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Abstract

Quantum physical phenomena are important not only from a funda-
mental point of view allowing to probe the limits of our understanding.
Their application in modern technologies provides us with uniquely pre-
cise tools and has great potential for quantum information science. In this
context, quantum key distribution, which allows one to exchange crypto-
graphic keys in a fundamentally secure way, is just one of the examples
how quantum phenomena could change our everyday life. The future im-
petuous breakthrough in this direction is attributed to the scalable quantum
technologies which will allow one to build quantum information network
and to realize quantum computing over long (potentially intercontinental)
distances.

The scalability condition can be efficiently achieved using light as the
carrier to distribute quantum information between two distant points. How-
ever, finite transmission of modern communication channels (optical fibers)
makes the probability of a single photon to reach the end of the fiber ex-
ponentially low. This fact imposes strong restrictions on the possible dis-
tances (few hundreds kilometres) and enforces to develop novel techniques
to overcome this limitation. One solution is to realize a quantum repeater,
in analogy to the classical one, which is based on quantum teleportation
phenomena and entanglement swapping techniques.

In this context, optical quantum memories became one of the essential
building blocks necessary for future practical implementation of quantum
repeaters. Such a quantum memory allows coupling between flying qubits
(carried by photons) and stationary qubits which can store, process and re-
lease quantum information. One of the best candidates for this purpose is
a light-matter interface consisting of large atomic ensembles which can be
optically manipulated and can preserve quantum information. Rare-earth
ion-doped crystals are one of the examples of such an interface. Particularly,
these materials proved to be a great tool to transfer quantum information
from single-photon carrier to the atomic excitation and back without loss
of coherence. Mapping photons to the atomic frequency combs prepared
in these materials is also compatible with multiplexing techniques greatly
enhancing the overall efficiency of a quantum repeater.

The present thesis includes a series of experiments exploring the poten-
tial of using rare-earth ion-doped crystals as a light-matter quantum inter-
face using different quantum states of light as a probe resource. We start
with the realization of an elementary quantum repeater block, implement-
ing quantum teleportation of a polarization qubit into a solid-state quantum
memory based on a yttrium-orthosilicate crystal doped with neodymium
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ions. The storage of an hyperentangled (entangled in more than one de-
gree of freedom) state of light compatible with long-distance quantum com-
munication was demonstrated to show the potential of using this quan-
tum memory for quantum purification techniques. To explore the tempo-
ral multiplexing capability of atomic frequency combs in atomic ensembles
we performed temporal multimode storage of multi-photon entangled state
of light. Such a temporal multimode capacity together with the developed
novel theoretical techniques allowed us to show the storage of more than
one bit of entanglement (ebit) using multi-photon and multi-dimensional
entangled photon states.

In addition, we demonstrate the potential of our quantum memory to
test the validity of quantum theory at macroscopic scales. For this purpose,
we generated a quantum state that involves the superposition of two macro-
scopically distinguishable components entangled with a single photon. The
observed quantum correlations stemmed from a light-matter micro-macro
entangled state where the micro part included a single photon, while the
macro part was composed of several tens of atomic excitations. This ap-
proach based on quantum memory techniques can be used in other systems
to expand the size of quantum superpositions in matter.

Together, all these experiments demonstrate the universality of solid-
state light-matter quantum interfaces based on rare-earth ion-doped crystal
and atomic frequency combs not only for quantum communication applica-
tions but also their strong potential for exploring fundamental questions of
modern quantum physics.
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Résumé

Les phénomènes physiques quantiques sont importants d’un point de
vue fondamental car ils nous permettant de sonder les limites de notre com-
préhension. Leur application dans les technologies modernes nous four-
nit des outils précis et uniques avec un grand potentiel pour l’information
quantique. Dans ce contexte, la distribution quantique de clés, permet-
tant d’échanger de clés cryptographiques de manière fondamentalement
sécurisée, est juste un des exemples de comment les phénomènes quan-
tiques pourraient changer notre vie de tous les jours. Les progrès dans cette
direction sont attribués aux technologies quantiques extensibles qui perme-
ttront de construire des réseaux d’information quantique et de réaliser le
calcul quantique sur de longues distances (potentiellement intercontinen-
tales).

La condition d’échelle variable peut être efficacement réalisé en util-
isant la lumière comme support pour distribuer l’information quantique
entre deux points éloignés. Cependant, la transmission finie des canaux
de communication modernes (fibres optiques) implique que la probabilité
qu’un photon unique atteigne l’extrémité de la fibre devient exponentielle-
ment faible. Ce fait impose de fortes restrictions sur les distances possibles
(quelques centaines de kilométres) et implique la nécessité de développer de
nouvelles techniques pour surmonter cette limitation. Une solution consiste
à réaliser un répéteur quantique, de manière analogue à la communication
classique, qui est basé sur des phénomènes de téléportation quantique et
des techniques de permutation d’intrication.

Dans ce contexte, les mémoires quantiques optiques sont devenus l’un
des éléments essentiels nécessaires à la mise en œuvre pratique des répé-
teurs quantiques. Une telle mémoire quantique permet le couplage entre les
qubits volants (portés par les photons) et qubits stationnaires qui peuvent
stocker, traiter et libérer l’information quantique. L’un des meilleurs can-
didats dans ce but sont les interfaces lumière-matière constitués de grands
ensembles atomiques qui peuvent être optiquement manipulés et peuvent
préserver l’information quantique. Les cristaux dopés aux ions terre rare
sont un exemple possible d’une telle interface. En particulier, ces matériaux
se sont avérés un excellent outil pour transférer l’information quantique
d’un photon unique à une excitation atomique et vice-versa sans perte de
cohérence. Le couplage des photons aux peignes de fréquence atomique
préparés dans ces matériaux est également compatible avec des techniques
de multiplexage qui améliore grandement l’efficacité globale d’un répéteur
quantique.
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La présente thèse comprend une série d’expériences qui explorent la pos-
sibilité d’utiliser des cristaux dopés aux ions terre rare comme une interface
quantique lumière-matière en utilisant différents états quantiques de la lu-
mière comme une sonde. Nous commençons avec la réalisation d’un bloc
élémentaire de répéteur quantique, la mise en œuvre de la téléportation
quantique d’un qubit de polarisation dans une mémoire quantique dans
l’état solide basée sur un cristal d’yttrium-orthosilicate dopé avec des ions
néodyme. Le stockage d’un état hyper-intriqué (intriqué dans plus d’un de-
gré de liberté) de la lumière compatible avec communication quantique de
longue distance a été démontrée pour montrer la possibilité d’utiliser cette
mémoire quantique pour les techniques de purification quantique. Pour ex-
plorer la capacité de multiplexage temporel des peignes en fréquence dans
des ensembles atomiques nous avons effectués le stockage temporellement
multimode d’états intriqués avec plusieurs photons. Une telle capacité mul-
timode temporelle ainsi que des nouvelles techniques théoriques dévelop-
pées nous ont permis de montrer le stockage de plus d’un bit d’intrication
(ebit) en utilisant plusieurs photons et états de photons multidimension-
nellement intriqués.

En outre, nous démontrons le potentiel de notre mémoire quantique à
tester la validité de la théorie quantique à l’échelle macroscopique. Dans
ce but, nous avons généré un état quantique qui implique la superposi-
tion de deux composantes macroscopiques distinguables intriquées avec un
seul photon. Les corrélations quantiques observées provenaient d’un état
micro-macro, lumière-matière, intriqué où la partie micro désigne le photon
unique, tandis que la partie d’était macro composée de plusieurs dizaines
d’excitations atomiques. Cette approche basée sur les techniques de mé-
moire quantique peut être utilisée dans d’autres systémes pour augmenter
la taille des superpositions quantiques dans la matière.

Dans l’ensemble, toutes ces expériences démontrent l’universalité des
interfaces quantiques lumière-matière dans l’état solide à base des cristaux
dopés aux ions terre rare et des peignes atomique en fréquence non seule-
ment pour des applications de communication quantique, mais aussi pour
explorer les questions fondamentales de la physique quantique moderne.
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Introduction

Quantum information is one of the most intriguing modern fields of re-
search which gave rise to many new and attractive experimental and theo-
retical concepts. In the last decades it has become the source of revolution-
izing technologies and their great potential for applications in our everyday
life. The idea of using quantum mechanical concepts like entanglement and
superposition as resources to build a machine which could directly simulate
Nature became the foundation of modern technological innovations which
go far beyond this elegant idea. Nowadays, they are widely used as a re-
source to improve the existing information processing protocols.

The start-point is 1935, when Einstein, Podolsky and Rosen (EPR) ar-
gued that quantum mechanics was an incomplete theory (Einstein et al.
1935). Their so-called EPR-paradox was based on the basic assumption that
two systems cannot influence each other when they are not interacting (lo-
cality) which means that quantum mechanics is incomplete and that more
universal theory (with hidden variables) has to be formulated.

This paradox remained until John Bell in 1964 derived correlation in-
equalities (Bell 1964) that must be satisfied within all hidden variable the-
ories but can be violated in quantum mechanics. After, Clauser, Horne,
Shimony and Holt proposed an experimental test of local hidden variable
models based on Bell’s inequality, through the violation of a CHSH inequal-
ity (Clauser et al. 1969). The experiments in the 70’ies and the 80’ies such as
e.g. (Freedman et al. 1972; Lamehi-Rachti et al. 1976; Aspect et al. 1982; Ou
et al. 1988) finally verified the foundations of quantum mechanics. Modern
experiments were able to repeat this without loopholes allowing for a local-
realistic explanation, such as low detection efficiency or time-space sepa-
ration between the detection events (Hensen et al. 2015; Shalm et al. 2015;
Giustina et al. 2015).

Most of these experiments were performed using optical quantum sys-
tems. The concept of a photon as a light quanta and the possibility to use
it as a carrier to transfer quantum information now became a basic tool for
modern quantum information studies. One of the examples is quantum
cryptography which is based on the impossibility to clone unknown quan-
tum states (Wootters et al. 1982; Dieks 1982) and guaranties the secure trans-
mission of the encrypted messages (Bennett et al. 1984). A protocol based
directly on the entanglement distribution was proposed by Ekert 1991.

Quantum mechanical concepts offer not only absolute security in con-
trast with classical encryption but also can give an enormous computational
power to make classical encryption schemes such as e.g. RSA (Rivest et al.
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1978) insecure (Deutsch 1985; Shor 1994). This can be done by taking ad-
vantage of the quantum parallelism arising when several particles existing
in superpositions are entangled.

Quantum communications over long distances face serious technologi-
cal limitations due to the finite transmission (up to 0.16 dB/km for telecom-
munication wavelengths) of commercial optical fiber, which is the best way
to transfer information today. This makes the direct transmission of entan-
gled carriers over distances more than few hundred kilometres inefficient
and impractical.

One solution is the quantum state transfer from one location to another,
without physical transfer of a carrier, proposed by Bennett et al. 1993. This
process is known as quantum teleportation and based on entanglement dis-
tribution followed by joint quantum measurement was experimentally demon-
strated using postselection (Bouwmeester et al. 1997) and unconditionally
(Furusawa et al. 1998). This scheme became a basis for the concept of a
quantum repeater (Briegel et al. 1998) which should enable to overcome the
problem of entanglement distribution over continental and intercontinental
distances.

The basic idea relies on entanglement swapping technique which use
EPR pairs to distribute entanglement between distant nodes. For this, the
whole distance is divided into several elementary links where each one is
connected by a direct transmission link with the sources of EPR pairs. By
performing a sequential joint measurement with each EPR pair an entangle-
ment swapping operation can be realized distributing entanglement link by
link over a larger and larger distances.

To make this process more efficient the storage of entangled state has to
be realized to synchronize different links using quantum memories. Doing
this one can change the scaling of the rate as a function of distance. But
there is still a power law dependence on the efficiency of the memory to the
power of how many memories are used. This explains why one needs very
efficient memories in order to build efficient quantum communication link.

Further processing including entanglement distillation and purification
techniques, allows one to restore the fidelity of a quantum state. This dras-
tically reduces the transfer time for long-range transmission and allows one
to use repeat-until-success strategies to transfer the entanglement over the
whole chain of links.

The implementation of quantum memories is mostly based on the co-
herent interaction between light and matter. Promising physical systems
include single atoms and ions, hot and ultracold atomic ensembles, solid-
state systems like quantum dots, defects in diamonds and impurities in the
crystalline media (Lvovsky et al. 2009; Hammerer et al. 2010; Simon et al.
2010; Bussières et al. 2013). For this, various quantum memory protocols
were developed and successively implemented showing their great poten-
tial.

One of the main problems of the quantum memory based on single
atoms/ions or atomic ensembles is its capability to store many different
modes using various photonic degrees of freedom. Temporal or frequency
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multiplexing in these systems is hardly achievable, while these techniques
form a basic tool for efficient classical communication. To overcome this
problem one usually uses polarization or spatial (orbital angular momen-
tum) degrees of freedom.

In this context, rare-earth ion-doped crystals showed their great poten-
tial due to notable optical and nuclear coherent properties, long storage
times and capability to perform efficient multiplexing both in time and fre-
quency space. Based on the special features of this system (like large inho-
mogeneous broadening) a new quantum memory protocol based on atomic
frequency combs was developed (Afzelius et al. 2009) and efficiently imple-
mented for entanglement storage shared by single photons (Clausen et al.
2010). The capability of efficient temporal multiplexing makes this solid-
state light-matter interface one of the most promising to realize an efficient
full quantum repeater scheme (Sangouard et al. 2011).

A goal of this thesis is to explore and demonstrate that rare-earth materi-
als have a particular high potential of “universal” quantum storage involv-
ing many different degrees of freedom (polarization, time, photon number
space). Here we describe a series of experiments which were performed to
demonstrate the potential of solid-state light-matter interfaces for efficient
long-distance quantum communication and its suitability to perform mul-
tiplexing using quantum states of light. It covers the steps from material
spectroscopy to proof-of-principle demonstrations of key features of a mul-
timode quantum memory.

In particular, an elementary link of a quantum repeater was implemented
by performing quantum teleportation of a polarization qubit into the solid-
state quantum memory. The compatibility of our quantum memory with
quantum purification schemes for long-distance communication was demon-
strated by performing quantum storage of the hyperentanglement (simulta-
neous entanglement in more than one degrees of freedom).

To show the temporal multiplexing capability of the atomic frequency
combs we implemented temporal multimode storage of entangled photon
pairs. A novel theoretical method allowed us to verify the storage of two
entangled photons. The temporal multimode capacity gives the possibility
to increase the amount of entanglement (number of entanglement bits or
ebits) which can be stored in the quantum memory. To demonstrate this
we generated a multi-dimensional energy-time entangled state and certified
more than one ebit of information shared by two photons after storing one
of them in the crystal.

