
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Chapitre de livre 1987 Published version Open Access

This is the published version of the publication, made available in accordance with the publisher’s policy.

An Attempt at Formal Specifications For a Non-Trivial Object : Work in

Progress

Fiume, Eugène Lucas

How to cite

FIUME, Eugène Lucas. An Attempt at Formal Specifications For a Non-Trivial Object : Work in Progress.

In: Objects and things = Objets et machins. Tsichritzis, Dionysios (Ed.). Genève : Centre universitaire

d’informatique, 1987. p. 149–164.

This publication URL: https://archive-ouverte.unige.ch/unige:158605

© The author(s). This work is licensed under a Creative Commons Attribution (CC BY)

https://creativecommons.org/licenses/by/4.0

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:158605
https://creativecommons.org/licenses/by/4.0

An Attempt at Formal Specifications

For a Non-Trivial Object

Work in Progress
E. Fiume

Abstract
Formal specification bas long been advocated but rarely practised. When
practised, it is often applied to simple, already well understood objects such
as stacks and other basic data types. This note begins to explore the issue of
formal specification within an object-oriented environment. We attempt to
specify formally the object Bitmap. This is a particularly interesting choice,
for bitmaps are mutable (.i.e., they change in time), they can have a perceived
effect on images, and their semantics is highly dependent on context. Bitmaps
are therefore in many ways worst-case problems for formal specification.

Resume
Les specifications formelles, dont l'emploi est prone depuis longtemps, ont iite
en fait rarement mises en pratique - sauf pour des objets deja bien connua,
comme les queues ou d'autres types de donnees de elementaires. Dans cet
atticle, nous abordons le problcme des specifications formelles dans le cadre
d'un environoement orienM objet, et nous teotons d'appliquer cette demarche
au cas de l'objet bitmap. n s'agit la d'un choix particulierement intiiressant,
car ce genre d 'objet se modifie au cours du temps, en entrainant des effets
visibles sur des images, et que la semantique qu'on lui associe depend forte-
ment du contexte dans lequel ii est utilise. Le b1·imap constitue done a bien
des egatds un cas limite pour !'application de specifications forrnelles.

1 Introduction

It is hardly necessary to sing the praises of formal specification, praises which
have already been so well sung by others. It is, however, necessary to put one's
money where one's mouth is, because, too often, formal specification techniques
have been appl.ied to all but trivial objects and notions that are already entirely
and intuitively 'understood. Object-oriented sys·tems are badly in need of formal
specification tools, for issues such. as object/type equivalence and containment,
and the semantics of object operations, require some kind of formal modelling to
define satisfactorily.

A specification is a promise of performance. It tells potential users of an object
what behaviour to expect, and it tells an object implementor what behaviour must
be reali.sed. If a certain behaviour is not specified, a user cannot assume it, and

150 An Attempt at Formal Specifications For a Non-Trivial Object

an implemento.r does not have to implement it. It is always difficult to determine
exactly what should be specified, and to what degree of detail. For example, in
the speci6caLions below, several "low-level» notions will be specilfod, such as pixel
shapes, and arrangements of pixels in an image. This is because I feel these notions
are crucial to understanding how a bitmap will be visualised on a display screen. I
do not think _it is crucial to specify, on the other hand, that suitable display screens
must use 60Hz electrical current, that a certain class of phosphors for pixels must
be used, what the lighting characteristics of the room in which the screen is to be
found should be, or what colour of clothing the viewers should be wearing. AU of
these fact.ors can affect the perceived meaning of an image, but these issues go far
beyond semantics.

Deci<ling what should go into a "semantics" is far less clear f.!\an the literature
would have one believe. The standard view is that a semantic:; should capture
the "essentialn characteristics of an object that must be true of all implemen-
tations. For mathematical objects lilte the integers and the reals, the essential
characteristics are usually clear. For other kinds of objects (the majority of those
used in computing systems), deciding what is essential amounts to a value judge-
ment. Even with ma.thematical objects problems arise, because there can be no
implementation of the real numbers and operations on them. However, with some
refinement of their definition, it might be possible to strike a comp:romise by spec-
ifying a "dynamic pr_ecision number" which retains many of the useful properties
of real numbers. This approach suggests the stra.tegy that I will use in this paper
to define interesting objects.

