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Multirevolution integrators for differential equations with fast
stochastic oscillations

Adrien Laurent! and Gilles Vilmart!

October 5, 2019

Abstract

We introduce a new methodology based on the multirevolution idea for construct-
ing integrators for stochastic differential equations in the situation where the fast os-
cillations themselves are driven by a Stratonovich noise. Applications include in par-
ticular highly-oscillatory Kubo oscillators and spatial discretizations of the nonlinear
Schrodinger equation with fast white noise dispersion. We construct a method of weak
order two with computational cost and accuracy both independent of the stiffness of
the oscillations. A geometric modification that conserves exactly quadratic invariants
is also presented.

Keywords: highly-oscillatory stochastic differential equations, nonlinear Schrédinger
equation, white noise dispersion, geometric integration, quadratic first integral.

AMS subject classification (2010): 60H35, 35Q55, 34E13.

1 Introduction

This article aims at developing invariant-preserving integrators of second weak order that
are robust with respect to the stiffness € both in accuracy and cost for the following class
of highly-oscillatory d-dimensional SDEs driven by a one-dimensional Stratonovich noise

1

ZEAXW 0 dW (@) + FX@)dt, ¢> 0, X(0) = Xo, (1.1)

where W is a standard one-dimensional Wiener process, the function F : R — R? is a
smooth non-linear map, the stiff parameter £ > 0 is fixed and assumed small, and A €
R is a given matrix satisfying e4 = Id (equivalently A is diagonalizable and has all its
eigenvalues in 2i7Z). In the deterministic setting, this last property yields that the solution
x(t) = exp(eAt)xqy of ‘fl—f = ¢ Az is e-periodic. For stochastic oscillations, it means that
the solution X () = exp(e"Y2AW (t))Xo of dX = e Y2AX o dW satisfies X (T) = X (0) for
a random time 7' = inf{t > 0, ‘5*1/2W(t)‘ = 1} of mean €. The class of SDEs includes
in particular highly-oscillatory Kubo oscillators (see [8])

2 (0 —1 0 —a
dX—\@<1 O)XodW+(a 0>th,aeR, (1.2)
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or equivalently, dY = 2ime™/2Y o dW +iaY dt in the complex setting where Y = X 4+ Xo.

Applying standard SDE integrators to solve equation requires in general a time
stepsize h < € to be accurate, which makes these methods dramatically expensive when &
is small. The goal of this paper is to create robust numerical methods, i.e. numerical inte-
grators whose cost and accuracy do not deteriorate when € becomes small. Several classes
of methods have already been developed for highly-oscillatory SDEs with a deterministic
fast oscillation (see for instance [10, 25]), but not in the case where the stiff oscillatory part
is applied to the noise itself. To numerically face this challenge, we introduce in this paper
a new methodology to develop robust methods of any high weak order to approximate the
solution of equation . In particular, we propose a method of weak order two, and a
geometric modification of this algorithm that preserves quadratic invariants.

Stochastic oscillations as defined in typically arise in fiber optics models (see
[2, B, I5]) with a spatial discretizations of the highly-oscillatory nonlinear Schrodinger
equation (NLS) with white noise dispersion

G

As described for instance in [I5], in the case ¢ = 1, the NLS equation with a cubic
nonlinearity F(u) = |u|?u is a model in dimension d = 1 describing the propagation of a
signal in optical fibers where x corresponds to the retarded time, while ¢ corresponds to the
distance along the fiber. Taking into account the inevitable chromatic dispersion effects of
the signal, modeled by a random centered stationary process m with a coefficient v > 0,
yields the following random PDE,

du(t) Au(t) o dW(t) + F(u(t))dt, u(t =0) = uo. (1.3)

ov _ *v 9
—(z,t) = vim(z)— (z,t) + v°F(v(z,t)), v(z = 0,t) = uo(t).
ox ot2

The perfect fiber would satisfy m = 0, but in practice, engineers build fibers with a small
varying dispersion coefficient. To limit the pulse broadening induced by random dispersion,
specialists use a wide range of dispersion management techniques (see for instance [15] and
references therein). In [20, 1], the authors show that if we denote u” (z,t) = v(x/v?,t), then
as v tends to 0 and under some ergodicity assumptions on m, u” converges to the solution
u of equation with ¢ = 1. The non-stiff counterpart of equation , ie.fore =1,
has also been studied theorically in [12] for a particular nonlinearity. The highly-oscillatory
behaviour (¢ « 1) appears naturally when observing the propagation in long time with a
small nonlinearity (via the change of variable ¢ « et) or the propagation of a small initial
data in an optical fiber with a polynomial nonlinearity (via the change of variable u < u/e).
A goal of this article is to develop efficient and cheap numerical methods that can model
the propagation of pulses in this context, in order to observe some specific behaviors and,
ultimately, to build enhanced fibers. Models of the form also appear in the recent
work [I4] in the context of stochastic three-wave semi-linear systems. We emphasize that
there is a growing interest in the recent litterature for stochastic models involving a fast
Stratonovitch noise in the context of ergodic stochastic dynamics. In [I], it is shown for a
class of overdamped Langevin equations that adding an appropriate fast Stratnovitch noise
permits to increase the convergence rate to equilibrium, while reducing the asymptotic
variance at infinity. This suggests that new efficient samplers for the invariant distribution
of Langevin type models in context of large dimensional molecular dynamics models could
be developed. We also mention the recent homogenization results on stochastic dynamics
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Figure 1: Exact solution evaluated at revolution times for the deterministic oscillator (2.1 with
F(y) =iy and e = 1071

with fast Stratonovitch noises in [I8] where our periodicity assumption is replaced by an
ergodicity assumption on the fast component of the dynamics posed on manifolds.

Numerous possibilities exist for numerically integrating equations or . We
highlight in particular the exponential integrators [8] [13] for the SDE , and the expo-
nential integrators [9], the Fourier split-step method [20] or the Crank-Nicholson scheme [4]
for the SPDE . These methods have the advantage that they preserve the L? invariant
of the equation (that is |u(t)|; 2 = |luol 2 for all ¢ > 0) for a class of polynomial nonlin-
earities. However they face a severe timestep restriction A < & when the stiff parameter
¢ is small. Even in the case of deterministic oscillations, there are restrictions in general,
though some robust algorithms exist (see [10] for instance). The methods presented in this
paper solve this issue of stepsize restriction. The idea is to approximate the solution of
equation at random times called revolution times because they correspond to com-
plete revolutions of the oscillatory part dX = e~ /2AX o dW. This is in the spirit of [I7]
which also approximates the solution of SDEs at random times.

