk/β)

)

=
n

β

β−1∏

k=1

(
(µk/2+ 1+

√
µ2
k/4+ µk)

n + (µk/2+ 1−
√
µ2
k/4+ µk)

n − 2 cos(2πk/β)
)
.

Remark. The techniques used here to derive Theorem 2.1 might not be generalisable to circulant
graphs with two or more fixed generators. As an example, to compute the number of spanning
trees in the graph C1,2,γn

βn we would need to find a closed formula for the product

n−1∏

l=0

(2 cosh θ− 2 cos((ω+ 2πl)/n) − 2 cos(2(ω+ 2πl)/n))

where θ = Argcosh(3− cos(2πkγ/β)) and ω = 2πk/β. We were not able to do that.

Examples. This formula reproves Theorems 4, 5, 6, 8 and corrects a typographical error in Theo-
rem 7 in [8]. For example, [8, Theorem 5] states that

τ(C1,n
3n ) =

n

3

[
(
√

7/4+
√

3/4)2n + (
√

7/4−
√

3/4)2n + 1
]2

which is a particular case of the formula with d = 2, γ1 = 1, β = 3 and µk = 2 − 2 cos(2πk/3),
k = 1, 2, being the non-zero eigenvalues on the cycle C1

3. As another example, [8, Theorem 8]
states that

τ(C1,2n,3n
6n ) =

n

6

[
(
√

11/4+
√

7/4)2n + (
√

11/4−
√

7/4)2n − 1
]2 [

(
√
2+ 1)n + (

√
2− 1)n

]2

×
[
(
√

7/4+
√

3/4)2n + (
√

7/4−
√

3/4)2n + 1
]2

which is a particular case with d = 3, γ1 = 2, γ2 = 3, β = 6 and µk = 4−2 cos(2πk/3)−2 cos(πk),
k = 1, . . . , 5, being the non-zero eigenvalues on the circulant graph C2,3

6 .
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Remark. We emphasize that the circulant graph C1,γ1n,...,γd−1n
βn consists of n copies of Cγ1,...,γd−1

β

which are embedded in the cycle C1
βn. This explains the eigenvalues on Cγ1,...,γd−1

β appearing in
the formula.

3 Spanning trees in discrete tori
In this section we establish a formula for the number of spanning trees in the discrete torus
Zd/ΛZd, where Λ = diag(α1, . . . , αd−1, n) is a diagonal matrix with positive integer coefficients,
with nearest neighbours connected. Let k = (k1, . . . , kd), x = (x1, . . . , xd) ∈ Zd/ΛZd and kΛ =
Λ−1k. The eigenvectors of the Laplacian are given by

gkΛ(x) = e
2πi〈kΛ,x〉

where 〈·, ·〉 denotes the usual inner product. Denote by ei, i = 1, . . . , d, the canonical basis of
Zd. Since each vertex x ∈ Zd/ΛZd is connected to his nearest neighbours, that is x is adjacent
to x− ei and to x+ ei, for all i = 1, . . . , d, we obtain the eigenvalues on Zd/ΛZd by applying the
Laplacian on the eigenvectors gkΛ(x):

λk = 2d− 2
d−1∑

i=1

cos(2πki/αi) − 2 cos(2πkd/n) where k ∈ Zd/ΛZd.

The formula given in the following theorem is interesting when n is larger than det(A). It improves
the asymptotic result given in [6, Example 4.4.3].

Theorem 3.1. Let A = diag(α1, . . . , αd−1) and {µ`}` = {2(d − 1) − 2
∑d−1
i=1 cos(2πki/αi) : ki =

0, 1, . . . , αi−1, i = 1, . . . , d−1, (k1, . . . , kd−1) 6= 0}, ` = 1, . . . ,det(A)−1, be the non-zero eigenvalues
of the Laplacian on Zd−1/AZd−1. For all n ∈ N>1, the number of spanning trees in the discrete
torus Zd/ΛZd is given by

τ(Zd/ΛZd) =
n

det(A)

det(A)−1∏

`=1

((
µ`/2+ 1+

√
µ2
`/4+ µ`

)n
+
(
µ`/2+ 1−

√
µ2
`/4+ µ`

)n
− 2
)
.

Proof. From the matrix tree theorem, we have

τ(Zd/ΛZd) =
1

det(A)n

d−1∏

i=1

αi−1∏

ki=0
(k1,...,kd) 6=0

n−1∏

kd=0

(
2d− 2

d−1∑

i=1

cos(2πki/αi) − 2 cos(2πkd/n)

)

=
n

det(A)

d−1∏

i=1

αi−1∏

ki=0
(k1,...,kd−1) 6=0

n−1∏

kd=0

(
2 cosh(Argcosh(d−

d−1∑

i=1

cos(2πki/αi))) − 2 cos(2πkd/n)

)

=
n

det(A)

d−1∏

i=1

αi−1∏

ki=0
(k1,...,kd−1) 6=0

(
2 cosh(nArgcosh(d−

d−1∑

i=1

cos(2πki/αi))) − 2

)

where the second equality comes from equation (3) and the third equality comes from the same
trick as in the proof of Theorem 2.1,

n−1∏

k=0

(2 cosh θ− 2 cos(2πk/n)) = 2 cosh(nθ) − 2.
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The theorem then follows by expressing the formula in terms of the eigenvalues on Zd−1/AZd−1

and from the relation Argcosh x = log(x+
√
x2 − 1), for x > 1.

4 Spanning tree entropy of circulant graphs
For a sequence of regular graphs Gn with vertex set V(Gn), one can consider the number of
spanning trees as a function of n. Assuming that the following limit exists

z = lim
n→∞

log τ(Gn)

|V(Gn)|
,

it is sometimes called the associated tree entropy [7]. From Theorem 2.1, the tree entropy for the
non-fixed generated circulant graph C1,γ1n,...,γd−1n

βn as n → ∞, denoted by zNF(β;γ1, . . . , γd−1),
is given in the following corollary.

Corollary 4.1. Let 1 6 γ1 6 · · · 6 γd−1 6 bβ/2c and β be positive integers. The tree entropy of
the circulant graph C1,γ1n,...,γd−1n

βn as n→ ∞ is given by

zNF(β;γ1, . . . , γd−1) =
1
β

β−1∑

k=1

Argcosh(d−

d−1∑

m=1

cos(2πkγm/β))

=

∫∞

0
(e−t −

1
β

β−1∑

k=0

e−µkte−2tI0(2t))
dt

t

where µk = 2(d − 1) − 2
∑d−1
m=1 cos(2πkγm/β), k = 0, 1, . . . , β − 1, are the eigenvalues of the

Laplacian on the circulant graph Cγ1,...,γd−1
β , and I0 is the modified I-Bessel function of order zero.

Proof. Let fk ..= Argcosh(1 + µk/2) > 0, k = 1, . . . , β − 1. From equation (6), the number of
spanning trees in C1,γ1n,...,γd−1n

βn is given by

τ(C1,γ1n,...,γd−1n
βn ) =

n

β

β−1∏

k=1

(enfk + e−nfk − 2 cos(2πk/β))

=
n

β
en

∑β−1
k=1 fk

β−1∏

k=1

(1+ e−2nfk − 2 cos(2πk/β)e−nfk).

We have that

lim
n→∞

log(1+ e−2nfk − 2 cos(2πk/β)e−nfk) = 0, for k = 1, . . . , β− 1.

Hence
β−1∏

k=1

(1+ e−2nfk − 2 cos(2πk/β)e−nfk) = eo(1) as n→ ∞.

Therefore, the asymptotic number of spanning trees in C1,γ1n,...,γd−1n
βn is given by

τ(C1,γ1n,...,γd−1n
βn ) =

n

β
en

∑β−1
k=1 Argcosh(d−

∑d−1
m=1 cos(2πkγm/β))+o(1) as n→ ∞.
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This shows the first equality. The second equality comes from [6, Proposition 2.4] which expresses
the Argcosh in terms of an integral of modified I-Bessel function: for all x > 2,

∫∞

0
(e−t − e−xtI0(2t))

dt

t
= Argcosh(x/2).

As mentioned in section 2 the circulant graph C1,γ1n,...,γd−1n
βn consists of n copies of Cγ1,...,γd−1

β

which are embedded in the cycle C1
βn. This structure is reflected by the appearance of the term

θ
C
γ1,...,γd−1
β

(t)e−2tI0(2t) in the asymptotic formula, where θ
C
γ1,...,γd−1
β

(t) =
∑β−1
k=0 e

−µkt is the

theta function on Cγ1,...,γd−1
β and e−2tI0(2t) is the typical term appearing in the asymptotics of

the number of spanning trees in the cycle. Indeed, the tree entropy on the cycle is (see section 3.2
in [6])

zcycle =

∫∞

0
(e−t − e−2tI0(2t))

dt

t
= 0.

Consider the sequence of circulant graphs C1,n,γ1n,...,γd−1n
βn when n→ ∞ with zNF(β; 1, γ1, . . . ,

γd−1) denoting the corresponding tree entropy. In the following proposition we show that it is
greater than the one of fixed generated circulant graphs.

Proposition 4.2. For all positive integers γ1, . . . , γd, there exists an integer B > 2 such that for all
β > B,

zNF(β; 1, γ1, . . . , γd−1) > zF(1, γ1, . . . , γd)

where zF(1, γ1, . . . , γd) is the tree entropy of the fixed generated circulant graph C1,γ1,...,γd
n .

Proof. By letting β→ ∞ in the corollary, the sum over the Laplacian eigenvalues converges to a
Riemann integral, so that

lim
β→∞

zNF(β; 1, γ1, . . . , γd−1) =

∫∞

0
(e−t − e−2(d+1)tI0(2t)I1,γ1,...,γd−1

0 (2t, . . . , 2t))dt
t

where I1,γ1,...,γd−1
0 is the d-dimensional modified I-Bessel function of order zero defined by (see

section 2.4 in [6])

I
1,γ1,...,γd−1
0 (2t, . . . , 2t) = 1

2π

∫π

−π

e2t(cosw+
∑d−1
m=1 cos(γmw))dw.

It can be expressed in terms of a series of modified I-Bessel functions

I
1,γ1,...,γd−1
0 (2t, . . . , 2t) =

∑

(k1,...,kd−1)∈Zd−1

I∑d−1
i=1 γiki

(2t)
d−1∏

i=1

Iki(2t).

On the other hand, from [6, Theorem 1.1], the tree entropy of the fixed generated circulant graph
C1,γ1,...,γd
n as n→ ∞ is given by

zF(1, γ1, . . . , γd) =
∫∞

0
(e−t − e−2(d+1)tI1,γ1,...,γd

0 (2t, . . . , 2t))dt
t
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where

I1,γ1,...,γd
0 (2t, . . . , 2t) =

∑

(k1,...,kd)∈Zd
I∑d

i=1 γiki
(2t)

d∏

i=1

Iki(2t)

> I0(2t)
∑

(k1,...,kd−1)∈Zd−1

I∑d−1
i=1 γiki

(2t)
d−1∏

i=1

Iki(2t)

= I0(2t)I1,γ1,...,γd−1
0 (2t, . . . , 2t), ∀t > 0.

Therefore
lim
β→∞

zNF(β; 1, γ1, . . . , γd−1) > zF(1, γ1, . . . , γd).

Related to this comparison between fixed and non-fixed generated circulant graphs one might
wonder, for example in the simplest case of C1,n

βn, how taking limits first in β then in n would
compare to taking limits first in n then in β. From [5, Lemma 5] and by letting β → ∞ in [5,
Theorem 4], one easily sees that for all positive integers γ1, . . . , γd−1,

lim
γd→∞

lim
n→∞

log τ(Cγ1,...,γd
n )

n
= lim
β→∞

lim
n→∞

log τ(C1,γ1n,...,γd−1n
βn )

βn

which by definition is

lim
γd→∞

zF(γ1, . . . , γd) = lim
β→∞

zNF(β;γ1, . . . , γd−1).

In the particular case of d = 2 it shows that the limits over n and β commute, that is,

lim
β→∞

lim
n→∞

log τ(C1,n
βn)

βn
= lim
n→∞

lim
β→∞

log τ(C1,n
βn)

βn

which does not seem obvious a priori.
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Spanning trees in directed circulant graphs and cycle
power graphs∗

Justine Louis

10th July 2015

Abstract

The number of spanning trees in a class of directed circulant graphs with generators depend-
ing linearly on the number of vertices βn, and in the n-th and (n − 1)-th power graphs of the
βn-cycle are evaluated as a product of dβ/2e − 1 terms.

1 Introduction
In this paper we study the number of spanning trees in a class of directed and undirected circulant
graphs. Let 1 6 γ1 6 · · · 6 γd 6 bn/2c be positive integers. A circulant directed graph, or
circulant digraph, on n vertices generated by γ1, . . . , γd is the directed graph on n vertices labelled
0, 1, . . . , n− 1 such that for each vertex v ∈ Z/nZ there is an oriented edge connecting v to v+γm
mod n for all m ∈ {1, . . . , d}. We will denote such graphs by

−→
Cγ1,...,γd
n . Similarly, a circulant

graph on n vertices generated by γ1, . . . γd, denoted by Cγ1,...,γd
n , is the undirected graph on n

vertices labelled 0, 1, . . . , n− 1 such that each vertex v ∈ Z/nZ is connected to v± γm mod n for
all m ∈ {1, . . . , d}. Circulant graphs and digraphs are used as models in network theory. In this
context, they are called multi-loop networks, or double-loop networks when they are 2-generated,
see for example [7, 8]. The number of spanning tree measures the reliability of a network.
The evaluation of the number of spanning trees in circulant graphs and digraphs has been widely
studied, were both exact and asymptotic results have been obtained as the number of vertices
grows, see [2, 6, 11, 12, 13] and references therein. In [3, 5], the authors showed that the number
of spanning trees in such graphs satisfy linear recurrence relations. Yong, Zhang and Golin
developed a technique in [13] to evaluate the number of spanning trees in a particular class of
double-loop networks

−→
Cp,γn+pβn . In the first section of this work, we derive a closed formula for

these graphs, and more generally for d-generated circulant digraphs with generators depending
linearly on the number of vertices, that is

−→
C
p,γ1n+p,...,γd−1n+p
βn where p, γ1, . . . , γd−1, β, n are

positive integers. This partially answers an open question posed in [2] by simplifying the formula
given in [2, Corollary 1].
In the second section we calculate the number of spanning trees in the n-th and (n− 1)-th power
graphs of the βn-cycle which are the circulant graphs generated by the n, respectively n− 1, first
consecutive integers, denoted by Cnβn and Cn−1

βn respectively, where β ∈ N>2. As a consequence,
the asymptotic behaviour of it is derived. Cycle power graphs appear, for example, in graph
colouring problems, see [9, 10].
The results obtained here are derived from the matrix tree theorem (see [1, 4]) which provides a

∗arXiv:1507.02990. The author was supported in part by the Swiss NSF grant 200021 132528/1.
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closed formula of a product of βn−1 terms for a graph on βn vertices. Our formulas are a product
of dβ/2e − 1 terms and are therefore interesting when n is large. In both cases, the symmetry of
the graphs is reflected in the formulas which are expressed in terms of eigenvalues of subgraphs
of the original graph. This fact was already observed in [12].