This paper attempts to specify formally the object Bitmap anci its relatiomhip
to anotlrnr object, Image. It is a nontrivial undertaking, because there are many
properties assumed about bitmaps (and images) which are actually very hard to
dcccribe. We lake these for granted because we see them in operation, or so we
think. What of course we really see is an indirect effect of one or more bitmaps as
they lnte.ract within an image. What if, for example, the same bitmap is mapped
to two image displays, PAch having a different pix.,J shape? Presumably, we think
the bitmap is the same, but different image characteristics have caused it to look
different. There are many other kinds of interactions between between a bi tmap
and an image:

• a bitmap's contents may be ddined by "what is aiready on the screen".
Alternatively, the screen (i.e., an image) may be defined by what is in a
bitmap.

• a bitmap may be moved across the image. What, then happens to that part
of the image that was vacated by the bi tmap? What happe:lS to the part of
the bitmap which in its new position, overlaps with tht: old? What happens
to all the other bitmaps which may overlap with it?

• a bitmap may be copied to another bitmap, or instead its contents may be

E. Fiume 151

copied into the image. How are these different?

• a bitmap may be bound to one image, and then subsequently moved to
another image.

• one bitmap may cover part of another bitmap. We therefore have to consider
the problem of visibility or priority of bitmaps as they appear within images.

It is correct to model a bitmap as an abstract data type or object. However,
when one provides a list of operations that one can perform on a bitmap, one
should provide an explanation of what they do. Given the above partial list of
interactions that a bitmap may have with its environment, it is difficuJt to give the
explanation in an informal language. I shall try to do it using the formal language
of mathematics and sets. There are reasons why I will not use an "established"
formal specification language such as the algebraic technique jGuHo78], or VDM
(Jone80], or the operational approach [Parn72]:

• I am more familiar with mathematics and sets than with t hese techniques.
Moreover, I am more confident that mathematics is sufficient to describe the
profusion of possible object behaviours. There would. be something quite
wrong if it were not. I am less confident that a more syntactically restrictive
language is sufficient.

• The notation is more flexible, more powerful (albeit possibly less construc-
tive), and prettier.

• Bitmaps, li~e most objects in a system, are mutable, which is to say that their
values change over time. I wish to model such behaviour directly, which
mean.s I need access to an abstract state (VDM and various operational
techniques actually can accommodate this requirement fairly well) .

• Bitmaps interact with their environment, namely with other bitmaps and
images. I would like to model such interactions directly without resorting to
describi.ng them as hidden or implicit side-effects. One well-known attempt
to specify graphical data types using the algebraic tecnnique was forced to
use side-effects to describe the effect of graphic objects on images (Ma'll82].
I would argue that this hides the real meaning of a type in the side-effect.

• Since my theorems and proofs will be written in mathematics, I wish my
specifications to be written likewise.

The problem with using mathematics to specify objects is that one has to invent
new notation on a. regular basis. In the case of bitmaps, I have already done some
o(t he legwork in some previous research [Fium86,87J. The next section develops
a mat hematical structure for bitmaps and images. In the subsequent section, we

152 An Attempt at Formal Specifications For a Non-Trivial Object

apply thls forma.lism to the rigorous specification of the object Bitmap. Later
we define formally the notion of Image objects, and then consider the problem of
handling overlapping bitmaps on images.

2 The mathematical structure of bitmaps and
hnages

Many of the notions to follow will be familiar, but the mathematics will require
some acclimatisation. The important thing lo get out of this is that we distinguish
between the notions of a bitmap and an image.

Informally, we shall view a bitmap B as a pair (S, T), where S is a rectangle
denoting the extent of B, and I is a partial function prescribing an intensity value
of 0 or 1 for every (integral) point in B. We shall deal exclw;ively with rectangular
bit-maps in this paper; it is a simple matter to extend the disc•JSs.ion to bit-maps
of arbitrary shape [Fium86J.

Definition 1 A pixel Pisa tu.pie (Sp,lp), where Sp ~ R 2 is the extent of Pin
the x-y plane (i.e. the screen plane}, and Ip E {O, 1} is its colour.

Definition 2 A rectangular index set, Rect~;~, denotes the set of all integral
points within a rectangle with bottom-left corner (x1 , y1) and top-right corner (L2, Y2).