The article is organized as follows. Section [2]is devoted to the presentation of the new
integrators. In Section 3|, we build an asymptotic expansion of the solution of and
evaluate it at revolution times to derive the new integrators and a limit model for equation
. Section [4|is devoted to the weak convergence theorems and their proofs. In Section
we present numerical experiments to confirm our theoretical error estimates, and we apply
the new methods to solve numerically the Schréodinger equation .

2 Multirevolution integrators for stochastic oscillators

Initially created in [2I], 5] in the context of celestial mechanics and later extended using
geometric integration (see for instance [23, [0, [7]), multirevolution methods represent a
class of numerical methods used for solving highly-oscillatory differential equations while
reducing the cost of computation. In particular, they can approximate the solution of
highly-oscillatory ODEs of the following form at stroboscopic times e NT', where T = 1 is
the period of ingtC = Az, and N is an integer,

dx

1
= gAx + F(x), z(0) = xq. (2.1)
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Figure 2: Revolution times (2.2)) of a Brownian path (top) and exact solution evaluated at revolution
times for the Kubo oscillator (1.2)) with a = 1 and ¢ = 10~ (bottom).

The solution x of this equation at times e NT is a perturbation of identity, that is = satifies
x(et) = xo + O(et), thus the solution loses its highly-oscillatory feature when evaluated at
stroboscopic times, as shown in Figure[l] for the first component of the solution of equation

(2.1) with F(z) = ix (respectively F(y) = <(1) _01> y in the real setting). The idea of

multirevolution is to approximate z(¢N) with N = O(¢ 1) with a cost independent of .

For stochastic oscillations, the solution X (t) = e PAWMD X of dX = e72AX o dW is
not periodic, but satisfies X (¢Tn) = Xo where the T are random variable called revolution
times and defined by

Ty = 0, (2.2)
Tys1 = inf {t > Ty, e Y2 |W(et) — W(eTy)| = 1}, N=0,1,2,...

If X is the solution of , we show in Section that X evaluated at times Ty is a
perturbation of identity (in a strong and weak sense). Figure [2]illustrates the definition of
revolution times and shows the perturbation of identity property on the first component
of a Kubo oscillator with @ = 1. We highlight that the revolutions times Ty can
be simulated without simulating the exact path W. Also we emphasize that the proposed
algorithms do not require to simulate W thanks to the use of appropriate discrete random
variables. This will be detailed in Section 3.4l



We show in Section that the solution X of (L.1)) evaluated at times €7};.—1 (when
t/e € N is an integer) converges weakly when ¢ — 0 to the solution y; of the deterministic

ODE

dy; 0
@Yt _ - X
I g (We)s Yo 0,

where g)(y) = e A F(eA%) and (¢*) := Sé g9df. This ODE is exactly the same one as the
asymptotic model for deterministic oscillators of the form . This asymptotic model
naturally yields a weak order 1 deterministic integrator. We propose the two following
new multirevolution methods of second weak order for integrating equation at the
revolution times Ty, for m = 0,1,2,... with cost in H = Ne = O(1) independent of
e. Method [B]is a geometric modification of Method [A] to preserve quadratic invariants of
the form Q(y) = %yTSy where S € R%*? is a given symmetric matrix. Methods A and B
involve a Fourier decomposition of the following functions that are 1-periodic with respect
to 6,

g8 (y) = e~ F(eMy) = Y A (y)e*™ (2.3)
keZ
93(y)(2) = eV () (e"2) = 3 ) ()™
pEZ

with respective Fourier coefficients (¢f)(y))rez and (c;(y))pez. The series appearing in
have an infinite number of terms in general. For a practical implementation of the new
methods, we truncate these series up to an even number of modes Ky, while inducing
an exponentially small error (see Remark . For each timestep, we also introduAce the
bounded discrete random variables (&2 )1, and deterministic sequences (BIJ)V i)pk and (Eé\/ 1) p.k
that satisfy

~ 1lifk=0 '
E[ay] ={Oelse 1+ 2 ifp=k=0
~ANANT _ 1 _
%ifp=0,kz;ﬁ0 0 else
N T A ifp =0, k#0
=4 sonr ifp#0,k=0 2 TIREN ;
o Y Noo={ ahoitp#0, k=0
sy Ep+k=0,pk#0 pk 2m7p?N ’
Oefse 0 else

The definition and construction of these random variables is further discussed in Section

3.2 and Section 3.4

Method A (Explicit integrator of weak order two in H = Ne to approximate the solution
of equation (1.1)) at times eIy, for m =0,1,2,...)

Yo = Xo

for m = 0 do

Ki/2—1 Ki/2—1
Yoo =Yu+ H ) QVw)ad +H Y (V) (@(Ym))Byk (2.4)
ki*Kt/Z pJg:fKt/Q

end for




Method B (Geometric integrator of weak order two in H = Ne¢ to approximate the solution
of equation (1.1]) at times €Ty, for m = 0,1,2,... while preserving quadratic invariants)
Yo = Xo
for m > 0 do

Ki/2—1
Y, Y, .
Ymi1=Yn+H Z cg <m+2m+1) osz (2.5)

k=—K/2
Ki/2—1
+ H2 ti: Cl Ym + Ym+1 CO Ym + Ym+1 QN
P 2 k 2 D;k
p,k:—Kt/2

end for

Remark 2.1. One could apply a Newton iteration to solve the implicit equation (12.5)
in Method @ However a few fized point iterations are sufficient (see discussion in [10,
Chap. VIII] for non-stiff implicit methods). Indeed, since the Lipschitz constant of the
iterated map has size O(H), the convergence rate of the fized point iterations is independent
of the smallness of €.

Remark 2.2. We observe that Bévk and Eévk are always zero except when p =0, k=0 or
p+k =0. Thus the computational cost of one step of Methods [A] and [B grows linearly in
the number of modes in (2.3)).

3 Analysis and asymptotic expansion of the exact solution

In this section, we first obtain a local expansion of the solution of (1.1)) and then evaluate it
at particular random times to deal with the highly-oscillatory patterns of the exact solution.
Finally we derive from this expansion an asymptotic limit for equation (1.1)) when ¢ — 0.