At the end, we showed the capability of our solid-state interface to be
used for fundamental tests of quantum theory at the macroscopic scale.
For this we analysed entangled state involving micro-macro quantum state
shared between light and a solid-state atomic ensemble. The micro part
consisted of a single photon which was entangled with the macro part com-
posed of several tens of atomic excitations. Detected quantum correlations
proved to stem from the generated quantum state. Such a state potentially
can be detected using classical detectors based on coarse-grained measure-
ment revealing quantum properties, such as quantum superpositions, at the
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macroscopic scale.
The thesis is organized as follows:

• Chapter 1 reviews the original idea of the quantum repeater, based on
the use of atomic ensembles;

• Chapter 2 covers quantum memory protocols based on atomic ensem-
bles and particularly the atomic frequency comb protocol, used in this
thesis;

• Chapter 3 describes the source of entangled photons that has been
characterized and used during this thesis;

• Chapter 4 describes the physical system in which quantum memory
was implemented, rare earth ion-doped crystal together with it’s spec-
troscopic studies;

• Chapter 5 describes quantum storage of the single photon state to-
gether with the experiment involving quantum teleportation of a po-
larization qubit into the solid-state quantum memory;

• Chapter 6 describes the results of probing multimode capacity of the
quantum memory using entangled excitations in multiphoton and hy-
perentangled quantum states. It also contains novel theoretical tech-
niques which were used to analyse multiphoton entanglement;

• Chapter 7 presents the results of multi-dimensional entangled state
storage. The novel theoretical method to quantify entanglement using
incomplete data is described;

• Chapter 8 presents the demonstration of light-matter micro-macro quan-
tum correlations;

• The conclusion and outlook are given in Chapter 9.
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1 Long-distance Quantum Commu-
nication

1.1 Quantum information basics
Entanglement is a key resource in quantum information science. The

motivation of the research in this thesis starts with the desire to create and
distribute entanglement over large distances in order to extend the range of
quantum networks (Kimble 2008). The concept of entanglement was at the
heart of the famous EPR argument that quantum mechanics is incomplete
(Einstein et al. 1935).

In this paper (Einstein et al. 1935), a source produces a pair of particles, A
and B, in a quantum state, and then the particles move apart. Strong corre-
lations exist between the position and momentum of the separated particles
such that a measurement of the position of particle A allows the prediction
of the position of particle B with certainty due to the correlation they share
regardless of spatial separation. This is the key feature of entanglement
motivating much research toward exploiting it as a resource for communi-
cation.

1.1.1 Qubits

In the simplest case, the smallest bit of quantum information, the qubit,
can be described as a quantum superposition of 0s and 1s. The word qubit
stands for «quantum-bit» and it was first introduced by Schumacher 1995.
A qubit can be represented in Dirac notation (Dirac 1939) as,

|ψ〉 = α |0〉+ β |1〉 (1.1)

where, α and β are the complex probability amplitudes normalized by |α|2+
|β|2 = 1. One convenient way to visualize a qubit state is to use the Bloch
sphere representation shown in Fig. 1.1. Any point on the Bloch sphere is
defined by angles θ (polar) and φ (azimuthal) and corresponds to a pure
quantum state. In this case, a qubit state can be expressed by probability
amplitudes cos(θ/2) ≡ α and eiφ sin(θ/2) ≡ β. Using these parameters, a
qubit state can be written in the following form:

|ψ〉 = cos(θ/2) |0〉+ eiφ sin(θ/2) |1〉 , (1.2)

represented by the vector touching the sphere with unity radius (Fig. 1.1).
For example, the points on the poles of the Bloch sphere correspond to states
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ψ

θ

φ

FIGURE 1.1: Bloch sphere. Any arbitrary pure state |ψ〉 is repre-
sented by a point, defined by angles θ and φ, on the Bloch sphere.
Pure states represented by diametral (opposing) points on the
Bloch sphere are orthogonal, e.g. |0〉 and |1〉, |±〉 = (|0〉 ± |1〉)/

√
2

or |±i〉 = (|0〉 ± i |1〉)/
√

2.

|0〉 and |1〉, while the equator points represent equal superpositions of these
states. The pair of states that are represented on each side of any defined axis
through the center of the Bloch sphere, for example |0〉 and |1〉, |±〉 = (|0〉 ±
|1〉)/

√
2 or |±i〉 = (|0〉 ± i |1〉)/

√
2 are orthogonal states. A set of orthogonal

states forms a basis for any qubit state, meaning that any qubit state can be
written as their linear combination.

This representation is universal and can be applied to describe any two-
level physical system. One of the classical examples is polarization state of
the single photon, but it can be extended to other degrees of freedom: fre-
quency, spatial and temporal modes or orbital angular momentum. Solid-
state qubits can be implemented using electronic or nuclear energy levels
of single atoms and ions, charge or flux qubits in superconducting circuits
(Xiang et al. 2013).

The points inside the Bloch sphere correspond to mixed states which are
described by the notion of the density matrix ρ. A quantum state in this
case can be written as a linear combination in the orthogonal basis of the
pure states |ψ〉i

ρ =
∑

i

pi |ψ〉ii〈ψ| , (1.3)

where pi is the probability to find the system in the the state |ψ〉i expressed
as a result of projective measurement pi = Tr(ρA) where A is the projective
operator A = |ψ〉ii 〈ψ|. The normalization in this case is

∑
i pi = 1. Using the

notion of Pauli matrices

1 =

(
1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(1.4)
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any density matrix can be written as

ρ =
1

2
(1 +~r~σ), ~r = (rx, ry, rz), ~σ = (σx, σy, σz) (1.5)

To quantify the purity of the quantum state ρ the scalar value called purity
P defined as P = Tr(ρ2) is used. The purity is limited by 1/2 ≤ P ≤ 1, where
maximum corresponds to the pure states for which ρ = ρ2. In general case,
where dimension of ρ is bigger than 2 (which is true for qubits) and equal
to d the range is modified accordingly 1/d ≤ P ≤ 1.

The fidelity term is used for quantitative description on how two quan-
tum states ρa and ρb are close to each other and is defined as
F =

(
Tr
√√

ρaρb
√
ρa
)2 varying in the range 0 ≤ F ≤ 1 for orthogonal and

identical states, respectively. When one of the states is pure the fidelity is
expressed by F = 〈ψ| ρ |ψ〉.

Similar to classical information which is usually divided in two differ-
ent types of encoding known as digital and analog information processing,
quantum information processing can be based on discrete (Nielsen et al.
2000) and continuous variables (Braunstein et al. 2005) depending on the
eigenvalue spectrum of the observable. A qubit encoded using polarization
of a single photon is the simplest example of discrete quantum information.

To characterize the preservation of the information in the quantum in-
terface (for example quantum memory) the fidelity between the input and
output states can be measured. In order to distinguish between classical and
quantum regimes of the interface the boundary fidelities have to be defined.
The maximum classical fidelity of F = 2/3 (Massar et al. 1995) is used in the
case of discrete variable measurement, while for the continuous variables
the critical fidelity is F = 1/2 (Hammerer et al. 2005).

1.1.2 Entanglement

The “spooky action at a distance” described by the EPR-paradox was
later formulated in more mathematical form using the term entanglement by
Schrödinger 1935. The entangled state there was defined as a state of the
system which can not be factorized to the individual states of it’s different
parts. This property is usually called separability criteria and is expressed
as

ρab 6=
∑

i

piρ
i
a ⊗ ρib (1.6)

Separable states are classically correlated. This means that for the produc-
tion of a separable state only local operations and classical communication
(LOCC) are necessary. Non separability condition (Eq. 1.6) can lead to the
correlations between measurement outcomes which can not be explained
using classical models. This fact was successfully used to formulate crite-
ria to test nonlocal properties of quantum physics by Bell 1964 referred to
as Bell-inequalities. For example, the following joint quantum states of two
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spin 1/2 particles are examples of entangled states:
∣∣Ψ±ab

〉
= (|↑〉a |↓〉b ± |↓〉a |↑〉b)/

√
2,

∣∣Φ±ab
〉

= (|↑〉a |↑〉b ± |↓〉a |↓〉b)/
√

2 (1.7)

These states form an orthogonal basis for two-qubit systems. Due to the per-
fect correlations (or anticorrelations) between individual spin a and spin b
these states lead to the strongest violation of Bell inequalities and thereafter
called Bell states. They are maximally entangled, in the sense that any other
entangled state can be generated from each of them by local operations. The
state

∣∣Ψ−ab
〉

is known as the singlet state.
In addition to their importance in the foundations of quantum theory,

two-qubit entangled systems are the main ingredients in quantum commu-
nication. The distribution of entanglement over long distances is one of the
main goals in this area of research. For this, Bell states measurements, con-
sisting of a projection onto the Bell states (Eqs. 1.7) are used to perform en-
tanglement swapping. This technique can be used to extend entanglement
over long distances and to realize quantum repeater.

1.1.3 Schmidt decomposition

Schmidt decomposition is very useful tool in the description of entangle-
ment for bipartite systems. It allows one to decompose arbitrary bipartite
state |ψ〉 =

∑
i,j ci,j |ai, bj〉 ∈ HA ⊗ HB in the tensor product of two Hilbert

spaces. Then there exist an orthonormal basis |αi〉 ofHA and an orthonormal
basis |βi〉 ofHB such that

|ψ〉 =
R∑

k

λk |αk, βk〉 , (1.8)

holds, with positive real coefficients λk. The λk are uniquely determined as
the square roots of the eigenvalues of the matrix CC†, where C = {cij}. The
number R is called the Schmidt rank of |ψ〉.

The mixed state have Schmidt number k if it can be written as a convex
combination of pure states of Schmidt rank k or smaller (Terhal et al. 2000).
Or, in other words, Schmidt number is the minimum Schmidt rank of the
pure states needed to construct the mixed state.

1.2 Entanglement criteria
The problem of entanglement certification and quantification is of great

importance for quantum information processing. This topic is actively stud-
ied since it can greatly enhance different applications where entanglement
has to be efficiently detected and characterized. Depending on the type of
quantum information processing based on discrete or continuous variables
different criteria has to be applied. Further, we describe some approaches
which are used for discrete variables, while continuous variable techniques
are also actively utilized (Duan et al. 2000; Simon 2000).
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FIGURE 1.2: CHSH inequality violation. A measurement appara-
tus to find the correlations between entangled particles: The Bloch
spheres on each particles side depict the projection settings re-
quired for a CHSH Bell-inequality test.

1.2.1 Bell’s theorem. CHSH inequality

One of the standard tools to verify entanglement is a Bell inequality test,
explored by Bell 1964. This test reveals the non-local nature of bipartite
states and constitutes a cornerstone in the interpretation of quantum me-
chanics.

This criterion is stronger than the one of being entangled but due to it’s
convenience Bell inequality is broadly used for entanglement certification.
The main procedure in a Bell test is to quantify the correlations between en-
tangled particles for different projection measurement settings. The CHSH
(Clauser-Horne-Shimony- Holt) inequality is one of the most well-known
forms of the Bell inequalities (Clauser et al. 1969). It requires four differ-
ent predefined sets of joint projective measurements x, y = 0, 1 with two
outcomes +1 and −1 for each measurement (Fig. 1.2).

The CHSH parameter S can be defined as

S =
∑

x,y=0,1

(−1)xyExy, Exy =
∑

a,b=±1

abp(ab|xy). (1.9)

From each measurement result a correlation coefficientExy is determined,
where p(ab|xy) are the probabilities of the correlated outcomes which Al-
ice and Bob measure simultaneously. An example of a projective measure-
ment is the following: using Bloch vector notation, Alice’s measurements
are given by observables σ̂x (for x = 0) and σ̂y (for x = 1), while Bob’s
measurements are (σ̂x + σ̂y)/

√
2 (for y = 0) and (σ̂x − σ̂y)/

√
2 (for y = 1).

Classical (local) models based on the assumption of locality (generally
referred to as local hidden-variable theories) predict that the S-parameter
has a maximum value of 2. While for quantum mechanics the maximum
predicted value is 2

√
2 which can be obtained using Bell states. Thus mea-

suring S-parameter in the range 2 < S ≤ 2
√

2 one can prove the non-local
character of the observed correlations which can not be explained by any
classical models. At the same time, thus, a violation of a Bell inequality
implies that the state is entangled.
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However, violation of a Bell inequality and entanglement are not the
equivalent. Assuming two-qubit state one can reduce the lower limit of the
S-parameter to certify entanglement from 2 to

√
2. Thus the value measured

between
√

2 < S ≤ 2
√

2 (Roy 2005) will prove the presence of entanglement.
Both tests were used many times in this thesis to certify the storage of pho-
tonic entanglement and demonstrate micro-macro quantum correlations.

1.2.2 Entanglement witness

Entanglement witnesses (Gühne et al. 2009) provide a simple and useful
entanglement criterion. Since any mixtures of separable states will remain
separable, the set of all separable states is called convex. However, the set of
entangled states is not convex. Due to this property there exists (Horodecki
et al. 1996) a hermitian operatorW , called the entanglement witness or wit-
ness operator, such that if the state ρ is entangled, then

{
Tr(Wρ) ≥ 0 for all separable ρ
Tr(Wρ) < 0 for at least one entangled ρ

holds. Thus, if we measure Tr(Wρ) < 0 we know for sure that the state ρ is
entangled. For each entangled state ρ there exist an entanglement witness
W detecting it.

Entanglement witnesses provide us with an entanglement criterion, which
is directly related to expectation values of observables. However there are
many experimental situations when the observables can not be constructed
due to technical limitations and limited number of outcomes. In Chap-
ter 6 we introduced a novel indirect entanglement witness technique which
helps to overcome this problem and construct entanglement witness in these
cases. This technique was applied to show storage of two entangled photon
pairs inside our quantum memory.

In analogy with entanglement witness the Schmidt number witness can
be defined (Sanpera et al. 2001). It is possible because Schmidt number is
an entanglement monotone and can thus be used to quantify the degree of
entanglement (Terhal et al. 2000).

1.2.3 Quantum state tomography

Another method to detect entanglement is to perform quantum state to-
mography. This method is straightforward and requires the detection all the
outcomes from the measured quantum state. This technique is well estab-
lished and widely applied for states in low dimensional Hilbert space. This
technique becomes less efficient when the dimension of the Hilbert space d
grows. It happens due to the fast increase of the required number of mea-
surement outcomes, d4, in order to collect a complete set of measurements
without strong assumptions on the quantum state.
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During this thesis, quantum state tomography using maximum likeli-
hood estimation (James et al. 2001) was performed to analyse photonic en-
tanglement stored in the crystal and reveal quantum micro-macro correla-
tions between light and matter. The results are discussed in Chapter 8.

1.3 Quantum repeater
The problem of transferring quantum information between two distant

nodes is strongly connected to the technical limitations of the existing com-
munication channels. Inevitably present photon loss inside modern optical
fibers strictly limits the possible distances to implement quantum commu-
nication.

In general, this is not an issue for classical optical communication be-
cause optical signals can be amplified at intermediate stages of a communi-
cation channel so that loss can be compensated. However, this solution can-
not be applied directly for quantum communication due to the no-cloning
theorem (Wootters et al. 1982) prohibiting to perfectly copy quantum infor-
mation without destroying quantum state. One solution to this problem
is to use quantum relay stations to transmit the quantum information over
long distances (Aspelmeyer et al. 2003). Another solution is to implement
quantum repeaters proposed by Briegel et al. 1998. The second approach
will be further discussed in details.

1.3.1 Entanglement swapping

The idea of quantum repeater is based on quantum teleportation phe-
nomena (Bennett et al. 1993) and entanglement swapping (Żukowski et al.
1993) and was proposed to overcome decoherence during the transmission
of quantum states. However, the same technique can be used directly to
overcome the problem of losses and extend quantum communication over
longer distances.

Entanglement swapping requires few entangled photon pairs and the
possibility to perform a full joint Bell-state measurement on one of the qubits
from each entangled pair. Suppose we start from two initially fully indepen-
dent entangled pairs |Φ+〉12 and |Φ+〉34:
∣∣Φ+

〉
12

= (|↑〉1 |↑〉2 + |↓〉1 |↓〉2)/
√

2,
∣∣Φ+

〉
34

= (|↑〉3 |↑〉4 + |↓〉3 |↓〉4)/
√

2.

(1.10)

The Bell states form a complete orthogonal basis for the Hilbert-subspace of
those 2 qubits. In this case the insertion of the Bell states of qubits 2 and 3
leads formally to the following result

|Φ〉 = |Φ+〉12 ⊗ |Φ+〉34 =
= (|Φ+〉23 |Φ+〉14 + |Ψ+〉23 |Ψ+〉14 + |Ψ−〉23 |Ψ−〉14 + |Φ−〉23 |Φ−〉14)/2.