That is,
Rect~;~; =df {(i,j): i,j E Z, X1 Si< X2,Y1 S j S Y2}.

The collection of all such rectangular sets is defined as

Rcct =df {Rect~; ~~ : X1, x2, Y1> Y2 E Z}

An image is composed of a collection of pixels having three essential charac-
teristics: the arrange:ment of the pixels, their shape, and theiI intensity. We shall
assume the intensity space for all pixels is {O, I}. Moreover, all pixels within an
image must be of the same shape defined by a prototypical pixel shape or prototile
P, and the arrangement and s'hape of the pixels must be such that they form a
tiling of the area occupied in R 2 by the image.

Definition 3 A pixel prototile P is a finite subset of R 2 with which it is possible
to tile R 2 . That is, there e:r;ists a pixel arrangement T = { O'.ijP : (i, j) E: Z2} given
tranf ormations a;; such that

R2 = LJ P,
PET

and the interiors of all P E T are disjoint.1 We shall call sur.h a set T a pixel
tiling over P.

: This is not required, uut it makes the notation simpler.

E. Fiume 153

Example 1 Pixel shapes on bit-mapped screens are usually thought of as
rectangles occupying unit area. The most common pixel tiling is based on the unit
square centred at the origin. That is,

1 1 1 1 u =df [-2· 2l x (-2· 2l·

The unit-square tiling induced by prototile U, denoted T .,, has the following
form:

Tu =df {T;;U: (i,i) E Z2
},

for translations T;;(x, y) =df (x + i, y + J).

Definition 4 Let T be a pixel tiling over prototile P, T = {a;;P : (i,J) E Z2}.
An image Rn,,., of resolution (n 1 + 1) x (n2 + 1) over T is of the form

Rn,n, = {P;; = (S;;,l;j,a;J,P): (i,J) E Rect~~n,.Iii E {0,1},S;; = a;;P}.

Remark 1 This definition is redundant. Essentially, S;; is simply a name for
a ;1P . The definition has been written this way to allow for a convenient definition
later on for the "abstract staten of image obiects. Observe that it is easy to extend
the notion of an image to allow for several pixel prototiles to co-e:r;ist within the
same image.

Definition 5 An image space of resolution (n1 +1) x (n2 +1), denoted by Rn,nv
is the set of all images Rn, n 2 as defined above.

Remark 2 The cardinality of Rn,n, is z(ni+l)(n2+1).

Definition 6 A bit-map with integral bottom-left corner (xi. y1) and top-right cor-
ner (x2, Y2) is of the form

B:;~; =df (S,I); S =df Rect:;~; I: Z2 -+ {0,1,w},

such that I(i, J) E {0,1} 1j (i,J) E S and I(i.J) = w outside S (i.e., Z2 - S). S
denotes the domain of pixels represen.ted in the bit-map. l(i,J) defines the intensity
of each pixel (i, JJ in B. Pixels outside B (or S} are given an "undefined" intensity
w.

Notice that a bit-map is tied neither to the resolution of a display image, nor
to a particular pixel shape. To summarise, a bit-map is a function with domain
Z2 which is {O, 1}-valued over a specific rectangular subset of Z2 , and constantly
w-valued outside that rectangle.

154 An Attempt at Formal Specifications For a Non-Trivial Object

Definition 7 Let the set of all bit-maps B:~~~ for a specific (x1,Y1) and (x2,Y2)
be denoted by B;; t;. The set B of all such B;; ~; will be called the bit-map space,
and is defined as

B - u B"'lYl -dJ :r:2y2•
x1 ,z2,Y1 ,y2 ez

If a bit-map B = (S, I) is such that x1 > x2 or y1 > y2 , then its extent S ='I and
B is called an empty bit-map.

Lastly, '/Ve require sequences or products of bit-maps such as B 2 = B x B.

Definition 8 The bit-map product space, denoted by B", is the r~flexive-transitive
closure of products over B. That is,

00

B* =df LJ Bi.
i=O

3 Non-Interacting Bitmaps

We begin our exploration of the semantics of bitmap objects by first considering
them in isolation. That is, we shall define an object Bitmap. The formal model
of an object defines the operations one is allowed to perform on the object in terms
of their effect on an nhstMct object representation. In the case of simple bitmaps,
their abstract represent ation ls exactly the set B. The operations we defi.ne for the
object only depend on the r.ummt value of the bitmap, aml do not (yet) aftect the
environment. My notation for defining object operations is my own, though it is
fairly similar to most operation-based or met.hod-based object defi.nition languages
like Hybrid or Small talk.