3.1 Asymptotic expansion of the exact solution

Instead of studying directly equation (1.1)), we apply the change of variable t « & 't to
obtain the following equation, whose solution satisfies Y (¢) = X (et) with X solution of

(LD,

dY (t) = AY () o AW (t) + eF (Y (t))dt, Y (0) = Xo, (3.1)

where we denote for simplicity the Brownian motion W (t) = e Y2W(et) again by W.
We introduce the following assumption which guaranties in particular global existence and
uniqueness of the solution.

Assumption 3.1. The function F is globally Lipschitz continuous and lies in C;’g, i.e. there
exists constants L, C, K > 0 such that for all y, y1, yo € R?

Fy) = Flp) < Ll -l [FO@)|<c+y™), ief0,1,23). (32

Also the initial condition Xo has bounded moments, that is E[|Xo|’] < oo for p = 0.



Therefore we denote ¢.(Xo) = Y (t) the solution of equation (3.1) and focus in the
rest of the paper on the approximation of ¢ ;(y) at times t = O(e~!). The variation of
constants formula yields

t
peu(y) = WOy 1 5J AWOWEDF (. ((y))ds. (3.3)
0

We deduce the following regularity properties.

Lemma 3.2. Under Assumption the following estimates hold for all y, y1, y2 € RY,
where C' and K are independent of € and t,

1 |@e(y1) — @ei(y2)| < Clyr — yo| €9,

2. |pea(y)] < C(1 + |y])eC,

3. pe1(y) is C® iny and

Aw)| < e 1+ Iy e Jorie1,2,3
The proof is postponed to the appendices. It mainly relies on the Gronwall theorem

and the boundedness of the one-periodic function 6 — e?4. Using a local expansion of
the solution of (3.1)) in €, we define the following first and second order approximations of

Qoa,t(y)v
t
Bl (y) = WOy 1 AW J AW ) B (AW )y ds (3.4)
¢§,t(y) = 1/151,t( +e2eAW ) f —AW()

P (AW (eAW(s)J o AW( T)F(eAW(r)y)dr) ds.
0

Proposition 3.3 (Local expansion). Under Assumptz'on for ally e R?, j e {1,2} and
t = 0, there exists C' and K two positive constants independent of € and t such that

pealy) = vLe(y)] < CL+ [y (=),

The functions wg’t satisfy the following straightforward inequalities proved with similar
arguments as for Lemma

Lemma 3.4. With the assumptions and notations of Proposition the following esti-
mates hold for all y € R, where C and K are independent of € and t,

24 (v)] < CA+[yle”, (3.5)
U2,)] < OO+ e, (3.6)
U2, (y) — WOy < O+ [yl ety (3.7)

Proof of Proposition[3.3 Using Assumption [3.1] we get

AW (s)

t
‘@Et wet( )‘ L Sps,s(y) — € Yy ds.

7



Then Lemma [3.2] yields

peal) =y < Ce [ 1P (oestopldr < Ce [ (1t leert)ar
< Csf (1+C1+ [y)es)dr < C(1 + |y])e“= (es).
0

We deduce |- o(y) — L, ()] < C(1 + [yt (=)
For j = 2, we first denote

t
P (y) = MOy 4 AW jo AV Py} (y))ds.

With the same arguments we used for j = 1 and inequality (3.5)), we have

pealy) = P2,0)| < OO+ Iy (o).

It is sufficient to prove that
of F(qbés(y)) in € gives

1/1§7t(y) — th(y)‘ <C(1+ |y|K)eC€t(€t)3. A Taylor expansion

P! (4)) = F(eW®y) + P (eAWO)y) (eAW@ [ eAW<T>F<eAW<’">y>dr) F R
0

The remainder R, ; satisfies

2
[Res|<C® sup  |F'()]
seleAW Oy 01, (v)]

AW (s) J AW (AW () ) iy
0

Then, using the polynomial growth of F” and inequality (3.5]), we get

K K
[Reol < OO+ AV O™ 4 9 ()] Y (e5)2e7% < C(1 + [y (e5)%e.

Hence the result. o

We shall prove in Section that the function wg,t in (3.4) evaluated at the revolution
times Ty (defined in (2.2))) yields a strong order 2 approximation in H = eN.

Remark 3.5. If we replace the Brownian motion W in (3.4)) by a piecewise linear function
W, defined by

t t
WT=(1—+i>VV¢+<—i)Wi+1f0riT<t<(i+l)7‘, (3.8)
T T

where Wy = 0 and W1 = Wi+ +/7& with (&); a family of independent standard Gaussian
random variables, then it can be shown that we obtain an integrator of strong order two in
et. However the cost of a standard method computing an approximation of the integrals of
equation by replacing W with W, is in O(t?/1?), which makes this method tremen-
dously expensive for t = O(e~1). This is why we develop in Section weak integrators
based on a weak approximation of equation with a cost independent of t. We shall re-
place stochastic integrals by appropriate discrete random variables in order not to simulate
any expensive Brownian path W.
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Figure 3: Convergence in law of VML% (TWN - E[Tl]) to a standard Gaussian random variable.

3.2 Properties of the revolution times

In this section, we study some properties linked to the revolution times T that will be
useful for the analysis.

Proposition 3.6. The revolution times T defined in (2.2]) are positive and finite almost
surely. Their differences (Tny1 — Tn)N=o are independent identically distributed random

variables (same law as Ty). The Laplace transform E[e*T] of Ty exists and is analytic for
Re(z) < %2. In addition, for x € [0, %2[, E[e*T1] = Cos(i/ﬁ)' The variable T1 has bounded

moments and they are given by

C(=2)RR! & : 2p
E|Ty] = (2k)! ;(_W 2 (2n1,...,2nj>' (3.9)

n1+-+n;=p
niEN*
In particular, E[T}] = 1, E[T?] = % and Var(Ty) = % Finally, for a fized e € ]O, 7{—;[, for
all € €]0,&0] and p = 0, we have the estimate

E[e=TV (T )P] < CeCEN (eN)P. (3.10)

The law of the first revolution time 77 has an analytic density but there is no closed
formula for it. It can be numerically approximated accurately by inverting the Laplace
transform. In Figure [3, we observe the convergence in law of T to a Gaussian variable
according to the central limit theorem.