(1.11)
This purely mathematical trick clearly shows that by projecting on one of the
Bell states involving qubits 2 and 3 one can switch (i.e. swap) entanglement
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(a) Quantum teleportation

(b) Entanglement swapping

FIGURE 1.3: Entanglement swapping. (a) Quantum teleportation.
The Bell state measurement (BSM) between the teleported state
and one of the particles from the Bell-pair, which is entangled with
another particle, leads to the transformation of the state of the par-
ticle. The unitary transformationU based on the results of the BSM
has to be applied to finish quantum teleportation. (b) Two pairs of
entangled Bell-pairs are involved in the process. One member of
each entangled pair participate in the projection to one of the Bell-
states (BSM). After applying unitary transformations U the initial
entangled state of each photon pair can be established.
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to qubits 1 and 4 without their direct interaction.
Quantum teleportation is based on the same approach (Bennett et al.

1993). By replacing one entangled pair by the arbitrary qubit state α |↑〉1 +
β |↓〉1 one can use the same trick and write the state as

|Φ〉 = (|φ〉1)⊗ |Φ+〉23 = (α |↑〉1 + β |↓〉1)⊗ |Φ+〉23 =
= (|Φ+〉12 (α |↑〉3 + β |↓〉3) + |Ψ+〉12 (α |↓〉3 + β |↑〉3)+
+ |Φ−〉12 (α |↑〉3 − β |↓〉3) + |Φ+〉12 (α |↓〉3 − β |↑〉3))/2. =
= (|Φ+〉12 UΦ+ |φ〉3 + |Ψ+〉12 UΨ+ |φ〉3 +
+ |Φ−〉12 UΦ− |φ〉3 + |Φ+〉12 UΨ− |φ〉3)/2.

(1.12)

where UΨ refers to single qubit rotations on qubit 3, conditional on the joint
Bell-state measurement between qubits 1 and 2. In this form, the teleporta-
tion is obvious: depending on the Bell-state measurement outcome, a par-
ticular single-qubit operation needs to be applied to the third qubit, after
which the third qubit becomes a perfect copy of the first one, without ever
being measured. As two bits of classical information needs to be transferred
from the location of qubits 1,2 to qubit 3 (Fig. 1.3), no superluminal commu-
nication is possible, and therefore no violation of special relativity occurs.

1.3.2 Entanglement purification

In reality there are no perfectly pure states that can be prepared. The im-
perfections due to the decoherence and/or statistical mixtures lead to errors
and reduced fidelities during the communication. Let’s assume that the de-
coherence can be modelled by white noise such that a 2-qubit state can be
written as a Werner state (Werner 1989) ρ = V |Ψ〉 〈Ψ|+ (1− V )1/4 where V
is the visibility. Then violation of the CHSH inequality (Clauser et al. 1969)
in this case requires V > 1/

√
2 or fidelity F > 0.85 (Cirel’son 1980).

Fortunately, entangled states (except some special cases (Vedral 1999))
can be used in a protocol known as entanglement purification: an initial set
of partially entangled states can, under certain conditions, be transformed
to a new reduced set with improved entanglement properties. (Bennett et
al. 1996b; Bennett et al. 1996a). As all quantum operations are imperfect,
none of the pre-established entangled pairs would have perfect fidelity. En-
tanglement purification starts from these imperfectly entangled pairs, and
combines 2-qubit, entangling gates with single-qubit operations to obtain
higher-fidelity pairs (Pan et al. 2001; Simon et al. 2002; Pan et al. 2003). The
way to extract a subset of states of high entanglement and high purity from
a large set of less entangled states is thus needed to overcome decoherence
in quantum repeater channels involving quantum memories (Li et al. 2014)

The use of hyperentanglement can greatly simplify the optical realiza-
tion of the purification procedure (Simon et al. 2002). Hyperentanglement
is a type of entangled state which involves few degrees of freedom of the
same quantum system. For example, two photons can share entanglement
in polarization and energy-time at the same time. In this case the state can
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be written as

|Φ〉 =
∣∣Φ+

π

〉
⊗
∣∣Φ+

τ

〉
= |HH〉+ |V V 〉︸ ︷︷ ︸

polarization

⊗ |EE〉+ |LL〉︸ ︷︷ ︸
energy-time

. (1.13)

The projection on one degree of freedom together with the single-qubit op-
eration can increase the fidelity of the entangled state in other degree of free-
dom (Simon et al. 2002). In this thesis we demonstrated all prerequirements
to realize entanglement purification compatible with long-distance quan-
tum communication and involving storage in a quantum memory. These
results are discussed in Chapter 5.

1.3.3 Elementary link: multimode approach

The further idea to realize long-distance quantum communication using
entanglement swapping is to divide the whole distance into shorter seg-
ments and to distribute entanglement in between end nodes of these seg-
ments using the techniques described above (Fig. 1.4). By repeating this
procedure many times entanglement is extended over the entire distance.

The probabilistic nature of entanglement generation and intrinsic losses
during its distribution greatly reduce the rate of entanglement distribution
over long distances. This happens because the rate of entanglement swap-
ping (Bell-state measurement) over the whole distance is given by the prod-
uct of the swapping rates for each elementary link. Which makes the total
probability of entanglement distribution polynomially low. To increase the
whole rate one have to enhance the probability for each part to swap entan-
glement. To increase the probability of successful Bell-state measurement
one have to synchronize photons from different entangled photon pairs in
time.

One of the solutions is to use quantum memories which can store sep-
arate entangled photons until the entanglement is successfully distributed
over the given link. As a result, after a certain time the retrieved photon
can be synchronized with the photon stored in another quantum memory
to perform Bell-state measurement (Fig. 1.4). The synchronization imple-
mented using optical quantum memories can greatly enhance entanglement
distribution rates over long distances (Sangouard et al. 2011).

Further, different multiplexing schemes can be applied which allow one
to efficiently parallelize the performance of the quantum repeater. In this
context, multimode quantum memories (Afzelius et al. 2009) are of a great
interest in modern studies, especially for quantum repeaters based on solid-
state quantum memories. The potential for massive parallelism and high
operation speed that make solid-state quantum repeaters an important yet
challenging goal within the quantum information processing community.
The work presented in this thesis falls within this framework.

The whole procedure describing the principle of quantum repeater can
be divided into few steps (Fig. 1.4):
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(a) Entanglement

(b) Swapping

(c) Entanglement purification

Multimode QMs

BSM

(c) Synchronized swapping

FIGURE 1.4: Elementary link of a quantum repeater. (a) One of
the implementations of a quantum repeater (Simon et al. 2007) in-
volves the use of probabilistic sources of entangled photon pairs
and multimode quantum memories which can simultaneously
store many temporal modes of the generated photon pairs. One
of the photons from each photon pair (which are generated in par-
allel) is stored in the quantum memory, while another photon is
sent towards the adjacent node where a Bell-state measurement
(BSM) is performed. (b) Successful BSM between a pairs of pho-
tons that were not lost leads to the swapping of entanglement and
heralds entanglement between quantum memories. (c) Quantum
purification of the entangled state could be performed using differ-
ent schemes. Entanglement can be stored until the neighbouring
memories have also successfully stored entanglement. (d) Once
neighbouring quantum memories have both stored one photon,
they are synchronized in order to perform BSM that swaps entan-
glement to further nodes. This process is repeated until entangle-
ment is generated over the desired distance (Bussières et al. 2013).
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• massive generation of entangled qubit pairs and their distribution over
the quantum channels using multiplexing schemes. Half of the entan-
gled state is stored in multimode quantum memories while the other
half travels towards the Bell-state measurement;

• the previous step is applied using repeat-until-success strategy such
that an entangled pair will be established for every link. This can be
done in parallel for all links with the total required time approximately
equal to the average time needed for a single link to be established;

• the state of the entangled pairs can be purified and distilled in order
to improve the fidelity reduced by the losses or decoherence;

• entanglement swapping can then be used to distribute entanglement
possibly combined with other, intermediate purification steps that com-
pensate for errors during the swapping.

The result is a longer-distance, high-fidelity entangled EPR-Bell pair, that
could be used for secure quantum communication.
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2 Light-matter quantum interface

As discussed in the previous chapter, quantum memory are essential
tools to realize long-distance quantum communication. Due to their ability
to store quantum information and preserve entanglement they were inten-
sively studied during the last years. Most of the quantum memory proto-
cols are based on the interaction between light and matter. However, light-
matter interaction is not the only way to realize a quantum memory. All-
optical systems can also be used for this purposes (Yoshikawa et al. 2013).

2.1 Optical quantum memory
It has been shown that light can be significantly slowed down by the

presence of a media or even ”stopped“ inside it. These phenomena gave
rise to many different protocols which utilize different properties of the
light-matter interaction. The general idea is to map the quantum state of
light into the quantum state of the media with the possibility to map it back
(reversible). This approach is based on absorption and further reemission of
light carrying quantum information. Another approach is to use the quan-
tum memory as an emissive media to realize a delayed source of entan-
gled photon pairs (Duan et al. 2001; Sekatski et al. 2011). In this case, a
first emitted single photon is entangled with an internal degree of freedom
of the memory which can then be readout on-demand emitting a second
photon. Both approaches have great potential for quantum communication
technologies (Sangouard et al. 2011).

In the context of quantum communication, a quantum memory is a de-
vice that can store a quantum state of light at the single photon level which
then can be extracted on-demand. The variable delay that can be applied
should allow one to synchronize different parts of the communication links
to increase the whole efficiency and to make quantum repeater practical.
Optical quantum memories have to fulfil certain requirements in order to
be used for quantum communications:

2.1.1 Fidelity

The ability to preserve quantum information during the storage is char-
acterized using the fidelity F . Any additional noise will reduce the value
of fidelity and destroy quantum correlations. Assuming a single qubit, the
largest fidelity achievable using measure and prepare strategy is F = 2/3
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(Massar et al. 1995). While the minimal fidelity which is required to show
nonlocal nature of a retrieved photon is 85.4% (Cirel’son 1980). However,
these bounds are not sufficient to beat direct transmission with a quantum
repeater, since noisy storage has to be compensated by entanglement pu-
rification or error correction, which reduces the entanglement distribution
rate.

High recall fidelities exceeding 99% using polarization qubits were real-
ized using solid-state system (Zhou et al. 2012b).

2.1.2 Efficiency

Another important parameter which characterizes the quality of a quan-
tum memory is the efficiency η. It can be defined as a probability of the input
single photon excitation to be stored and emitted from the quantum mem-
ory. It has been shown that probabilities of 90% has to be achieved to build
practical quantum repeater. While the 1% increase in storage efficiency can
increase the entanglement distribution rate from 7 to 18% (Sangouard et al.
2011).

Enhanced light-matter interaction can increase the optical memory ef-
ficiency. For this purpose, optical cavities and/or large atomic ensembles
have been shown to be very useful (Sabooni et al. 2013; Jobez et al. 2014).
Highest storage efficiencies of up to 76% were realized using solid-state
(Schraft et al. 2016), up to 87% using warm vapors (Hosseini et al. 2011a)
and 87% with cold atomic ensemble quantum memories (Cho et al. 2016).

2.1.3 Storage time

Ideally the storage time of the quantum memory in the architecture of a
quantum repeater should be defined by the entanglement distribution time
over the whole distance. For 1000 km optical fiber link, it can be few seconds
(Sangouard et al. 2011). However, it has bee shown that this time could be
defined by the elementary link only (Munro et al. 2010).

This time can be efficiently decreased applying various multiplexing
schemes, but the maximum storage time is desirable. The longest storage
time reported in the quantum regime has been implemented in cold atomic
ensembles and reached 100 ms (Radnaev et al. 2010). While for classical
regime it can reach a minute (Heinze et al. 2013).

2.1.4 Bandwidth

The bandwidth of the quantum memory defines the maximum spectral
bandwidth of the photon that can be stored in it. Narrowband single pho-
tons have long coherence times, meaning that less photons can be sent in
a given time. It is therefore an important practical advantage to distribute
broadband photons. However, dispersion effects start to be important and
have be considered and compensated.
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Broadband quantum memories can greatly increase the temporal mul-
timode capacity and use full spectrum of spontaneous parametric down-
conversion sources of entangled photon pairs. Large bandwidth of few GHz
can be achieved using atomic vapors (Reim et al. 2010), hundreds of GHz in
rare-earth ion-doped materials (Saglamyurek et al. 2012; Saglamyurek et al.
2015a), up to THz with diamonds (Lee et al. 2011) and 100 THz with hydro-
gen molecules (Bustard et al. 2013).

2.1.5 Multimode Capacity

The multiplexing scheme implies the possibility to store many modes
inside the quantum memory at the same time. For this, different degrees
of freedom of input light can be used: spectral, temporal, spatial and po-
larization modes. This could greatly enhance the distribution rate over the
elementary link and over the whole distance of the quantum repeater (Si-
mon et al. 2007). The storage of N Bell states simultaneously lead to N -fold
increase in the quantum repeater operation rate.

Simultaneous storage of several temporal (Usmani et al. 2010; Bonarota
et al. 2011; Jobez et al. 2016), spectral (Saglamyurek et al. 2014) modes and
multidimensional quantum system (Zhou et al. 2015) have been implemented
in this direction.

2.1.6 Other criteria

To realize entanglement distribution over long distances using optical
fiber links, quantum memory has to operate at telecommunication wave-
lengths (C-band around 1550 nm) where transmission of optical fibers is
maximal (the minimal loss 0.16 dB/km for Corning SMF-28 ULL optical
fiber). This problem can be resolved using efficient frequency conversion
to telecommunication wavelengths using nonlinear waveguides (see for ex-
ample (Curtz et al. 2010; Zaske et al. 2012; Albrecht et al. 2014)) or in atomic
ensembles (Radnaev et al. 2010). In this thesis our approach is based on
using sources of entangled photons, where one photon of each pair is at
a telecommunication wavelength, with the storage and recall of the other
photon in an optical quantum memory (Simon et al. 2007).

To make the quantum repeater more practical integrated quantum mem-
ory directly into the quantum network is also desirable. In this context,
quantum storage of light in waveguides or optical fibers doped by rare-
earth ions is promising (Saglamyurek et al. 2011; Saglamyurek et al. 2015b).

The ability of the quantum memory to release stored quantum state on-
demand is a basic feature to synchronize Bell-state measurement for effi-
cient entanglement swapping. There are some proposals for quantum re-
peater which uses frequency multiplexing scheme where this feature is not
necessary (Sinclair et al. 2014).

All necessary requirements introduced so far were successfully realized
with different physical systems, but mostly separately. The main challenge
nowadays is to combine all the best values (of efficiency, storage time, band-
width and multimode capacity) that have been demonstrated using one
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physical system. As an example, the best combination of high efficiency (up
to 87%) and long storage times (1 ms) were implemented using cold atomic
ensembles (Bao et al. 2012; Cho et al. 2016), however, the narrow bandwidth
and single temporal mode in this case greatly restrict the multimode capac-
ity which can be realized. Some other examples with high potential will be
described further.

2.2 Single quantum systems
The experimental control of single atoms, ions or single solid-state emit-

ters gave the possibility to use them as elementary building blocks of quan-
tum networks (Cirac et al. 1997). The naturally limited multimode capacity
for this system can be compensated by the possible deterministic Bell-state
measurement (Reiserer et al. 2015).