I shall assume that basic types such as Z" and R" are defined. In any case,
their semantics is their standard number-theoretic one. When parentheses appear
around a set in the domain of a function, then the instance of that set is assumed to
be i.mplicitly named. When parentheses appear around an element of the range of a
funct.ion, then that mt.?ans that the d1a.:r.ge is made to the .same object. Otherwise,
a different object is denoted. For example, consider the specifications

+immut: (R) X R--+ R (infix)

+mut : (R) X R--+ (R) (infix)

within the spP.cification for the object R, and let A and B be of type R. Then
A +immu• B denotes a new object in R, whereas A +,,.., B denotes a chang1: t0 A.
Obviously mut and immut stand for mutable and immutable, respectively.

E. Fiume

Syntax of Object Operations.
object schema Bitmap

Object Operations
New : Z2 x Z2 --> (B)
Zero: (B) --> (B)
One: (B)--> (B)
Comp: (B) -t (B)
/\ : (B) x B -+ B
v: (B) x B -+ B
.--: (B) x B -t {B)

{infix)
(infix)

I : (B) x Rect -+ B {infix)
Overlay : {B) x B2 -+ B
Get: (B) x Z1 --> {0,1,w}
Put: (B) x Z2 x {O, 1}-+ (B)

155

This ends the specification of the syntax of the object. We can quibble about
exactly the operations such an object should have and what the semantics of each
operation should be. Hopefully it will be dear how to customise this definit ion
as desired. Most object-oriented languages stop here. That is, there is no way
of semantically distinguishing among the operations Zero, One, and Comp, since
each operation has the same syntax, and there is no specification of their semantics.

Semantics of Object Operations.
Suppose A,B : Bitmap. That is, A and Bare instances of Bitmap, and their
abstract representation is A= (SA,IA), B = (SB,IB) E B.

Create a new bitmap. This operation creates a new bitmap of the desired
dimensions. Its semantics is:

A.N ew(z1, yi)(z2, Y2) =df (SA, IA),

SA = Rect~~ ~~.
V(i,j) E SA: IA(i,j) = 0.

Zero/One a bitmap. The operation Zero initialises an existing bitmap to all
zeros within its extent. The operation One likewise sets a bitmap to all ones.

A.Zero =df (SA, lo), where

. . { 0 if (i,J) E SA
lo(i,3) =df w if (i,j) E Z2 - SA

A.One =df (SA,11), where

. . { 1 if (i, j) E SA
l1(z,J) =df w if (i,j) E Z2 - SA

156 An Attempt at Formal Specifications For a Non-Trivial Object

Complement a bitmap. Comp complements an existing bitmap within its ex-
tent.

A.Comp =df (SA,I;i) where

. { 1- IA(i,J') if (i,J') E SA
IA(i,J) =df w if (i,j) E Z2 - SA

Bitmap assignment. Bitmap assignment is not dissimilar to assignment for
other data types.

B <---A =df (SB,IB), where SB =df SA and IB =df IA·
Clipping. The operation "!" is the well known clipping or restriction operation

from computer graphics. We assume the regions of restriction aTe also rectangles,
although it is straightforward to extend this to more general shapt~s. Let RE Rect.

Then AIR =dt (S, I) where

s =dJ SAn R

and
I(i, j) =dt { JA(i, JJ if (i,J') E S

w otherwise

Overlayed bitmaps. It is often convenient to combine two bitmaps with rP.spect
to a "control" bitmap. Let A= (SAJA), B = (SBJB), C = (Sc,Ic) E B.

Overlay(A, B, C) =dt (S A,I~) where SR C Sa, a.nd

, . . { I8(i,J) if Ic(i,J) = 1
IA(i,J) =df IA(i,J') otherwise

Dependiug on the intensity of bitmap C at (i, J), the intensity of the new
bitmap takes on the value of I8 or IA at that point. If A, B are of the same
dimensions, then

Overlay(A,B,Zero(C +-- B)) =A,

Overlay(.A.,B,One(C .r-- B)) = B,

Logical bitmap operations. Logical bitmap operations are almost trivial. We
assume the standard numeric interpretation of 0 denoting false and 1 denoting
true. Also, we define

a®w=w®a=w®w=w

for any boolean function 181 and boolean value a. Then

A/\ B =4 (SA n sB,IA /\ IB)

E. Fiume 157

A v B =d1 (SA n sB,IA v IB)

0 bserve that thls definition is correct because the inte.rsection of two recta.ngles (SA
and SB in this case) is either itself a rectangle, or empty (a degenerate rectangle).
Observe, moreover, that the bitmaps do not have to be aJjgned.