Acknowledgements: The author thanks Anders Karlsson for reading the manuscript and useful
discussions.

2 Spanning trees in directed circulant graphs
Let G be a directed graph and V(G) its vertex set. A spanning arborescence converging to v ∈ V(G)
is an oriented subgraph of G such that the out-degree of all vertices except v equals one, and the
out-degree of v is zero. We define the combinatorial Laplacian of a directed graph G as an operator
acting on the space of functions defined on V(G), by

∆−
Gf(x) =

∑

y: x→y
(f(x) − f(y)) (1)

where the sum is over all vertices y such that there is an oriented edge from x to y. Equivalently,
the combinatorial Laplacian can be defined as a matrix by ∆−

G = D− − A, where D− is the out-
degree matrix and A is the adjacency matrix such that (A)ij is the number of directed edges from
i to j. Let τ−(G, v) denote the number of arborescences converging to v. The Tutte matrix tree
theorem (see [1]) states that for all v ∈ V(G),

τ−(G, v) = det∆−
G,v

where det∆−
G,v is the v-th cofactor of the Laplacian ∆−

G obtained by deleting the row and column
of ∆−

G corresponding to the vertex v. For a regular directed graph G, we define the number of
spanning trees in G, τ(G), by the sum over all vertices v ∈ V(G) of the number of arborescences
converging to v, that is

τ(G) =
∑

v∈V(G)

τ−(G, v).

Notice that we could have defined the number of spanning trees by the sum over all vertices
v ∈ V(G) of the number of spanning arborescences diverging from v.
By symmetry, all cofactors of the Laplacian of a directed circulant graph are equal and are equal
to the product of the non-zero eigenvalues of the Laplacian divided by the number of vertices.
Therefore we have that

τ(G) =

|V(G)|∏

k=1

λk

where λk, k = 1, . . . , |V(G)|, denote the non-zero eigenvalues of the Laplacian of G. The non-
zero eigenvalues of the Laplacian of the directed circulant graph

−→
Cγ1,...,γd
n are given by (see [4,

Proposition 3.5])

λk = d−

d∑

m=1

e2πiγmk/n, k = 1, . . . , n− 1.

This can also be derived by noticing that the eigenvectors are given by the characters χk(x) =
e2πikx/n, k = 0, 1, . . . , n− 1, and then applying the Laplacian (1) on it.
In this section, we establish a formula for the number of spanning trees in directed circulant graphs
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−→
C Γβn generated by Γ = {p, γ1n + p, . . . , γd−1n + p} and in the particular case of two generators
−→
Cp,γn+pβn . Figure 1 illustrates a 2 and a 3 generated directed circulant graphs. We denote by
µk = d− 1−

∑d−1
m=1 e

2πiγmk/β, k = 1, . . . , β− 1, the non-zero eigenvalues of the Laplacian on the
directed circulant graph

−→
C
γ1,...,γd−1
β and by ηk = 2(d−1)−2

∑d−1
m=1 cos(2πγmk/β), k = 1, . . . , β−1,

the non-zero eigenvalues of the Laplacian on the circulant graph Cγ1,...,γd−1
β . Let A be a statement

and δA be defined by

δA =

{
1 if A is satisfied
0 otherwise .

(a)
−→
C 2,n

3n with n = 5 (b)
−→
C 1,n+1,2n+1

4n with n = 5

Figure 1: Examples of directed graphs

Theorem 2.1. Let 1 6 γ1 6 · · · 6 γd−1 6 β and p, n be positive integers. For all even n ∈ N>2

such that (p, n) = 1, the number of spanning trees in the directed circulant graph
−→
C Γβn, where

Γ = {p, γ1n+ p, . . . , γd−1n+ p}, is given by

τ(
−→
C Γβn) = nd

βn−1
(
1− δβ even

(−1)p

dn

(
1+

d−1∑

m=1

(−1)γm
)n)

×
dβ/2e−1∏

k=1

(
1− 2

∣∣∣1− µk

d

∣∣∣
n

cos

(
2πpk
β

+ nArctg

(∑d−1
m=1 sin(2πγmk/β)

d− ηk/2

))

+
∣∣∣1− µk

d

∣∣∣
2n
)

and for odd n ∈ N>1,

τ(
−→
C Γβn) = nd

βn−1
(
1− δβ even

(−1)p

dn

(
1+

d−1∑

m=1

(−1)γm
)n)

×
dβ/2e−1∏

k=1

(
1− 2sgn(d− ηk/2)

∣∣∣1− µk

d

∣∣∣
n

cos

(
2πpk
β

+ nArctg

(∑d−1
m=1 sin(2πγmk/β)

d− ηk/2

))

+
∣∣∣1− µk

d

∣∣∣
2n
)
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where dxe is the smallest integer greater or equal to x, |.| denotes the modulus and we set sgn(0) = 1.
The number of spanning trees in

−→
C Γβn is zero if either (p, n) = 1 and β, p, γm, m = 1, . . . , d − 1,

are all even or either (p, n) 6= 1.

Proof. From the Tutte matrix tree theorem, the number of spanning trees in
−→
C Γβn is given by

τ(
−→
C Γβn) =

βn−1∏

k=1

(d− e2πipk/(βn) −

d−1∑

m=1

e2πi(γmn+p)k/(βn)).

By splitting the product over k = 1, . . . , βn − 1 into two products, when k is a multiple of β,
that is k = lβ with l = 1, . . . , n − 1, and over non-multiples of β, that is, k = k ′ + l ′β with
k ′ = 1, . . . , β− 1 and l ′ = 0, 1, . . . , n− 1, we have

τ(
−→
C Γβn) =

n−1∏

l=1

(d− de2πipl/n)

β−1∏

k=1

n−1∏

l ′=0

(d− (1+
d−1∑

m=1

e2πiγmk/β)e2πipk/(βn)e2πipl
′/n). (2)

We have that

n−1∏

l=1

(d− de2πipl/n) = dn−1
n−1∏

l=1

(1− e2πipl/n) = ndn−1δ(p,n)=1.

This equality comes from the fact that
∏n−1
l=1 (1− e2πipl/n) is the number of spanning trees of the

directed graph
−→
Cpn, which is isomorphic to the directed cycle on n vertices if (p, n) = 1, and is

not connected if (p, n) 6= 1. Therefore the product is equal to nδ(p,n)=1.
Hence, if (p, n) 6= 1, we have

τ(
−→
C Γβn) = 0.

Let p be relatively prime to n. Using that the complex numbers e2πil/n, l = 0, 1, . . . , n− 1, are the
n non-trivial roots of unity, we have for all x,

n−1∏

l=0

(x− e2πilp/n) = xn − 1. (3)

since (p, n) = 1. Equivalently we have,

n−1∏

l=0

(1− xe2πilp/n) = 1− xn.

Using this identity in (2) enables to evaluate the product over l ′, it comes

τ(
−→
C Γβn) = nd

βn−1
β−1∏

k=1

(1− 1
dn

(1+
d−1∑

m=1

e2πiγmk/β)ne2πipk/β). (4)

For odd β we write the product over k, k = 1, . . . , β − 1, as a product from 1 to (β − 1)/2,
and for even β we write it as a product from 1 to β/2 − 1 and add the k = β/2 factor
which is given by 1 − (−1)p(1 +

∑d−1
m=1(−1)γm)n/dn. Writing the above expression in terms of
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µk = d− 1−
∑d−1
m=1 e

2πiγmk/β, it comes

τ(
−→
C Γβn) = nd

βn−1
(
1− δβ even

(−1)p

dn
(1+

d−1∑

m=1

(−1)γm)n
)

×
dβ/2e−1∏

k=1

(1− (1− µk/d)ne2πipk/β)(1− (1− µ∗k/d)ne−2πipk/β)

= ndβn−1
(
1− δβ even

(−1)p

dn
(1+

d−1∑

m=1

(−1)γm)n
)

×
dβ/2e−1∏

k=1

(1− 2|1− µk/d|n cos(2πpk/β+ nφk) + |1− µk/d|2n) (5)

where φk is the phase of the complex number 1− µk/d such that 1− µk/d = |1− µk/d|eiφk . We
have

|1− µk/d| =
1
d

(
(d− ηk/2)2 +

( d−1∑

m=1

sin(2πγmk/β)
)2)1/2

and

cosφk =
d− ηk/2
|d− µk|

, sinφk =

∑d−1
m=1 sin(2πγmk/β)

|d− µk|
.

Therefore for k such that d− ηk/2 6= 0, the phase is given by

φk = Arctg

(∑d−1
m=1 sin(2πγmk/β)

d− ηk/2

)
+ επ (6)

where ε = 0 if sgn(d − ηk/2) = 1 and ε ∈ {−1, 1} if sgn(d − ηk/2) = −1. For k such that
d − ηk/2 = 0, we take the limit as d − ηk/2 → 0 in (6), with ε = 0. The theorem follows by
putting equation (6) into equation (5).
When β, p and γm, m = 1, . . . , d − 1 are all even, the directed circulant graph

−→
C Γβn is not

connected and therefore the number of spanning trees is zero, this is reflected in the formula.

In the following theorem we state the particular case on two-generated directed circulant graphs.

Theorem 2.2. Let 1 6 γ 6 β and p, n be positive integers. For odd β and all n ∈ N>1 such that
(p, n) = 1, the number of spanning trees in the directed circulant graph

−→
Cp,γn+pβn is given by

τ(
−→
Cp,γn+pβn ) = n2βn−1

(β−1)/2∏

k=1

(
1− 2 cos(2π(p+ γn/2)k/β) cosn(πγk/β) + cos2n(πγk/β)

)

and for even β, if γ or p is odd, then

τ(
−→
Cp,γn+pβn ) = n2βn−1+δγ even

β/2−1∏

k=1

(
1− 2 cos(2π(p+ γn/2)k/β) cosn(πγk/β) + cos2n(πγk/β)

)
.

The number of spanning trees in
−→
Cp,γn+pβn is zero if either (p, n) = 1 and β, p and γ are all even or

either (p, n) 6= 1.
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Proof. From equation (4) it follows

τ(
−→
Cp,γn+pβn ) = n2βn−1

β−1∏

k=1

(1− e2πi(p+γn/2)k/β cosn(πγk/β)).

For odd β, we have

τ(
−→
Cp,γn+pβn ) = n2βn−1

(β−1)/2∏

k=1

(1− e2πi(p+γn/2)k/β cosn(πγk/β))

× (1− e−2πi(p+γn/2)k/β cosn(πγk/β))

= n2βn−1
(β−1)/2∏

k=1

(1− 2 cos(2π(p+ γn/2)k/β) cosn(πγk/β) + cos2n(πγk/β)).

For even β, the factor k = β/2 is added:

1− eπi(p+γn/2) cosn(πγ/2) =





0 if p and γ are even
1 if γ is odd
2 otherwise

.

For even β, p and γ, the graph
−→
Cp,γn+pβn is not connected and therefore the number of spanning

trees is zero. Therefore if p or γ is odd, we have

τ(
−→
Cp,γn+pβn ) = n2βn−1+δγ even

β/2−1∏

k=1

(1− e2πi(p+γn/2)k/β cosn(πγk/β))

× (1− e−2πi(p+γn/2)k/β cosn(πγk/β))

= n2βn−1+δγ even

β/2−1∏

k=1

(1− 2 cos(2π(p+ γn/2)k/β) cosn(πγk/β) + cos2n(πγk/β)).

Examples. Consider the case when p = β = 3 and γ = 2. It follows from Theorem 2.2 that
τ(
−→
C 3,2n+3

3n ) = 0 if n is a multiple of 3, otherwise,

τ(
−→
C 3,2n+3

3n ) = n23n−1(1− 2 cos(2πn/3) cosn(2π/3) + cos2n(2π/3))
= n(23n−1 − 22n cos(πn/3) + 2n−1)

as stated in [13, Example 4.(iii)]. As another example, consider the case when p = 2, γ = 5 and
β = 6. From Theorem 2.2, for even n, τ(

−→
C 2,5n+2

6n ) = 0, and for odd n,

τ(
−→
C 2,5n+2

6n ) = n26n−1(1− 2 cos(2π(2+ 5n/2)/6) cosn(5π/6) + cos2n(5π/6))
× (1− 2 cos(4π(2+ 5n/2)/6) cosn(10π/6) + cos2n(10π/6))

=
n

2
(23n + 22n3n/2 cos(πn/6) − 22n3(n+1)/2 sin(πn/6) + 6n)

× (23n − 22n−13n/2 cos(πn/3) + 2n−13(n+1)/2 sin(πn/3) + 2n).
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3 Spanning trees in cycle power graphs
The k-th power graph of the n-cycle, denoted by Ckn, is the graph with the same vertex set as
the n-cycle where two vertices are connected if their distance on the n-cycle is at most k. It is
therefore the circulant graph on n vertices generated by the first k consecutive integers. In this
section, we derive a formula for the number of spanning trees in the n-th and (n − 1)-th power
graphs of the βn-cycle, where β ∈ N>2. As a consequence we derive the asymptotic behaviour of
it as n goes to infinity.
The combinatorial Laplacian of an undirected graph G with vertex set V(G) defined as an operator
acting on the space of functions is

∆Gf(x) =
∑

y∼x

(f(x) − f(y))

where the sum is over all vertices adjacent to x. The matrix tree theorem [4] states that the number
of spanning trees in G, τ(G), is given by

τ(G) =

∏|V(G)|−1
k=1 λk

|V(G)|

where λk, k = 1, . . . , |V(G)| − 1, are the non-zero eigenvalues of ∆G. The eigenvectors of the
Laplacian on the circulant graph C1,...,n

βn are given by the characters χk(x) = e2πikx/(βn), k =
0, 1, . . . , βn− 1. Therefore the non-zero eigenvalues are given by

λk = 2n− 2
n∑

m=1

cos(2πkm/(βn)), k = 1, . . . , βn− 1.

Similarly, the non-zero eigenvalues on C1,...,n−1
βn are given by

λk = 2(n− 1) − 2
n−1∑

m=1

cos(2πkm/(βn)), k = 1, . . . , βn− 1.

Figure 2 below illustrates two power graphs of the 24-cycle.