Single Rb atoms together with high-finesse cavities gave retrieval effi-
ciencies up to 9% and storage times of 180 µs (Specht et al. 2011). Sev-
eral sub-parts of a quantum-repeater protocol have been successfully im-
plemented with these systems at near-infrared wavelengths. Quantum tele-
portation between two distant trapped Yb+ ions have been realized (Olm-
schenk et al. 2009). An elementary quantum network using two single-atom
quantum memories in separate atom traps distant by 21 m (Ritter et al. 2012)
and heralded entanglement between two single atoms sitting in dipole traps
and separated by 20 m (Hofmann et al. 2012) were demonstrated. An atom-
photon quantum gate (Reiserer et al. 2014), and the heralded storage of a
photonic quantum bit (Kalb et al. 2015) were realized. It has also been
demonstrated with solid-state single-spin qubits based on a single nitrogen-
vacancy center (Togan et al. 2010; Sipahigil et al. 2012) and quantum dots
(Gao et al. 2012).

2.3 Atomic ensembles
The experimental control of single atoms and ions trapped and coupled

to high-finesse optical cavities is very challenging which makes the direct
implementation of the quantum repeater barely practical. The first proposal
for a practical quantum repeater based on ensembles of atoms and linear
optics was done by Duan et al. 2001, now often referred to as the DLCZ
(Duan-Lukin-Cirac-Zoller) protocol.

Light-matter and conversion usually requires the strong interaction be-
tween light and matter in order to improve the interface between them. By
increasing the number of interacting particles in the systems one can suf-
ficiently increase the optical depth and enhance light-matter interactions.
These systems can be realized using warm atomic vapors, cold atomic en-
sembles, Bose-Einstein condensates and rare earth ion-doped systems. The
last one was used in this thesis and described in more details in Chapter 4.

Most of them are based on the preparation of collective atomic states
to map single photons into the quantum state of matter and, after certain
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time, map it back (Fig. 2.1). In the case of two-level atomic system consist-
ing of ground |g〉 and excited |e〉 state, collective atomic excitations can be
described as the Dicke state (Dicke 1954). The absorbed single photon on
the transition |g〉 − |e〉will produce the delocalized atomic excitation which
can be written as

|ΨD〉 =
1√
N

N∑

i=1

ci |g1...ei...gN〉, (2.1)

where N is the number of atoms and ci is the phase coefficient correspond-
ing to the i-th atom. Physical manipulation of ci phase coefficients defines
the variety of different quantum memory protocols which could be realized
in different physical systems.

2.3.1 Electromagnetically-induced transparency

Electromagnetically induced transparency (EIT) was first experimentally
observed in warm strontium vapour (Boller et al. 1991). It is based on
the quantum interference between different excitations pathways that cre-
ates a narrow spectral transparency window and fast varying susceptibility
(Fig. 2.1(b)). Based on this an ultralow group velocity and full transparency
in an otherwise opaque medium were observed (Hau et al. 1999).

Inside the transparency window the group velocity of the light is re-
duced by a factor proportional to dΓ/(4Ω2) with Γ the linewidth of the
transition, Ω the Rabi frequency of the control field, L is the length of the
medium with optical depth d. Storage is achieved by adiabatically reducing
the control field intensity to zero before the pulse leaves the medium (Fig.
2.1(b)). The protocol to stop light inside the medium was proposed (Fleis-
chhauer et al. 2000) and also realized in atomic Rb vapour (Liu et al. 2001)
and rare-earth ion-doped crystal (Phillips et al. 2001).

Modern experiments involve an attenuated laser field as an input signal,
interacting with a dense atomic ensemble with variable optical depth up to
1000. They achieved storage efficiencies up to 96% with Cs atomic ensem-
ble (Hsiao et al. 2016) and 78% using bright pulses in cold 87Rb ensemble
(Chen et al. 2013) and 76% in Pr3+:Y2SiO5 crystal (Schraft et al. 2016). High-
efficiency EIT storage up to 49% of single photons generated using a cold
atomic ensemble has also been recently demonstrated in a cold atomic en-
semble (Zhou et al. 2012a).

The bandwidth of the EIT protocol is typically limited to few MHz and
depends on the Rabi frequency of the control field. In this case the maxi-
mum duration of the input that can be entirely compressed in the medium
is defined as dΓ/(4Ω2). The bandwidth of the input light is limited by the
width of the transparency window 4Ω2/(Γ

√
d). This means that the tem-

poral multimode capacity scales as ∝
√
d (Lukin 2003). Another limitation

comes from the resonant character of the technique which can lead to addi-
tional noise and therefore reduce the maximum achievable quantum fidelity
(Hsu et al. 2006).
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FIGURE 2.1: Quantum memory protocols. (a) Light-matter interaction can
be enhanced using large atomic ensembles to realize a quantum memory.
The interaction of a single photon at the input leads to the generation of a
collective atomic state which can be manipulated using a control field in
different regimes. (b) A strong control field applied to the homogeneous
atomic system on the |e〉 ←→ |s〉 transition creates a narrow transmission
window in the ensemble’s absorption spectrum at the frequency corre-
sponding to the energy difference between states |g〉 and |e〉. This effect is
called electromagnetically induced transparency (EIT). Input photons with
a spectral bandwidth comparable to the transmission window are slowed
down and spatially compressed due to the strong dispersion. By turning
off the control field, the input photon can be stored as a coherent spin wave
and then retrieved after a certain time by turning the control field on again.
(c) The artificial inhomogeneous broadening which can be created and re-
versed using external gradient fields can be used to manipulate a stored
excitation. During the absorption of an input photon the gradient field is
applied to store the input light as an excitation on the inhomogeneously
broadened |g〉 ←→ |e〉 transition. The reversed gradient field will lead to
the retrieval process. (d) Natural inhomogeneous broadening can be used
to create a periodic structure in the absorption profile i.e. an atomic fre-
quency comb (AFC) using optical pumping techniques. After a single in-
put photon with a spectrum broader than the period is absorbed, a strong
control pulse transfers the coherence from the excited state to a long-lived
spin state. To read out, a second control pulse transfers the coherence back
to the excited state and the rephasing process continues and leads to an
output.
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2.3.2 Controlled reversible inhomogeneous broadening

Controlled reversible inhomogeneous broadening (CRIB) was originally
proposed as an optical quantum memory protocol based on the manipula-
tion of the inhomogeneous broadening of the optical transition in atomic
gases (Moiseev et al. 2001) or rare-earth ion-doped crystals (Nilsson et al.
2005; Alexander et al. 2006).

CRIB implementations usually involve the creation of a narrow absorp-
tion line of width γ and optical depth d (Fig. 2.1(c)). During the absorption
of single photon at the input artificial inhomogeneous broadening Γ is cre-
ated by the external gradient fields. This leads to the mapping of the single
photon state into the collective atomic state

|ΨD〉 =
1√
N

N∑

i=1

cie
j(~k~ri−2πδit) |g1...ei...gN〉, (2.2)

where each ion i has detuning δi which is modulated by external field. Due
to this gradient in frequencies atomic state is rapidly dephased. However, at
given time t/2 the external field can be reversed by changing the time order,
i.e. letting δi → −δi. In this case due to rephasing of the collective atomic
state the photon echo signal can be observed at time t.

The efficiency of CRIB can be expressed as

ηCRIB(t) = (dγ/Γ)2e−dγ/Γe−4π2t2γ2 . (2.3)

The main assumption here is that the spectral width of the absorption peak
Γ is much wider than the spectral bandwidth of the photon to be stored.
The maximum storage time in this case is defined by the initial width of the
narrow absorption peak γ ans is given by 1/γ.

From expression (2.3) one can see that in order to keep the efficiency η
constant when increasing the number of modes, the optical depth d needs
to be increased proportionally. Indeed, by doubling the bandwidth Γ to
double the number of temporal modes that can be stored using CRIB one
has to double the optical depth d to reach same efficiency η. As a result the
multimode capacity scales linearly with the optical depth N ∝ d.

The first experiments in solid-state media were executed using trans-
verse electrical field to imply controlled linear Stark effect and classical pulses,
but later the results were extended to the single-photon level (Lauritzen et
al. 2010; Hedges et al. 2010).

The efficiency of this method is limited to 54% due to the reabsorption
process during the reemission. In order to overcome this problem the lon-
gitudinal CRIB, also known as gradient echo memory (GEM) (Fig. 2.1(c))
was proposed (Alexander et al. 2006) and implemented using Pr3+:Y2SiO5

crystal with storage efficiencies up to 69% (Hétet et al. 2008; Hedges et al.
2010).
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2.3.3 Atomic frequency combs

The atomic frequency comb (AFC) quantum memory protocol is based
on the rephasing of atomic coherences analogous to photon echo phenom-
ena. Due to the prepared periodically shaped absorption profile, the rephas-
ing happens at a predetermined moment in time inversely, proportional to
the period of the structure (Fig. 2.1(d)). The implementation for quantum
memories has been proposed by (Afzelius et al. 2009) in Geneva.

The simplest scheme requires the creation of a periodic absorption struc-
ture on the optical transition |g〉 ←→ |e〉. This structure can be created by
various optical pumping techniques which usually involve the use of the
third level |aux〉 to transfer the residual atomic population (Fig. 2.2(a)). The
absorption of a single photon with wavevector ~k by such atomic ensembles
leads to the generation of the collective atomic state

|ΨD〉 =
1√
N

N∑

i=1

cie
j(~k~ri−2πδit) |g1...ei...gN〉, (2.4)

where a single atomic excitation is delocalized among N atoms. Here ~ri is
the position of the ith atom, δi is the frequency detuning of the ith atom with
respect to the central frequency of the input photon and ci is the complex
amplitude depending on the frequency and position of the specific atom.
Due to the inhomogeneous broadening of the atomic ensemble (large distri-
bution of the frequency detunings δi) the collective state quickly dephases
after the absorption of a single photon (Fig. 2.2(b,c)). However, such an
inhomogeneous dephasing can be reversed in the presence of equally dis-
tributed absorption peaks such that δi = mi∆ where mi are integers. This
leads to the collective rephasing of the single atomic coherences after the
storage time τ = 1/∆. The efficiency in this case can be written as

ηAFC = (d/F )2e−d/Fηdeph, (2.5)

where d is the optical depth corresponding to the amplitude of the absorp-
tion peak, F = ∆/γ is the finesse of the comb, γ is the width of the single
absorption peak and ηdeph is the rephasing efficiency which depends on the
AFC shape (Bonarota et al. 2010). The first term corresponds to the absorp-
tion and reemission efficiency , while the second describes the reabsorption
process. Due to the presence of this term the efficiency in forward direction
is limited to 54%.

In order to reach 100% retrieval efficiency a complete AFC scheme can
be used (Afzelius et al. 2009). For this, the stored excitation is transferred to
the third spin level |s〉where it can be stored for a longer time in the form of
a spin-wave and retrieved back on-demand (Fig. 2.2(b,d)). This is done by
applying two control π-pulses which transfer the atomic population on the
|e〉 − |s〉 transition.

In the case when the control pulses are applied in a counter propagating
direction to the input pulse a storage and retrieval efficiency can reach unity
(Afzelius et al. 2009). Assuming perfect transfer efficiency the efficiency in
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FIGURE 2.2: AFC quantum memory protocol. (a) First, the atomic fre-
quency comb structure with period ∆ is prepared on the |g〉 ←→ |e〉 using
frequency selective optical pumping. (b) The excitation at the input pro-
duces a collective atomic state which can be transferred to the prepared
spin state |s〉 using control field |e〉 ←→ |s〉. (c) Without the use of control
pulses the stored excitation will be reemitted after time 1/∆. Multimode
capacity allows one to store many excitations in different temporal modes.
(d) Applying control pulses allows the storage time to be extended by stor-
ing excitation as a spin-wave in the media. The on-demand retrieval is
done by a second control pulse after time Ts that transfers the excitations
back to |e〉. This leads to the reemission of the stored single photon after
time 1/∆ + Ts.
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this case can be written as

ηAFC = (1− e−d/F )2ηdeph (2.6)

and does not include losses due to reabsorption. The main advantage of the
AFC protocol is it’s temporal multimode capacity which defines the number
of stored modes N (Fig 2.1(c,d)). For AFC, it does not depend on the optical
depth d and scales only with the number of absorption peaks in the atomic
structure. For the AFC with total spectral bandwidth Γ and period ∆ we
have thatN ∝ Γ/∆. The absorption caused by the background optical depth
d0 usually limits the maximum achievable efficiency and is attributed to the
imperfect state preparation.

The implementation of the AFC quantum memory is mostly based on
rare-earth ion-doped crystals. AFC structure in these materials can be effi-
ciently created using spectral hole burning techniques. The hyperfine split-
ting of the ground state offers the possibility to implement a complete AFC
scheme and long storage times. The first two-level AFC (Fig. 2.2(c)) demon-
stration was realized at the single photon level (Riedmatten et al. 2008) and
later using entangled single photons (Clausen et al. 2010) using Nd3+ ions.
The storage in this case was done up to 200 ns with 5% efficiency. This
configuration was further used to demonstrate storage of the polarization
qubits (Clausen et al. 2012) and to demonstrate heralded entanglement be-
tween two crystals (Usmani et al. 2012). The storage time using two-level
AFC scheme and heralded single photons was extended up to 4.5 µs in
Pr3+:Y2SiO5 with 1% efficiency (Rielander et al. 2014).

A complete AFC protocol (Fig. 2.2(d)) has been demonstrated using strong
coherent states as input (Afzelius et al. 2010a) and at the single photon level
(Timoney et al. 2013) for up to 30 µs storage times. Later the storage of
photonic qubits encoded using time-bins (Gündoğan et al. 2015) and polar-
ization together with 5 temporal modes (Laplane et al. 2016b) have been
demonstrated. Quantum storage of true single photons using full AFC
scheme has not been realized yet.

A temporal multimode capacity with the two-level AFC scheme of up
to 1060 has been demonstrated using classical light (Bonarota et al. 2011),
64 modes have been stored at the single photon level (Usmani et al. 2010).
With full AFC scheme, the storage of 50 modes for 500 µs has been realized
(Jobez et al. 2016).

The use of impedance-matched optical cavity helps to overcome the lim-
itation on the maximum efficiency (Afzelius et al. 2010a). The first demon-
strations showed the possibility to reach 58% with weakly absorbing Pr3+:Y2SiO5

and 53% with Eu3+:Y2SiO5 crystals with µs storage times (Sabooni et al.
2013; Jobez et al. 2014).

All the storage experiments presented in this thesis are performed using
two-level AFC quantum memory protocol. The features that allow storage
of the different states of lights that have been investigated only depend on
the AFC two-level memory, hence they can also be stored using the full AFC
spin-wave memory.
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2.3.4 Raman based memory

Raman type process enables broadband, sub-nanosecond photon stor-
age (Fig. 2.3(a)). It has been proposed and demonstrated in hot atomic
vapours with 1 GHz bandwidth (Reim et al. 2010), diamonds up to 1 THz
(Lee et al. 2011; England et al. 2013) and hydrogen molecules up to 125 THz
bandwidth (Bustard et al. 2013). The large bandwidth is the main advantage
of this approach, while the scaling with the number of modes is analogous
to EIT protocol and storage times are extremely small (up to 1 ns).

Significant progresses are associated with applying GEM technique to
induce a controlled broadening of the spin transition memory (Λ-GEM). For
this, one uses an off-resonant stimulated Raman interaction to map the light
field onto an atomic spin wave (Fig. 2.3(a)). This scheme was implemented
in warm atomic Rb vapours with a storage and retrieval efficiency of up to
89% (Hosseini et al. 2009; Hosseini et al. 2011a) and tens of microseconds
storage times. The bandwidth in this case is much smaller and reaches few
MHz, while the scaling for the number of modes is the same as for usual
CRIB and GEM.

Other significant results with Λ-GEM include coherent pulse sequenc-
ing (Hosseini et al. 2012) and highly efficient 84% unconditional quantum
memory for weak coherent pulses (Hosseini et al. 2011b). The control of
the single collective spin excitations was also demonstrated (Albrecht et al.
2015).

