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Abstract Modulation of vessel growth holds great promise for treatment of cardiovascular disease. Strategies to promote

vascularization can potentially restore function in ischaemic tissues. On the other hand, plaque neovascularization

has been shown to associate with vulnerable plaque phenotypes and adverse events. The current lack of clinical

success in regulating vascularization illustrates the complexity of the vascularization process, which involves a deli-

cate balance between pro- and anti-angiogenic regulators and effectors. This is compounded by limitations in the

models used to study vascularization that do not reflect the eventual clinical target population. Nevertheless, there

is a large body of evidence that validate the importance of angiogenesis as a therapeutic concept. The overall aim

of this Position Paper of the ESC Working Group of Atherosclerosis and Vascular biology is to provide guidance

for the next steps to be taken from pre-clinical studies on vascularization towards clinical application. To this end,

the current state of knowledge in terms of therapeutic strategies for targeting vascularization in post-ischaemic dis-

ease is reviewed and discussed. A consensus statement is provided on how to optimize vascularization studies for

the identification of suitable targets, the use of animal models of disease, and the analysis of novel delivery

methods.
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1. Basic principles: vascularization,
angiogenesis, and arteriogenesis

Vasculogenesis describes the coalescence of mesoderm-derived angio-
blasts into the first primitive blood vessels." The process was first ob-
served in quail embryos®® and subsequently, shown to be conserved in
other vertebrates including mouse™ and zebrafish.>” These studies
revealed many similarities not only between the morphogenetic pro-
cesses of early blood vessel formation, but also between the molecules
co-ordinating these processes.® Several signalling pathways such as
Notch”'® and Sonic Hedgehog,11 were shown to influence the early dif-
ferentiation of arterial and venous endothelial cells (ECs) from angio-
blasts. Vasculogenesis was initially thought to be limited to the embryo,
but current understanding is more nuanced. Early embryonic angioblasts
and haemoblasts share a very similar gene signature and haematopoietic
stem cells (HSC) and ECs display considerable plasticity.'>"® Notably,
HSC can be differentiated into ECs,"® and these progenitors have shown
therapeutic potential in several clinical and pre-clinical settings."*
Angiogenesis is the creation of new vessels from pre-existing ones."”
Hypoxia is one of the key drivers of the process. It activates ECs to be-
come more motile and protrude filopodia. Further angiogenic factors
such as vascular endothelial growth factor (VEGF) strongly dilates small
arteries and capillaries, which is the primary mode of VEGF action at low
concentrations (intussusception angiogenesis). At high concentrations of
VEGF, sprouting angiogenesis is the preferred mode of action.® To pre-
vent ECs moving en masse, a particular type of ECs, known as tip cells,
are selected to lead the advance."” Neighbouring cells assume an ancil-
lary role as stalk cells, which divide to elongate the new vessel and estab-
lish a lumen. This specification of tip and stalk cells is governed by the
Notch signalling pathway.®'® The establishment of flow in newly formed
vessels leads to mechanical signals (shear stress) that feedback to reduce
angiogenic sprouting, thereby preventing excessive vascular grovvth.zo'21
Once stenosis in a large main artery becomes haemodynamically sig-
nificant, the elevation of shear stress against the wall of these arterioles
induces their enlargement. This is described as arteriogenesis. The collat-
eral circulation may subsequently develop into a functional vascular
structure to ensure regional perfusion after the ischaemic event, thus
protecting the tissues against necrosis. Simultaneously, arterioles, ven-
ules, and arteriovenous anastomoses are formed, following the produc-
tion of smooth muscle cells and of the extracellular matrix (ECM), which

consolidates the walls of these vascular structures.??

2. Neo-vascularization: physiology
and pathophysiology

2.1 Post-ischaemic vascularization

After the onset of ischaemia, cardiac or skeletal muscle undergoes a con-
tinuum of molecular, cellular, and extracellular responses that determine
the function and the remodelling of the ischaemic tissue. Hypoxia-
related pathways, the alterations in immunoinfllmmatory balance, as
well as changes in haemodynamic forces within the vascular wall trigger
vasculogenesis, angiogenesis, and arteriogenesis, which act in concert to
establish a functional vascular network in ischaemic zones.”?