Get and Put I/O Operations. The bitmap I/O operations are also straightfor-
ward. Let b E {O, 1}. Then

where

A.Get(i,3) =df IA(i,j)

A.Put(i,j) b =df (SA,IA 1)

I () {
b if(x,y) = (i,j)

A' X =d · ,y 'f IA(x,y) otherwise

Note that the value returned by get can be "undefined".

This completes the formal specification.

The object Bitmap is a fairly simple thing. Even so, we are now capable of
reasoning about instances of this object. Consider the following propositions. I
leave their proofs as exercises which are direct applications of the above semantics,
requiring only a smidgen of set theory.

Proposition 1 Let A, B : Bitmap. Then

(A v B).Comp= A.Comp/\ B.Comp.

Proposition 2 Let A, B : Bitmap and let R E Rect. Then

(A v B)IR =AIR v B IR,

(A/\ B)IR =AIR /\ B JR.

Proposition 3 Let A : Bitmap. Then

(A.Comp).Comp = A.

Actually, it is fairly easy to show that each class of Bitmaps restricted to
Rect~ ~ · for any X1, x2 , Yi. y2 E Z, together with the the operations Zero, One,
Comp, 11, and v, forms a boolean algebra. This means, among other things, that
/\ , V a.re associative, commutative, and distributive. Observe as well that restric-
tion distributes over these operations, which means that in practice it is best to
perform the restriction operations first to decrease the size of the rectangles with
which one is working.

158 An Attempt at Formal Specifications For a Non-Trivial Object

There is a very important point to observe about the way the operations above
were defined. Typically, operations are defined in terms of one another wherever
possible. This is especially true of specifications in the algebraic approach, and is
normally a praiseworthy thing to ·do, because it helps one to determine the set of
operations that are in some sense "minimal". For example, Comp could be defined
in terms of a (large) set of Get and Put operations. However, I have intentionally
a.voided doing this, because for an intuitive reason I do not believe they actually
are equivalent. The point is that we intuitively feel that bitmap operations cost
less than the coresponding set of bitwise operations. This is borne out in practice.
For example, many bitmapped workstations contain special support to speed up
bitmap operations. It remains, therefore, to reflect this notion of cost somehow
in the semantics. I leave this very interesting notion of the formalisation of cost
semantics to future research.

Undoubtedly, we have defined a nice class of algebraic objects, but we still
do not have a mechanism for visualising them. They are analogous to the idea
of a "memory pixrect" in the Sun jargon. In fact, one's first Impression is that
indeed we afready have a visualisation. But we know better. Bitmaps are in some
sense "uninterpreted" images. The next section shows how to give them a visual
interpretation.

4 Bitmaps Interacting with Images

An image is a model for a display screen. As such, it i:i part vf the "systemn. The
formalism delined earlier affords us great flexibility in modeBing a wide variety or
screens with various pixel arrangements and resolnt.ions. 1t io certainly rnucli richer
thau any specification effort of which I am aware.2 As before, we use the formal
model of images (Rn, n,) as an abstract representation for the object Image.

We need a formal definition for what kind of sh:i.pes a pixel can take on. This is
difficult to do. For the purposes of this paper, let us define a pixel prototile as any
closed, hole-less, polygonal region in R 2 which can be used to tile the plane. We
shal l call the set of all such prototiles P. The set of shapes at our disposal includes
isoceles triangles, rectangles, and regular hexagons, as well as other more bizarre
shapes. In the semantics below 1 I shall refer to .elements of P set theoretically. An
iwpiementation will have to de6ne a more constructive representation, such as a
polygon edge list.

The abstract state of an image will include the pixel shape, the resolution of

2This is both a blessing and a curse, in that increased understanding may also 'equire knowing
a larger set of details. However, if the specification is written carefully, it might be possible to
present tl1e details only to those that are interested . Omitting them entirely ran be dangerous.
Recall that a specification is a promise of performance: if it isn't written down (somewhere), then
it cannot be assumed.