(a) C8
24 (b) C7

24

Figure 2: 8-th and 7-th power graphs of the 24-cycle
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Theorem 3.1. Let β > 2 be an integer and µk = 2−2 cos(2πk/β), k = 1, . . . , β−1, be the non-zero
eigenvalues of the Laplacian on the β-cycle. The number of spanning trees in the n-th power graph
of the βn-cycle Cnβn for β > 3, is given by

τ(Cnβn) =
2β(n+1)

(2β)2
nβn−2

(
1+ 1

2n

)βn
(1− (2n+ 1)−β)n

×
dβ/2e−1∏

k=1

sin2

(
π(n+ 1)k

β
− nArcsin

(
n+ 1√

4n2/µk + 2n+ 1

))

where dxe denotes the smallest integer greater or equal to x. For β = 2, it is given by

τ(Cn2n) = (2n)2n−2(1+ 1/n)n.

The number of spanning trees in the (n − 1)-th power graph of the βn-cycle Cn−1
βn , for β > 3, is

given by

τ(Cn−1
βn ) =

2β(n+1)

(2β)2
nβn−2

(
1− 1

2n

)βn
|(−1)β − (2n− 1)−β|n

×
dβ/2e−1∏

k=1

sin2

(
π(n− 1)k

β
− nArcsin

(
n− 1√

4n2/µk − (2n− 1)

))
.

For β = 2, it is given by
τ(Cn−1

2n ) = (2n)2n−2(1− 1/n)n.

Remark. We emphasise that in the cycle power graphs Cn−1
βn and Cnβn there are β copies of

n-cliques as subgraphs of the original graph. This fact appears in the formula by the factor
nβn−2 = (nn−2)βn2(β−1) since the number of spanning trees in the complete graph on n vertices
is nn−2.

Proof. We prove the theorem only for the first type of graphs Cnβn. The proof of the second type
Cn−1
βn is very similar to the first one. The matrix tree theorem states that

τ(Cnβn) =
1
βn

βn−1∏

k=1

(2n− 2
n∑

m=1

cos(2πkm/(βn))).

Lagrange’s trigonometric identity expresses the sum of cosines appearing in the above formula in
terms of a quotient of sines:

2
n∑

m=1

cos(2πkm/(βn)) = sin((n+ 1/2)2πk/(βn))
sin(πk/(βn))

− 1.

Hence,

τ(Cnβn) =
1
βn

βn−1∏

k=1

(sin(πk/(βn)))−1((2n+ 1) sin(πk/(βn)) − sin(πk/(βn) + 2πk/β)).

Using that there are βn spanning trees in the βn-cycle, that is 1
βn

∏βn−1
k=1 (2−2 cos(2πk/(βn))) =

βn, it follows that
βn−1∏

k=1

sin(πk/(βn)) =
βn

2βn−1 . (7)
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For the second factor, as in the proof of Theorem 2.1, we split the product over k = 1, . . . , βn − 1
into two products, first when k is a multiple of β, that is k = lβ with l = 1, . . . , n− 1, and second
when k is not a multiple of β, that is, k = k ′ + l ′β with k ′ = 1, . . . , β− 1 and l ′ = 0, 1, . . . , n− 1.
The product over the multiples of β reduces to

n−1∏

l=1

2n sin(πl/n) = nn.

We have

τ(Cnβn) =
2βn−1nn

(βn)2

β−1∏

k=1

n−1∏

l=0

((2n+ 1) sin(πk/(βn) + πl/n) − sin(πk/(βn) + πl/n+ 2πk/β). (8)

The difference of sines in the above product can be written as

(2n+1) sin(πk/(βn)+πl/n)−sin(πk/(βn)+πl/n+2πk/β) = |zk| sin(π(n+1)k/(βn)+θk+πl/n)
(9)

where
zk = 2n cos(πk/β) − i(2n+ 2) sin(πk/β) =.. |zk|e

iθk .

Let ωk = π(n+ 1)k/(βn) + θk, we have

n−1∏

l=0

sin(ωk + πl/n) =
1

(2i)n
n−1∏

l=0

(ei(ωk+πl/n) − e−i(ωk+πl/n))

=
1

(2i)n
e−iωkneπi(n−1)/2

n−1∏

l=0

(e2iωk − e−2πil/n)

=
sin(ωkn)

2n−1 (10)

where in the last equality we used equation (3). Putting equations (8), (9) and (10) together yields

τ(Cnβn) =
2βn−1nn

(βn)2

β−1∏

k=1

|zk|
n

2n−1 sin(π(n+ 1)k/β+ nθk).

Notice that for even β, the phase of zβ/2 is θβ/2 = −π/2, so that sin(π(n + 1)/2 + nθβ/2) = 1.
For β = 2, z1 = −2(n+ 1)i, hence

τ(Cn2n) = (2n)2n−2(1+ 1/n)n.

For β > 3, we have

τ(Cnβn) =
2n+β−2nn

(βn)2
(β−1∏

k=1

|zk|
n
) dβ/2e−1∏

k=1

sin(π(n+ 1)k/β+nθk) sin(π(n+ 1)(β− k)/β+nθβ−k).

For 1 6 k 6 dβ/2e − 1, the phase of zk is θk = −Arcsin((2n + 2) sin(πk/β)/|zk|). The phase of
zβ−k satisfies

cos θβ−k = − cos θk, sin θβ−k = sin θk

so that, θβ−k = π− θk. The modulus of zk is given by

|zk| = ((2n+ 1)2 + 1− 2(2n+ 1) cos(2πk/β))1/2 = (4n2 + (2n+ 1)µk)1/2
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where µk = 2 − 2 cos(2πk/β), k = 1, . . . , β − 1, are the non-zero eigenvalues of the Laplacian on
the β-cycle. We have sin(πk/β) = µ

1/2
k /2. Hence for 1 6 k 6 dβ/2e − 1, the phase is given by

θk = −Arcsin((n+ 1)/
√

4n2/µk + 2n+ 1). Therefore

τ(Cnβn) =
2n+β−2nn

(βn)2
(β−1∏

k=1

|zk|
n
) dβ/2e−1∏

k=1

sin2

(
π(n+ 1)k

β
− nArcsin

(
(n+ 1)√

4n2/µk + 2n+ 1

))
.

(11)
The product of the modulus of zk is given by

β−1∏

k=1

|zk| =
(2n+ 1)β/2

2n

β−1∏

k=0

(2n+ 1+ 1/(2n+ 1) − 2 cos(2πk/β))1/2

=
(2n+ 1)β/2

2n
(2 cosh(βArgcosh(n+ 1/2+ 1/(4n+ 2))) − 2)1/2

=
(2n+ 1)β

2n
(1− (2n+ 1)−β) (12)

where the second equality comes from the identity (see [12, section 2])

β−1∏

k=0

(2 cosh θ− 2 cos(2πk/n)) = 2 cosh(βθ) − 2.

Putting equality (12) into (11) gives the theorem.

Remark. We point out that the proof above could not be easily applied to other powers of the
βn-cycle, like Cn−pβn , where p > 2 or p 6 −1, because in this case zk defined in equation (9)
would also depend on l and the phase θk of zk cannot be easily determined. As a consequence,
the product over l cannot be evaluated in the same way as it is done in the proof. It would be
interesting to find a formula for this class of more general circulant graphs.

From Theorem 3.1, we derive the asymptotic behaviour of the number of spanning trees in the
n-th, respectively (n− 1)-th, power graph of the βn-cycle as n→∞.

Corollary 3.2. Let β ∈ N>2. The asymptotic number of spanning trees in the n-th and (n − 1)-th
power graphs of the βn-cycle Cnβn and Cn−1

βn as n→∞ is respectively given by

τ(Cnβn) =
2βn

2β
nβn−2(eβ/2 + o(1))

and
τ(Cn−1

βn ) =
2βn

2β
nβn−2(e−β/2 + o(1)).

Proof. By observing that for all k ∈ {1, . . . , dβ/2e− 1},

lim
n→∞

n+ 1√
4n2/µk + 2n+ 1

= sin(πk/β) and lim
n→∞

n− 1√
4n2/µk − (2n− 1)

= sin(πk/β)

where µk = 2 − 2 cos(2πk/β) and using relation (7) the corollary is a direct consequence of
Theorem 3.1.
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Asymptotics for the determinant of the combinatorial
Laplacian on hypercubic lattices∗

Justine Louis

30th July 2015

Abstract
In this paper, we compute asymptotics for the determinant of the combinatorial Laplacian

on a sequence of d-dimensional orthotope square lattices as the number of vertices in each
dimension grows at the same rate. It is related to the number of spanning trees by the well-
known matrix tree theorem. Asymptotics for 2 and 3 component rooted spanning forests in these
graphs are also derived. Moreover, we express the number of spanning trees in a 2-dimensional
square lattice in terms of the one in a 2-dimensional discrete torus and also in the quartered
Aztec diamond. As a consequence, we find an asymptotic expansion of the number of spanning
trees in a subgraph of Z2 with a triangular boundary.

1 Introduction
In this paper we study the asymptotic behaviour of the number of spanning trees in a discrete
d-dimensional orthotope square lattice and in the quartered Aztec diamond. Let L(n1, . . . , nd)
denote the d-dimensional orthotope square lattice defined by the cartesian product of the d path
graphs Pni

, i = 1, . . . , d, where ni, i = 1, . . . , d, are positive non-zero integers. We set ni = αin,
i = 1, . . . , d, and write indifferently ni or αin throughout the paper. By rescaling the distance
between two vertices on the lattice L(n1, . . . , nd) with a factor of 1/n, the limiting object as n
goes to infinity is a d-dimensional orthotope of size α1 × · · · × αd, that we denote by Kd:

Kd
..= [0, α1[× · · · × [0, αd[ .

The volume of Kd is

Vdd
..=

d∏

i=1

αi.

Let m ∈ {1, . . . , d − 1} and let Sd denote the symmetric group on {1, . . . , d}. An m-dimensional
face of Kd is defined by

{(x1, . . . , xd) ∈ Kd| ∃{iq}dq=1 ∈ Sd such that xiq ∈
[
0, αiq

]
, q = 1, . . . ,m

and xiq ∈ {0, αiq }, q = m+ 1, . . . , d}.

The volume of the sum of all the m-dimensional faces of Kd is given by

Vdm
..= 2d−m

∑

16i1<···<im6d

m∏

q=1

αiq .

∗arXiv:1507.08652. The author was supported in part by the Swiss NSF grant 200021 132528/1.
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For example, Vd1 is the perimeter and Vd2 the area of Kd.
Asymptotics for the determinant of the combinatorial Laplacian on graphs have been widely stud-
ied, see for example [2, 3, 5, 9, 11]. It is related to the number of spanning trees of a graph G,
denoted by τ(G), through the matrix tree theorem due to Kirchhoff (see [1])

τ(G) =
1

|V(G)|
det∗∆G

where det∗ ∆G is the product of the non-zero eigenvalues of the Laplacian on G and |V(G)| the
number of vertices in G. In [2], the authors developed a technique to compute the asymptotic
behaviour of spectral determinants of the combinatorial Laplacian associated to a sequence of
discrete tori. The technique consists in studying the asymptotic behaviour of the associated theta
function which contains the spectral information of the graph. Consider a graph G with vertex set
V(G). For a function f defined on V(G), the combinatorial Laplacian is defined by

∆Gf(x) =
∑

y∼x

(f(x) − f(y))

where the sum is over all vertices adjacent to x. Let {λk}k denote the spectrum of the Laplacian
on G. The associated theta function is defined by

θG(t) =
∑

k∈V(G)

e−λkt.

To compute the asymptotic behaviour of spectral determinants on a sequence of d-orthotope square
lattices, we express the associated theta function in terms of the theta function associated to the
discrete torus with twice vertices at each side of the torus. This can be done because of the
similarity of their spectrum. We then use the asymptotic results from [2]. The formula obtained
relates the determinant of the Laplacian on the discrete lattice L(n1, . . . , nd) to the regularized
determinant of the Laplacian on the rescaled limiting object, which is the real d-dimensional
orthotope Kd, and to the ones on the m-dimensional boundary faces of Kd, m = 1, . . . , d − 1.
Moreover, we compute asymptotic results for the number of rooted spanning forests with 2 and 3
components.
We will prove the following theorem.

Theorem 1.1. Given positive integers αi, i = 1, . . . , d, let det∗ ∆L(α1n,...,αdn) be the product of the
non-zero eigenvalues of the Laplacian on the d-dimensional orthotope square lattice L(α1n, . . . , αdn).
Then as n→ ∞

log det∗∆L(α1n,...,αdn) = cdV
d
dn

d −

d−1∑

m=1

1
4d−m

(∫∞

0
(1− e−4t)d−me−2mtI0(2t)m

dt

t

)
Vdmn

m

+ (2− 21−d) logn+

d∑

m=1

∑

16i1<···<im6d
log det∗∆αi1×···×αim

+
1
2d

d∑

m=1

Cmd (−1)m log(4m) + o(1)

where det∗ ∆αi1×···×αim
is the regularized determinant of the Laplacian on the m-orthotope

αi1 × · · · × αim with Dirichlet boundary conditions. The constant cd is

cd =

∫∞

0
(e−t − e−2dtI0(2t)d)

dt

t
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where I0 is the modified I-Bessel function of order zero.
Notice that the limiting object Kd can be decomposed into a disjoint union of m orthotopes,

m ∈ {0, 1, . . . , d}. More precisely, let αi1×· · ·×αim , {iq}mq=1 ⊂ {1, . . . , d}, denote the m-dimensional
orthotope of side lengths αi1 , . . . , αim which is open in Rm. Then

Kd = {0} t
d⊔

m=1

⊔

16i1<···<im6d
αi1 × · · · × αim .

This decomposition is reflected in the theorem by the appearance of the sum over this decomposition
of the logarithm of the regularized determinant of the Laplacian on the m-dimensional faces,
m = 1, . . . , d.
By expressing the eigenvalues of the Laplacian on the square lattice L(n1, n2) in terms of the one
on the two-dimensional discrete torus Z2/diag(2n1, 2n2)Z2, we derive a relation, which is stated
below, between the number of spanning trees on these two lattices.

Theorem 1.2. Given positive integers n1, n2, let τ(L(n1, n2)) denote the number of spanning trees
on the rectangular square lattice L(n1, n2) and τ(T(2n1, 2n2)) the number of spanning trees on the
discrete torus Z2/diag(2n1, 2n2)Z2. We have

τ(L(n1, n2)) =
25/4τ(T(2n1, 2n2))

1/4

(n1n2)1/4((3+ 2
√
2)n1 − (3− 2

√
2)n1)1/2((3+ 2

√
2)n2 − (3− 2

√
2)n2)1/2

.