2.3.5 DLCZ-type quantum memory

DLCZ protocol (Duan et al. 2001) is based on using collective atomic
states to generate and swap entanglement. In this scheme, entanglement
is created between a single photon and a collective atomic excitation. This
excitation can be read out as a photon to perform a Bell-state measurement
and distribute entanglement between a network of atomic ensembles.

In this case, the atomic ensemble can be considered as a source of entan-
gled photon pairs with controllable delay line between them (Fig. 2.3(b)).
Such type of quantum memory is usually referred to as emissive in contrast
to the absorptive quantum memories described above.

The implementation of the DLCZ scheme using cold Rb atomic ensem-
bles became a work horse for a great number of impressive experiments.
The longest quantum storage of 100 ms involving frequency conversion to
telecommunication wavelengths was reported by (Radnaev et al. 2010). An
optical cavity around Rb atomic ensemble helped to achieve 73% readout
efficiency together with 3.2 ms storage time (Bao et al. 2012). Based on this,
entanglement among four quantum memories has been demonstrated (Choi
et al. 2010). Further improvements helped to achieve an initial retrieval ef-
ficiency of 76% together with an 1/e lifetime of 0.22 s (Yang et al. 2016).

The realization of the DLCZ-like scheme in solid states can offer great ad-
vantages based on the temporal multimode capacity. The proposed rephased
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FIGURE 2.3: Off-resonant quantum memory protocols. (a) One of the im-
plementations of the quantum memory based on off-resonant Raman scat-
tering. An input signal photon together with a strong write pulse stimulate
Raman scattering on the |g〉 ←→ |e〉 transition and forms a collective exci-
tation on the storage state |s〉. The application of the read pulse on the same
transition leads to the emission of an anti-Stokes photon and read-out from
the memory. (b) Energy level scheme used for the DLCZ (Duan et al. 2001)
memory. The write pulse off-resonantly couples the ground state |g〉 to the
excited level |e〉. A Stokes photon is emitted with small probability, thus
creating a single collective excitation to the storage state |s〉. During the
retrieval process, a pulse resonant with the |s〉 −→ |e〉 transition (read) col-
lectively transfers back the atom to the initial state |g〉 while emitting an
anti-Stokes single photon in a well-defined spatio-temporal mode.
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spontaneous emission (RASE) (Ledingham et al. 2010) has been demon-
strated in rare-earth ion-doped crystals involving classical correlations (Bea-
van et al. 2012), entanglement (Ledingham et al. 2012) and non classical cor-
realtions (Ferguson et al. 2016). It has been demonstrated using homodyne
measurement based on Duan’s criteria (Duan et al. 2000). We note that no
non-classical correlations using discrete variables has been published yet.

The combination of the DLCZ and AFC schemes (AFC-DLCZ) was pro-
posed by Sekatski et al. 2011 and offers great temporal multimode capacity
combined with the narrowband photon pair sources compatible for quan-
tum communication.
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3 Source of entangled photon pairs

This chapter is partly based on the results published in

C. Clausen, F. Bussières, A. Tiranov, H. Herrmann, C. Silberhorn, W. Sohler,
M. Afzelius & N. Gisin, “A source of polarization-entangled photon pairs inter-
facing quantum memories with telecom photons", New Journal of Physics 16,
093058 (2014) (pages 143-172)

The source of entangled photon pairs used in this thesis based on spon-
taneous parametric down conversion (SPDC) in nonlinear waveguides. It
was aligned and characterized for experiments involving an AFC two-level
quantum memory introduced in Chapter 2. This quantum memory proto-
col was implemented in a Nd3+:Y2SiO5 crystal described in Chapter 4. The
signal photon from the photon pair has to be in resonance with the transi-
tion from the 4I9/2 ground state to the 4F3/2 excited state of the Nd3+ ion at
λs = 883 nm.

To realize long-distance quantum communication the wavelength of the
idler photon of a pair has to be in the region from 1300 nm to 1700 nm
in order to take advantage of high transmission in optical fibres at these
wavelengths. This condition can be conveniently satisfied using a pump
wavelength of λp = 532 nm, for which high-quality solid-state lasers are
readily available. This places the idler wavelength at λi = (λ−1

p − λ−1
s )
−1

=
1338 nm due to energy conservation.

In this chapter we give a brief introduction to the theory of SPDC and
present experimental details about the realization and characterization of
the source of entangled photons used in this thesis.

3.1 Spontaneous parametric down conversion
Spontaneous parametric down-conversion (SPDC) can be considered as

the inverse process of sum-frequency generation in non-linear optics. It is
the process taking place inside a medium with χ(2)-nonlinearity when a
pump photon spontaneously decays into a pair of photons, such that en-
ergy and momentum are conserved. In the simplest case, SPDC process is
usually described by the interaction Hamiltonian

ĤI = h̄χ(2)(ξa†sa
†
iap + ξ∗asaia

†
p), (3.1)

where ap, as and ai denote the annihilation operators for the pump, signal
and idler modes, respectively, and ξ depends on the properties of the pump,
among other things. Under this Hamiltonian, the vacuum state evolves into

http://dx.doi.org/10.1088/1367-2630/16/9/093058
http://dx.doi.org/10.1088/1367-2630/16/9/093058
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a two-mode squeezed state,

|Ψ〉 = eiĤI t/h̄ |vac〉 =
√

1− p
∞∑

n=0

pn/2 |ns, ni〉, (3.2)

where p = tanh2(χ(2)|ξ|t), which in the case p � 1 can be interpreted as the
probability to create a single photon pair.

The two-mode squeezed state (Eq. (3.2)) has a series of properties of in-
terest that are important for most of the quantum optics experiments.

3.1.1 Thermal statistics of the signal and idler modes

When considered individually, the signal and idler modes exhibit ther-
mal statistics. This can be seen directly by expressing the photon number
distribution in terms of the mean photon number,

P (n) =
µn

(1 + µ)n+1
, where µ = 〈ns〉 = 〈ni〉 =

p

1− p. (3.3)

Additionally, the thermal bunching is reflected in the second-order auto-
correlation function of the signal and idler modes,

g(2) =
〈a†a†aa〉
〈a†a〉2 , (3.4)

which reaches 2 for two-mode squeezed state containing only one mode.

3.1.2 Multimode properties

The existence of several two-mode squeezed states in parallel can have
a strong effect on the measurements. Consider, for instance, a measurement
of g(2)

s,s , which requires a coincidence detection of two signal photons. If
the photons stem from different squeezed states, there are no correlations
between them, and the value of the auto-correlation function is reduced.
An auto-correlation value close to the maximum of 2 can only be obtained
if the probability is high that both photons belong to the same mode, that is,
if the total number of modes is small. Indeed, one can show that the value
of the auto-correlation function in the multimode case is given by

g(2) ≈ 1 +
1

K
(3.5)

where K ≥ 1 is the effective number of modes (Christ et al. 2011).
Multimode photon-pair sources can be turned into single-mode sources

by applying filtering in the time and/or frequency domains, such that the
detected photons always belong to the same mode. In our case, filtering
in the time domain amounts to having a detector with a temporal resolu-
tion that is much shorter than the coherence time of the generated photons.
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The effective number of modes hence depends on the combined system of
source and detector.

3.1.3 Nonclassical correlations

While the signal and idler modes seem perfectly classical individually,
there are strong quantum correlations between them. The quantumness
stems from the fact that the number of photons in the signal and idler modes
are always exactly identical (Eq. (3.2)). Experimentally, this can be demon-
strated using different methods. Here we discuss only technique based on
the single photon counting.

The first way to prove that the correlations between signal and idler are
non-classical is by the violation of a Cauchy-Schwartz inequality that relates
the cross-correlation function g

(2)
s,i to the auto-correlation functions g(2)

s,s and
g

(2)
i,i (Kuzmich et al. 2003),

g
(2)
s,i ≤

√
g

(2)
s,sg

(2)
i,i (3.6)

for classical fields.
For the two-mode squeezed state one find correlation function

g
(2)
s,i =

〈a†sa†iasai〉
〈a†sas〉〈a†iai〉

= 1 +
1

p
(3.7)

which violates inequality (3.6)for all p < 1.
The second way to show non-classicality is related to the use of photon-

pair sources as heralded sources of single-photons. The identifying prop-
erty of a single-photon source is its vanishing auto-correlation function g(2) =
0, while classical fields always have g(2) ≥ 1. A source generating a two-
mode squeezed state (Eq. (3.2)) can be an almost ideal source of heralded
single photons, because the ratio of double-pair to single-pair emission can
be made arbitrarily small when p� 1. This fact can be reflected in an auto-
correlation function that is conditioned on the detection of the idler photon
(Clausen 2013),

g
(2)
s,s|i =

〈a†iai〉〈a†ia†sa†sasasai〉
〈a†ia†sasai〉2

= 2p
2 + p

(1 + p)2
(3.8)

which for p� 1 can be approximated by g(2)
s,s|i ≈ 4p.

3.1.4 Temporal inversion

SPDC process can be used to herald single photons with arbitrary con-
trolled time waveform. This fact can be used for different applications in-
volving interaction of the single photons with the single emitters.

The conditions for the perfect absorption of an incident single photon
by a single atom can be found from the reversed process: the spontaneous
emission of a photon from an atom prepared in an excited state. This feature
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(c) (d)

(a) (b)

(e)

FIGURE 3.1: Second order correlation functions of the SPDC source. (a)
-(b) Autocorrelation functions of the signal g(2)

ss and idler mode g(2)
ii . (c)

Cross-correlation function g(2)
si between signal and idler modes. (d) Auto-

correlation function of the heralded single photon in the signal mode g(2)
ss|i

heralded by the detection of the idler photon. (e) Cross-correlation func-
tion g(2)

si measured as the function of the SPDC pump power. At low pump
powers g(2)

si starts to be limited by the dark count of the detectors.
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is induced by the time-reversal symmetry of Schrödinger’s and Maxwell’s
equations. Therefore, to enhance the coupling between atom and single
photon the incident photon should have an exponentially rising temporal
envelope with a matching time constant (Aljunid et al. 2013). This princi-
ple is general and it is applicable for the optimization of the light matter
interfaces (Gorshkov et al. 2007).

To temporally inverse the exponentially decaying waveform the reflec-
tion from the asymmetric cavity can be used (Srivathsan et al. 2014). Re-
cently, efficient coupling with the single atom has been demonstrated using
a single photon generated via four-wave-mixing in the Rb atomic ensemble
(Leong et al. 2016).

For this purpose, SPDC process also can be used applying spectral filter-
ing based on standard cavities. The state of the single photon pair generated
by the multimode SPDC process can be written as

|Ψ〉 ∝
∫ ∫

dωsdωiΦ(ωs, ωi)α(ωs + ωi)a
†
ωs
a†ωi
|vac〉 (3.9)

The product of α(ωs+ωi) and Φ(ωs, ωi) is often called the joint spectral ampli-
tude. Applying spectral filtering to the idler mode which is much narrower
than for the signal photon and assuming monochromatic pump laser ωp one
can write the state as

|Ψ〉 ∝
∫
d∆I(∆)a†ω0

s−∆a
†
ω0
i +∆
|vac〉 (3.10)

where ∆ is the detuning from the central frequency of the filter ω0
0 with

transmission amplitude I(∆) applied to the idler mode and ωp = ω0
i + ω0

s .
The detection of the idler mode at time moment t0 heralds the single pho-
ton wavepacket in the signal mode with spectral amplitude I(−∆). For the
case when I(−∆) = I∗(∆) this will correspond to the inversion in time.
For example, in the simplest case the lorentzian filter (standard cavity or
etalon) with spectral amplitude I(∆) = 1/(1 − i∆τi) which corresponds to
the exponentially falling temporal envelope with decay time τi. Thanks to
the anticorrealtion in energy shown above (Eq. (3.10)), by detecting the idler
photon after the lorentzian filter the signal photon with exponentially rising
waveform is heralded. The temporal shape can be revealed by measuring
the cross-correlation function g(2)

si (Fig. 3.1(c)).

3.1.5 Entanglement

The SPDC process provides a tool to generate entanglement between
the signal and idler photons. The entanglement can be established using
various photonic degrees of freedom. In particular, energy-time entangle-
ment and polarization entanglement were used during our experiments to
demonstrate efficient interface between solid-state quantum memories and
SPDC sources (Chapters 5 and 6).
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Energy-time entanglement

In the case of a highly coherent continuous-wave pump laser, the spec-
trum of the pump laser is very narrow as compared to the spectrum of the
idler or signal photons. Consequently, the sum of the energies of signal and
idler photons is perfectly well-defined, and we can approximate it by

αcw(ωs + ωi) ≈ δ(ωs + ωi − ωp). (3.11)

In this case, the joint spectral amplitude is given only by the phase-matching
condition. In such extreme case, spectral correlations between two photons
can not be destroyed by the spectral filtering. Instead, temporal filtering is
needed to introduce some uncertainty in the total energy of the photon pair.

The situation of a highly coherent pump that we have just described is
nothing but entanglement in energy and time (Franson 1989). An arguably
more intuitive picture is given by the time-domain description: A narrow-
band pump laser can have a coherence time that is many orders of magni-
tude longer than the coherence time of the photons created by SPDC. En-
ergy conservation tells us that the signal and idler photons must be created
at the same time to within their coherence length, but the exact time has an
uncertainty on the order of the coherence time of the pump laser.

The coherence time in this case is defined by the filtering system of both
photons which has to be still much bigger than the spectrum of the pump
to still keep energy/time entanglement between two photons (Fig. 3.2(a)).

The state of the energy-time entangled photon pair with certain coher-
ence time |t〉 can be described as

|Φt〉 ∼
∫
dtα̃(t) |ts〉 |ti〉, (3.12)

where α̃(t) is the temporal envelope of the pump photon.
Energy-time entanglement can be probed by Franson interferometry us-

ing the series of Mach-Zender interferometers on each side of the experi-
ment (Franson 1989). While the travel-time difference between the short
(early |E〉) and long (late |E〉) arms is greater than the coherence time of the
photon pair τc there is no single-photon interference. Due to the large un-
certainty in the creation time, a coincidence stemming from both photons
traveling the short arms (|EsEi〉) is indistinguishable from one where both
photons traveling the long arms (|LsLi〉), leading to quantum interference
(Fig. 3.3(a)). These coincidences can be seen as stemming from a time-bin
maximally entangled Bell state

|Φ〉 = (|EsEi〉+ |LsLi〉)/
√

2. (3.13)

By varying the time separation between early |E〉 and |L〉 paths one can
probe the energy-time entanglement of the state (3.12) at different time scale
(Thew et al. 2004).
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FIGURE 3.2: Generation of entangled photon pairs. (a) Generation if
energy-time entanglement between two photons (signal and idler) using
monochromatic pump laser at 532 nm. Uncertainty in time creation of
the photon pair is given by the coherence time of the pump laser. Con-
sidering two temporal modes where photon pair can be created one can
approximate the resulting state as |Φ〉 = (|EsEi〉+ |LsLi〉)/

√
2 (Eq. (3.13)).

(b) Creation of polarization-entangled photon pairs using two waveguides
inside a polarization interferometer. A polarization beam splitter (PBS)
coherently divides the pump photons, where each polarization compo-
nent has a certain probability to be converted into a photon pair with
the same polarization. The two polarization components of the photon
pair are then recombined into the same spatial mode by a second PBS.
By adjusting the phase of the interferometer the state can be written as
|Φ〉 = (|HsHi〉 ± |VsVi〉)/

√
2 (Eq. (3.15)).