E. Fiume 159

the image, t .he arrangement of pixels in the image (i.e., transformations of the
pixel prototlle), and the intensity of each pixel.

Syntax of Object Operations.
object schema Image

Object Operations
Syntax

Resolution: (Rn,n,) -+ Z2

PixelShape: (Rn1 n 2)-+ P
Get: (Rn, n2) x R 2 -+ {0, 1, w}
Put: (R..,n,) x Z2 x {0,1}-+ (R,.,n,)
GetBitmap: (R,.,,,.,) x Rect -+ B
PutBitmap: (Rn1 n2) X B-+ (Rn1n2)

MoveBitmap: (Rn,n,) x Bx Z2 -+ (Rn,n2 x B)
CopyBitmap: (Rn,n2) X BX Z2-+ (Rn1 n2) X B

Semantics of Object Operations.
Let Im: Image, with abstract Iepresentation Im = {(S;j,l;;,a;;,P) : (i,J) E
Rect~~ "'} E Rn1n2 • We assume that each S;; = a ;;P is an transformed instance of
pixel piototile P E P. Let A : Bitmap, A= (S,i, I ,1) E B.

Image Resolution and Pixel Shape. Rendering algorithms need to know the
resolution of the image display and the shape of the basic pixel prototype.

Im.Resolution =df (n1 + 1, n2 + 1)

Im.PixelShape =df P

Pixel I/O Operations. The pixel I/ 0 operations are similar to those for bitmaps.
However, observe that the Get operation is defined over R 2 rather than Z2•

AG () _ { I;; if (x,y) ES;; for some (S;;,I;;) E Jm
· et x, y -df w otherwise

A.Put(i,j) b =df Im' where

Im' =df { (Im - {(S;i,l;i)}) U {(S;i,b)}
Im

if 0 S i S no, 0 S j S ni
otherwise

Bitmap I/O Operations. Let R E Rect, Im E Rn, n2 •

Im.GetBitmapR =a1 (S,I) E B such that

S =df Rn Rect~~,.2
and

{
Im.l;j if (i,j) ES

I(i,J) =df w otherwise

160 An Attempt at Formal Specifications For a Non-Trivial Object

lm.PutBitmapA =df Im' E R,.,n2 where

{
Im.I;; if (i,j) ~SA

lm'.I;; =df IA(i,J") otherwise

and
V(i,j) E Rect~~ .. 2 : Im'.S;; = Im.S;;.

Move/Copy a Bitmap. This is where the fun really starts. Move and copy
bitmap operations are actually quite subtle. We first deal with the move operation.
This operation is defined only if the part of the bitmap to be moved has an intensity
function that is consistent with the image intensity over the region of the image it
covers. 3 That is,

PreconditionMove = Im.GetBitmapSA = AIRect::; n,>

where A= (SA,IA), and more specifically SA= Rect~~t~·
If this precondition holds, then

Im.MoveBitmapA(x,y) =df (Im',A').

This asserts that the lower-·left corner of bitmap A on image Im is to be moved
to position (x, y) in Im. The origin of A is offset accordingly, and the intensity
function in Im is adjusted to reflect the new position of A in the image.

The formal semantics follows. First we define the changes to the bitmap.

A' =df (SA.JA•).

SA' =df Rect~; t~, such that
X3 = X

y3= y

X4 = X + (x2 - X1)

Y4 = Y + (Y2 - Y1)·

IA·(i,j) =dj { IA(i - x + XJ, j- y + yi) if (i,J') E SA'
w otherwise

Now we define the changes to the image.

V(i,j) E Rect~~n,: lm'.S;; =df lm.S;j,
and

{

Im.I;; if (i,i) (/.SAU SA'
Im'.!;; =df 0 if (i,j) E SA/\ (i,J") ~SA'

IA•(i,j) if (i,j) E SA'
3 Thie can only happen if someone changes the bitmap without changing the image.