In [9], Kenyon computed asymptotics for spectral determinants on a simply-connected rectilin-
ear region in R2. Here we compute it in the particular case of a triangular region. More precisely,
we consider the quartered Aztec diamond of order n, denoted by QADn, which is the subgraph of
Z2 with nearest neighbours connected induced by the vertices (k1, k2) such that k1 + k2 6 n and
k1, k2 > 0. Figure 1 illustrates QAD7. In [4], Ciucu derived a relation between the characteristic
polynomials of the rectangular square lattice and of the quartered Aztec diamond using combina-
torial arguments. From this one can deduce a relation for the number of spanning trees. In the
second part of this work, we present an alternative approach for it. Consequently, we derive the
asymptotic behaviour of it, stated in the following theorem, which shows that it is related to the
regularized determinant of the Laplacian on the triangle with Dirichlet boundary conditions.
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Figure 1: Quartered Aztec diamond of order 7.

Theorem 1.3. Let τ(QADn) denote the number of spanning trees in the quartered Aztec diamond
of order n. Then as n→ ∞

log(τ(QADn)) =
2G
π
n2 − log(2+

√
2)n−

3
4
logn+ log det∗∆∆ +

23
8

log 2+ o(1)

where G is the Catalan constant and det∗ ∆∆ is the regularized determinant of the Laplacian on the
right-angled isosceles unit triangle with Dirichlet boundary conditions.
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1.1 Regularized determinant
Let M be a Riemannian manifold with or without boundary and let ∆M be the Laplace-Beltrami
operator associated toM. IfM has a boundary we associate Dirichlet boundary conditions to ∆M.
Denote by {λk}k the eigenvalues of ∆M. The spectral zeta function associated to M is defined for
<(s) > dimM/2 by

ζM(s) =
∑

λk 6=0

1
λsk
.

It admits a meromorphic continuation to the whole complex plane (see for example [13] for M with
a boundary and [2] for the case where M is a torus). The regularized determinant of ∆M can then
be defined by

log det∗∆M = −ζ ′M(0).

1.2 Preliminary result
We prove the following lemma which will be useful in the next section to invert relations between
theta functions. Throughout this paper, we set an empty summation to be one by convention.

Lemma 1.4. Let {iq}q>1 be an increasing sequence of positive integers. Let {nq}q>1 be a sequence
of positive integers and {niq }q>1 a subsequence of it. Let f, g : N<N → R be two sequences of
variadic functions such that for all l ∈ N>1,

f(ni1 , . . . , nil) =

l∑

k=0

∑

a1<···<ak

{aq}kq=1⊂{iq}lq=1

g(na1 , . . . , nak
). (1)

Then the following inversion formula holds: for all l ∈ N>1,

g(ni1 , . . . , nil) =

l∑

k=0

(−1)l−k
∑

a1<···<ak

{aq}kq=1⊂{iq}lq=1

f(na1 , . . . , nak
).

Proof. Let l ∈ N>1. From relation (1) between f and g, we have
l∑

k=0

(−1)l−k
∑

j1<···<jk
{jq}kq=1⊂{iq}lq=1

f(nj1 , . . . , njk)

=

l∑

k=0

(−1)l−k
∑

j1<···<jk
{jq}kq=1⊂{iq}lq=1




k∑

m=0

∑

a1<···<am

{aq}mq=1⊂{jq}kq=1

g(na1 , . . . , nam
)




=

l∑

k=1

(−1)l−k
k∑

m=1

∑

j1<···<jk
{jq}kq=1⊂{iq}lq=1

∑

a1<···<am

{aq}mq=1⊂{jq}kq=1

g(na1 , . . . , nam
) (2)

where in the second equality we used that
l∑

k=0

(−1)l−k
∑

j1<···<jk
{jq}kq=1⊂{iq}lq=1

1 =
l∑

k=0

(−1)l−kCkl = 0

73



from the binomial theorem, where Ckl = l!/(k!(l − k)!). For l > k > m, the double summation
can be rewritten in one summation as

∑

j1<···<jk
{jq}kq=1⊂{iq}lq=1

∑

a1<···<am

{aq}mq=1⊂{jq}kq=1

= Ck−ml−m

∑

j1<···<jm
{jq}mq=1⊂{iq}lq=1

. (3)

Thus (2) is equal to

l∑

k=1

(−1)l−k
k∑

m=1

Ck−ml−m

∑

j1<···<jm
{jq}mq=1⊂{iq}lq=1

g(nj1 , . . . , njm)

=

l∑

m=1

l−m∑

k=0

(−1)l−m−kCkl−m
∑

j1<···<jm
{jq}mq=1⊂{iq}lq=1

g(nj1 , . . . , njm) = g(ni1 , . . . , nil)

where the second equality comes from the fact that the only non-zero term in the summation over
m is when m = l from the binomial theorem.

Remark. If we set f(ni1 , . . . , nil) = fl and g(ni1 , . . . , nik) = gk for all l, k ∈ N>1, we recover the
standard binomial inversion:

fl =

l∑

k=0

Ckl gk if and only if gl =
l∑

k=0

(−1)l−kCkl fk, for all l ∈ N>1,

with f0 = g0 = 1.

Acknowledgements: The author thanks Anders Karlsson for suggesting this problem to her and
for valuable discussions. She also thanks Larry Glasser for pointing reference [6] to her.

2 Asymptotic number of spanning trees in the d-orthotope
lattice

2.1 Theta function
The eigenvalues of the Laplacian on the square lattice L(n1, . . . , nd) are given by (see [5])

{λLk}k=0,1,...,N−1 = {2d− 2
d∑

i=1

cos(πki/ni), ki = 0, 1, . . . , ni − 1, for i = 1, . . . , d}

where N =
∏d
i=1 ni. The d-dimensional discrete torus of size 2n1 × · · · × 2nd is defined

by the quotient Zd/diag(2n1, . . . , 2nd)Zd with nearest neighbours connected. We denote it by
T(2n1, . . . , 2nd). The eigenvalues of the Laplacian on T(2n1, . . . , 2nd) are given by (see [12])

{λTk}k=0,1,...,2dN−1 = {2d− 2
d∑

i=1

cos(πki/ni), ki = 0, 1, . . . , 2ni − 1, for i = 1, . . . , d}.
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Notice that {λLk}k ⊂ {λTk}k.
The theta function on the d-orthotope lattice L(n1, . . . , nd) is given by

θL(n1,...,nd)(t) =

n1−1∑

k1=0

· · ·
nd−1∑

kd=0

e−(2d−2
∑d

i=1 cos(πki/ni))t

and on the discrete torus T(2n1, . . . , 2nd) by

θT(2n1,...,2nd)(t) =

2n1−1∑

k1=0

· · ·
2nd−1∑

kd=0

e−(2d−2
∑d

i=1 cos(πki/ni))t.

Therefore by expressing the theta function on the d-orthotope square lattice L(n1, . . . , nd) in terms
of the one on the torus T(2n1, . . . , 2nd), one can deduce the asymptotic behaviour from the results
obtained in [2].
Let Ja, bK denote the set of successive integers {a, a + 1, . . . , b}. In the theta function on
L(n1, . . . , nd), the summation is over the discrete d-orthotope J0, n1 − 1K × · · · × J0, nd − 1K
that we denote by Jd, while for the torus T(2n1, . . . , 2nd) it is over the discrete d-orthotope
J0, 2n1−1K×· · ·×J0, 2nd−1K, denoted by J̃d. We decompose Jd as a disjoint union of l-dimensional
faces, l = 0, 1, . . . , d. The 0 dimension is the point 0 ∈ Zd, we call it the root of Jd. For
l ∈ {1, . . . , d−1}, the l-dimensional faces are defined by a subset of Zd, (k1, . . . , kd) ⊂ Jd, such that
∃{iq}dq=1 ∈ Sd such that kiq ∈ J1, niq − 1K, q = 1, . . . , l and kiq = 0, q = l+ 1, . . . , d. We call the
d-dimensional face the interior of Jd where no coordinate is zero, that is J1, n1−1K×· · ·×J1, nd−1K.
For example, in the 2 dimensional case, J2 decomposes as:

J2 = {0} t (J1, n1 − 1K× {0}) t ({0}× J1, n2 − 1K) t (J1, n1 − 1K× J1, n2 − 1K).

In the theta function of the torus T(2n1, . . . , 2nd), the summation is over 2d copies of Jd, namely:

J̃d =
⊔

εi∈{0,ni}
i=1,...,d

(Jd + (ε1, . . . , εd))

where the unions are disjoint. Figure 2 illustrates the decompositions of Jd and J̃d in the case
d = 2.
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(b) J̃2

Figure 2: J2 and J̃2 with n1 = 4 and n2 = 3. The big black dot is the root of J2, the small black
dots are the two 1-dimensional faces and the white dots are the interior of J2.

75



Let define the theta-star function on the lattice L(ni1 , . . . , nil), with 1 6 i1 < · · · < il 6 d, by
the following expression

θ∗L(ni1 ,...,nil
)(t) =

ni1−1∑

ki1=1

· · ·
nil

−1∑

kil
=1

e
−(2l−2

∑il
i=i1

cos(πki/ni))t

where the summation is over the interior of the l-orthotope of size ni1 × · · · × nil , that is, the
ki’s start at 1 instead of 0 for all i ∈ {i1, . . . , il}. Therefore the theta function is related to the
theta-star function by the relation

θL(n1,...,nd)(t) =

d∑

l=0

∑

16i1<···<il6d
θ∗L(ni1 ,...,nil

)(t). (4)

To evaluate the theta function on T(2n1, . . . , 2nd) we sum over the roots of the 2d discrete
orthotopes Jd, the l-dimensional boundary faces of Jd and the interior of Jd. Summing over the
roots of the Jd’s means that for all i = 1, . . . , d, ki is either 0 or ni. There are Cjd = d!/(j!(d− j)!)
number of ways to take j of the ki’s to be zero. In this case the corresponding exponential term of
the theta function is e−4(d−j)t. The term l = 0 is then the sum of all the possibilities:

d∑

j=0

Cjde
−4(d−j)t = (1+ e−4t)d.

Then for each l-dimensional boundary face of Jd, where l ∈ {1, . . . , d − 1}, there are d − l of the
ki’s which are either 0 or ni, this positions the l-dimensional face in J̃d. For this l, there are Cjd−l
number of ways where j of the ki’s are zero and the exponential term is then e−4(d−l−j)t. And we
sum over the interior of the l-dimensional face L(ni1 , . . . , nil), where 1 6 i1 < · · · < il 6 d, which
is by definition the theta-star function θ∗L(ni1 ,...,nil

)(t) with a factor of 2l since this configuration
appears 2l times. So for l ∈ {1, . . . , d− 1}, we have

d−l∑

j=0

Cjd−le
−4(d−l−j)t

∑

16i1<···<il6d
2lθ∗L(ni1 ,...,nil

)(t).

Finally we sum over the interior of Jd, that is, when all the ki’s are greater or equal to one, which
appears 2d times. This gives the l = d term

2dθ∗L(n1,...,nd)(t).

The theta function on T(2n1, . . . , 2nd) is then the sum over the l-dimensional faces of the 2d
orthotopes Jd:

θT(2n1,...,2nd)(t) = 2d
d∑

l=0

(
1+ e−4t

2

)d−l ∑

16i1<···<il6d
θ∗L(ni1 ,...,nil

)(t)

which is equivalent to

(1+ e−4t)−dθT(2n1,...,2nd)(t) =

d∑

l=0

2l(1+ e−4t)−l
∑

16i1<···<il6d
θ∗L(ni1 ,...,nil

)(t).

76



By setting

f(n1, . . . , nd) = (1+e−4t)−dθT(2n1,...,2nd)(t) and g(ni1 , . . . , nil) = 2l(1+e−4t)−lθ∗L(ni1 ,...,nil
)(t)

in Lemma 1.4, it comes

θ∗L(ni1 ,...,nil
)(t) = 2−l

l∑

m=0

(−1− e−4t)l−m
∑

j1<···<jm
{jq}mq=1⊂{iq}lq=1

θT(2nj1 ,...,2njm)(t).

From the above relation and relation (4), the theta function on the d-orthotope square lattice is
expressed in terms of the theta function on the d-dimensional torus:

θL(n1,...,nd)(t) =

d∑

l=0

∑

16i1<···<il6d

l∑

m=0

2−l(−1− e−4t)l−m
∑

j1<···<jm
{jq}mq=1⊂{iq}lq=1

θT(2nj1 ,...,2njm)(t).

Rewriting the double multi-index summation in one summation using (3), we have

θL(n1,...,nd)(t) =

d∑

l=0

l∑

m=0

Cl−md−m2−l(−1− e−4t)l−m
∑

16i1<···<im6d
θT(2ni1 ,...,2nim)(t)

Therefore the theta functions are related by

θL(n1,...,nd)(t) =
1
2d

d∑

m=0

(1− e−4t)d−m
∑

16i1<···<im6d
θT(2ni1 ,...,2nim)(t). (5)

2.2 Preliminary calculation
Let {λLj }j=0,...,N−1 be the eigenvalues of the combinatorial Laplacian on the square lattice
L(n1, . . . , nd). For small t > 0, the theta function on the torus θT(2ni1 ,...,2nim) behaves as

θT(2ni1 ,...,2nim)(t) − 2m
( m∏

q=1

niq

)
e−2mtI0(2t)m = O(t), t→ 0. (6)

We follow the method derived in [2]. From relation (5) and the behaviour of the theta function at
small t > 0 (6), we start by writing the theta function on the lattice L(n1, . . . , nd) as

∑

j6=0

e−λ
L
j t =

d∑

m=1

(
1− e−4t

4

)d−m
e−2mtI0(2t)mVdmnm

+

[
θL(n1,...,nd)(t) −

d∑

m=1

(
1− e−4t

4

)d−m
e−2mtI0(2t)mVdmnm − 1

]
,

to ensure the convergence of the integral of the Gauss transform that will appear below. By taking
the Gauss transform of the above, that is, multiplying by 2se−s2t and then integrating with respect
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to t from zero to infinity, we have

∑

j6=0

2s
s2 + λLj

=

d∑

m=1

Vdmn
m2s

∫∞

0
e−s

2t

(
1− e−4t

4

)d−m
e−2mtI0(2t)mdt

+ 2s

[
d∑

m=1

∫∞

0
e−s

2t(1− e−4t)d−m

×
(

1
2d

∑

16i1<···<im6d
θT(2ni1 ,...,2nim)(t) −

1
4d−m

Vdmn
me−2mtI0(2t)m −

1
2d
Cmd

)
dt

+

∫∞

0
e−s

2t((1− e−4t)d − 2d +

d∑

m=1

Cmd (1− e−4t)d−m)dt

]
. (7)

For m ∈ {1, . . . , d}, define the functions Idm and Hdm,n such that

∂sIdm(s) = 2s
∫∞

0
e−s

2t

(
1− e−4t

4

)d−m
e−2mtI0(2t)mdt (8)

and

∂sHdm,n(s) = 2s
∫∞

0
e−s

2t(1− e−4t)d−m

×
(

1
2d

∑

16i1<···<im6d
θT(2ni1 ,...,2nim)(t) −

1
4d−m

Vdmn
me−2mtI0(2t)m −

1
2d
Cmd

)
dt.