The state can be seen as multidimensional entangled state by discretizing
the state (3.12) in time using d time bins and can be written as

|Φd〉 =
1√
d

d∑

j=1

α̃j |js〉 |ji〉. (3.14)

Entangled two-photon time-bin qudits states with the dimension up to 4
were certified and used to violate CGLMP inequality (Ikuta et al. 2016). This
state was used to demonstrate multi-dimensional entanglement storage in
Chapter 7.

Polarization entanglement

Various schemes have been devised to generate polarization-entangled
photon pairs through SPDC. These schemes include selective collection of
photon pairs emitted at specific angles for non-collinear type-II phasematch-
ing (Kwiat et al. 1995), collinear SPDC in two orthogonally oriented crystals
(Kwiat et al. 1999; Trojek et al. 2008), and SPDC in Sagnac interferometers
(Kim et al. 2006; Hentschel et al. 2009).

To create polarization entanglement using two different waveguides we
follow the ideas of (Kwiat et al. 1994; Kim et al. 2001) that suggest using
each of them in different arm of a polarization interferometer (Fig. 3.2(b)).
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$\phi_i$

$\phi_s$

(a)
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FIGURE 3.3: Visibility curves measured for polarization and energy-time
degree of freedom. (a) Rates of the coincidence peak plotted as a function of
the sum of the phases of each interferometer. The small phase shift between
the curves appears due to a residual phase difference between |H〉 and |V 〉
components at the output of the interferometer on the signal side. (b) Rates
of the coincidence peak as a function of polarization analyzer’s half-wave
plate (HWP) angle of the signal photon (with the half-wave plate at 45°),
for different pairs of detectors at the outputs of the PBSs, as a function of
the HWP angle, from which the phase of the polarization Bell state can be
extracted from the horizontal offset.
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We use type-I phasematching for both waveguides. A polarizing beam
splitter at the entrance of the interferometer splits the two coherent state
components in two paths. In the horizontal path the photons can be con-
verted into a photon pair | HH〉 with a probability amplitude α by a first
nonlinear waveguide. A second waveguide rotated by 90◦ in the vertical
path can produce a photon pair | V V 〉 with probability amplitude β. An-
other PBS recombines the two paths, and the final single-pair state | ψ1〉 is
given by α |HsHi〉 + βeiφ |VsVi〉. The phase φ depends on the path-length
difference of the interferometer (Fig. 3.3(b)).

By choosing the pump polarization such that it compensates the effi-
ciency difference, and by slightly varying the position of one of the mirrors
to obtain eiφ = ±1, the single-pair state becomes equivalent to one of the
two Bell-states ∣∣Φ±

〉
= (|HsHi〉 ± |VsVi〉)/

√
2. (3.15)

3.2 Experimental characterization
The strong filtering was applied for both modes of the SPDC process to

reach 200 MHz bandwidth of the photon pair. For this the series of the cav-
ities and volume Bragg gratings were used on each side of the experiment.
The cavity with the full-width half-maximum of 240 MHz was used to filter
idler photon while for the signal mode 600 MHz filtering was applied. This
leads to the strong reduction of the uncertainty in energy of the idler and
signal mode comparing with the initial spectrum which reaches 500 GHz.

3.2.1 Correlation functions

To characterize the SPDC process and to reveal nonclassical properties of
the emitted light different correlation functions have been measured (Fig. 3.1).
The thermal properties of the signal and idler mode were verified using au-
tocorrelation functions g(2)

ss and g
(2)
ii (Fig. 3.1(a,b)). The values bigger than

1.5 were measured for both modes and are limited by jitter of the detectors
and contribution from the other spectral modes of the respective filtering
cavities.

The cross correlation function g
(2)
si values up to almost 4000 was mea-

sured using coincidence detection between signal and idler mode (Fig. 3.1
(c,e)) and for low pump powers was limited by the detection system noise.
This value is much bigger than 2 which together with the autocorrealtion
functions demonstrates strong non-classicality of the generated light using
Cauchy-Schwarz inequality (Eq. (3.6)).

The single photon character was demonstrated using heralded autocor-
relation function g(2)

ss|i measurement (Fig. 3.1(d)). The value close to 10−3 was
measured showing the possibility to generate the state which is close to the
single photon using the SPDC process and heralding one of its modes.
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3.2.2 Entanglement

To characterize entanglement between two photonic modes one has to
probe the two-photon state in different bases on each side of the experiment.
In our case we used two different photonic degrees of freedom (polarization
and time).

The measurement that verifies the coherent nature for the state entan-
gled in polarization (or energy-time) is illustrated in Figure 3.3. First, the
idler photon is measured in the basis |+〉 = (|H〉+ |V 〉)/

√
2 ((|E〉+ |L〉)/

√
2)

using a half-wave plate and a PBS (or using interferometer and phase con-
troller). If a photon is projected on |+〉 state, the signal photon is also pro-
jected onto the state |+〉 = (|H〉 + |V 〉)/

√
2 (or (|E〉 + |L〉)/

√
2). Measuring

it using the states on the equator of the Bloch sphere (|H〉 + eiφ |V 〉)/
√

2
(or (|E〉 + eiφ |L〉)/

√
2) one should obtain sinusoidal fringes by varying the

phase φ (Fig. 3.3). In contrast, if the photon pairs are generated in a maxi-
mally mixed state one will not see any dependence on φ. A fringe visibility
larger than 33% is necessary to infer the presence of entanglement in this
case (Peres 1996).

In Figure 3.3 we show the results of the described measurement proce-
dure for each degree of freedom. The number of measured coincidences
oscillates as a function of φ, as expected. A sinusoidal fit reveals an average
visibility 96% and 92% for polarization and energy-time entanglement, re-
spectively, which indicates that the source generates photon pairs that are
close to maximally entangled in polarization and energy-time.

To unequivocally prove the presence of entanglement we performed a
violation of the Clauser–Horne–Shimony–Holt (CHSH) inequality (Clauser
et al. 1969) described in Chapter 1. We find a CHSH parameter of 2.716(11)
and 2.571(11) for polarization and energy-time degree of freedom, respec-
tively. These values are both above the bound for separable states of S ≤ 2.

By measuring both degrees of freedom simultaneously and indepen-
dently one can analyze hyperentangled state consisting of polarization and
energy-time entanglement (Eq. (1.13)) (Chapter 6).

3.2.3 Hong-Ou-Mandel interference

The simplest implementation of the Bell-state measurement is based on
beamsplitter-interference and therefore lends itself well for photonic imple-
mentations (Pan et al. 1998; Knill et al. 2001). Fig. 3.4(a) illustrates the con-
vention used in the description of the beamsplitter: ports a and b as inputs,
and c and d as outputs. For single photon input states |φ〉 or |ψ〉 at inputs
a or b, the beamsplitter coherently mixes the inputs to yield the following
results:

|φa〉 →
1√
2

(|φc〉+ |φd〉), |ψb〉 →
1√
2

(|ψc〉 − |ψd〉). (3.16)

Only when two states |φ〉 or |ψ〉 are indistinguishable the destructive
interference between the respective pathways from input a and b to the
outputs results in bunching behaviour for the photons: both photons will
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FIGURE 3.4: Hong-Ou-Mandel (HOM) interference. (a) The conceptual
setup to observe HOM interference between two photonic modes a and b
combined o the 50/50 beamsplitter. If two states at the input are indistin-
guishable than due to the quantum interference only the cases where both
states will emerge at the same output (c or d) will be present. (b) HOM dip
measured between heralded single photon from SPDC process and contin-
uous weak coherent state. The coincidences as a function of delay between
two detectors reveal destructive interference between the states of the sin-
gle photon and coherent state. The visibility defined as Nmax/Nmin of 81%
was estimated from the fit (solid line).

emerge at the same output (Hong et al. 1987)

|φa〉 |φb〉 →
1

2
(|φc〉 |φc〉 − |φd〉 |φd〉). (3.17)

One of requirements to perform perfect quantum teleportation is com-
plete indistinguishability between two states involved into a Bell-state mea-
surement. However, complete indistinguishability is hardly achievable due
to the technical limitations.

Instead of using two single photon states Hong-Ou-Mandel interference
can be observed between single photon and coherent state. The interfer-
ence in this case can not be perfect and is limited by the different photon
statistics. However, with low enough mean photon numbers of the coher-
ent states the visibilities more than 80% are still achievable (Fig. 3.4(b)). This
fact allowed us to perform close to the Bell-state measurements and real-
ize quantum teleportation of the qubit encoded into it’s polarization state
(Chapter 5).
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4 Rare-earth ion-doped crystals

The discovery of rare-earth elements started in 1794 from a black metal
mineral called Yttria found in Ytterby in Sweden, which was a mixture of
several elements. It took almost 100 years to isolate the first six rare earths
(Y, Ce, La, Tb, Er, Yb). The use of the optical flame spectroscopy greatly
accelerated their investigation. Only seven years after the first time that
this new technique was applied to rare-earth compounds, researchers had
discovered another eight rare-earth elements (Sm, Sc, Tm, Ho, Dy, Gd, Pr,
Nd).

Unusually narrow spectral lines at visible wavelengths were observed
by Vleck 1937 and were attributed to the 4f intrashell electronic transitions.
This was an indication of a weak interaction between RE elements and their
environment. High-resolution spectroscopy was performed only after in-
vention of the dye lasers and finally confirmed this hypothesis (Macfar-
lane et al. 1987b). The results gave first quantitative description of emitter-
emitter and emitter-matrix interactions in rare-earth compounds.

In this chapter, we will start with an outline about electronic level struc-
ture of the rare-earth ions doped in crystals. We also describe different
sources of spectral broadening and discuss coherent optical properties of
some materials which are important for quantum information applications.
Spectroscopy of the Nd3+:Y2SiO5 crystal which was used as a quantum
memory is presented. Optical pumping technique which is required to im-
plement AFC quantum memory protocol (described in Chapter 2) is dis-
cussed together with it’s limitations.

4.1 Energy structure
As there are many elements in the lanthanide series, different metals

give rise to different transition wavelengths ranging from the visible to the
infrared. In the context of quantum information processing, experiments
focus on the use of europium (Eu), praseodymium (Pr) , thulium (Tm),
neodymium (Nd), and erbium (Er) as the dopants for often yttrium orthosil-
icate (YSiO), yttrium aluminium garnet (YAG) or lithium niobate (LiNbO).
These metals have transition wavelengths of 580 nm, 606 nm, 790 nm, 880 nm
and 1530 nm, respectively.

All these elements are characterized by [Xe]4f j electron configuration
where j ranges between 0 (La) and 14 (Lu). The sharp spectral lines of

https://www.google.ch/maps/place/Ytterby,+185+94+Vaxholm,+Sweden/@59.4285244,18.3326987,17z/data=!3m1!4b1!4m5!3m4!1s0x465f85d49d0f062b:0xdfae47e184ca130a!8m2!3d59.4285244!4d18.3348874
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these elements originate from the shielding of the 4f electrons by higher en-
ergy levels and the spatially outer-lying 5s, 5p and 6s electronic shells. This
means that all the processes taking place within the 4f shell are thus weakly
disturbed by the immediate environment surrounding Re3+-ion. Respective
optical linewidths may approach the lifetime limit even in chemical com-
pounds.

Due to this fact the free-ion Hamiltonian Ĥfree is more dominant than
the crystal field Hamiltonian ĤCF . The Hamiltonian Ĥ of a trivalent rare-
earth ion Re3+-ion doped into the crystal can be decomposed into several
components:

Ĥ = Ĥfree + ĤCF + ĤZ + ĤHF + ĤQ, (4.1)

where smaller contributions are related to electronic Zeeman interactions
ĤZ , to hyperfine interaction ĤHF and nuclear electric quadrupole interac-
tion ĤQ. The interaction with crystal phonons usually can eliminated by
using cryogenic temperatures for the crystal (< 4K).

Free-ion Hamiltomian Ĥfree = Ĥ0 + ĤC + ĤSO contains the kinetic and
potential energies of all the electrons in the field of the nucleus Ĥ0 , the
Coulomb interactions between them ĤC and their spin-orbit coupling ĤSO.
In this context, depending on the Re3+ ion LS (Russell-Saunders ĤC �
ĤSO) coupling, jj (ĤC � ĤSO) or intermediate regime (ĤC ≈ ĤSO) can
be used (Sun 2005). From the Russell-Saunders coupling scheme using n
(principal quantum number), l (azimuthal quantum number), and J (total
angular momentum) quantum numbers for Ĥfree the free-ion eigenstates
can be written as

|ΨnIJ〉 =
∑

LSM

aLSJ |nILSJM〉 . (4.2)

There are 2J + 1 Russell-Saunders eigenstates (M = −J...+ J) contributing
to a new free-ion eigenstate which is thus 2J + 1-fold degenerate. Coulomb
interactions alone cause energy splittings on the order of ≈100 THz corre-
sponding to optical transitions, while for spin-orbit interactions the average
value is around ≈10 THz.

4.1.1 Crystal field

A Re3+ ion that is embedded into a crystalline environment experiences
electrostatic perturbations which will lift the spherical symmetry of the free-
ion potential and, as a consequence, also the 2J + 1 fold degeneracy of the
Ĥfree eigenstates. It is relatively easy to predict the degree to which this
degeneracy is lifted since this depends exclusively on the point symmetry
of the crystal site where the Re3+ resides. It is difficult, however, to obtain
actual values for the respective crystal-field splittings because there are a
number of interactions influencing the electronic states are difficult to ac-
count for in ab initio calculations (Liu 2005).

It is not clear from the very beginning how to correctly model the crystal-
field interactions mathematically. However, since the crystal-field interac-
tion may be approximated as point charge perturbations, one may define a
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FIGURE 4.2: Dieke diagram (Dieke et al. 1968) showing the energy levels
of the trivalent rare earth Re3+ ions arising from their 4fn electron configu-
rations (taken from Withnall et al. 2014)
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FIGURE 4.3: Rare-earth ion doped crystals. (a) Electronic structure of a
tripositive Nd3+ rare earth ion: the 4f shell is shielded by the closed 5s, 5p
and 6s shells. (b) Level structure of Nd3+ doped into Y2SiO5 and under
magnetic field.

very general interaction Hamiltonian (Reid 2013)

ĤCF =
∑

kq

Bk
qC

(k)
q , (4.3)

where the Bk
q parameters define the one-electron crystal-field interaction

and the C(k)
q are spherical tensor operators for the 4f configuration.

In general, such a Hamiltonian mixes states of different J and M so that
a crystal-field eigenfunction can be decomposed as

∑
JM aJM |ΨnIJ〉.Neither

J nor M constitute good quantum numbers for a crystal-field level. How-
ever, as long as the energy separation of the multiplets is much greater than
the resulting crystal-field splitting, J mixing usually remains negligible (Liu
2005).

So far, the most reliable results for crystal-field parameters have been
obtained by fitting them to experimentally observed spectra using a large
number of observed transitions from near-infrared, optical to the UV do-
main (Liu 2005). Crystal-field interactions commonly amount to splittings
on the order of ≈1 THz. See Fig. 4.3(b) for a comprehensive illustration of
the energy splittings.

4.1.2 Zeeman interaction

Depending on the number of 4f electrons, even or odd, the rare earth
ions form what are referred to as the non-Kramers or Kramers ions, respec-
tively (Kramers 1930). For Kramers ions (neodymium (Nd), erbium (Er), yt-
terbium (Yb)), due to the unpaired electron, the state levels form a Kramers
doublet with a magnetic moment of the order of the Bohr magneton. For
non-Kramers ions, with even numbers of electrons, the levels are electronic
singlets and the angular momentum is said to be “quenched” by the crystal
field, having zero angular momentum (praseodymium (Pr), europium (Eu),
thulium (Tm)). An important exception to this is if the ions are located at
sites with axial or higher symmetry, in which case non-Kramers doublets
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can occur, due to the non-zero angular momentum around the symmetry
axis. These types of ions experience large first order Zeeman and hyperfine
interactions with short dephasing times.