The principal signalling pathway induced by hypoxia involves activation
of hypoxia-induced factor (HIF1a), which induces the expression of a set
of genes appropriate to respond to this situation. Indeed, HIF 1o controls
the expression of numerous major players involved in angiogenesis and

vascular remodelling including VEGF. Moreover, the target genes of
HIF1o are involved in metabolism, erythropoiesis, pH homeostasis, and
au‘cophagy.24

During ischaemia, infllmmatory cells release angiogenic factors (e.g.
VEGF) and cytokines (e.g. TNFa), which decrease EC junctions and en-
hance vascular permeability to promote the recruitment of inflammatory
cells.?>* Consistent with this relationship between angiogenesis and in-
flammation, several molecules that regulate inflammation have been im-
plicated in new vessel formation.®> Changes in haemodynamic forces
(mechanical forces linked to pressure and flow rate) occurring in collat-
eral vessels in response to arterial occlusion also contribute to post-
ischaemic vascularization.”’” Recent studies suggest that flow dynamics
control the activation of HIF10:%® and the localization of sprouting in ves-
sels.”” The location is not determined by on highest VEGF concentration,
but by a combination of VEGF and biomechanical signals.*® Thus, shear-
induced mechanism appears to override pro-angiogenic signals such as
VEGF.>" These pathways can also participate in vascular pathology; for
example, the mechanosensitive transcription factor TWIST1 promotes
angiogenesis in the embryo and is also required for plaque formation in
atherosclerosis models.”!

In patients with ischaemic diseases in the presence of comorbidities
such as diabetes, hypertension, and obesity, most of the cellular and mo-
lecular mechanisms involved in the activation of vessel growth and vascu-
lar remodelling are markedly impaired.*® Thus, in the last decades,
stimulation of vessel growth has emerged as a novel therapeutic option

in patients with ischaemic diseases.*>

2.2 Vascularization of atherosclerotic
plaques

Under physiological circumstances, microvessels originate from the ad-
ventitia and provide the media of large arteries with oxygen and
nutrients.>> However, microvessels in atherosclerotic plaques have been
implicated in progression of the disease and adverse outcomes.

It is postulated that plaque angiogenesis is driven by plaque hypoxia
and inflammation.>**® In experimental models, plaque angiogenesis has
been induced by stress,***’ treatment with pro-inflammatory media-
tors,*® pro-angiogenic growth factors,®” and viral gene delivery of pro-
angiogenic factors*®™*
Besides an increase in the number of microvessels, the physiological
properties (quality) of the microvessel are also associated with risk for
human plaque rupture. Microvessels of ruptured plaques in coronary ar-
teries displayed detachments of the endothelial junctions, endothelial

and was shown to increase plaque burden.

membrane blebs and a thin or absent endothelial basement membrane,
and surrounding pericytes were found to be absent in a majority of
microvessels in ruptured plaques.*® These ultrastructural characteristics
suggest vascular leakage,46 which might be responsible for increased ex-
travasation of immune cells and deposition of lipids and red blood cells
in the plaques.*~* Therefore, these microvessels are thought to repre-
sent one of the main sources of intra-plaque haemorrhage, in addition to
healed thrombi.*°

3. Therapeutic vascularization

3.1 Growth factors, cells, and non-coding
RNA therapies

Multiple different approaches have been used to promote vasculariza-
tion of ischaemic tissues.
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Table | Gene therapy in post-ischaemic vascularization

Growth factors Models Outcomes References
VEGF Pig Ml Increase neoangiogenesis, improved regional myocardial 51

function, and myocardial perfusion
bFGF Pig Ml Enhanced arteriogenesis within the ischaemic zone 2
HGF Rabbit HLI Increase of blood flow and arteriogenesis 3
Ang-1 Mouse Ml Increase in capillary density, reduction in infarct sizes, and 4

increase heart performance
IGF-1 Mouse Ml Increase in capillary density and increase heart performance =
Disease/patient number Growth factor/vector/delivery Primary outcomes Trial
PAD/60 FGF-2/SeV/im. Walking performance NCT02276937
PAD/500 HGF/PVi.m. Time to major amputation NCT02144610
MI/41 VEGF-A116A/Ad/i.my Time to 1 mm ST depression during exercise stress testing NCT01757223

Ad, adenovirus; HLI, hind-limb ischaemia; i.m., intramuscular; i.my., intramyocardial; MI, myocardial infarction; PAD, peripheral artery disease; P|, plasmid; SeV, sendaivirus.

3.1.1 Growth factors

Growth factors have been applied for therapeutic angiogenesis including
VEGF," basic fibroblast growth factor (bFGF),>> hepatocyte growth fac-
tor (HGF),”® Angiopoietin 1 (ANG-1),>* and insulin-like growth factor
(IGF-1)** (Table 1). Pre-clinical studies in animal models using individual
angiogenic factors have showed significant improvements in clinically rel-
evant endpoints such as increased regional perfusion, improved exercise
tolerance and tissue energy metabolism, improved myocardial function,
and protection against ischaemic damage.>® Among these, VEGF, bFGF,
and HGF are the best studied and have reached human clinical trials
(Table 1). However, apart from demonstration of increased vascularity,
very few results with clinical significance have been obtained.