(9)

Equation (7) can then be written as

∑

j6=0

2s
s2 + λLj

=

d∑

m=1

Vdmn
m∂sIdm(s) +

d∑

m=1

∂sHdm,n(s) +
1
2d

2s
∫∞

0
e−s

2t((2− e−4t)d − 2d)dt. (10)

By integrating over s equations (8) and (9) we get

Idd (s) =
∫∞

0
(e−t − e−(s2+2d)tI0(2t)d)

dt

t
,

Hdd,n(s) = −
1
2d

∫∞

0
(e−s

2t(θT(2n1,...,2nd)(t) − V
d
d (2n)de−2dtI0(2t)d − 1) + e−t)dt

t

and for m 6= d,

Idm(s) = −
1

4d−m

∫∞

0
(1− e−4t)d−me−(s2+2m)tI0(2t)m

dt

t
,

Hdm,n(s) = −

∫∞

0
e−s

2t(1− e−4t)d−m

×
(

1
2d

∑

16i1<···<im6d
θT(2ni1,...,2nim

)(t) −
1

4d−m
Vdmn

me−2mtI0(2t)m −
1
2d
Cmd

)
dt

t
.

By integrating equation (10) above we get

∑

j6=0

log(s2+λLj ) =
d∑

m=1

Vdmn
mIdm(s)+

d∑

m=1

Hdm,n(s)+
d∑

k=1

Ckd(−2)−k log(s2+4k)+ constant. (11)
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The asymptotic behaviour of the functions Idm and Hdm,n as s → ∞ determine the constant of
integration. We have

Idd (s) = 2 log s+ o(1) and Idm(s) = o(1) for m 6= d as s→ ∞

and
Hdd,n(s) = −

1
2d−1 log s+ o(1) and Hdm,n(s) = o(1) for m 6= d as s→ ∞

and ∑

j6=0

log(s2 + λLj ) = 2(N− 1) log s+ o(1) as s→ ∞.

Therefore, equation (11) as s→ ∞ yields

2(N− 1) log s+ o(1) = 2N log s−
1

2d−1 log s+
1

2d−1 (1− 2d) log s+ constant+ o(1)

implying that the constant is zero. Evaluating equation (11) at s = 0 gives the logarithm of
the product of the non-zero eigenvalues of the Laplacian on the d-dimensional square lattice
L(n1, . . . , nd):

log
(∏

j6=0

λLj

)
= cdV

d
dn

d +

d−1∑

m=1

VdmIdm(0)nm +

d∑

m=1

Hdm,n(0) +
d∑

k=1

Ckd(−2)−k log(4k) (12)

where
cd =

∫∞

0
(e−t − e−2dtI0(2t)d)

dt

t
.

2.3 Asymptotic expansion
By expanding (1− e−4t)d−m =

∑d−m
k=0 C

k
d−m(−1)ke−4kt in Hdm,n(0), it can be rewritten as

Hdm,n(0) = −
1
2d

d−m∑

k=0

Ckd−m(−1)k

×
∑

16i1<···<im6d

∫∞

0

(
e−4kt(θT(2ni1 ,...,2nim)(t) −

m∏

q=1

(2αiqne−2tI0(2t)) − 1) + e−t
)dt
t
,

for all m = 1, . . . , d, where the e−t term is added to make the integral converge. It can be added
since

∑d−m
k=0 C

k
d−m(−1)k = 0 for m = 1, . . . , d− 1. By splitting the sum over k we have

d∑

m=1

Hdm,n(0) =

−
1
2d

d∑

m=1

∑

16i1<···<im6d

∫∞

0

(
θT(2ni1 ,...,2nim)(t) −

m∏

q=1

(2αiqne−2tI0(2t)) − 1+ e−t
)dt
t

−
1
2d

d∑

m=1

d−m∑

k=1

∑

16i1<···<im6d

∫∞

0

(
e−4kt(θT(2ni1 ,...,2nim)(t) −

m∏

q=1

(2αiqne−2tI0(2t)) − 1) + e−t
)dt
t
.

79



From [2, Theorem 5.8], the asymptotic behaviour as n→ ∞ of the k = 0 term is given by

−
1
2d

d∑

m=1

∑

16i1<···<im6d

∫∞

0
(θT(2ni1 ,...,2nim)(t) −

m∏

q=1

(2αiqne−2tI0(2t)) − 1+ e−t)dt
t

=
1
2d

d∑

m=1

∑

16i1<···<im6d
(2 logn− ζ ′Rm/diag(2αi1 ,...,2αim)Zm(0)) + o(1).

After a change of variable t→ n2t, the sum over the non-zero k’s can be split as

−
1
2d

d−1∑

k=1

d−k∑

m=1

∑

16i1<···<im6d
Ckd−m(−1)k

×



∫ 1

0
e−4kn2t(θT(2ni1 ,...,2nim)(n

2t) −

m∏

q=1

(2αiqne−2n2tI0(2n2t)))
dt

t
+

∫ 1

0
(e−n

2t − e−4kn2t)
dt

t

+

∫∞

1
e−4kn2t(θT(2ni1 ,...,2nim)(n

2t) − 1)dt
t

+

∫∞

1
(e−n

2t − e−4kn2t
m∏

q=1

(2αiqne−2n2tI0(2n2t)))
dt

t


 . (13)

From the propositions in [2, section 5], the first, third and fourth integrals tend to zero as n→ ∞.
The second integral tends to ∫∞

0
(e−t − e−4kt)

dt

t
= log(4k).

The limit as n→ ∞ of (13) is then

−
1
2d

d−1∑

k=1

d−k∑

m=1

Cmd C
k
d−m(−1)k log(4k) = −

1
2d

d−1∑

k=1

Ckd(2d−k − 1)(−1)k log(4k).

Therefore, the Hdm,n(0) term together with the constant term of equation (12) behave as
(
2− 1

2d−1

)
logn−

1
2d

d∑

m=1

∑

16i1<···<im6d
ζ ′Rm/diag(2αi1 ,...,2αim)Zm(0) + 1

2d
d∑

k=1

Ckd(−1)k log(4k)

as n→ ∞.
We will now express the derivative of the spectral zeta function on the m-dimensional real torus
Rm/diag(2αi1 , . . . , 2αim)Zm, that is ζ ′Rm/diag(2αi1 ,...,2αim)Zm , in terms of the derivative of the
spectral zeta function on the m-dimensional orthotope of size αi1 × · · · × αim . The eigenvalues of
the Laplace-Beltrami operator with Dirichlet boundary conditions on the m-dimensional orthotope
of size αi1 × · · · × αim are given by

λk = π2
m∑

q=1

(
kiq
αiq

)2

with k = (ki1 , . . . , kim) ∈ (N∗)m.

So that the spectral zeta function on the m-dimensional orthotope of size αi1 × · · · × αim with
Dirichlet boundary conditions, denoted by ζαi1×···×αim

, is given by

ζαi1×···×αim
(s) =

1
π2s

∑

ki1 ,...,kim>1



m∑

q=1

(
kiq
αiq

)2



−s

.
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The spectral zeta function on the real torus Rm/diag(2αi1 , . . . , 2αim)Zm is given by

ζRm/diag(2αi1 ,...,2αim)Zm(s) =
1

(2π)2s
∑

(ki1 ,...,kim)∈Zm\{0}



m∑

q=1

(
kiq
2αiq

)2



−s

.

The spectral zeta functions are then related by

ζRm/diag(2αi1 ,...,2αim)Zm(s) =

m∑

l=1

2l
∑

j1<···<jl
{jq}lq=1⊂{iq}mq=1

ζαj1×···×αjl
(s).

Summing the above over all iq, q = 1, . . . ,m and over all m, m = 1, . . . , d, gives

1
2d

d∑

m=1

∑

16i1<···<im6d
ζRm/diag(2αi1 ,...,2αim)Zm(s)

=
1
2d

d∑

m=1

∑

16i1<···<im6d

m∑

l=1

2l
∑

j1<···<jl
{jq}lq=1⊂{iq}mq=1

ζαj1×···×αjl
(s)

=
1
2d

d∑

m=1

m∑

l=1

Cm−l
d−l 2

l
∑

16i1<···<il6d
ζαi1×···×αil

(s)

=

d∑

m=1

∑

16i1<···<im6d
ζαi1×···×αim

(s)

where in the last equality we exchanged the sums over m and l and used the fact that∑d
m=l C

m−l
d−l = 2d−l. By expressing the derivative of the spectral zeta function evaluated at

zero in terms of the regularized determinant of the Laplace-Beltrami operator on m-dimensional
orthotopes, m = 1, . . . , d, with Dirichlet boundary conditions, we have

1
2d

d∑

m=1

∑

16i1<···<im6d
ζ ′Rm/diag(2αi1 ,...,2αim)Zm(0) = −

d∑

m=1

∑

16i1<···<im6d
log det∗∆αi1×···×αim

.

Putting everything together gives the asymptotic behaviour of the determinant of the Laplacian on
the d-dimensional square lattice L(n1, . . . , nd)

log det∗∆L(α1n,...,αdn) = cdV
d
dn

d −

d−1∑

m=1

1
4d−m

(∫∞

0
(1− e−4t)d−me−2mtI0(2t)m

dt

t

)
Vdmn

m

+ (2− 21−d) logn+

d∑

m=1

∑

16i1<···<im6d
log det∗∆αi1×···×αim

+
1
2d

d∑

m=1

Cmd (−1)m log(4m) + o(1)

as n → ∞. Notice that in the bulk limit the lead term is the same as in the case of the torus
but lower order terms are deducted; for each m-dimensional face, m = 1, . . . , d − 1, a term
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proportional to Vdmnm is deducted. This can be explained by observing that in the torus case we
have a periodic lattice while for the d-dimensional hypercubic lattice the periodicity is substituted
by free boundary conditions. Spectral determinants of the limiting d-dimensional orthotope and
each of its m-dimensional faces, m = 1, . . . , d− 1, also appear. Moreover the last constant term is
new in the development. The terms in Vdmnm appearing from the boundary effect can be written
in the following way:

−

∫∞

0
(1− e−4t)d−me−2mtI0(2t)m

dt

t
=

d−m∑

k=0

Ckd−m(−1)k
∫∞

0
(e−t − e−(2k+m)tI0(t)

m)
dt

t
.

These integrals are denoted by Jm(2k + m) in [6] by Glasser and are related to the Mahler
measure of the hypercubic polynomial P(x1, . . . , xm) = 4k+ 2m+

∑m
j=1(xj + x

−1
j ) by the relation

m(P) = log 2 + Jm(2k +m). In [6], Glasser calculates these integrals in terms of hypergeometric
functions for m = 2 and 3. For m = 1, one explicity has

1
4d−1

∫∞

0
(1− e−4t)d−1e−2tI0(2t)

dt

t
=

1
4d−1

d−1∑

k=1

Ckd−1(−1)k log(2k+ 1+ 2
√
k2 + k)

(see [11, Proposition 2.4]).

Example. Consider the two dimensional rectangular grid α1n× α2n. The volume of the limiting
rectangle of size α1 ×α2 is V2

2 = α1α2 with perimeter V2
1 = 2α1 + 2α2. From Theorem 1.1 it comes

log det∗∆L(α1n,α2n) =
4G
π
V2
2n

2 −
1
2
log(1+

√
2)V2

1 n+
3
2
logn+ log det∗∆α1×α2

+ log det∗∆α1 + log det∗∆α2 −
1
4
log 2+ o(1)

as n→ ∞, which is equivalent to the formula derived in [5, section 4.2].

2.4 Asymptotic number of rooted 2- and 3-spanning forests
In this section, we derive asymptotics for 2 and 3 component rooted spanning forests in d-orthotope
square lattices. Let Ndk denote the number of rooted k-spanning forests on L(n1, . . . , nd) which is
given by the k-th power in s2 of the characteristic polynomial:

∏d
i=1 ni−1∏

j=0

(
λLj +

s2

n2

)
.

Following [5], by expanding the above in powers of (s/n)2, one finds that Nd2 and Nd3 are related
to Nd1 by

Nd2
Nd1

=
∑

j6=0

1
λLj

and
Nd3
Nd1

=
1
2



(
Nd2
Nd1

)2

−
∑

j6=0

1
(λLj )

2


 .

The number of rooted spanning trees Nd1 is related to the number of unrooted spanning trees
τ(L(n1, . . . , nd)) by the relation

Nd1 =
( d∏

i=1

ni

)
τ(L(n1, . . . , nd)).
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Recall that from equation (11), we have that

∑

j 6=0

log((s/n)2 + λLj ) =
d∑

m=1

Vdmn
mIdm(s/n) +

d∑

m=1

Hdm,n(s/n) +
d∑

k=1

Ckd(−2)−k log((s/n)2 + 4k)

where
Idd (s/n) =

∫∞

0
(e−t − e−((s/n)2+2d)tI0(2t)d)

dt

t
.

We have
lim
n→∞

Idd (s/n) = cd.

For d > 3,

lim
n→∞

n2(Idd (s/n) − cd) = lim
n→∞

n2
∫∞

0
(1− e−(s/n)2t)e−2dtI0(2t)d

dt

t
=
s2

2
Wd

where Wd is the so-called Watson integral for the d-dimensional hypercubic lattice

Wd =

∫∞

0
e−dtI0(t)

ddt.

In [8], Joyce and Zucker introduced the generalised lattice Green function defined by

Gd(n;k,w) =
1
Γ(k)

∫∞

0
tk−1e−wt

d∏

i=1

Ini
(t)dt

where n = {n1, . . . , nd} is a set of non-negative integers, w > d, k > 0 and Γ is the gamma
function. Here the lattice Green function will only appear with n = 0, hence we denote it shortly
by Gd(k,w). In [8], numerical evaluations of the integrals cd and Wd are computed and also in
[2] for cd and in [7] for Wd and Gd(1, w).
For d > 5,

lim
n→∞

(n4(Idd (s/n) − cd) − n2s2Wd) = lim
n→∞

n4
∫∞

0

(
1− e−(s/n)2t −

s2

n2 t

)
e−2dtI0(2t)d

dt

t

= −
s4

8
Gd(2, d).

Continuing in this way, we arrive at the following expansion for Idd (s/n) as n→ ∞

ndIdd (s/n) = cdnd +

b(d−1)/2c∑

k=1

(−1)k+1nd−2k s
2k

k2k
Gd(k, d) + o(n). (14)

Recall that for m ∈ {1, . . . , d− 1},

Idm(s/n) = −
1

4d−m

∫∞

0
(1− e−4t)d−me−((s/n)2+2m)tI0(2t)m

dt

t
.