Proof of Proposition[3.6. The first properties can be deduced from [24, Chap.2.3], where
the Laplace transform formula is obtained with an analytic continuation of the equality
E[e~*T1] = m for x > 0. Comparing the Taylor expansion of E[¢*"!] and —A1

cos(v/2x)
yields (3.9). The estimate (3.10)) is proved as follows

E[CETN (ETN)p] < E[QQETN]UZE[(€TN)2P]1/2 _ ]E[(BZETI]N/zEpE[TJ%;p]ID




< E[BQEQTl]EN/2€Q (EN)pE[TIQP]lﬂ < CeCEN({-:N)p,

where we used first the Cauchy-Schwarz inequality and then twice the Jensen inequality. o

For developing an algorithm for the weak error, it is useful to know the moments of the
random variables appearing in the discretization, that are costly to simulate numerically,
in order to replace them with cheap discrete approximations with the same first and second
moments. This is the goal of the following proposition.

Proposition 3.7. The following random variables

O/k\/ - %SSN e2iTkW (s) 4
gk - ﬁ S(T)FN e2impW (s) SS 20k W () diedls
B;";\,/k . Sg’w o2impW (s) (SS (2TRW(r) _ 1 SOTN 2k W (r) dr) ds = BV, — @éV;iV
satisfy
E[a'] =5k={éi’;f:0 1+ 2 ifp=k=0
[ 3+ sy ifp=k=0 Eloy'ay] = filﬁp+kzap$¢o

sy fp=0,k#0
E[BY] =< sy 0 #0, k=0

mz‘prrk:o,p,k#o
0 else

0 else

E[5)%]

Proof. Let k # 0 (the case k = 0 is straightforward using Proposition , then the Ito
formula applied to e2™ W () gives

1 2k (1) i ft 2k (s) 1 Jt ik (s)
i 1) = i ) dW - i 5)d
27Zk2N )= N ), € S %

which yields at time ¢t = T}y,

aé\; _ 7 JTN e2mkW(s)dW(S).
wkN 0

Then t — Sé ezmkw(s)dW(s) is a martingale, so by the Doob theorem, as ¢t A Ty is finite,
E[SSATN X W () qWW (5)] = 0 for all t. The dominated convergence theorem for stochastic

integrals allows to take the limit + — o0 and yields E[a}' ] = 0.

For the coefficients ;Vk, let (p, k) # (0,0) (the case p = k = 0 is obtained straightfor-

wardly using Proposition , we use the It formula on e2™W () and we integrate from s

to T,
TN

1_ e?iﬂpW(s) _ 2'57er

s

TN
eQiﬂpW(r)dW(r) _ 271'2]92 J einpW(r)dr_

Then, multiplying by ﬁe%’mw(s) and integrating from 0 to Ty yields

N_ N - T T
ap — Qe 2imp (N oo N i
P JO XTRW (s) 8 W) qW (r)ds

10



_ 27r2p2 J v p2imkW (s) J v 20 PW(r) gl s
N2}y s

Using the stochastic Fubini theorem, we deduce
TN . TN . TN i T .
J e?wrkW(s) J €2Z7rpW(T)dW(T)dS _ J eQmpW(r) J eszkW(s)deW(T)’
0 s 0 0

which has zero average by the same arguments as before. Also by the Fubini theorem for
stochastic integrals, ,BI],Yk = 2 S(?N e2imkW(s) SSTN e2mW () drds, so that we get if p # 0,

Opig — 0
N1 _ Yp+k k
E[ﬁ k] - 27T2p2N .

The case p = 0 is obtained by integrating by parts and using the same arguments. Indeed,
we find

5N _ TlaN . BN _ { v TN€2i7rkW(s)dW(s) _ BN
O,k‘ N k k’,O 7TkN2 0 k,O’
and E[ﬂéﬁ] = —E[Bﬁo]. Finally, the moments ]E[ozi,v alY] are computed via the equality
~ ~ N _ N
é\,[k: + 5,16\;, = aévai,v. Then we obtain E[ﬁgk] from the formula B;)Yk = é\,fk: — % D

Remark (Stochastic Fourier series). Let f be a L? function on ]0,1[ extended on R by I-
periodicity, whose Fourier coefficients are denoted as (cg)rez. Then we deduce from Propo-
sition the following equalities, where the second one is the stochastic version of the
Bessel-Parseval theorem,

T
E { F(W(s))ds
0 i

g = Ll F(6)do,
E UT |f(W(s))|2ds_ = > el

0 N

Ty 27 5 len 2 2
0 Ck
E [ f(W(s))ds| | = |3 | + Z | 2;2'
0 | keZ* &

3.3 Asymptotic expansion at revolution times and limit model

With the results of Subsection it is now possible to evaluate the local expansions ({3.4))
at revolution times. To approximate numerically the integrals appearing in equation (3.4)
without evaluating F' and F’ too many times, we first replace the 1-periodic functions gg (y)
and gj(y)(z) defined in (2.3)) by their associated Fourier series with Fourier coefficients
((y))kez and (¢p(y))pez. We define the following approximation of ¢ +(y),

t
bea(y) = AV Oy 4 3 AVO L) fo AW () g (3.11)
keZ

t s
re2 3 AW () (cg ) f J Q20 pW (s) 20k W (1) 7. ds> .
pkeZ 0Jo

Notice that c}(y) € C? and ep(y) = ( N (y) € C* but . 4 (y) € R We now evaluate this
function 1. ¢(y) at time ¢t = Ty to get a second order strong approximation.

11



Proposition 3.8. We define the following quantity

Yen() =y+HY AWar +H> Y ()@ )N
keZ p,kEZ

where ()(y))kez and (cp(y))pez are the Fourier coefficients of the 1-periodic functions gg(y)
and g4 (y) defined in , a,]y, B}Xk are the random variables defined in Proposition and
y € RY is deterministic. Under Assumption for all test function ¢ € C%, there exists
Hy > 0 such that for all H = Ne < Hy, the following estimates hold, where C and K are
independent of € and N,

E[lpem, )~ ven)P] < 01+ )0, (312)
El(p-1 (1)) 14] — El6(en )] < O(L+ [yl (313)

that is, Ve N(y) is a numerical approzimation of @. T\ (y) of strong/weak local order two.

Proof. Inequality (3.12)) is a straightforward consequence of Propositionwhen evaluating
the estimates of Proposition at time Ty. For the weak local estimate (3.13)), using

inequality (3.12]), the mean value inequality, Lemma and equations (3.5)) and (3.6)), we
get

Eﬂqﬁ(%,TN () — ¢l 1, (y))H

<E sup |q§'(x)|
velpe, (V)01 1\ ()]

ey (Y) — @bg,TN (y)‘

SO+ |y )E | T Ty sup (1 + |=")
v€lpe, ry (V)01 1\, (V)]

< O+ VB | (Tw) e (1+ ey () +
< C(1L+ [y )E [(Tw) " 1eCT].