VEGF is a critically important regulator of physiological angiogenesis
during growth, healing and in response to hypoxia. VEGF is up-regulated
by HIF1oe more than any other inducible angiogenic factor during ischae-
mia. However, when administered alone, VEGF can increase endothelial
permeability, which leads to the formation of leaky capillaries and tissue
oedema.”’ Platelet Derived Growth Factors (PDGF) can help stabilize
nascent blood vessels by recruiting mesenchymal progenitors, and co-
delivery of VEGF and PDGF has been shown to lead to early formation
of mature vessels in animal models.*® Basic fibroblast growth factor is
among the first discovered angiogenic factors to have both angiogenic
and arteriogenic properties, which may facilitate formation of a mature
blood vessel network.>” The HGF family induces potent angiogenic
responses by binding to the c-MET receptor, which is expressed on ECs,
vascular smooth muscle cells, and HSC. HGF is known to have mito-
genic, angiogenic, anti-apoptotic, and anti-fibrotic activities in various
cells.* Clinical trials of SDF-1 in critical limb ischaemia (CLI) patients are
underway and a better understanding of the mechanisms of chemokines,
especially SDF-1, is crucial in filling the missing link in growth factor stud-
ies in therapeutic amgiogenesis.61

3.1.2 Cell therapy

Cell-based therapy has been demonstrated to have the capability of tis-
sue repair in many animal studies and in ongoing clinical trials (Table 2).
Cell transplantation in ischaemic tissue may attenuate severity of tissue
damage and accelerate the regeneration process. Genetic modification,
pre-conditioning, and tissue engineering have been applied to improve
the efficacy of stem cell therapy.®> Since the first pilot clinical study to
evaluate treatment of peripheral vascular disease with stem cell therapy

in 2002, over 50 clinical studies have been reported with stem, progeni-
tor, and stromal cells®® (Table 2).

Therapeutic details such as patient selection, effective cell type selec-
tion and processing, optimal dosage, and delivery route are constantly
improved. Studies have included patients of varying periphery artery dis-
ease (PAD) severity. However, most of clinical trials have primarily fo-
cused on CLI patients in small Phase | or Il studies.®® A variety of cell
types have been studied as potential PAD treatments including unse-
lected bone marrow mononuclear cells (BM-MNC) or peripheral blood
MNC (PB-MNC), marker-specific cells selected from the marrow or
blood, mesenchymal stem cells (MSCs), and adipose tissue-derived re-
generative cells.”’ In clinical studies of neovascularization considerable
progress in the use of adult stem cells for cell transplantation has been
made using HSC, bone marrow-derived dendritic cells, MSC, and endo-
thelial progenitor cells."* Neovascularization in infarcted heart can be
mediated by the incorporation of vascular progenitor cells into the capil-
lary or by the paracrine factors released from stem cells and progenitor
cells. In relation to the effectiveness of the use of adult stem cells for cell
transplantation, the variability in the reported findings may be partly
explained by differences in the delivery methods, treatment logistics, and
target diseases."

3.1.3 Non-coding RNA therapy

Short (microRNAs; miRNAs) or longer [long non-coding RNA
(IncRNAs)] non-coding RNAs play important roles in several physiologi-
cal and pathological conditions such as cancer and cardiovascular dis-
eases including atherosclerosis.®® Emerging data show that several
miRNAs are linked to both adaptive and maladaptive vascular remodel-
ling processes. Mir-126, one of the most abundantly expressed
microRNAs in ECs, has a pro-angiogenic as well as anti-atherosclerotic
role®” and the systemic delivery of miR-126 mimics rescued EC prolifera-
tion at vulnerable sites and inhibited atherosclerotic lesion progres-
sion.”® On the other hand, the 17-92 miRNA cluster is anti-angiogenic
but pro-atherosclerotic. Recent studies described that the endothelial-
specific deletion of miR-17-92 in mice enhanced arterial density and im-
proved post-ischaemia blood flow recovery.”" Notably, miR-503 expres-
sion is increased in ischaemic limb muscles and ECs of diabetic mice.
Inhibition of miR-503 by adenoviral delivery to the ischaemic adductor
muscles of diabetic mice corrected diabetes-induced impairment of
post-ischaemic angiogenesis and blood flow recovery.72 Even though the
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Table 2 Cell therapy in post-ischaemic vascularization

Cell lines Models

BM-derived haematopoietic Pig Ml
stem cells (CD34™)

BM-derived mesenchymal Pig Ml
stem cells

Cardiac stem cells Pig Ml

Outcomes

Greater vessel densities and higher expressions of bFGF
and SDF-1
Reduction in infarct size and increases in ejection

fraction

Reduction in infarct size and increase in contractility

References

63

MI/142 MI/55 Cardiac stem cells/i.c.

MI1/3000 Autologous BM-derived
mono-nuclear cells/i.c.
Ischaemic heart failure/315 BM-derived mesenchymal

stem cells/i.c.