We have
lim
n→∞

Idm(s/n) = Idm(0).
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Similarly as for m = d, we obtain as n→ ∞

nmIdm(s/n) = Idm(0)nm

+
1

4d−m

b(m−1)/2c∑

k=1

(−1)knm−2k s
2k

k!2k

∫∞

0
(1− e−2t)d−me−mtI0(t)

mtk−1dt+ o(n).

(15)

The above integral can be expressed in terms of the generalised lattice Green function:

1
(k− 1)!

∫∞

0
(1− e−2t)d−me−mtI0(t)

mtk−1dt =

d−m∑

l=0

Cld−m(−1)lGm(k,m+ 2l).

Putting equations (14) and (15) together gives the expansion for d > 3

∑

j 6=0

log((s/n)2 + λLj ) = V
d
dcdn

d +

d−1∑

m=1

VdmIdm(0)nm +

b(d−1)/2c∑

k=1

s2k

k2k

(
(−1)k+1VddGd(k, d)n

d−2k

+ δd>4
(−1)k

(k− 1)!

d−1∑

m=2k+1

Vdmn
m−2k 1

4d−m

∫∞

0
(1− e−2t)d−me−mtI0(t)

mtk−1dt

)
+ o(n)

where δd>d0 = 1 if d > d0 and 0 otherwise.
For d = 3,

∑

j6=0

log((s/n)2 + λLj ) = V
3
3c3n

d + V3
1 I31 (0)n+ V3

2I32 (0)n2 +
s2

2
V3
3W3n+ o(n)

with the special values (W3 is given in [8])

I31 (0) =
1
16

log((17+ 2
√
2)(5− 2

√
6)) and W3 =

1
96π3

(
√
3− 1) (Γ(1/24)Γ(11/24))2 .

For d > 4,

∑

j6=0

log((s/n)2 + λLj ) = V
d
dcdn

d +

d−1∑

m=1

VdmIdm(0)nm

+
s2

2

(
VddWdn

d−2 −

d−1∑

m=3

Vdmn
m−2 1

4d−m

∫∞

0
(1− e−2t)d−me−mtI0(t)

mdt

)

+
s4

8

(
−δd>5V

d
dGd(2, d)nd−4 + δd>6

d−1∑

m=5

Vdmn
m−4 1

4d−m

∫∞

0
t(1− e−2t)d−me−mtI0(t)

mdt

)

+ (terms in sk with k > 3) + o(n)

as n→ ∞.
On the other hand, the formal expansion of

∑
j 6=0 log((s/n)

2 + λLj ) gives

∑

j6=0

log((s/n)2 + λLj ) = log

(∏

j6=0

λLj

)
+
∑

p>1

(−1)p−1

p

( s
n

)2p∑

j6=0

1
(λLj )

p
.
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By identification of the terms in s2, we find the asymptotic number of rooted 2-spanning forests
for d = 3, as n→ ∞

N3
2 =

(
V3
3
2
W3n

3 + o(n3)

)
N3

1

and for d > 4, we have

∑

j6=0

1
λLj

=
Vdd
2
Wdn

d −

d−1∑

m=3

Vdm
2
nm

1
4d−m

∫∞

0
(1− e−2t)d−me−mtI0(t)

mdt+ o(n3)

so that

Nd2 =

(
Vdd
2
Wdn

d −

d−1∑

m=3

Vdm
2
nm

1
4d−m

∫∞

0
(1− e−2t)d−me−mtI0(t)

mdt+ o(n3)

)
Nd1

where Nd1 is asymptotically given by Theorem 1.1. By identification of the terms in s4, we find that
as n→ ∞ ∑

j 6=0

1
(λLj )

2 = O(nd)

so that the asymptotic number of rooted 3-spanning forests for d = 4 is given by

N4
3 =

(
(V4

4W4)
2

8
n8 −

V4
3V

4
4

8
W4n

7
∫∞

0
(1− e−2t)e−3tI0(t)

3dt+ o(n7)

)
N4

1 , as n→ ∞.

Remark. It would be interesting to find the next terms in the development. For the 2-dimensional
case, we would need to find the asymptotic development as n→ ∞ of the following integral

∫∞

0
n2(1− e−(s/n)2t)e−4tI0(2t)2

dt

t
.

In [5], the authors computed the asymptotic development of
∑
j 6=0 log((s/n)

2+λj) in the case of the
torus with other techniques. To generalise their result to higher dimensions with our techniques,
for example in the 3-dimensional case, we would need to find the asymptotic development of

∫∞

0
(n3(1− e−(s/n)2t) − ns2t)e−6tI0(2t)3

dt

t

as n → ∞. This would enable us to derive asymptotics for the number of rooted k-spanning
forests with k > 4.

2.5 Spanning trees in two-dimensional square lattices
In the two-dimensional case, one can derive an exact relation between the number of spanning
trees on the rectangular square lattice n1 × n2 and the one on the torus of size 2n1 × 2n2. The
product of the non-zero eigenvalues on T(2n1, 2n2) is given by

det∗∆T(2n1,2n2) =

2n1−1∏

k1=0
(k1,k2) 6=0

2n2−1∏

k2=0

(4− 2 cos(πk1/n1) − 2 cos(πk2/n2)).
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The product over k1, k2 is a disjoint union of products over four squares of size n1 ×n2. We split
this product as a product over the 0, 1 and 2 dimensional faces of the squares. It comes

det∗∆T(2n1,2n2) = 428
n1−1∏

k1=1

(2− 2 cos(πk1/n1))
2
n2−1∏

k2=1

(2− 2 cos(πk2/n2))
2

×
n1−1∏

k1=1

(6− 2 cos(πk1/n1))
2
n2−1∏

k2=1

(6− 2 cos(πk2/n2))
2

×
n1−1∏

k1=1

n2−1∏

k2=1

(4− 2 cos(πk1/n1) − 2 cos(πk2/n2))
4. (16)

On the other hand, the product of the non-zero eigenvalues on the square lattice L(n1, n2) is given
by

det∗∆L(n1,n2) =

n1−1∏

k1=0
(k1,k2)6=0

n2−1∏

k2=0

(4− 2 cos(πk1/n1) − 2 cos(πk2/n2)).

By splitting the above product as a product when k1 = 0, then k2 = 0, then 1 6 k1 6 n1 − 1,
1 6 k2 6 n2 − 1, we get

det∗∆L(n1,n2) =

n1−1∏

k1=1

(2− 2 cos(πk1/n1))

n2−1∏

k2=1

(2− 2 cos(πk2/n2))

×
n1−1∏

k1=1

n2−1∏

k2=1

(4− 2 cos(πk1/n1) − 2 cos(πk2/n2)). (17)

Using the matrix tree theorem and putting the following identities coming from relations for
Chebyshev polynomials of the second kind

n−1∏

k=1

(2− 2 cos(πk/n)) = n and
n−1∏

k=1

(6− 2 cos(πk/n)) = (3+ 2
√
2)n − (3− 2

√
2)n

4
√
2

,

in equations (16) and (17), it follows that

τ(L(n1, n2)) =
25/4τ(T(2n1, 2n2))

1/4

(n1n2)1/4((3+ 2
√
2)n1 − (3− 2

√
2)n1)1/2((3+ 2

√
2)n2 − (3− 2

√
2)n2)1/2

.

Remark. It would be interesting to see if one could generalise the above relation to higher dimen-
sions. It could not be done in the same way as it is done above. More precisely, when splitting
the product in 3 dimensions as a product over 0, 1, 2 and 3 dimensional faces, one would need
for example to evaluate the following product

n1−1∏

k1=1

n2−1∏

k2=1

(8− 2 cos(πk1/n1) − 2 cos(πk2/n2))

appearing for the 2-dimensional face defined by k3 = n3 and k1 = 1, . . . , n1 − 1, k2 = 1, . . . , n2 − 1.
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3 Asymptotic number of spanning trees in the quartered Aztec
diamond

3.1 A relation between the number of spanning trees on the quartered
Aztec diamond and on the square lattice

In [4, 10], the authors showed that the number of spanning trees in the quartered Aztec diamond
of side length n is given by

τ(QADn) =
∏

0<k1<k2<n

(4− 2 cos(πk1/n) − 2 cos(πk2/n)).

The product of the non-zero eigenvalues on the square grid of side n is given by

det∗∆L(n,n) =
n−1∏

k1=0
(k1,k2)6=0

n−1∏

k2=0

(4− 2 cos(πk1/n) − 2 cos(πk2/n)).

By splitting this product as a product when k1 = 0, then k2 = 0, then k1 = k2, k1 = 1, . . . , n − 1,
then k1 < k2 and k2 < k1, we have

det∗∆L(n,n) =
n−1∏

k=1

(2− 2 cos(πk/n))2
n−1∏

k=1

(4− 4 cos(πk/n))

×
∏

16k1<k26n−1

(4− 2 cos(πk1/n) − 2 cos(πk2/n))2.

From the matrix tree theorem, it follows that

τ(QADn) =
τ(L(n,n))1/2√
n2(n−1)/2 . (18)

3.2 Asymptotic expansion
From (18), we have

log(τ(QADn)) =
1
2
log det∗∆L(n,n) −

n

2
log 2− 3

2
logn+

1
2
log 2 (19)

where the asymptotic behaviour of log det∗ ∆L(n,n) is given by

log det∗∆L(n,n) =
4G
π
n2 − 2n log(1+

√
2) + 3

2
logn− ζ ′1×1(0) − 2ζ ′1(0) −

1
4
log 2+ o(1) (20)

as n→ ∞.
Consider the right-angled isosceles triangle with the sides of same length equal to 1. The eigen-
values of the Laplace-Beltrami operator with Dirichlet boundary conditions are given by

λk = π2(k21 + k
2
2), with k = (k1, k2) ∈ (N∗)2 and k1 > k2.

The associated spectral zeta function with Dirichlet boundary conditions, denoted by ζ∆, is then
given by

ζ∆(s) =
1
π2s

∑

16k2<k1

1
(k21 + k

2
2)
s
.

87



The spectral zeta function on the unit square with Dirichlet boundary conditions is given by

ζ1×1(s) =
1
π2s

∑

k1,k2>1

1
(k21 + k

2
2)
s
= 2ζ∆(s) + 2−sζ1(s).

The spectral zeta function on the unit interval with Dirichlet boundary conditions is related to
the Riemann zeta function by ζ1(s) = (2/π2s)ζ(2s) with special values in 0, ζ(0) = −1/2 and
ζ ′(0) = −(1/2) log(2π). Thus we have that ζ ′1(0) = −2 log 2. By differentiating the above and
evaluating in s = 0, we get

ζ ′1×1(0) = 2ζ ′∆(0) − log 2. (21)

Putting (19), (20), (21) together and writing the derivative of the spectral zeta function in 0 in terms
of the regularized determinant of the Laplace-Beltrami operator on the right-angled isosceles unit
triangle with Dirichlet boundary conditions, that is

ζ ′∆(0) = − log det∗∆∆,

gives the asymptotic behaviour of the number of spanning trees on the quartered Aztec diamond,
namely

log(τ(QADn)) =
2G
π
n2 − n log(2+

√
2) − 3

4
logn+ log det∗∆∆ +

23
8

log 2+ o(1)

as n→ ∞.
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Low temperature ratchet current∗

Justine Louis
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Abstract

In [3], the low temperature ratchet current in a multilevel system is considered. In this note,
we give an explicit expression for it and find its numerical value as the number of states goes
to infinity.

1 Introduction
In this note, we compute the stationary ratchet current in the large system size limit. In [3], the
authors derive a formula for the occupation of a general multilevel system at low temperature. As
an application, they consider a continuous time version of Parrondo’s game at low temperature (see
[4]) and give an expression for the ratchet current. We consider a multilevel system determined
by a finite number of states. The set of all states is denoted by K. The ratchet is modelised by
two rings of N states. In the present section, we recall the definitions and results from [3, section
3] and in the next section we give an explicit expression for the ratchet current using the Tutte
matrix tree theorem and find its limit as the number of states goes to infinity. The states on the
outer ring are denoted by (0, i) and on the inner ring by (1, i), where i = 1, . . . , N. The energies
are denoted by Ei, i = 1, . . . , N and are such that E1 < · · · < EN. The transition rates on the outer
ring are given by

λ((i,0), (i+ 1,0)) = eβ(Ei−Ei+1)/2, λ((i+ 1,0), (i,0)) = eβ(Ei+1−Ei)/2

where β is the inverse temperature. On the inner ring, the transition rates are constant and equal
to one, that is,

λ((i, 1), (i+ 1, 1)) = λ((i+ 1, 1), (i, 1)) = 1.

The two rings are connected with transition rates constant equal to one,

λ((i, n), (i, 1− n)) = 1, where n = 0, 1.

The zero-temperature logarithmic limit denoted by φ(x, y) is given by

φ(x, y) ..= lim
β→∞

1
β
log λ(x, y).

The zero-temperature logarithmic limit of the escape rates of state x is denoted by Γ(x) and given
by

Γ(x) ..= − lim
β→∞

1
β
log
(∑

y

λ(x, y)
)
= −max

y
φ(x, y).

∗arXiv:1508.01189. The author was supported in part by the Swiss NSF grant 200021 132528/1.
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The logarithmic-asymptotic transition probability is given by e−βU(x,y) where

U(x, y) ..= −Γ(x) − φ(x, y).

We have U(x, y) > 0 for all x, y ∈ K. The smaller U(x, y) is, the larger is the probability of
transition from state x to state y. Hence, the set of preferred successors of x is defined by

{y ∈ K | U(x, y) = 0}.

When U(x, y) = 0, the probability of transition from x to y is high. Thus we consider the directed
graph KD defined by the vertex set K and edge set {(x, y) | U(x, y) = 0} where (x, y) indicates an
oriented edge from x to y. The digraph KD is represented in Figure 1 below. The low temperature
asymptotic of the stationary occupation is given in the following theorem from [3]:
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Figure 1: The directed graph KD.