)

Finally we obtain inequality (3.13]) by taking H small enough so that we can apply Propo-
sition o

For a fixed T' = Ne, when € — 0 (or equivalently N — 00), the solution of evaluated
at stroboscopic times Ty = Tr.—1 converges weakly to the solution of a deterministic ODE,
that involves only the first mode ¢ = (¢°) = Sé g9d0 of ¢°. This asymptotic model is the
same one as for the deterministic equation . The proof is postponed to Subsection

Proposition 3.9 (Asymptotic model). Under Assumption for T > 0, the solution
@e,1,. 1 (Xo) (for e such that Te ! is an integer) of equation (1.1)) converges weakly when
e — 0 to the solution at time T of

dy
ditt = <go>(yt)7 Yo = X07 (314)

that is, for all test function ¢ € Cf’;,

Ly [E[¢(¢e,1,. (X0))] = Elo(yr)]| = 0.

12



Remark 3.10. [t can be proven using the results of Section [4] that the solution of the
asymptotic model (Proposition is an order one weak approximation of X (eTnm) for
m = 0 and X solution of equation . We deduce the following simple one-step explicit
deterministic integrator that corresponds to the Euler method applied to equation ,

Yo = X0y Ym+1 = Ym + Hcg(ym)- (3-15)

Its cost is independent of € and N, and it has weak order one w.r.t. H, that is for allm = 0,
E[¢(pe, 1y, (Xo))] — E[o(ym)] = O(H).

3.4 Construction of the second order integrators

To obtain an integrator of weak order two with a cost independent of £ and IV, we truncate
the local expansion of Proposition [3.8] We also replace the involved random variables with
cheap discrete random variables with the same first and second moments. To simulate the
random variable ozév with discrete random variables &,]gv with the same first and second
moments, we introduce a set ({x)ken of independent random variables, such that P(§; =
+1) = 3, the covariance matrix (CX'),  such that

(CN) oo wz(Cov(Re(aév),Re(a]kV)) Cov(Re(afDV),Im(akN))
o )2p—1:2p,.2k—1:2 Cov(Im(a)’), Re(ay’)) Cov(Im(al') N

and TV its square root. Then, @,]CV is defined for k£ > 0 as

Ay =0+ (0 4, + il )g  with 6 =

{1ﬁk=0
leN

0 else

and we fix aY =a¥ i for B < 0 (so that the solution stays real while still having the good

moments). We also define A}]X = E[ 1]7\,[ ] with the values of Proposition Doing so yields
Method [Al

For Method [B] we adapt Method [A] in the spirit of the middle point scheme for ODEs
(see [16, Chap.IV]) so that it preserves any quadratic invariant. We also replace 5N by

Bp E = E[ﬁp «], using the values of Proposition

Remark 3.11. The methodology presented in Section [3 can be generalised to any order.
Thus, under more regularity assumptions on F, it is possible to build algorithms similar to
Method [4] of any weak order and that are still robust with respect to the stiffness €. For
order 3, Method [A] becomes

Y1 =Y + HZ Ck Oék + H? 2 (Cg(Ym))A;]o\,[k
keZ p,keZ
1),N ~(2),N
1S e D) VA + (el c2><Ym>v§,;,k
1,p,keZ

with the new random wvariables

N L s [ i) [T 2imkwi(o)
Vipk =N2L e SLe”p Tfoe” Y dgdrds
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@N L (T o [ aimpwin) [ 2imkwie)
’ 7T S 1T T 1T
Vipk = 2]\72J0 e~ L e”'mP Jo e Ddgdrds,

and where the discrete random variables share the same moments up to order 3 for the ay
order 2 for the Afj\’[k, and order 1 for the ?l(zliv It is also possible to generalise Method

up to any order in the spirit of the middle-point scheme, but the construction of discrete
random variables allowing the preservation of quadratic invariants is not obvious for higher
orders (although backward error analysis guarantees the preservation of quadratic invariants

for the exact random variables based on W ).

4 Weak convergence analysis

This section focuses on the proofs of the following two theorems, showing the order two
convergence of Methods [A] and

Theorem 4.1. Assume that the Fourier coefficients cg, c}, of gg and g(} in (2.3) are non-
zero only for —K;/2 < k,p < Ky/2. Then, under Assumption Method has weak order
two, that is, for all T > 0, for all test function ¢ € C3, there exists Hy > 0 such that for

all H < Hy, for all m = 0 such that mNe = mH < T, there exists two positive constants
K and C both independent of ¢, N and K; such that

IE[6(#2 1, (X0)] = E[$(Yi) ]| < CH?(1 +E[|Xo[*]). (4.1)

Theorem 4.2. Assume that the Fourier coefficients cg, c}o of gg and g; n are non-
zero only for —K;/2 < k,p < K;/2. Then, under Assumptz'on if c§(c}) and 0117(08) are
Lipschitz continuous uniformly in k and p, Method [B is well defined and has weak order
two (i.e. it satisfies an estimate of the form ) In addition, if for a fixed symmetric
matriz S € R¥™4, the quantity Q(y) = %yTSy is preserved by equation , then Method

@ also preserves the invariant Q(y) = %yTSy, that is, the solution Y11 of equation (2.5)

satisfies Q(Ym+1) = Q(Ym).

These two theorems focus on approximating the exact solution of equation (|1.1)) at the
revolution times eTny,, m = 0,1,..., but one could compute an approximation at different
times by composing with other methods at the end of the integration.