Infarct size by MRI
Safety as measured by death and MACE in 12 months

Time from randomization to all-cause death

Efficacy between groups post-index procedures

ALLSTAR trial
(NCT01458405). CAREMI
trial (NCT02439398)

BAMI trial (NCT01569178)

CHART-1
(NCT01768702)CHART-
2 (NCT02317458)

i.c, intracoronary; Ml, myocardial infarction.

functions of individual microRNAs in angiogenesis are not yet
completely elucidated, because a single microRNA could regulate sev-
eral growth factors at the same time, miRNA-derived therapy could re-
place single-factor angiogenic gene therapy.73

3.2 Gene and cell delivery

Delivery of therapies into the myocardium has been a major challenge
over the past decade. Efficient therapeutic approaches developed in ani-
mal models have not been successful in human clinical trials because
gene and cell transfer efficiency in cardiac muscle has been too low>®”*
Several factors contribute to this problem: the human heart is a very
large muscle when compared with mice and rats and vectors or cell solu-
tions cannot easily penetrate deep into the myocardium. The adeno as-
sociated virus for instance, bind tightly to heparansulphate proteoglycans
and they do not easily escape from the intraluminal space into the myo-
cardium.” In previous trials, intracoronary injections, intramyocardial
injections from the left ventricle, and intramyocardial injections during
thoracotomy or bypass surgery have been tested. However, because oc-
cluded coronary arteries do not get adequate perfusion, fail to deliver
substances into the ischaemic areas. Thus, it is not surprising that intra-
coronary injections have had poor success for gene and cell delivery.

3.2.1 Mechanical delivery

Intramyocardial injections lead to better transduction efficiencies but dif-
fusion of viral vectors in the myocardium is still limited and the binding to
ECM components further limits vector spreading in the myocardium.
Protein, such as VEGF-A44s, delivered by transgenes, bind strongly to
heparansulphate proteoglycans, which reduces their diffusion in ischae-
mic and fibrotic myocardium. Similar obstacles exist for successful cell
delivery into the myocardium. Intracoronary injections seldom lead to vi-
able, engrafted cells in the heart. Intramyocardial injections cause signifi-
cant mechanical stress on the cells during injections. Most cells seem to
die within hours or during the first days and paracrine factors seem to
contribute to the potential therapeutic effects.”®”” For applications such
as myocardial ischaemia, local targeted injections based on electrome-
chanical mapping,’® or blood flow measurements using positron

emission tomography’® have recently improved the situation and tar-
geted injections into hibernating myocardium can now be achieved with
10-20% efficiency around the needle track. Multiple injections are still
needed to cover larger areas in ischaemic myocardium. To improve
myocardial function in heart failure, the effects of gene or cell transfer
should be very global to transduce as many cardiomyocytes as possible.
At the moment, this can be achieved with some vectors in mice’? but in
larger animals and humans wide spread gene expression after any deliv-

ery method still remains a very challenging task.2°

3.2.2 Non-viral delivery

Several methods of non-viral gene transfer have been utilized to deliver
genes of interest to ischaemic tissues to stimulate therapeutic angiogene-
sis. Genes encoding pro-angiogenic proteins have been administered by
cationic polymers, lipids, liposomes, and three-dimensional scaffolds.?’
Targeting strategies using polymers or lipids modified with specific
ligands for the receptors on target tissues could improve the efficacy of
current gene delivery systems by facilitating cellular uptake of genes via
receptor-mediated endocytosis.2* Gene delivery using lipid formulations
has been applied in ischaemic tissues for therapeutic angiogenesis. Jeon
et al®
Polyethylenimine significantly up-regulated VEGF-A expression, resulting
in extensive neovascularization in mouse ischaemic limbs. Nanoparticles

reported that VEGF-A gene delivery using heparin-conjugated

composed of biocompatible and biodegradable polymers [e.g. poly (lac-
tic-co-glycolic acid; PLGA)] are considered to serve as gene carriers for
the treatment of ischaemic tissues due to the efficient delivery mecha-
nism and low toxicity.2* A novel concept of involving a biodegradable
gelatin hydrogel carrying a sustained-release system of bFGF was studied

in patients with CLI.%

3.3 Animal models

Models to investigate post-ischaemic angiogenesis have been established
in rodents and larger animals such as rabbits, pigs, or dogs (Table 3).
They exhibit considerable variation because each species differs in the
extent of naive vascularization and thus reacts differently to vascular
growth stimuli (Figure 7). To make things more complicated, within one
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Table 3 Large animal models of post-ischaemic
vascularization

Models Readout References
Left anterior descending Myocardial infarct size 86
coronary artery ligation
Femoral artery ligation Hind-limb perfusion 1e
Femoral artery excision Hind-limb perfusion &7
88,89

Coronary stenosis Myocardial infarct size
90

Left anterior descending Myocardial infarct size

coronary artery ligation

Femoral artery ligation Hind-limb perfusion 7
92

Ameroid constrictors and Myocardial infarct size

coronary artery ligation

93

Ameroid constrictors Myocardial infarct size

animal species, different strains show distinct naive vascularization and
even show opposite reactions.”