E. Fiume 161

Some explanation is in order. As was said earlier, MoveBitmap transfers a
bitmap with origi.n (xi,y1) to a bitmap with new origin (x,y}. The semantics of
moving A to A' should be dear. The image semantics is slight.ly tricky. The first
line in the definition of lm'.11; states that the unaffected portion of the image
remains unchanged. The region of the image left vacant by moving the bitmap is
defined to have zero intensity. This is specified in the second line of the equation.
The third li.ne gives the intensity of the bitmap in its new location. Notice that
if a bitmap is moved off-image, the effect is to set to zero the region it formerly
occupied. Notice as well that when the old and new positions of the bitmap
overlap, only that portion of the image formerly occupied by A but not occupied
by A' is zeroed.

Now it is very simple to deal with copying bitmaps. The only differences are
that a. new bitmap is created (see the syntax above), and that the portion of the
image occupied by the original bitmap is left untouched.

Im.CopyBitmapA(x,y) =df (Im', A'). The bitmap A' =df (SA',lA•) is exactly
as in the semantics for MoveBitmap.

and

V'(i,j) E Rect~? n 2 : Im'.S;i =df Im.S;;.

{

Im.I;i
Im'.I;; =df Im.I;;

IA1(i,J)

if (i,J) rf, SAU SA'
if (i,J) E SA/\ (i,j) rf. SA'
if (i,J) E SA'

This completes the formal specification of Image.

There still exist some simplifications in the above specifications, but we are
much closer to the "true" meaning of bitmaps and images. We haven't yet pro-
vided a semantics of image transformations such as image rotations, reflections,
etc. These are interesting, because it turns out that the only "faithful" image
transformations are those that are in the symmetry group of. the underlying pixel
prototile !Fium87]. Furthe.r discussion of this somewhat technica.l result is beyond
the scope of this paper, but it is important to see that formalising notions such as
images and bitmaps allows one to prove non-trivial properties of objects.

As our last exercise, we shall modify the definition of Image so that it handles
overlapping bitma.ps. It is easy to extend this definition to handle the semantics
of the so-called covered window paradigm. We shall define a new image object.
This new object, called Coveredimage, has on.ly three more operatiol).S, but
the existing operations require slightly different semantics to implement a priority
visibility scheme. Rather than invoke some kind of inheritance mechanism, the
entire object definition is restated.

162 An Attempt at Formal Specifications For a Non-Trivial Object

Syntax of Object Operations.
object schema Coveredlmage

Object Operations (inherited from hnage)
Syntax

Resolution: (Rn,n2)---+ Z2

PixelShape : (R"1 n 2) ---+ P
Get: (Rn11.,,) X R 2

-1 {0,1, w}
Put: {R,.,n2) x Z2 x {0,1} _, (R,., ",)
GetBitmap: (R~ 1 ,.,) x Rect ---+ B
PutBitmap: (.Rn1n2) X B ---+ (R,. , 01)

MoveBitrnap: (R,.,n,) x Bx Z2 ---+ (Rn,n, x B)
CopyBitma:p: (Rn1n2) X BX Z2---+ (Rn1n2) X B

Object Operations (new operations)
Syntax

Top: (Rr,1 n2) X B---+ {Rn1 n2)

Bottom : (R,.1 n 2) X B ---+ (Rn, n,)
RemoveBitmap: (Rn1 n,l X B-> (R,.1 ,.2 }

Semantics of Object Operations.
We first require some auxiHary notations. B will denote the set of 'bitmaps cur-
rently associated wi.th the image. The semantics of PutBitmap will be changed to
add elements to 8, and the operation RemoveBitmap naturally removes elements
from B. Ini t ially, B =tf. For each B E 8, Pra denotes the priority or depth of B. A
priority of 0 means the entire bitmap is visible. Priorities greater than 0 mean that
parts of the bitmap may be obscured. More precisely, we define a Pr : 8 _, N,
and for notationet.I convenience we let Prs stand for Pr(B) . As currently defined,
'this function is not directly accessible to a user of the Covered.Image object , but
is instead modified indirectly using the operations Top, Bottom, P'UtBitmap and
RemoveBi tmap. I am not sure if this is entirely r~asonable.

As before, let Im: Image, with abstract representation Im= {(Si;, Ii;, a i.i• P) :
(i,j) E Rect~? n 2 } E Rn1 n2 •

The following predicate4 must be true at the completion of each object opera-
tion:

Postcondition =df V(i,j) E Rect~? n2 :

I I .. ={O ifV'A=(S,I)EB:(i,j)rf_S
m. '3 I 8 (i,J) otherwise, where Pr A= rninAEB{PrA}·

•11 r.all this predicate a postcondition. One could argue that this is an invariant. I ha Ye chosen the
former na1,1e because the predicate is allowed to go false during the execution an object oper:...tion,
but the predicate must be true after its completion.