Remark 4.3. Since the error constant C in is independent of the number K; of
Fourier modes, we emphasize that Theorem[{.1] and Theorem[{.9 remain valid for infinitely
many modes (K; — o). In addition, assuming that F is of class C’IS;rl yields a truncation
error of the Fourier series in of size O((1 + |y|™)K;*) (see e.g. [19, Sect. II1.1.3]),
and if gy is assumed analytic in 6 (for example if F is a polynomial), this error becomes
exponentially small as O((1+ |y|)e=°K*). For simplicity of the analysis, we thus assumed in
Theorem and Theorem that gg and g; have a finite number K; on non-zero Fourier
modes in (2.3)). If this assumption does not hold, the truncation errors O((1+ ly|")K;*) or
O((1 + |y|)e~Kt) should be added in the right-hand side of the error estimate ([£.1)). Let us
prove it in the analytic case. We first apply the change of variable ¢. +(y) = e*AW(t)cp&t(y)
that has no effect at time t = Tny,. We now have to compare the two solutions of the
following integral formulations

t

Gerly) =y + jo 6By (s () ds,

14



; Kt/2 1
W =yre| 3 AR s
0 k=—K, /2
Using the truncation estimates that we previously discussed and the Lipschitz property of
0
gy, one gets

Bes — LY

t
( ) EL ‘gIO/V(s)(@’&s(y)) — gO ( )((ngt)( ))‘ ds + C€t€ cKy sup ‘g ‘

[0,1]
¢
<C€J
0

The Gronwall lemma and Proposition yield for mNe < T

?|

The structure of the convergence proof is similar to the one for standard SDE integra-
tors, see e.g. [22, Chap. 2|, but one has to be cautious because our solution is evaluated at
stochastic times and the error constants should not depend on € or N.

Peis(y) = B (w)| ds + Cot(1 + [y)e K

511/
etn ) - 250, 0| < ct e

4.1 Boundedness of the numerical moments

Proposition 4.4 (Bounded moments for the integrator (2.4)). Assume that for y € RY,
the numerical integrator 1. n(y) is given by

ben@W) =y +H D AWar +H2 D ch) (k)b (4.2)
keZ p,kEZ

) JREN

where @fy, ﬁé\fk are random variables defined such that for all ¢ > 0, E {(Zk | 1§2| ) ] and
oA

E|(3,. Z; are bounded uniformly in N. Then, under Assumption |3.1| and if |y|

has bounded moments, for any T > 0, for all m, H such that meN = mH < T, for all
2
mN(y)‘ q] < C,(1 + E[|y[*Y]), where C, is independent of m, € and N

Proof. We first prove

ben(y) =y < CH(L+ y) My, (4.3)
where E[(My)??] < C, for all ¢ > 0. We have

@ZE,N(y)—y‘ZH diAway +H Y, o ) B,
keZ p,kEZ
0 1) 2 2
<o [ My, [ R+ My 3w, X R |hw)
keZ PEL keZ
|AN
where M and M have moments bounded uniformly
in N. Then using the Bessel-Parseval theorem, we get Dk k2 ‘ck (y) ‘ = So ‘8999 (y) ‘ do.
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Assumption yields |dgg9(y)| < C(1 + |y|). Then, the Bessel-Parseval theorem applied
on g; gives Zp ‘clllj(y)‘2 < C, hence the result.
We define Ay, = 9751 (y) — O (y) = (Dey — 1) (O (), then

(5 ) = (B ) + 2 (%) @mtwia,
Equation (4.3) and the bounded moments of My give

[ an] <kl cria+

NI
amvl"]).
"] <o (eelfimw]’))

" N(y)m < eCamt (1 + E[|y|*]) < e“aT(1 + E[[y[*]). .

<CqH(1+E[

We deduce
1+E [

and by induction E [

Proposition 4.5 (Bognded moments for the integrator (2.5)). Assume that for y € RY,
the numerical scheme e n(y) satisfies

bon() =y + HY <m> ay (4.4)

keZ 2

4 H? Z <y+¢e N(Y )) (Cg <y+%,1v(y)>> Q}z)\fk’
p,kEZ

where &Y, BI])Vk are random variables defined such that for all ¢ > 0, >, |

~

szy\fk;7

p,k

2

N
Bk

E [(Zk |a£2|2)q] and E[(Z:p’k é)q} are bounded uniformly in N. Then, under As-
sumption and if |y| has bounded moments, for Hy small enough and any T > 0, fg;" all
m, H such that meN = mH < T and H < Hy, for all ¢ > 0, we have E[ A;”N(y)‘ ] <
C,(1 + E[|y|*]), where C, is independent of m, € and N.

Proof. We prove an equivalent of the estimate (4.3|) for 1287 ~(y). The growth properties of
the Fourier coefficients yield
Bk >

waN )

-~

Gont) | <cr (2 2 a2+ X[l
k p.k
+CH (2 ap| + Z )

.k
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As >, ‘64,];7 ‘ +Zp7k, ‘ 57]3\7 k;‘ is bounded, using the same estimates as in the proof of Proposition
[4:4] we get for all H < Hj small enough,

beny) =y < CH(L+ Iy M, (45)

where My has bounded moments. The remaining of the proof is the same as in the proof
of Proposition [£.4] o

4.2 Local weak error

Proposition 4.6 (Local error estimate). Assume that for y € R? deterministic, the nu-
merical scheme can be written as

Yen(y) =y+HY Qay +H> > ¢ ))BY. + R,
k€eZ p,kEZL

where E[|R|]] < C(1 + [y/")H?® and &Y € C, B '« € R are random variables such that
ap = @ and
E[ay] = Elai], E[5)%] = E[Bl. Elakar,] = Elag ag,].

Under Assumption if @e’N(y) satisfies the assumptions of Proposition (or Proposi-
tion , for all test function ¢ € C3,, there exists Hy > 0 such that for all H = Ne < Hy,

the following estimate holds, where C' and K are independent of € and N,

[Elo(eemy )] — EIo(@Den@)]| < €1+ [y H?

that is, the numerical scheme has weak local order two.

Proof. Using Proposition and its notation . y(y), it is enough to prove that

Elo(en )] — B[00 n )] < OO+ lyl )1

A local expansion gives

d(en () = oY) + &' (1) (We N (W) — y) + ¢" (1) (e, N (Y) — ¥, Ve N (y) — y) + Ru.

As Y n(y) = gTN(y) (see equation (3.4)), using Inequalities (3.6]), (3.7) evaluated at T
and Proposition [3.6] yield

ch[yn/)E,N(y)]

E[CO+ gl + e @) ) (0 + [yl ) e Tw) e |
E| <1+|y|K>< TN>3606TN]

<O+l )H

E[[Ri] <E| sup \¢<3><x>\|¢E,N<y>—y|3]

/N

N
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We obtain a similar expansion for gf)(l;a ~N(y)):

—~

(e (1) = 6(y) + &' W) Pen(¥) — v) + ¢" W) (e (V) — v, Yen(y) —y) + Ri,
where, using Inequality (or ),

E[|§1|]<E[ sup ‘¢(3)(x)‘
[

~ 3
Ve N (Y) — y‘ ]
z€[y,ve, N (y)]

< CE [(1 + [y® +

Ben] )0+ )13
C(1+ |y|™)HE [(1 + ME)]
€1 + ) B

Making the difference of both equations gives

d(he N (W) — d(en (W) = &' (W) (Wen () — Ve (1)) — ¢" (1) (Ve n (1) — y)? (4.6)
+¢" () (Wen(y) — y)* + R,

where E[|R|] < C(1 + |y[*)H?. For the first term of (6], we have

<
<

B¢ (y) (e n(y) — Yen(@))] = H > E[¢ ay —ay)]
keZ
+H> Y E D)) (B — BV
p,keZ
Then, we get

El¢'(y)(ck(y)(ar —ap))] = Elay’ —a3'1¢'(y)(ck(y)) = 0.