So far, most studies have been performed in mice, because of the
availability of a wide range of genetic knockout strains and the ease of in-
troducing new genetic manipulations, including knock-in and temporal
or tissue-specific manipulations. Moreover, the breeding is relatively fast
and less expensive than experimentation with large animals and data
obtained in mouse models are still necessary to justify experiments in
large animal.

A commonly used method in mice to induce post-ischaemic angiogen-
esis is the hind-limb ischaemia model, which is based on ligation of the
femoral arter)a95 Compared with the coronary or carotid artery, the
femoral artery is easier to access, and the method is accompanied by
lower mortality rates. Moreover, live imaging of blood flow in ischaemic
areas can be easily performed by laser Doppler imaging. Nevertheless,
many of the mechanisms underlying neovascularization in response to is-
chaemia in peripheral arteries are not directly transferable to angiogenic
processes in the heart. Experimental models of cardiac ischaemia are
based on transient or permanent occlusion of the left descending coro-
nary artery, induced by a highly invasive surgical procedure requiring tho-
racotomy. Moreover, in vivo imaging of coronary arteries by for instance
intravital microscopy is complicated by the rapid movements due to car-
diac and respiratory cycles.”®

Rat models are also frequently used due to the ease of breeding and
their extended lifespan. The methods and readouts normally applied do
not differ essentially from those used in mice. Their major advantage
compared with mice, therefore, lies in their size, without improving
translatability into humans. Moreover, larger animals require a longer
time to restore vessel function by neovascularization. Of course, this is
an oversimplification, but it partly explains why larger animal models are
often regarded to have added value for translation of angiogenic thera-

pies into human medicine.

92,93 16,86

For a long time, the dog, together with the rabbit, were the
animals of choice for investigation of neovascularization. Amongst other
reasons such as easy handling, dogs are well known for their extended
myocardial vascularization that allows performing coronary artery occlu-
sions with low complication rates. Much of our current knowledge on
the role of various angiogenic and arteriogenic growth factors is based

on experiments performed in dogs. However, ethical considerations

have led to a significant decrease in the use of dogs for animal
experimentation.

The occlusion pathophysiology and tissue recovery that occur after
an acute arterial ligation are very different in animal models than in hu-
man chronic ischaemic diseases. Experimental acute vessel occlusion
results in an immediate vascular response in animals, which reflects the
situation in a limited subgroup of patients (such as young patients with
traumatic injuries), who require immediate medical interventions and
are not typically enrolled in angiogenic therapy clinical trials. Another
crucial difference between the experimental models and patients is that
the patients, owing to their comorbidities, do not have sufficient growth
of collaterals, showing decreased endogenous angiogenic stimuli and re-
duced angiogenic signalling. >

The search for an adequate replacement with potentially even higher
translational value has resulted in an increasing number of pig models.
Hind-limb ischaemia in pigs can be safely performed without leading to
limb necrosis.”" In contrast, the pig was long considered to have insuffi-
cient capabilities to compensate for coronary ischaemia by neovasculari-
zation.” In the past decade, however, several groups succeeded in
establishing also pig coronary neovascularization models by inducing

. . . .89
progressive coronary stenosis rather than acute occlusions.®®®

3.4 Clinical trials for therapeutic
vascularization: change of perspectives

3.4.1 Endpoints

Ongoing clinical gene and cell therapy trials have been reviewed else-
where.”*?” In most ongoing trials, very stringent endpoints have been se-
lected such as overall mortality, major adverse cardiovascular events
(MACE), improvement in exercise test, or various quality of life end-
points. However, since most gene and cell therapy trials are still quite
small when compared with large pharmaceutical Phase II/Ill trials, they
do not have sufficient statistical power to capture endpoints such as
overall mortality or MACE. For example, small Phase | and Phase Il clini-
cal trials for CLI have shown that cell-based therapies are safe and im-
prove wound healing, but the trials were not large enough to detect any
improvements in delaying amputation.®’

Ideally, functional readouts based on imaging such as positron emis-
sion tomography or magnetic resonance imaging should be obtained in
parallel with hard clinical endpoints to validate the biological effects of
the intervention along the way. It would be especially important to mea-
sure functional improvements in the myocardial function and extend
analysis to various sensitive imaging and metabolic measurements. In can-
cer trials for example, it is well accepted that drugs can be approved
based on imaging-derived complete or partial responses and/or timelines
to recurrence even though there are no effects on survival or mortal-
ity.® In addition, it is likely that only some patient populations will be
responding positively to gene and cell therapies and therefore it would
be important to identify biomarkers, which could differentiate respond-
ers from non-responder populations.”