E. Fiume 163

This predicate states that the intensity of each pixel in the image must re-
flect the intensity of a bitmap which overhips with that pixel, and which has the
lowest priority value. If no bitmap overlaps with a given pixel, it is set to the
"background" colour of 0. There is nothing "wrong" with introducing auxiliary
predicates and variables to specify something. They are often necessary in other
areas of specification. For example, Howard motivates the use of history variables
to .represent past states of monitors [Howa76J. The guideline to use is that when
an important aspect of the behaviour of an object would be missing from a formal
specification if auxiliary objects are not used, then by all means introduce them
formally. Otherwise, the spectre of "semantics by side-effect" would resurface.

Now we can give the semantics of the new operations.

Move a bitmap to the top. This operation makes a bitmap entirely visible.

Im.TopB =dt B E B * PrB +- 0 /\Postcondition.

Observe that the operation is only defined if B E B. An implementor may wish
to give an error otherwise.

Move a bitmap to the bottom. This operation places a bitmap below all other
bitmaps in the image.

Im.BottomB =dt BE B * Pr8 +- m /\Postcondition,

where
m =df 1 + maxPrA. AEB

Display a bitmap on the image. The I/O semantics of PutBitmap are as before.
What differs is the handling of the auxiliary specifications. In particular,
Im.PutBitmapA =clJ Im' E R"'"' where Im' is as above, and

\fA E B : A# B * Pr A+- Pr A+ 1,

8 +- B u {B},

PrB +- 0.

Observe that the I/O semantics of PutBitmap ensure tha·t the Postcondition
is true, since a new bitmap is always given priority zero, and since relative priorities
among bitmaps are not otherwise upset.

Remove a bitmap from the image. Remove makes a bitmap invisible and re-
moves all record of its existence.

Im.Remove B =dt B E B * 8 +- B - {B} /\ PrB +- w /\Postcondition.

This completes the specification of Coveredlmage.

164 REFERENCES

5 Conclusions

There is nothing magic about formal specifications. If desired, they can be viewed
as comments written using a strange typefont. However, they are i'ntended to
communicate the essential properties of an object. An implementor can take the
specifications and attempt to em,body them in terms of real data structures and
procedures. The formal model provides a basis for proving correctness, or for
proving other interesting properties of the object, such as the equivalence of one
instance of an object with another.

One particularly interesting direction of rese.arch was suggested: that of devel-
oping useful measures of the cost of an operation. Surely that is often a useful
piece of information to know, for it would permit (automatic?) optimisation of
the use of object operations.

The specification of bitmaps and images in this paper are just examples. In
some ways they are difficult to specify, in that Lhey are mutable objects and in
that the semantics of their visualisation is nontrivial. However, these objects are
still passive thlngs. l will come back some day to specify active objects. To do
this requires new not?-tion.

References

[Fium86] Fiume, E., A Mathematical Semantics and Theory of Raster Graphics,
Ph.D. Thesis, Technical Report CSRI-185, Department of Computer
Science, University of Toronto, Toronto, Canada, M5S 1A4.

[Fium87] Fiume, E., "Bit-mapped graphics: a semantics and theory", to ap-
pear, Computers and Graphics 11, 2 (April 1987).

[GuHo78] Guttag, J.V., and J.J. Horning, "The algebraic specification of aL-
stract data types", Acta Informatica tn, 1 (Jan. 1978), 27-52.

[Howa76] Howard, J.H., "Proving monitors", Commun. ACM 19, 5(May1976),
273-279.

[Jone80) Jones, C.B., Software Det•e!apmcnt: A Rigurous Approach, Prentice-
Hall, Englewood Cliffs, NJ, 1980.

[Mall82] Mallgren, W.R., "Formal specification of graphic data types'', ACM
Transactions on Programming Languages and Systems 4, 4 (Oct.
1982), 687-710.

[Parn72) Parnas, D.L., "A technique for software specification with examples",
Commun. ACM 15, 5 (May 1972), 330-336.