The interaction of the electronic spin with external magnetic filed lifts the
degeneracy in magnetic quantum number ms. The Hamiltonian for general
case can be written as

ĤZ = µB ~B · g̃ · Ŝ, (4.4)

where g̃-tensor characterizes the interaction strength with external magnetic
field ~B applied in certain direction, Ŝ represents the electronic spin of the
ion.

Due to the unquenched electronic spin for Kramers ions this term is sig-
nificantly bigger. The sensitivity to the external magnetic field in this case
can reach ≈100 GHz/T for Er3+ ion doped materials. Whereas for non-
Kramers ions it is of the order of nuclear magneton and 1000 times smaller.

Optical and electronic spin transitions of Kramers ions are therefore much
more sensitive to magnetic field fluctuations of the environment (Sun 2005).
Large magnetic moment also increases the interaction between dopant ions,
which is usually decreased by lower doping concentration.

4.1.3 Hyperfine splitting

Just as in atoms, the total spin J of the 4f electrons may interact with
the Re3+ nuclear spin I by magnetic field coupling. This will give rise to
magnetic hyperfine splittings, which can be described by the effective spin
Hamiltonian in the case of the axial symmetry of the crystal site

ĤHF = A‖Ĵz Îz + A⊥(ĴxÎx + Ĵy Îy), (4.5)

where Ĵx,y,z and Îx,y,z are the electronic and nuclear spin operators in the
respective crystal directions, and A‖ and A⊥ give the interaction coefficient
along and perpendicular to the z direction, respectively. Usually, A‖ and
A⊥ are specified in a reference frame where z coincides with the crystal axis
denoted by c. The typical values for hyperfine splittings for the Kramers
ions vary between 100 MHz and 1 GHz.

At crystal sites with a low symmetry, the diagonal elements of ĤHF van-
ish for non-Kramers ions, i. e. there is no first-order magnetic hyperfine
interaction. In this case, the contributions to hyperfine splitting are solely
due to off-diagonal matrices between different multiplets J and J ′. The
leading component is of second order and can be described by a Hamilto-
nian that takes the same form as the Hamiltonian for electric quadrupolar
interactions.

4.2 Optical properties

The intra-shell optical electric-dipole transitions of 4f electrons of Re3+

free ions are forbidden, since they can only connect states with opposite par-
ities. However, the parity (−1)L (L =

∑
i li is the total angular momentum
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FIGURE 4.4: Fluorescence measurement. (a) Fluorescence spectra of the
cryogenically cooled Nd3+:Y2SiO5 crystal pumped with 883.2 nm wave-
length at 4I9/2 →4F3/2 . (b) Energy structure of Nd3+ ions doped in Y2SiO5

crystal.

of electronic system) is the same for all states within the 4f manifold. The
crystal-field Hamiltonian (Eq. (4.3)) may mix states of opposite parity into
the crystal-field levels and thus enable electric dipole transitions between
them. The crystal-field components connecting the initial |i〉 and final states
|f〉 can be written as

Bk
q = Akq 〈f | rk |i〉 , (4.6)

where Akq are the structural coefficients parametrizing the crystal field and
rk is the radial part of spherical tensor operator. Due to the symmetry rea-
sonsBk

q with odd k will enable electric dipole transitions within the 4f man-
ifold. They are generated by a non-centrosymmetric crystal field around the
Re3+. For this reasons most of the selection rules do not hold and can be vi-
olated.

The relatively low intensities of the transitions within the 4f manifold
correspond to small oscillator strengths of the optical transitions. Typi-
cal oscillator strengths are on the order of 10−7. The rare-earth ion with
the highest oscillator strength is Nd3+ doped in YVO4 host media with
value of 10−6. This makes the single-ion detection extremely hard task (Pe-
tersen 2011; Kolesov et al. 2012) comparing with detection of the single dye
molecules where oscillator strength can reach unity.

The typical values of radiative lifetimes T1 vary from 100 µs to 10 ms.
Such long T1 lifetime means that to reach high optical depth one needs to
use high density of ions which is possible in solid-state materials. The re-
spective peak absorption cross-sections may thus still be largely compara-
ble. This also means that the optical coherence lifetimes T2 can reach im-
pressive values which are four to five orders of magnitude larger compared
to organic molecules.
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4.2.1 Inhomogeneous broadening

Re3+ ions that are embedded in a crystalline host matrix experience in-
dividual shifts of their transition frequencies. These shifts are usually ex-
plained by the fact that the crystalline lattice has strain and exhibits defects,
something that is ultimately dictated by thermodynamics. Therefore, each
ion finds itself in a different local environment and experiences different lo-
cal electric and magnetic fields, which will accordingly shift its transition
frequency. The resulting distribution of frequencies gives rise to an inho-
mogeneously broadened line, where the term inhomogeneous suggests that
the broadening is due to shifts that are not equal for all the Re3+.

In many cases one can relate the inhomogeneous linewidth to the ionic
size of the lattice ion which is replaced and the ionic size of the Re3+ ions.
For example, for YSO crystal Y3+ ion is replaced by dopant. Eu3+ and Er3+

dopants have similar sizes as Y3+, and good Er/Eu3+:YSO crystals have sub-
GHz inhomogeneous linewidths, with a strong dependence on the concen-
tration. For Pr3+ and Nd3+ dopants, which have similar but larger ionic
sizes, the inhomogeneous linewidths are much larger 5-10 GHz, and are not
very concentration dependent (Liu 2005).

The biggest value for inhomogeneous linewidth reaches few THz (Thiel
et al. 2011), where it is attributed to the natural defects of the media. The
lower end of this scale is marked by Nd3+:YLiF4 which has been shown to
broaden by 10 MHz at very low doping levels (Macfarlane et al. 1998).

The work toward growing rare-earth stoichiometric crystals with reduced
inhomogeneous broadening is ongoing and have great potential for imple-
menting quantum information protocols in these materials (Ahlefeldt et al.
2016).

4.2.2 Homogeneous broadening

Dynamical processes taking place on the microscopic level of the em-
bedded Re3+ emitters will give rise to homogeneous broadening. Homoge-
neous in this context refers to the fact that the transition line of every single
emitter underlies the same broadening effects.

In order to make clear how different effects contribute to the homoge-
neous linewidth Γh, we introduce its decomposition as

Γh =
1

2πT1

+
1

2πT ∗1
+ Γdeph =

1

πT2

(4.7)

where T1 denotes the population decay time associated with the undis-
turbed radiative transition, T ∗1 characterizes nonradiative decay channels,
and γdeph is the relaxation rate arising from pure dephasing processes. An
undisturbed system with T2 = 2T1 is called lifetime-limited. Alternatively,
the homogeneous linewidth may be associated with an overall dephasing
time T2 that incorporates both population decay and pure dephasing pro-
cesses.
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(a) (b)

FIGURE 4.5: Homogeneous linewidth. (a) Homogeneous linewidth mea-
sured using two-pulse photon echo (2PPE) in Nd3+:Y2SiO5 crystals with
different concentrations (30 and 75 ppm) at magnetic field of 300 mT. The
coherence lifetimes T2=57µs for 75 ppm and T2=102µs for 30 ppm crystal
were measured. (b) The modulation of the 2PPE signal caused by the su-
perhyperfine splitting due to Y atoms corresponding to the 2.1 MHz/T.
Magnetic field of 150 mT was used for this measurement.

4.2.3 Homogeneous linewidth limitations

Lifetime-limited homogeneous linewidth is rarely observed due to the
contribution to the dephasing processes from the environment. The opti-
cal transition of Re3+ can be modulated by the environment causing spec-
tral diffusion. It has different sources including ion-phonon, ion-ion, ion-
nuclear and spin interactions. The contributions strongly depend on the
environment and Re3+ ion type (Sun et al. 2002; Thiel et al. 2011). Ion-
phonon interactions usually can be neglected at cryogenic temperatures
< 4 K (Abragam et al. 1970).

• Ion-ion interactions. Mutual electronic spin-flip interactions between
the Re3+ emitters will instantaneously shift their optical transition fre-
quencies, the average of which results in a broadening of the observed
line. As one would expect, this effect is more severe for Kramers ions,
which all carry a a large electronic magnetic moment. Although it is
possible to suppress these spin flips in strong magnetic fields of sev-
eral teslas, lifetime-limited linewidths are much more easily observed
in non-Kramers ions (that do not carry any electronic magnetic mo-
ment).

• Ion-nuclear spin interactions. The Re3+ electronic spin of Kramers
ions may moreover interact with nuclear spins of the surrounding
crystal ligands to give rise to instantaneous frequency shifts caused by
nuclear spin flips. Nearest neighbour interactions cause shifts on the
order of 100 kHz, comparable to the contribution of electron spin-spin
interactions. In analogy to the case of electronic spin-spin interactions,
the broadening due to interactions with surrounding nuclear spins is
more important for Kramers ions.
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• Superhyperfine interaction. A process that will also affect the linewidth
of non-Kramers ions is mutual nuclear spin flips of the Re3+optical
center and nearest-neighbours. This is even true for optical centers
with vanishing nuclear magnetic moments since their quadrupole mo-
ments can still couple to surrounding nuclei. For non-Kramers ions,
these effects usually impose a lower limit to the homogeneous linewidth
since they cannot be easily suppressed (except at ultra-low tempera-
tures and very strong magnetic fields) (Fig. 4.5(b)).

• Spectral diffusion. Both interactions with electronic and nuclear spins
may, however, shift the transition frequencies of surrounding nuclei
also on longer timescales. Most commonly, spectral diffusion will
cause a narrow spectral feature to broaden over time.

• Instantaneous spectral diffusion. At higher excitation intensities, so-
called excitation-induced frequency shifts or instantaneous spectral
diffusion may contribute significantly to homogeneous broadening. In
this case, the difference in the permanent electronic dipole moments of
the ground and excited states of an ion causes a shift in the transition
frequency of its neighbours.

In order to suppress all these contributions and decrease homogeneous
line broadening usually the best choice is: non-Kramers ions, low dopant
concentrations and low nuclear spin hosts. Each will reduce the possible
dynamics which cause dephasing.

However, the coherence time for Kramers-ions can be also maximized
along a preferred magnetic field orientation that minimize the effects of
ion-ion, ion-nuclear interactions, and spectral diffusion. The narrowest ho-
mogeneous linewidth measured in the solid-state is 73 Hz and has been
demonstrated in Er3+:Y2SiO5 (Böttger et al. 2009). For non-Kramers ions the
best homogeneous linewidth was observed for Eu3+ ions inserted into YSO
crystal of 122 Hz for the 7F←→ 5D transition (Equall et al. 1994).

For certain Re3+ hyperfine transitions, it is possible to entirely cancel
the susceptibility to local field changes if the differential first-order Zee-
man shifts of both the upper and lower hyperfine levels vanish (Fraval et
al. 2004). This technique together with the dynamical decoupling on the
nuclear transition was used to demonstrate six-hour coherence time of the
optically addressable nuclear spins in 151Eu3+:Y2SiO5 (Zhong et al. 2015a).

4.3 Optical pumping
An inhomogeneous absorption profile can be shaped via a process called

spectral hole burning technique (Macfarlane et al. 1987b). In rare-earth ion-
doped crystals, the large ratio of the hyperfine state lifetime to the optical
state lifetime for non-Kramers ions (106 or more) and non-zero matrix ele-
ments of most optical transitions allow the optical pumping with narrow-
band laser fields. In particular, a laser applied somewhere in the inhomo-
geneous profile will pump ions out of states resonant at the laser frequency
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into ground states that are not resonant (Fig. 2.2). This opens up a trans-
parent spectral region, or hole, that persists for the ground state lifetime of
the system. In general, the absorption spectrum in the region around the
hole burning laser frequency will exhibit a set of side holes and anti-holes,
regions of lower and higher absorption respectively, whose positions and
depths depend on the hyperfine splittings and transition matrix elements of
the particular system.

The absorption profile can be shaped arbitrarily via spectral hole-burning
by appropriately modulating the frequency and amplitude of the hole-burning
laser field (with limits on maximum and minimum hole width set by the hy-
perfine splitting).

The population trapping for Kramers ions is possible using the two Zee-
man levels of the ground state and was first observed in Nd3+:LaF3 (Macfar-
lane et al. 1987a). In order to maximize the efficiency of the optical pumping
the orientation of the crystal and magnetic field amplitude has to be tuned
to maximize the lifetime of the spectral hole (Hastings-Simon et al. 2008a;
Hastings-Simon et al. 2008b). In general this lifetime depends strongly on
the spin-lattice relaxation and/or spin cross relaxation (flip-flop) processes.
Due to the second contribution, the optimization strongly depends on the
type and the concentration of the rare-earth ions (Lauritzen et al. 2008; Afzelius
et al. 2010a). Spectral hole lifetimes up to few hundreds millisecond were
observed for Zeeman level trapping.

The optical pumping on hyperfine levels of Kramers-ions is intensively
studied in different material including isotopes of neodymium (143Nd, 145Nd),
erbium (167Er), and ytterbium (171Yb,173Yb). Long hyperfine lifetimes can be
observed up to few seconds. This opens some new possibilities to realize
different quantum memory protocols. In the beginning of this thesis this
was unknown, which is why all optical pumping was done using the two
Zeeman levels of naturally doped yttrium orthosilicate Nd3+:Y2SiO5 crystal.

4.4 Neodymium-doped yttrium orthosilicate

In this section we will give some basic properties of the specific Nd3+:Y2SiO5

samples that were used for all quantum memory experiments presented in
this thesis.

Y2SiO5 crystallizes in a monoclinic cell of C6
2h symmetry. Its lattice con-

stants are a = 1.041 nm, b = 0.6726 nm, c = 1.249 nm, where the a and
c directions enclose an angle of β = 102.65◦. Monoclinic crystals are bire-
fringent in general. Thus, the principal axes of the optical indicatrix do not
coincide with the a, b and c crystal axes. However, the b crystal axis is also a
principal axis for symmetry reasons. The other two principal axes are com-
monly labelled D1 and D2 and thus lies in the a− c plane (Li et al. 1992).

A rare-earth dopant Nd3+ in Y2SiO5 substitutes one of the two yttrium
ions Y3+, where each occupy a crystal site with distinct C1 symmetry. The
occupation distribution between two symmetry sites in general depends on
the rare earth element. Different crystal fields for each site allows one to op-
tically distinguish between them, the optical transition usually differs more
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than 1 nm. For each site two magnetically inequivalent classes are distinct
by C2 symmetry around b axis. In D1 − D2 plane or along b axis the two
classes are magnetically equivalent.

To implement two-level atomic frequency comb quantum memory pro-
tocol we used yttrium orthosilicate (Y2SiO5) crystal up to 1 cm length. The
Nd3+ ions were doped in the crystal with concentrations up to 75 ppm.
Trivalent neodymium Nd3+ has 3 electrons in its 4f shell, the correspond-
ing terms are depicted on the energy level diagram (Fig. 4.3). The relevant
transition, shown in Fig. 4.3, connects the 4I9/2 ground state to the 4F3/2 ex-
cited state at a wavelength of 883.2 nm. The crystal is mounted between two
permanent magnets which create a magnetic field up to 400 mT at an angle
of 30◦ to the crystal D2-axis. This configuration was shown to be optimal to
increase the lifetime of the spectral holes and improve optical pumping in
this crystal between two Zeeman states of the ground level (Zambrini et al.
2016).