3.4.2 Patient populations

So far, while non-controlled, non-randomized gene and cell therapy trials
in cardiovascular diseases have provided positive outcomes, most ran-
domized, controlled, blinded studies have not achieved any clinically rel-
evant effects in heart and limb muscles.'® In multi-centre studies,
heterogeneity in patients and different cell preparations and products
can influence the efficacy of cell therapy.'®" In addition, meta-regression
showed that refinements in endovascular and surgical techniques leading
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Table 4 Therapeutic strategies to reduce plaque angiogenesis

Animal model Treatment Duration
ApoE-/- LDLr-/- mouse Thalidomide 39 weeks chow
Collar placement + LDLr mouse ~ VEGFR2 vaccination Not clear
ApoE-/- mouse TNP-470 20 weeks HCD
Collar placement + LDLr mouse  Tie2 vaccination 8 weeks HCD
Rabbit Bevacizumab 3 weeks HCD

Balloon angioplasty pig Endostatin (Endostar) 12 weeks HCD

Readout Effect on Intra-plaque  Adventitial References
plaque size angiogenesis angiogenesis
uCT ! ND - 104
Histo i - Present 109
Histo 1 - - 105
Histo 1 - l 108
Histo 1 - l 107
Histo ! ND i o

to improved limb salvage reduces the potential impact of cell therapy.'®!
Therefore, future cardiovascular gene and cell therapy trials should focus
more on randomized, blinded and controlled study designs where less
severely affected patients are treated when compared with so called no-
option patients, which have been frequently targeted in previous non-
randomized trials. It is likely that these no-option patients have already
lost at least some of their regenerative capacity, and therefore, are not
optimal for testing new biological therapeutic approaches.

3.4.3 Growth factor development

To achieve better outcomes, an optimal profile of growth factors should
be identified for clinical testing since some of the previously tested fac-
tors such as VEGF-A, are problematic because they increase vascular
permeability and thrombosis. Instead, growth factors with more appro-
priate signalling kinetics for improving cardiac condition should be taken
into clinical testing. A possible example is VEGF-D, which is both angio-
genic and lymphangiogenic, and therefore, can improve fluid drainage
from myocardium after inducing angiogenic effects. Signalling kinetics for
VEGF-D are also longer lasting than VEGF-A. Therefore, it may be better
suited for therapeutic applications than the previously tested growth fac-
tors. Recent Phase I/lla clinical trial results in refractory angina patients
have indeed supported this approach. The trial results showed improved
myocardial perfusion reserve in the treated ischaemic, hibernating myo-
cardium 1 year after the treatment.'” Also, the trial suggests that
patients with high Lp(a) benefit most from the adenovirus VEGF-D ther-
apy. Therefore, we can expect improved therapeutic applications in the
future after learning important lessons from the previous trials.

4. Vascularization of atherosclerotic
plaques

The therapeutic benefits of enhanced vascularization of ischaemic tissues
in ischaemic tissues contrasts with the effects of vascularization in athero-
sclerotic lesions, which can enhance plaque burden and also promote pla-
que rupture™% potentially leading to myocardial infarction or stroke.
4.1 Therapies

Investigations using animal models have shown that inhibiting vascular
growth factors can preserve vascular integrity and reduce plaque angio-
genesis. Notably, most of the intervention strategies to manipulate an-
giogenesis in atherosclerosis have been restricted to mouse models
using molecules such as thalidomide,'®* TNP-470,"%° angiostatin,106
monoclonal antibody anti-VEGF-A,'” and VEGFR2'% or Tie2 inhibi-

109

tors ~ (effects summarized in Table 4). However, since VEGFs are

involved in important physiological processes, it is not surprising that
multiple trials with VEGF inhibiting compounds show also cardiovascular
harmful effects."”

4.2 Animal models
Many studies of atherosclerosis use murine models, however, there are
several limitations in their applicability to analyse plaque vascularization
(Table 5). Notably, atherosclerotic plaques developing in hypercholes-
terolaemic murine models contain fewer microvessels than human ath-
erosclerotic plagues. The reason for this remains uncertain, but it may
be due to differences in the transport of oxygen between human versus
murine atherosclerotic plaques, ECM turnover and different biomechan-
ics between mice and human.!™ A role for ECM was implicated by stud-
ies of knockout mice lacking collagen XVIII, which had enhanced intra-
plaque vascularization in response to hypercholesterolaemia compared
with controls.'® This was more pronounced in ApoE fibrillin double
knockout mice,""? suggesting that lack of proper ECM components in
the media and plaque might mediate angiogenesis. Besides ECM degrada-
tion, different biomechanical properties between mice and human might
also explain the lack of plaque angiogenesis.11("117 Lower fibrotic mate-
rial stiffness (cellular and hypocellular) and a fundamental difference in
plaque morphology (dome-like) together with a smaller vessel size as
well as lower peak cap stress are present in murine compared with hu-
man plaques."” In addition, tissue contraction and deformation have
been shown to induce VEGF-A expression.118 Lower biomechanical
stresses might account for lower VEGF-A levels in mice versus humans.
Indeed, ruptured human plaques express higher levels of VEGF-A com-
pared with stable plaques.119 In murine atherosclerosis, experimental
overexpression of VEGF-A increased signs of plaque vulnerability,*”
showing that endogenous VEGF-A expression is not sufficient to evoke
signs of plaque rupture.