We can do the same thing with the term in 5;& and obtain

E[gb’(y) (¢87N(y) - {D\E,N(y))] =0.

Let us now Study the second order term Z = ¢ (y )(1Z8 N —y)? =" (y) (e n(y) —y)? that
appears in We develop this expression and keep only the order one and two terms
to obtain Z HQY + R where E[|R|] < C(1 + |y|*)H? (by the same arguments as before)
and

Y = > [¢" ) )ar, &, )ar) — ¢" @), w)ary, &, (9)as) ]
k1,ka

= Yl (@nan — o ap)ed" @) (e, (1), ch, (1))
k1,k2

The condition on the moments of the & yields E[Y] = 0.
Putting all these arguments together in (4.6), we finally get that

[E[o(0e n (9)] — E[6(en ()] < COL+ [y )

We deduce the local order two of the proposed numerical scheme. O
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Remark. The constant Hy in Proposition [{.6] depends on F, but also of the polynomial
growth power of ¢ and its first three derivatives. This dependence is expected when trying
to evaluate the solution of SDEs at random times. To make Hy independent of the test
functions, one can consider the following sets of test functions

Chr ={peC?3C >0,3k < K,Vy,

SO w)| < C+ "), i€ 0,1,2,3}).

4.3 Global error

Theorem 4.7 (Global Convergence) Assume that the numerical scheme &sN satz’sﬁes

equation (4.2) (respectively equation ) where aY € C, B L ER (respectively B;,Vk eR)

are random variables such that & ozk = oz_k and
E[a)] = E[a}'], E[Byx] = E[BY], E[ag ] = Elog; ap].

(respectively &Y satisfies the same conditions and B '\, satisfies E[ﬁgk = E[B;Vk]) Under
‘2

q 3N a
Assumption |3.1), if for all ¢ > 0, E [(Zk o8 | ) } and E [(Zp,k B’]:,f > ] are bounded
2

s ]y
(S (Sl
are bounded uniformly in N ), for all T > 0, for all test function ¢ € C3, there exists Hy > 0

such that for all H < Hy, for all M = 0 such that MNe = MH < T, there exists two
positive constants K and C both independent of € and N such that

uniformly in N (respectively ), ‘&m, an Névk

E[9( 1y (X0))] — E[B(02 (Xo))]| < CHA(1 + E[ Xo[]).

Proof. We denote R
enr = B[B(9e 1y (X0))] — E[o(v 2y (X0))]

and rewrite it with a telescopic sum

E[6(0e Ty 1, (02 ™ (X0))] — Elb(0e 1y, (02 ™ (X0)))]
1

E[m—1 (e N (G (X0)))] = Elbm—1(¢=my (025 ™ (X0)))]

1

EN =

Tz s

where am,l = ¢ © Pe Ty (,n_y,- Using Lemma and ¢ € C3, we obtain for 0 < i < 3,

S )| < CeC v (14 Iyl ).

m

Thus, knowing the hitting times involved, ¢, € C}. Using Assumption (cg)’ =c!
and B k= BN ap;‘k, we deduce that @E, ~ satisfies the assumptions of Proposition
Applylng Propos1t10n to each term of ey gives
K
gk (Xo)‘ D

lenr| < ZCE [eCeTnm] H (1+E{
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Finally, the moments of @ZQ‘N(XQ) are all bounded uniformly in €, N and m according to
Proposition (respectively . Thus

M
lear| < )3 CHY (1 +E[|Xo|*]) < CH?(1 + E[|X0|“])-

m=1

We deduce the global weak order two. 0

With the help of Theorem [£.7], we prove Proposition [3.9]and the convergence of Methods
[Al and

Proof of Proposition[3.9. Rewriting Theorem [4.7] for order one yields for all H = Ne small
enough and all M > 0,

IE[$(pe 1 (X0))] — Eld(ynan)|] < C(eN)*(1 + E[| Xo|*]).
Evaluatingin N =1, M = % and taking the limit € — 0 yield the result. =
=i
Proof of Theorem[/.1. As &y < C and Yk ,:ék converges by Proposition|3.7, Theorem
[4.7 applies and concludes the proof. o

Proof of Theorem[{.4 The regularity assumptions yield the Lipschitzness of the c%(y) and

B
are bounded, the right hand-side of equation is a contraction for all H < Hy small
enough and the constant does not depend on Y;,, so Hy depends only of F' and F’. Thus,
the integrator is well-posed for all H < Hj.

The weak order two is obtained using Theorem [4.7} Indeed the use of discrete random
variables and Proposition give the convergence of the involved series.

For showing that Method [B| preserves quadratic invariants, it is sufficient to prove that

Q' W)Xy Aw)ay) = 0 and Q'(y)(X, . chW)(Q)BAY,) = 0 (see [I6, Chap. IV]). The
preservation of @ by equation (1.1]) yields Q'(y)(Ay) = 0 and Q'(y)(F(y)) = 0. We deduce
the following two equations, valid for all y € RY,

y"Sgp(y) =0, (4.7)
y"Sg () (g0 () = —(99(w) " S (v),

where equation (4.8)) is obtained by differentiating equation (4.7) in the direction g¥. Using
equation (4.7)), we have

1
Q) (Z cpyay > = L QW) (g8 (y) > e *™aydo = 0.
k

k

the involved ¢} (y)(c}(y)) with constants independent of k and p. As >}, |a)| and 2k

For the second order term, equation (4.8) and the values of Proposition yield
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Q) (2 c;<y><c2<y>>i§Yk>
p.k

1 1 ~
_ L JO yTSab() (@) S e 20 2im 5N, 4y

Pk
Lorl . 2
- _ 0 TS 0 67217rp967217rk1/5N dvdb
(9,(y))" Sgg(y 'k
0 Jo Yy ’
1 (Lot 4 4 . R
- __ J f (QB (y))TSgg (y) 2[67217@967227#@1/ + 67217rp1/67217rk9]ﬂ11)\fkdyd9
2 Jo Jo Py ’
=0.
Hence Method B is well-posed, has weak order 2 and preserves the invariant Q. =

5 Numerical experiments

In this section, we first illustrate numerically the weak order two of Methods[A] and [B] with
convergence curves. Then, we apply the new algorithms to solve the nonlinear Schrédinger
equation with highly-oscillatory white noise dispersion (|1.3)).