Theorem ([3, Theorem 2.1]). There is ε > 0 so that as β→ ∞,

ρ(x) =
1
ZA(x)e

β(Γ(x)−Θ(x))(1+O(e−βε))

with

Θ(x) ..= min
T
U(Tx) for U(Tx) ..=

∑

(y,y ′)∈T§

U(y, y ′) and

A(x) ..=
∑

T ∈M(x)

∏

(y,y ′)∈Tx

a(y, y ′) = eo(β)

where the last sum runs over all spanning trees minimizing U(Tx) (i.e. T ∈M(x) if Θ(x) = U(TX)),
and a(x, y) are the reactivities, which are the sub-exponential part of the transition rates λ(x, y).
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Here all the reactivities are constant equal to one, a(x, y) = 1 for all x, y ∈ K. In the present
case, for all x ∈ K, there exists an in-spanning tree Tx in KD, so that U(Tx) = 0, and therefore
Θ(x) = 0. Let D be the set of states for which Γ(x) = 0, it is given by D = {(1,0), (i, 1), i =
1, . . . , N}. We denote f ' g if f = g+O(e−βε) as β→ ∞. For x ∈ D, we have ρ(x) ' |M(x)|/Z ,
where |M(x)| is the number of in-spanning trees in KD. For x /∈ D, the stationary distribution is
exponentially small since from the theorem it is given by ρ(x) ' |M(x)|eβΓ(x)/Z , with Γ(x) < 0.
The stationary ratchet current in the clockwise direction is given by

JR = j((i+ 1,0), (i,0)) + j((i+ 1, 1), (i, 1)), for i = 1, . . . , N,

where j(x, y) = λ(x, y)ρ(x) − λ(y, x)ρ(y).
For i = 1,

JR = j((2,0), (1,0)) + j((2, 1), (1, 1)).
On the outer ring, we have j((2,0), (1,0)) = λ((2,0), (1,0))ρ(2,0) − λ((1,0), (2,0))ρ(1,0) with

λ((1,0), (2,0)) ' 0, λ((2,0), (1,0)) = e(E2−E1)β/2

ρ(2,0) ' |M(2,0)|
Z eβΓ(2,0) =

|M(2,0)|
Z e−(E2−E1)β/2,

so that j((2,0), (1,0)) ' |M(2,0)|/Z .
On the inner ring, we have j((2, 1), (1, 1)) = λ((2, 1), (1, 1))ρ(2, 1) − λ((1, 1), (2, 1))ρ(1, 1) with

λ((2, 1), (1, 1)) = λ((1, 1), (2, 1)) = 1,

ρ(2, 1) ' |M(2, 1)|
Z , ρ(1, 1) ' |M(1, 1)|

Z ,

so that j((2, 1), (1, 1)) ' (|M(2, 1)|− |M(1, 1)|)/Z . The ratchet current is thus given by

JR '
1
Z (|M(2,0)|+ |M(2, 1)|− |M(1, 1)|).

Considering converging arborescences, the Laplacian matrix of a directed graph is defined by
L = D−A where D is the diagonal out-degree matrix and A = (Aij) is the adjacency matrix such
that Aij is the number of directed edges from i to j. The rows and columns of L are indexed by the
vertices of the graph. Here, we index it first by the states on the outer ring then the ones on the
inner ring, that is (1,0), (2,0), . . . , (N,0), (1, 1), (2, 1), . . . , (N, 1). The Tutte matrix tree theorem
(see [1]) relates the number of spanning arborescences converging to x in KD to the cofactors of
the Laplacian detLx,y. Let x ∈ K. Then for all y ∈ K,

|M(x)| = (−1)x+y detLx,y.

In particular, for y = x, we have |M(x)| = detLx. Therefore we have

JR '
1
Z (detL(2,1) + detL(2,0) − detL(1,1)).

The Laplacian matrix is given by

L =

(
A B

Id C

)

where A is the N×N lower triangular matrix given by

A =




1
−1 1

. . . . . .
−1 1

−1 0 1



,
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B is the N ×N matrix such that all coefficients are zero except B(1,0),(1,1) = −1, the matrix Id is
the N×N identity matrix and C is the following circulant matrix

C =




3 −1 −1

−1 3
. . .

. . . . . . . . .
. . . . . . −1

−1 −1 3



.

2 Calculation of the ratchet current
From [3], the numerator of JR is given by

detL(2,1) + detL(2,0) − detL(1,1) = detBN−1 − 2detBN−2 − 2

where BN is the N×N tridiagonal matrix with 3 on the diagonal and −1 on the two off-diagonals
which satisfies the recurrence relation detBN = 3detBN−1 − detBN−2 with detB1 = 3 and
detB2 = 8. By solving the associated characteristic equation, it comes

detBN =
5− 3

√
5

10

(
3−
√
5

2

)N
+

5+ 3
√
5

10

(
3+
√
5

2

)N
.

The normalisation factor is given by

Z =
∑

x∈K

∑

Tx

∏

(y,z)∈Tx

λ(y, z) '
∑

x∈D
|M(x)| =

∑

x∈D
detLx.

The sum is over the states in D since the contribution of the states which are not in D is
exponentially damped. Therefore we have

Z ' detL(1,0) +
N∑

i=1

detL(i,1). (1)

We have
detL(1,0) = detC.

The circulant matrix C has eigenvalues given by µj = 3 − 2 cos(2πj/N), j = 0, 1, . . . , N − 1 (see
[2]). Hence

detL(1,0) =
N−1∏

j=0

(3− 2 cos(2πj/N)) = U2
N−1(

√
5/2)

where UN is the Chebyshev polynomial of the second kind. Thus

detL(1,0) =

(
3+
√
5

2

)N
+

(
3−
√
5

2

)N
− 2. (2)

From the Tutte matrix tree theorem, the cofactor (−1)N+i detL(i,1) is equal to the number of
converging arborescences to (i, 1) and is equal to the cofactor of the Laplacian where row (i, 1)
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and any column is removed. Since the only non-zero element of B is in column indexed by (1, 1),
we choose to remove that one, so that

|M(i, 1)| = (−1)(N+i)+(N+1) detL(i,1),(1,1) = (−1)i+1 detC(i,1),(1,1) (3)

since A is lower triangular. On the other hand, by adding to the first column of C all the other
ones, we have

detC =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1 −1

1 3
. . .

−1
. . . . . .
. . . . . . −1

1 −1 3

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

N∑

i=1

(−1)i+1 detC(i,1),(1,1). (4)

Putting equations (1), (2), (3) and (4) together, we have

Z ' 2detC = 2
(
3+
√
5

2

)N
+ 2
(
3−
√
5

2

)N
− 4.

Up to exponentially small corrections e−βε, the ratchet current is given for all N by

JR '
(
5+ 3

√
5

10

(
3+
√
5

2

)N−1

+
5− 3

√
5

10

(
3−
√
5

2

)N−1

−
5+ 3

√
5

5

(
3+
√
5

2

)N−2

−
5− 3

√
5

5

(
3−
√
5

2

)N−2

− 2

)/(
2((3+

√
5)/2)N + 2((3−

√
5)/2)N − 4

)
.

As a consequence, in the large system size limit the current saturates and has the following limit

lim
N→∞

JR '
1
2
−

1√
5
.

Acknowledgements: The author thanks Anders Karlsson for suggesting this problem to her.
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[3] Christian Maes, Karel Netočnỳ, and Winny O’Kelly de Galway. Low temperature behavior
of nonequilibrium multilevel systems. Journal of Physics A: Mathematical and Theoretical,
47(3):035002, 2014.

[4] Juan MR Parrondo. Reversible ratchets as brownian particles in an adiabatically changing
periodic potential. Physical Review E, 57(6):7297, 1998.

94



A formula for the energy of circulant graphs with two
generators∗

Justine Louis

10th August 2015

Abstract

In this note, we derive closed formulas for the energy of circulant graphs generated by 1 and
γ, where γ > 2 is an integer. We also find a formula for the energy of the complete graph
without a Hamilton cycle.

Let 1 6 γ1 6 · · · 6 γd be integers. The circulant graph Cγ1,...,γd
n generated by γ1, . . . , γd on n

vertices labelled 0, 1, . . . , n− 1, is the 2d-regular graph such that for all v ∈ Z/nZ, v is connected
to v + γi mod n and to v − γi mod n, for all i = 1, . . . , d. The adjacency matrix A = (Aij) of
a graph on n vertices is the n × n matrix with rows and columns indexed by the vertices such
that Aij is the number of edges connecting vertices i and j. Let λk, k = 1, . . . , n, denote the
eigenvalues of the adjacency matrix. The energy of a graph G on n vertices is defined by the sum
of the absolute value of the eigenvalues of A, that is

E(G) =

n∑

k=1

|λk|.

The energy of circulant graphs and integral circulant graphs is widely studied, see for example
[4, 5, 6, 7]. It has interesting applications in theoretical chemistry, namely, it is related to the
π-electron energy of a conjugated carbon molecule, see [2]. In the following theorem, we give a
formula for the energy of circulant graphs with two generators, 1 and γ, γ > 2. The formula is
interesting as n is larger than γ.

Theorem. Let Dn(x) denote the Dirichlet kernel. The energy of the circulant graph C1,2
n is given by

E(C1,2
n ) = 4

(
Dbn/6c(2π/n) +Dbn/6c(4π/n)

)
.

For γ > 3, the energy of the circulant graph C1,γ
n is given by

E(C1,γ
n ) = 4

∑

m∈{1,γ}




dγ/2e−1∑

l=0

Db(2l+1)n/(2(γ+1))c

(
2πm
n

)
−

dγ/2e−2∑

l=0

Db(2l+1)n/(2(γ−1))c

(
2πm
n

)


where bxc denotes the greatest integer smaller or equal to x and dxe denotes the smallest integer
greater or equal to x.

∗arXiv:1508.02348. The author was supported in part by the Swiss NSF grant 200021 132528/1.

95



Proof. The adjacency matrix of a circulant graph is circulant, it follows that the eigenvalues of
C1,γ
n are given by λk = 2 cos(2πk/n) + 2 cos(2πγk/n), k = 0, . . . , n − 1, (see [3]). The energy of
C1,γ
n is then given by

E(C1,γ
n ) = 2

n−1∑

k=0

|cos(2πk/n) + cos(2πγk/n)|.

Let γ = 2. The two roots of the equation cos x + cos(2x) = 0 for x ∈ [0, π] are π/3 and π. We
write the energy as

E(C1,2
n ) = 4+ 4

dn/2e−1∑

k=1

|cos(2πk/n) + cos(4πk/n)|

= 4+ 4
bn/6c∑

k=1

(cos(2πk/n) + cos(4πk/n)) − 4
dn/2e−1∑

k=bn/6c+1

(cos(2πk/n) + cos(4πk/n)).

The sum of cos(kx) over consecutive k’s can be expressed in terms of the Dirichlet kernel, namely

Dn(x) = 1+ 2
n∑

k=1

cos(kx) =
sin((n+ 1/2)x)

sin(x/2)
.

As a consequence,

2
m∑

k=n+1

cos(kx) = Dm(x) −Dn(x).

The energy of C1,2
n is thus given by

E(C1,2
n ) = 4Dbn/6c(2π/n) + 4Dbn/6c(4π/n) − 2Ddn/2e−1(2π/n) − 2Ddn/2e−1(4π/n).

The formula then follows from the fact that for odd n, D(n−1)/2(2πm/n) = 0 for m = 1, 2, and
for even n, Dn/2−1(2π/n) = 1 and Dn/2−1(4π/n) = −1.
Let γ > 3. For odd γ, the γ solutions of the equation cos x+ cosγx = 0 for x ∈ [0, π] are given in
the increasing order by π/(γ+1), π/(γ−1), 3π/(γ+1), 3π/(γ−1), . . . , (γ−2)π/(γ−1), γπ/(γ+1).
For even γ, they are given by π/(γ+1), π/(γ−1), 3π/(γ+1), 3π/(γ−1), . . . , (γ−3)π/(γ−1), (γ−
1)π/(γ+1), π. Let n be odd. We split the sum over k of cosines to group the positive terms together
and the negative terms together. The energy is given by

E(C1,γ
n ) = 4+ 4

(n−1)/2∑

k=1

|cos(2πk/n) + cos(2πγk/n)|

= 4+ 4
bn/(2(γ+1))c∑

k=1

(cos(2πk/n) + cos(2πγk/n))

+ 4
dγ/2e−2∑

l=0

b(2l+3)n/(2(γ+1))c∑

k=b(2l+1)n/(2(γ−1))c+1

(cos(2πk/n) + cos(2πγk/n))

− 4
dγ/2e−1∑

l=0

b(2l+1)n/(2(γ−1))c∑

k=b(2l+1)n/(2(γ+1))c+1

(cos(2πk/n) + cos(2πγk/n)). (1)
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Writing the above relation in terms of Dirichlet kernels, it comes

E(C1,γ
n ) = 2

∑

m∈{1,γ}

(
Dbn/(2(γ+1))c(2πm/n)

+

dγ/2e−2∑

l=0

(
Db(2l+3)n/(2(γ+1))c(2πm/n) −Db(2l+1)n/(2(γ−1))c(2πm/n)

)

−

dγ/2e−1∑

l=0

(
Db(2l+1)n/(2(γ−1))c(2πm/n) −Db(2l+1)n/(2(γ+1))c(2πm/n)

))
. (2)

Hence

E(C1,γ
n ) =

∑

m∈{1,γ}

(
4

dγ/2e−1∑

l=0

Db(2l+1)n/(2(γ+1))c(2πm/n)

− 4
dγ/2e−2∑

l=0

Db(2l+1)n/(2(γ−1))c(2πm/n) − 2Dbn/2c(2πm/n)
)
. (3)

The formula follows from the fact that Dbn/2c(2πm/n) = 0 for m = 1, γ.
Let n be even. As for the case when n is odd, we write the energy as follow

E(C1,γ
n ) = 4(1+ δγ odd) + 4

n/2−1∑

k=1

|cos(2πk/n) + cos(2πγk/n)|

where δγ odd = 1 if γ is odd and 0 otherwise.
For even γ, relations (1), (2) and (3) hold. The theorem then follows from the fact that
Dn/2(2π/n) = −1 and Dn/2(2πγ/n) = 1. For odd γ, we have

E(C1,γ
n ) = 8+ 4

bn/(2(γ+1))c∑

k=1

(cos(2πk/n) + cos(2πγk/n))

+ 4
dγ/2e−2∑

l=0

b(2l+3)n/(2(γ+1))c∑

k=b(2l+1)n/(2(γ−1))c+1

(cos(2πk/n) + cos(2πγk/n))

− 4
dγ/2e−2∑

l=0

b(2l+1)n/(2(γ−1))c∑

k=b(2l+1)n/(2(γ+1))c+1

(cos(2πk/n) + cos(2πγk/n))

− 4
n/2−1∑

k=b(2dγ/2e−1)n/(2(γ+1))c+1

(cos(2πk/n) + cos(2πγk/n)).
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Expressing it in terms of Dirichlet kernels, it comes

E(C1,γ
n ) = 4+ 2

∑

m∈{1,γ}

(
Dbn/(2(γ+1))c(2πm/n)

+

dγ/2e−2∑

l=0

(
Db(2l+3)n/(2(γ+1))c(2πm/n) −Db(2l+1)n/(2(γ−1))c(2πm/n)

)

−

dγ/2e−2∑

l=0

(
Db(2l+1)n/(2(γ−1))c(2πm/n) −Db(2l+1)n/(2(γ+1))c(2πm/n)

)

−Dn/2−1(2πm/n) +Db(2dγ/2e−1)n/(2(γ+1))c(2πm/n)
)
.