Another limitation relates to the site of microvessel formation. While
a minority of studies report intra-plaque angiogenesis in murine athero-
sclerosis models, most focus on plaque-associated vasa vasorum of the
adventitia as a surrogate for intra-plaque microvessels (Table 5). This is
an important caveat because although adventitial vasa vasorum growth

may precede atherosclerotic plaque development, '’

plaque rupture
has been linked with increased intra-plaque angiogenesis rather than an
increase in adventitial vasa vasorum in humans.** Thus far, this discrep-
ancy limits the extrapolation of murine adventitial angiogenesis as an out-
come parameter to human studies.

Moreover, several methodological limitations hamper the comparabil-
ity of murine and human studies. Firstly, while murine models usually ex-
amine on various regions (e.g. aortic root, ascending aorta, descending

aorta, brachiocephalic artery, and carotid artery) they often ignore other
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Table 5 Modelling effects of enhanced angiogenesis on mouse atherosclerotic plaque

Mouse model Treatment Duration Readout Effect on Intra-plaque Adventitial References
plaque angiogenesis angiogenesis

Short time ApoE-/- VEGF-A 7,6,5weeks HCD  Histo 1 1 ND 3
diet ApoE-/- VEGF-A 7,6,5weeks HCD ~ Histo i 7 ND 39
LDLR-/- ApoB38-/-  Time + VEGF-A, 12 weeks HCD Histo = - = A
VEGF-B, VEGF-C,
VEGF-D gene
transfer
ApoE-/- Coll XVIII-/- Coll XVIIl KO 24 weeks HCD Histo 1 1 1 106
ApoE-/- Fbn1 Fbn1 C1039G+/- KO 20 weeks HCD Histo 1 7 Present 2
C1039G+/-
Aged mice ApoE-/- Time 40-50 weeks chow Two photon  — 1 T *
and/or microscopy
prolonged  ApoE-/- bFGF () 67-94 weeks chow Histo T ND T s
diet time (Il) 12 weeks HCD
ApoE-/- Time 40-96 weeks HCD Intravital - T 1 8
microscopy
ApoE-/- SV129-/- Time + stress + 20 weeks HCD Histo 1 ) ND 36
SV129 KO
Surgical ApoE-/- Collar Placement +  Not clear Histo = = ND 0
Manipulation MMP9 gene therapy
ApoE-/- Collar placement +  Not clear Histo T = ND 0
VEGF-A gene
transfer
ApoE-/- Tandem Stenosis 17,13, 10, 8 weeks Histo 1 Present Present T
HCD
ApoE-/- Wire injury + alterna- 6 weeks HCD Histo T 1 ND +
tive spliced Tissue
Factor gene
transfer
Table 6 Large animal models of plaque angiogenesis
Animal Anti/Pro Treatment Duration Readout Effect on Intra-plaque Adventitial References
Species Angiogenic plaque  angiogenesis angiogenesis
Rabbits  Pro VEGF-A 6 weeks HCD Histo 1 Increase but only total ND 39
CD31 measured
not density
Pro Perivascular Collar + VEGF-A, 3 weeks HCD Histo 1 ND i “

VEGF-CNC, VEGF-D and
VEGF-DNC gene transfer
Pro Perivascular Collar + VEGF-E, 10 days chow Histo 1 ND T 123
VEGF-E+ soluble VEGFR2
gene transfer

Pro Collar placement (rabbit)+ bal- 9 days (rabbit) Histo T ND T 2
loon angioplasty (rat) with and 14 days (rat)
VEGF and PR39 gene transfer chow

Pro Watanabe + Alloxan injection to Histo NMR T Total CD31 not ND 124
induce diabetes density

Pigs - PCSK9 knock-in 46 weeks HCD Histo - Present Present 125
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Atherosclerotic plaques
develop all around the arterial
tree, causing blood pressure to

decrease gradually following
each plague.

Insufficient collateralization
after ischaemic damage.

The tissue is less prone to
respond to angiogenic stimuli
because of endothelial
dysfunction and other factors.