5.1 Weak order of convergence

To confirm the results of Theorem and Theorem we check numerically if Methods
[A] and [B] have weak order two of accuracy w.r.t. H uniformly in ¢ and N. As the Euler-
Maruyama method and the algorithms presented in [8, [4, O] are completely innacurate if
they do not satisfy the severe timestep restriction h « &, we compare the performance
of Methods |A] and [B| to the performance of the Euler method . We first apply the
algorithms on equation with the linearity F(y) = iy, A = 2im, Xo = 1 and ¢ = 1073.
Equivalently we can write it in the real setting as

o= (0 e (0 ) a1,

We plot on a logarithmic scale an estimate of the weak error for approximating X at
time T' = 1073Ths where E[T] = 0.256. The exact solution X (7)) is approximated by the
output of Method [B]for H = ¢. The parameters N and m are varying under the condition
that Nm = 28. The test function is ¢(y) = 2y; + 4y2 and the average is taken over 107
trajectories. We choose the tolerance 10~13 for the fixed point. On the right picture of
Figure 4] we use a modification of a Kubo oscillator introduced in [8] with the nonlinearity
F(y) = i(1 +Re(y)? + Im(y)®)y. In the real setting, it yields the following two-dimensional
SDE

27 (0 -1 0 -1 3 5 _ (1
dX_\/g<1 0>XodW+(1 0)(1+X1+X2)th,X0_<O).

We take 8 modes for the Fourier decomposition and the same other parameters as before.
The average is taken over 10° trajectories.
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Figure 4: Weak error versus the stepsize H = Ne for approximating the solution of equation (1.1)
at time eTys for the linear F(y) = iy (left) and the non-linear F(y) = i(1+Re(y)> +Im(y)°)y (right)
with A = 2im, Xg =1, ¢ = 1072 and the test function ¢(y) = 2Re(y) + 4 Im(y).

In both cases, we observe the weak order two of Methods [A]and [B] The irregularities of
the curve for a small H come from Monte-Carlo errors. We repeated the same experiment
on many other examples and we always observe the desired order two as long as H is small
enough.

5.2 Numerical experiments on NLS equation with white noise dispersion

We now apply the algorithms to solve on the torus T = [—, 7| the following SPDE of the
form (T.3]), with a polynomial linearity and the stiffness parameter ¢ = 1072,

2 (0 -1 0 -1\ 2
du—\/g<1 0)AuodW—i—<1 O)|u| udt, z €T, t >0, (5.1)

where the unknown w is a random process depending on z € T and ¢ > 0. We consider a spec-
tral discretization in space of this equation with K, = 27 modes u(z,t) ~ leléKz Y (t)el®,
We obtain an equation of the desired form with a truncated nonlinearity and the
block-diagonal matrix

A=&%P%ﬁc ?»M<Kﬂ

Beginning with the initial condition ug(z) = exp(—3z* + 22) on T that decreases fast
enough, we apply Methods [A| and [B| in the two cases ¢ = 2 and 0 = 4 with K; = 2°
modes, N = 10 revolutions, m = 150 iterations and a tolerance of 10~ for the fixed point
iteration. Figure [5| shows the evolution in time of one trajectory given by Method [B| (with
a 300 points evaluation grid in space).

In Figure @, we observe the discrete L? and H' norms behaviour of one trajectory given
by our two algorithms and the Euler method (the simulated (o) are the same for
Methods nd . The Euler method quickly blows up in both norms. The L? norm
of Method |A] is not conserved. In contrast, Method [B| preserves the L? norm according
to Theorem When ¢ = 4, numerical simulations hint that a blow-up in the H' norm
always happens for all considered methods at a certain time that increases as € goes to zero.
We recall that in the optic fiber model , t represents the distance along the optic fiber
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Figure 5: Approximation by Method [B| of |u| and |, u| with u solution of a spatial discretization
with K, = 27 modes of the nonlinear Schrédinger equation with white noise dispersion (5.1)) on the
torus T = [—m, 7] with the parameters e = 1072, 0 = 2 (top) and o = 4 (bottom).

and a cubic nonlinearity (o = 2) is typically considered [I5]. For o = 2, we do not observe
any blow-up in the H! norm in Figure El, suggesting the well-posedness of the model for all
optic fiber distance. Also, the larger o is, the sooner the blow-up happens. These behaviors
agree with the blow-up conjecture for ¢ = 1 and o > 4 presented in [4], and suggest that
the conjecture persists in the highly-oscillatory regime ¢ « 1.
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Appendix

Proof of Lemma[3.4. 1. First, ¢, +(y) is the solution of

t
per(y) = AWy 4 AW J e AW F(pe 5(y))ds.
0

0

Using the boundedness of the continuous periodic function § — ¢4 and Assumption

3.1, we get
t
(0eey1) — pen(y2)] < Iyl + Laj (0es (1) — pens(n)| ds.
0

The Gronwall lemma yields the desired bound.

. Straightforward using previous statement.

. Differentiating the integral formulation defining ¢, ;(y) gives

t
Oy pen(y)(h) = AW 4 AW f AV O F (i, o () (2000 (0) (1)) ds.
0
Then Assumption [3.1] yields
t
2yee(y)()] < |h] + Le jo 10y0ee() ()] ds.

The Gronwall lemma allows to obtain

|0y = (y)| < eX.

For the second derivative, we get

e (y) () = AW fo AV [F (0 o (1)) (02000 (1) (1K)

+ F"(0e,s () (0y 2,5 () (), Oype,s (y) (K))]ds.
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Then

|05pe1(y) (B, k)| < CﬁL[(l + 10 s (™) 10y es (W) (W] |0y e, () (B)]
+ 162006 (y) (h, k)[]ds

< Cet(L + |y )t |h |k] + Ce j 120e4(y) (. ).

Then the Gronwall lemma allows to conclude. The proof is similar for the third
derivative.
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