The theorem follows from the fact that Dn/2−1(2πm/n) = 1 for m = 1, γ.

A graph is called hyperenergetic if his energy is greater than the one of the complete graph
Kn. The eigenvalues of Kn are given by n − 1 and −1 with multiplicity n − 1, so that his energy
is given by E(Kn) = 2(n− 1).
The figure on the left below shows how the energy of C1,γ

n grows with respect to n for γ = 8. We
see that it is not hyperenergetic and that the energy grows more or less linearly with respect to n.
The figure on the right shows the energy of C1,γ

n with fixed n as γ varies. We observe that the
energy stays more or less constant independently of γ.
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Figure 1: Energy of circulant graphs.

As a consequence of the theorem, we can carry out the sum of the Dirichlet kernels when the
number of vertices is proportional to 2(γ− 1)(γ+ 1).

Corollary. Given integers γ > 3 and α > 1, the energy of the circulant graph C1,γ
2α(γ−1)(γ+1) is given

by

E
(
C1,γ

2α(γ−1)(γ+1)

)
= 4

∑

m∈{1,γ}

(
sin(πm(dγ/2e+ 1/(2α(γ− 1)))/(γ+ 1)) sin(dγ/2eπm/(γ+ 1))

sin(πm/(2α(γ− 1)(γ+ 1))) sin(πm/(γ+ 1))

−
sin(πm(dγ/2e− 1+ 1/(2α(γ+ 1)))/(γ− 1)) sin((dγ/2e− 1)πm/(γ− 1))

sin(πm/(2α(γ− 1)(γ+ 1))) sin(πm/(γ− 1))

)
.
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Proof. Let a > 1 and K > 0 be integers. The sum over k of Dirichlet kernels of index (2k + 1)a
is given by

K∑

k=0

D(2k+1)a(x) =

K∑

k=0

sin((2k+ 1)a+ 1/2)x
sin(x/2)

.

By multiplying the summation by sin(ax)/ sin(ax) and using the trigonometric identity
2 sin θ sinφ = cos(θ− φ) − cos(θ+ φ), it comes

K∑

k=0

D(2k+1)a(x) =
cos(x/2) − cos(((2K+ 2)a+ 1/2)x)

2 sin(x/2) sin(ax)
=

sin(((2K+ 2)a+ 1)x/2) sin((K+ 1)ax)
sin(x/2) sin(ax)

.

The corollary then follows by applying the above relation first with a = α(γ − 1), K = dγ/2e − 1,
second with a = α(γ+ 1), K = dγ/2e− 2, and x = 2πm/n, m ∈ {1, γ}.

In [1], the author considered the graphs Kn −H where Kn is the complete graph on n vertices
and H is a Hamilton cycle of Kn and asked whether these graphs are hyperenergetic. In [7], the
author showed that the energy of Kn −H is given by

E(Kn −H) = n− 3+

n−1∑

k=1

|1+ 2 cos(2πk/n)|

and that as n goes to infinity, it is hyperenergetic. In the following proposition we give a formula
for it for all n > 3.

Proposition. For all n > 3, the energy of Kn −H is given by

E(Kn−H) = 2(n−3−(b2n/3c−bn/3c))+2 sin((bn/3c+ 1/2)2π/n) − sin((b2n/3c+ 1/2)2π/n)
sin(π/n)

.

Proof. We have

n−1∑

k=1

|1+ 2 cos(2πk/n)| =
bn/3c∑

k=1

(1+ 2 cos(2πk/n)) −
b2n/3c∑

k=bn/3c+1

(1+ 2 cos(2πk/n))

+

n−1∑

k=b2n/3c+1

(1+ 2 cos(2πk/n))

= n− 3− 2(b2n/3c− bn/3c) + 2Dbn/3c(2π/n) − 2Db2n/3c(2π/n)
+Dn−1(2π/n).

Since Dn−1(2π/n) = −1, the proposition follows.

By elementary analysis, one can show that E(Kn − H) − 2(n − 1) is increasing in n. As a
consequence, we find that Kn − H are hyperenergetics for all n > 10. This has been previously
found in [7].
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8 Summary

In this thesis we study the number of spanning trees in some classes of graphs. This is made possible
by the famous matrix tree theorem established by Kirchhoff in 1847 which states that the number of
spanning trees in a finite graph is given by the product of the non-zero eigenvalues of the combina-
torial Laplacian of the graph divided by the number of vertices. We study circulant graphs with fixed
generators, that is, Cayley graphs of Z/nZ, for which we obtain precise asymptotics as the number of
vertices grow. More precisely, a circulant graph generated by γ1, . . . , γd on n vertices, which are la-
belled by 0, 1, . . . , n−1, is the 2d-regular graph such that each vertex v ∈ Z/nZ is connected to v+γi
mod n and to v − γi mod n for all i ∈ {1, . . . , d}. The lead term of the log-asymptotic behaviour
of the number of spanning trees in these graphs has been found in 2010 by Golin, Yong and Zhang
while in the present work we derive the constant term. In 2010, Chinta, Jorgenson and Karlsson
derived the asymptotic behaviour of the number of spanning trees in d-dimensional discrete tori,
which can be seen as quotients Zd/ΛnZd with nearest neightbours connected, where Λn is a d× d
integral matrix such that Λn/(detΛn)

1/d converges in SLd(R) as n goes to infinity. Considering the
theta function associated to the discrete torus, which contains the spectral information of the graph,
they establish a theta inversion formula expressing it in terms of modified I-Bessel functions. The
study of its asymptotics provides the result. In our work, we adapt these techniques to two different
cases. First, one can show that circulant graphs with first generator equals to 1 are isomorphic to
d-dimensional discrete tori Zd/ΛΓZd for some matrix ΛΓ . But in this case the condition on the con-
vergence of the lattice does not hold anymore, so that previous results cannot be applied. The other
case considered is a sequence of d-dimensional degenerating discrete tori. They are degenerating in
the sense that d− p sides of the tori are tending to infinity at the same rate while the p other sides
tend to infinity sublinearly with respect to the d − p sides. Again, the condition on the convergence
of the lattice is not satisfied. As a result, the lead term in the asymptotics is the same as in the
case of non-degenerating tori, but lower order terms are deducted. In the particular situation where
the p sides stay constant instead of converging sublinearly to infinity, the regularized determinant
of the Laplacian on a limiting (d − p)-dimensional real torus appears in the constant term of the
asymptotic development. Furthermore, the results on d-dimensional discrete tori enable to derive
asymptotics for the number of spanning trees on d-dimensional orthotope square lattices. Indeed, the
spectrum of the combinatorial Laplacian on this lattice is a subset of the one on the corresponding
d-dimensional discrete torus with twice vertices at each side of the torus. As a consequence, the
theta function on the orthotope square lattice can be expressed in terms of the one on the torus.
Asymptotically, the lead term appearing is the same as in the case of the torus, but lower order terms
corresponding to free boundary conditions are deducted. More precisely, for each m-dimensional
face, m = 1, . . . , d − 1, a term proportional to the m-volume of the orthotope is deducted. As in the
case of the torus, regularized determinants of the Laplacian on limiting objects appear, namely real
m-orthotopes with Dirichlet boundary conditions, for m ∈ {1, . . . , d}.
Other results obtained in this thesis concern closed formulas for the number of spanning trees in
directed and non-directed circulant graphs where the generators vary, that is, they linearly depend
on the number of vertices. In the case of non-directed circulant graphs on βn vertices, the set of
generators is given by {1, γ1n, . . . , γd−1n}, where γi, i = 1, . . . , d− 1, and β are integers. In the case
of directed circulant graphs on βn vertices, the generators are p, γ1n + p, . . . , γd−1n + p. We also
derived formulas for the n-th and (n − 1)-th power graphs of the βn-cycle. As a result, the number
of spanning trees in these graphs can be expressed in terms of the eigenvalues of the Laplacian on a
subgraph of the original graph. The formulas obtained are products of dβ/2e− 1 terms and therefore
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are interesting when n is large.
The problem of counting the number of spanning trees also arises in statistical mechanics in evaluat-
ing low temperature ratchet current. Maes et al found in 2014 a numerical estimation for the current
while we found an exact expression for it.
Finally, we considered the energy of circulant graphs with two generators. The energy of a graph
is defined as the sum of the absolute value of the eigenvalues of the adjacency matrix of the graph.
Closed formulas are obtained for circulant graphs with generators equal to 1 and γ, for γ ∈ N>2.
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9 Résumé

Dans cette thèse, nous étudions le nombre d’arbres couvrants dans différentes classes de graphes.
Ceci est rendu possible grâce au célèbre théorème établi par Kirchhoff en 1847 (matrix tree theo-
rem) énonçant que le nombre d’arbres couvrants d’un graphe fini est égal au produit des valeurs
propres non-nulles du Laplacien combinatoire du graphe divisé par le nombre de sommets. Dans
un premier temps, nous étudions les graphes circulants à générateurs fixes, à savoir, des graphes
de Cayley du groupe Z/nZ, pour lesquels nous obtenons un résultat précis sur le comportement
asymptotique à mesure que le nombre de sommets croît. Plus précisément, un graphe circulant à n
sommets, dénotés par 0, 1, . . . , n − 1, engendré par γ1, . . . , γd est le graphe 2d-régulier où chaque
sommet v ∈ Z/nZ est connecté à v + γi mod n et à v − γi mod n, pour tout i ∈ {1, . . . , d}. En
2010, Golin, Yong et Zhang ont calculé le terme principal du comportement log-asymptotique du
nombre d’arbres couvrants dans ce type de graphes tandis que dans notre travail nous dérivons le
terme constant. En 2010, Chinta, Jorgenson et Karlsson ont développé une méthode pour calculer le
comportement asymptotique du nombre d’arbres couvrants dans une suite de tores discrets en d di-
mensions, ou, de manière équivalente, de quotients de Zd/ΛnZd avec plus proches voisins connectés,
où Λn est une matrice d × d à coefficients entiers telle que Λn/(detΛn)

1/d converge dans SLd(R)
lorsque n tend vers l’infini. En considérant la fonction theta associée au tore discret, qui contient
l’information spectrale du graphe, ils établissent une formule d’inversion theta exprimant celle-ci en
termes de fonctions de Bessel modifiées dont l’étude du comportement asymptotique permet d’établir
le résultat. Dans notre travail, nous adaptons ces techniques à deux différents cas. Premièrement,
il est possible de démontrer que les graphes circulants dont le premier générateur est égal à un sont
isomorphes à un tore discret d-dimensionnel Zd/ΛΓZd, pour une certaine matrice ΛΓ . Cependant
dans ce cas, la condition de convergence du réseau n’est plus satisfaite, impliquant que les résultats
précédents ne peuvent être utilisés. L’autre cas que nous considérons est une suite de tores discrets
d-dimensionnels dégénérés. Ils sont dégénérés dans le sens que d− p côtés de ces tores tendent vers
l’infini à la même vitesse, alors que les p autres côtés tendent vers l’infini de manière sous-linéaire
par rapport aux d − p côtés. A nouveau, la condition de convergence du réseau n’est pas satisfaite.
En résultat nous nous apercevons que le terme principal qui apparaît est le même que dans le cas
des tores discrets non-dégénérés, mais des termes d’ordres inférieurs sont déduits. Dans la situation
particulière où les p côtés des tores restent constants au lieu de converger sous-linéairement vers
l’infini, nous avons pu déterminer des termes supplémentaires dans le développement asymptotique,
laissant apparaître comme terme constant le déterminant régularisé du Laplacien sur un tore réel (ou
continu) (d − p)-dimensionnel limitant. De plus, les résultats sur les tores discrets d-dimensionnels
permettent de dériver le comportement asymptotique du nombre d’arbres couvrants sur des orthotopes
d-dimensionnels à réseau carré. En effet, le spectre du Laplacien combinatoire sur ce réseau est
un sous-ensemble de celui sur le tore discret d-dimensionnel correspondant ayant deux fois plus de
sommets à chaque côté du tore. En conséquence, la fonction theta sur le d-orthotope à réseau carré
peut être exprimée en termes de celle sur le tore discret. Asymptotiquement, le terme principal appa-
raissant est le même que pour les tores discrets mais des termes d’ordres inférieurs sont soustraits,
ceci étant dû aux conditions de bord libre. Plus précisément, pour chaque face m-dimensionnelle,
m = 1, . . . , d − 1, un terme proportionnel au m-volume de l’orthotope est déduit. Comme dans le
cas du tore discret, des déterminants régularisés du Laplacien sur des objets limitant apparaissent, à
savoir, des m-orthotopes réels avec des conditions de bord de Dirichlet, pour m ∈ {1, . . . , d}.
Dans cette thèse, nous avons également obtenu des formules exactes concernant le nombre d’arbres
couvrants de graphes circulants orientés et non-orientés où les générateurs varient, c’est-à-dire dépen-
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dent linéairement du nombre de sommets. Dans le cas des graphes circulants non-orientés à βn
sommets, l’ensemble des générateurs est donné par {1, γ1n, . . . , γd−1n}, où γi, i = 1, . . . , d − 1, et β
sont des entiers. Dans le cas des graphes circulants orientés à βn sommets, les générateurs sont
p, γ1n+ p, . . . , γd−1n+ p. Nous avons également obtenu des formules pour la n-ième et la (n− 1)-
ième puissance du cycle à βn sommets. En résultat, il s’avère que le nombre d’arbres couvrants
dans ce type de graphes s’exprime en termes des valeurs propres du Laplacien combinatoire sur un
sous-graphe du graphe d’origine, ceci reflétant la symétrie du graphe. Les formules obtenues sont des
produits de dβ/2e− 1 termes et sont donc intéressantes pour n grand.
L’évaluation du nombre d’arbres couvrants apparaît également en mécanique statistique dans l’évalua-
tion du courant de cliquet (ratchet current) à basse température. En 2014, Maes et al. ont donné une
estimation numérique pour le courant, alors que nous en avons dérivé une expression exacte.
Finalement, nous avons étudié l’énergie des graphes circulants à deux générateurs. L’énergie d’un
graphe est définie comme la somme des valeurs absolues des valeurs propres de la matrice d’adjacence
du graphe. Nous avons obtenu des formules pour les graphes circulants ayant pour générateurs 1 et
γ, où γ ∈ N>2.


	Introduction
	Graphs
	Matrix tree theorem
	Theta functions, heat kernels and theta inversion formulas
	Spectral zeta function
	Results

	Asymptotics for the number of spanning trees in circulant graphs and degenerating d-dimensional discrete tori
	A formula for the number of spanning trees in circulant graphs with non-fixed generators and discrete tori
	Spanning trees in directed circulant graphs and cycle power graphs
	Asymptotics for the determinant of the combinatorial Laplacian on hypercubic lattices
	Low temperature ratchet current
	A formula for the energy of circulant graphs with two generators
	Summary
	Résumé