Coronary network compared to human

Intramyocardial coronary network and
different number of collaterals between

Response to ischaemia

Endogenous stimulus for collateral
growth which contribute to the recovery
of blood flow and partial tissue
regeneration.

the strains

Smaller infarcts due to large
number of collaterals. Risk of
malign ventricular tachycardias.

Large epicardial
interarterial collaterals.

High variable coronary
anatomy and limited
innate collateral vessels,

Similar to humans despite the
acceleration of early myocardial
healing process.

Similar distribution of coronary
arteries with human and small
amount of collaterals,

High similarity to humans despite
the acceleration of early
myocardial healing process.

Figure | Difference in heart vascularization and response to ischaemia between animals and humans.

clinically-relevant vessels such as the coronary and renal arteries. In addi-
tion to this, the parameters measured to assess vascularization vary con-
siderably between studies: for example, microvessel density (number of
microvessels per mm?), microvessel count (per section or per mouse),
CD31 positive adventitial area, or vasa vasorum volume have been used
(Table 5). Moreover, also the imaging method varied between studies:
most of them used histology, but also intra-vital microscopy, two photon
microscopy, confocal microscopy, and micro computed tomography
have been used to visualize adventitial microvessels (Table 5). Moreover,
the experimental design often limits the translatability of the findings. In
two studies, induction/manipulation of angiogenesis was started together
104122 \whereas pre-existing plaques rep-
resent the treatment target in human atherosclerosis.

In addition to mice and rats, rabbits and pigs have been used to study
angiogenesis in atherosclerosis (Table 6). In rabbit models, atherosclero-
sis was mostly induced by a combination of balloon angioplasty and high

with atherosclerosis induction,

cholesterol diet, leading to plaques with a baseline microvascular density
between 15 and 80 vessels per mm?. In some studies, adventitial angio-
genesis was specifically targeted
collar together with a relatively short post-operation time of 9—
21 days.*"#*12312¢ |nterestingly, induction of diabetes accelerated

using a hollow perivascular

atherogenesis and intra-plaque angiogenesis in Watanabe heritable
hyperlipidaemic rabbits."*

In pigs, atherosclerosis was induced by high-cholesterol diet and/or
surgical interventions (balloon angioplasty or stenting). However, intra-
plague angiogenesis was not detected in all studies except for one. Here,
a genetically engineered Yucatan mini pig was used, which develops
hypercholesterolaemia due to pro-protein convertase subtilisin/kexin
type 9 (PCSK9) overexpression, when fed a high-cholesterol diet.'*®
The resulting plaques show a human such as morphology including intra-
plaque and adventitial angiogenesis. However, data on microvascular
density were unfortunately not provided. Practically, larger animal mod-

els allow for the use of clinical diagnostic tools such as magnetic

resonance imaging to detect microvessels. Therefore, it will be easier to
translate the study results to the human situation.

5. Consensus statement

In this article, the ESC Working Group for Atherosclerosis and Vascular
Biology provides guidance for the development of treatments to target
the vasculature in post-ischaemic disease, for their delivery to ischaemic
tissues and for their assessment in pre-clinical and clinical studies:

® Although murine models have underpinned a wealth of basic biology
studies, they also have certain limitations (reviewed extensively
above). Standardization of animal models for cardiovascular research
and inclusion of comorbidities are necessary to reach the standard for
clinical translation. It is our view that large animal models including
novel transgenic pig models, can be useful for long-term experimenta-
tion because their close similarity with human size, anatomy and me-
tabolism enhances their relevance for clinical translation.

® Tissue specific delivery of pro-angiogenic therapies is advantageous,
because it avoids the potential deleterious side effects associated with
systemic delivery of growth factors such as the promotion of athero-
sclerosis. In the setting of PAD or coronary artery disease, local cell
or gene therapy to promote post-ischaemic angiogenesis could be
combined with systemic pharmacological therapy to reduce risk fac-
tors for atherosclerosis. A new generation of vectors should be devel-
oped to allow precise temporal control of inducible transgene
expression, thus avoiding detrimental effects due to continuous
overexpression.

® Endpoints of clinical trials of therapeutic vascularization have varied
between studies. We propose that functional, metabolic, and imaging
readouts should be further developed to capture therapeutic efficacy
and biological activity of treatments, thereby support clinical hard
endpoints.

® Patient selection is critical, given the influence that comorbidities, aging
and medications may have on the results of the trials. Since safety of
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gene and cell therapy has been very good in almost all reported trials,
moving towards trials of less severe patients, such as Canadian
Cardiovascular Society (CCS) Class 2—3 for refractory angina, in the
future will be justified. Finally, further genetic characterization of non-
responder patient groups in neovascularization clinical trials would
help to identify factors affecting treatment responsiveness.
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