All previous storage experiments (Clausen et al. 2010; Usmani et al. 2012;
Clausen et al. 2012) were performed using 30 ppm concentration crystals.
The lifetimes up to 160 ms were measured for this concentration (Fig. 4.6)
which enabled to realize optical pumping between two Zeeman states. To
make system more compact and to reduce the size of the system the crys-
tals with higher 75 ppm concentration have been grown in Paris group of
Prof. P. Goldner using Czochralski method. These samples were used to
perform all the experiments presented in this thesis. The study of the re-
laxation dynamics of the ground state showed that the higher concentration
leads to the reduced lifetime of the Zeeman state (Fig. 4.6(b)) which is pos-
sibly caused by the increased ion-ion interactions. The maximum achieved
lifetime (60 ms) in this case is lower and inversely proportional to the con-
centration. Thus, the gain due to higher absorption coefficient is negated by
less efficient optical pumping that can be achieved for higher concentration.
This problem can be potentially solved using cavity approach (Afzelius et
al. 2010b) to reach high optical depth.

The maximum lifetime was measured in the presence of the magnetic
field which leads to a splitting of the ground and excited states of approxi-
mately 14 GHz and 2.5 GHz for 400 mT, respectively. The crystal is placed
in a cryo-cooler and cooled down to 2.7 K to suppress the spin lattice relax-
ation due to the phonons (Fig. 4.6). The ground state splitting is bigger than
the inhomogeneous broadening (6 GHz for this crystal) which allows one
to distinguish between two ground Zeeman levels (Fig. 4.3). The excited
state lifetime is 300 µs and is much lower than the spectral hole lifetime
which enables us to perform optical pumping between two Zeeman states.
The homogeneous linewidth of up to 3 kHz was measured using two pulse
photon echo technique (Fig. 4.5).

4.5 AFC preparation
The comb structure in the absorption profile is created by frequency-

selective optical pumping of the population out of one of the Zeeman ground
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(a) (b)

FIGURE 4.6: Spectral hole lifetime. (a) The decay of the spectrally burned
hole in Nd3+:Y2SiO5 crystal with 30 ppm doping concentration measured
at different temperatures. The lowest temperature 3 K gives the slowest
relaxation time which decreases when the temperature goes up to 5 K with
0.4 K step for each curve. (b) Higher temperature causes bigger contribu-
tion to the decay from the Raman spin-lattice relaxation (Kurkin et al. 1980)
at the ground state which scales as T 7. For the low temperatures lower
doping concentration gives bigger lifetimes due to the lower contribution
to the relaxation from the flip-flop process between dopant ions.

states. In our case this is done by working directly in the frequency domain.
However, time-domain techniques can be used as well (Usmani et al. 2010).

The preparation of the atomic frequency comb was done using a diode
laser in resonance with the |g〉 ←→ |e〉 transition which is linearly swept
over a frequency range up to 120 MHz using an acousto-optical modulator
(AOM) in double-pass configuration. During the sweep the intensity was
modulated to create absorption and transmission peaks. By repeating this
many times during the time which is much longer than the lifetime of the
excited state, the population can accumulated in the other Zeeman ground
state |aux〉, creating comb structure on |g〉 ←→ |e〉 transition (Fig. 2.2). The
arbitrary comb shape can be obtained by varying the parameters of the
sweep and the number of repetitions.

The bandwidth of the AFC is extended using the phase modulator by
applying the modulation signal with frequency 120 MHz. This leads to the
creation of the sidebands with the period of 120 MHz, where each sideband
is still scanned by the AOM. We were able to achieve the bandwidth of the
AFC up to 600 MHz. It is limited by the intensity variation of the side-
bands which reduces the efficiency of the optical pumping. The maximum
bandwidth of the quantum memory for this configuration is limited by the
excited state Zeeman splitting which reaches 2.5 GHz for 400 mT magnetic
field.





53

5 Solid-state quantum light-matter
interface

This chapter is partly based on the results published in

F. Bussières, C. Clausen, A. Tiranov, B. Korzh, V. B. Verma, S. W. Nam, F. Mar-
sili, A. Ferrier, P. Goldner, H. Herrmann, C. Silberhorn, W. Sohler, M. Afzelius &
N. Gisin, “Quantum teleportation from a telecom-wavelength photon to a solid-
state quantum memory" Nature Photonics 8, 775-778 (2014) (pages 127-143)

In this chapter we first characterize the quantum storage of the single
photons by combining the entangled photon pair source and quantum mem-
ory introduced in previous chapters. After, we discuss our experiment demon-
strating the quantum teleportation of the polarization qubit into the solid-
state quantum memory over 25 km of fibre.

5.1 Quantum storage
To test our light-matter quantum interface we first performed quantum

storage experiments using the SPDC source (Chapter 3) producing single
photons which are compatible with the quantum memory implemented in
the Nd3+:Y2SiO5 crystal (Chapter 4). For this, atomic frequency comb (AFC)
is prepared using optical pumping techniques between Zeeman states as
described in the previous chapter.

Storage delays up to 400 µs was performed using our method which
requires the use of 2.5 MHz AFC period ∆ (Fig. 5.1)(a). The efficiency de-
creases rather rapidly for long storage times, as it quickly becomes difficult
to prepare an optimal AFC structure with small period ∆ (Fig. 5.1(a)). The
preparation in this case starts to be limited by the super-hyperfine interac-
tion between the electronic spin of the neodymium ions with the nuclear
spin of the nearby yttrium ions (Fig. 4.5). At magnetic fields up to 400 mT
this sets a lower limit of 1 MHz to 2 MHz on the resolution of the spectral
hole burning (Staudt et al. 2006).

To extend storage times lower magnetic field have to be used to be able
to burn a narrower hole structure. However, due to the fast relaxation in
the ground state at low magnetic fields the optical pumping efficiency is
strongly reduced. The reason for this can be attributed to flip-flop inter-
action between Nd3+ ions which can be suppressed by lower doping con-
centrations (Zambrini et al. 2016). One order of magnitude longer Zeeman
lifetime can be achieved at extremely low concentrations, but then the de-
creased absorption will reduce the storage efficiency. One would need to
implement cavity-enhanced quantum memory to overcome this problem
(Afzelius et al. 2010b).

http://dx.doi.org/10.1038/nphoton.2014.215
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(a)

(b)

FIGURE 5.1: Efficiency of the memory based on AFC. (a) Efficiency mea-
sured as a function of storage time. The reduction is attributed to the lower
resolution of the AFC structure which is caused by the superhyperfine in-
teraction and preparation method. (b) Efficiency as a function of the optical
depth (points). Imperfect optical pumping leads to the background absorp-
tion which reduces maximum efficiency (solid curve) comparing with the
perfect optical pumping (dashed curve) (Eq. (2.5))
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(a) (b)

(c)

FIGURE 5.2: Second order correlation functions of the stored signal mode
from the SPDC source. (a) Cross-correlation function g

(2)
si between idler

photon and signal photon reemitted from the quantum memory. (b) Auto-
correlation function of the heralded single photon in the signal mode g(2)

ss|i
stored in the quantum memory. (c) Cross-correlation g

(2)
si measured as a

function of the pump power. For the lowest pump power values the cross
correlation is limited by the noise of the detection system.
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Using classical light the efficiency of up to 25% was measured for short
storage times which is limited by the quality of the optical pumping (Fig. 5.1(a)).
This imperfection leads to the residual background absorption which doesn’t
contribute to the reemission. For this reason, optical depth of the absorption
peaks has to be optimized in order to maximize the efficiency of the quan-
tum memory (Fig. 5.1(b)).

The period of the AFC of 20 MHz prepared over 600 MHz bandwidth
corresponding to the predetermined storage time of 50 ns was used for most
of the experiments described in this thesis. The maximum efficiency for her-
alded single photons of 15% was obtained. The decrease is attributed to the
preparation imperfections of the broadband AFC (as described in previous
chapter) compared to classical storage.

To prove the single photon character of the reemission after the storage
second order correlation functions were measured (Fig. 5.2). Ideally their
values should be the same as for the input single photon state that was char-
acterized previously (Fig. 3.1). In this case the fidelity of the quantum stor-
age process can reach unity. However, due to the use of continuous wave
pumping of the SPDC source the cross-correlation function g(2) is limited by
the ratio between transmission probability of the quantum memory ηtrans
and total efficiency of the memory η (Fig. 5.1) such that (Usmani et al. 2012)

g
(2)
si = 1 +

1

p(1 + ηtrans/η)
. (5.1)

This means that if the absorption of the quantum memory is not perfect the
transmitted part from the SPDC source emitted in the temporal mode of the
reemission will reduce the cross-correlation g(2)

si value. Same arguments are
applied for the autocorrelation function of the heralded and stored single
photon g(2)

ss|i such that

g
(2)
ss|i ≈ 4p(1 + ηtrans/η), (for p� 1). (5.2)

These values can be improved by increasing the absorption probability
(1 − ηtrans) of the quantum memory by use of higher optical depth. An-
other way is to turn off the pump laser each time the reemission from the
quantum memory is expected (Bussières et al. 2014). For the predetermined
storage time (for all the experiments in this thesis it was the case) the simple
modulation of the pump power with the duty cycle less than 50% should
eliminate this problem. For this an acousto-optic modulator (AOM) was
used to modulate the pump power at the input of the SPDC source. How-
ever, due to the finite extinction ratio of the AOM and slightly multimode
character of the SPDC source (Chapter 3) the effect of the memory was still
observed (Fig. 5.2) as a reduction of the cross correlation and an increase of
the autocorrelation function.

However, we argue that this reduction is due to the way we used the
photon pair source but not the limitation of the storage process of the quan-
tum memory itself. This could be verified by measuring the fidelity between
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input and output quantum states of a single photon.

5.2 Quantum teleportation to a solid-state quan-
tum memory

To demonstrate the capability of our approach for future long-distance
quantum communication we performed quantum teleportation of a polar-
ization qubit into a solid-state quantum memory. The qubit was encoded
using weak coherent state at telecommunication wavelength and was dis-
tributed over 25 km of standard optical fibre.

5.2.1 Polarization preserving quantum memory

In order to able to store store polarization entangled single photon
(Eq. (3.15)) and to perform quantum teleportation using our Nd3+:Y2SiO5

crystal one has to compensate for the anisotropic absorption of the crystal
along its principal axes D1 and D2. For this the configuration of two crystals
with the half-waveplate between them was used. It has been shown that this
configuration is compatible with storage of the heralded polarization qubits
with the fidelities up to 99% (Clausen et al. 2012; Zhou et al. 2012b). We
note that polarization based interferometer can also be used for this purpose
(Gündoğan et al. 2012).

The two crystals are placed around a 2 mm-thick half wave plate and the
whole arrangement is 14 mm-long. Two permanent 15 mm-long magnets
placed above and below the crystals create a magnetic field up to 400 mT
which splits the ground state in two Zeeman levels separated by ≈14 GHz.
All surfaces, including the windows of the cryostat, are coated with anti-
reflective coatings such that the transmission outside of the 6 GHz-wide
absorption spectra is higher than 95%, which greatly reduces the parasitic
optical loss compared to previous experiments within the group (Clausen
et al. 2012).

5.2.2 Experiment

To perform quantum teleportation a pair of polarization-entangled pho-
tons was used and one photon from the pair is stored in a nearby rare-earth-
ion doped crystal. The other telecom-wavelength entangled photon is sent
to a Bell-state analyzer where it is jointly measured with a photon that is
carrying the polarization qubit state to be teleported. The state of the pho-
ton retrieved from the quantum memory is analyzed with quantum state
tomography, and the fidelity of several teleported states are measured to
outperform the classical benchmark.

The entangled photons are generated yielding a state that is very close to
maximally entangled state 1√

2
(|HH〉 + eiϕ |V V 〉). The spectra of the photon

pairs are filtered to 200 MHz, with a corresponding coherence time of 2 ns
(Chapter 3). The large spectral width of the photons considerably increases
the intrinsic repetition rate of our experiment over previous experiments
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FIGURE 5.3: Quantum teleportation into a solid-state quantum memory.
The signal photon is sent to a neodymium-based polarization-preserving
quantum memory that was previously prepared as an atomic frequency
comb using 883 nm light. The weak coherent state (WCS) at 1338 nm is
created by means of difference-frequency generation from 532 and 883 nm
light. The WCS is then selected using a grating. The input state to be tele-
ported is prepared using wave plates and sent towards a 50/50 beamsplit-
ter where it is mixed with the idler photon to perform the Bell-state mea-
surement (BSM). The output modes of the beamsplitter are polarization-
filtered and sent towards two high-efficiency detectors. A coincidence de-
tection atD1 andD2 heralds a successful BSM. The signal photon retrieved
from the quantum memory is sent to a polarization-state analyser where it
is detected on D3 or D4. The idler and WCS photons are each transmitted
either over a short distance or over 12.4 km of single-mode optical fibre.
Inset: Results of the teleportation of input state |−〉. a, Two-dimensional
histogram showing the number of threefold coincidences between detec-
tors D1, D2 and D3 as a function of delays δ31 and δ32 between detections
at D3 and D1 and D2. b, As in a, with D4 instead of D3. Each histogram
indicates onto which polarization state the retrieved photon was projected
(|−〉 〈−| for a and |+〉 〈+| for b). Each pixel corresponds to a square time
window with sides of 486 ps. c,d, Horizontal slices of a and b (centered on
δ31 = 0 and δ41 = 0, respectively), showing the peak and dip, respectively,
in number of detections at the center.
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with the same type of quantum memory (Clausen et al. 2010; Usmani et al.
2012). Following the creation of a pair, the signal photon is directly sent
to a quantum memory consisting of two inline neodymium-doped yttrium
orthosillicate crystals Nd3+:Y2SiO5 described previously.

The qubit state to teleport is encoded in the polarization of a photon from
a weak coherent state (WCS) at 1338 nm that is created through difference-
frequency generation in a separate nonlinear waveguide. This automati-
cally yields the same central wavelength for the WCS and idler photons. The
mean number of photon is actively stabilized to µ ≈ 10−2 in a 486 ps win-
dow. The Bell state measurement (BSM) between the idler photon and the
input state is done by sending them through a 50/50 beamsplitter (Żukowski
et al. 1993), projecting their joint state on |Ψ−〉 = 1√

2
[|HV 〉 − |V H〉] when

they are detected in different output modes.
Two polarizers respectively selecting horizontal and vertical polariza-

tions on those output modes remove accidental coincidences of photons
with identical polarizations. The photons are then coupled in single mode
optical fibres and detected using tungsten-silicide superconducting nanowire
single-photon detectors (Marsili et al. 2013), shown asD1 andD2 on Fig. 5.3.
These detectors were specifically designed to operate at 2.5 K, which is
higher than the previous demonstration (Marsili et al. 2013) (around 1 K
or less), which means they could, for the first time, be operated in a sim-
ple two-stage closed-cycle cryocooler. Their efficiency reached 80% with a
temporal resolution (jitter) of ∼ 500 ps.

The jitter of the detectors is smaller than the coherence time of the pho-
tons, thus coincidences between D1 and D2 for which the WCS and idler
photons temporally overlap can be temporally resolved and post-selected.
The teleportation is completed by sending the signal photon retrieved from
the quantum memory in a polarization analyzer where it is detected by
single-photon detectors D3 or D4. The qubit state of the retrieved photon
requires a unitary correction (Bennett et al. 1993) that is included in the po-
larization analyzer.

5.2.3 Results

In a first series of measurements, the WCS photon and the idler photon
both travelled a few meters before the BSM (see Fig. 5.3), and their detec-
tion occurred while the signal photon was stored in the quantum memory.
To post-select the threefold detections with the correct timing, we plot the
temporal distribution of the measured threefold coincidences as function of
the delays δtj1 and δtj2 between a detection at Dj (j = 3 or 4) and detections
at D1 and D2. The results for the teleportation of the |−〉 = 1√

2
(|H〉 − |V 〉)

state are shown as two-dimensional histograms on Fig. 5.3.
Events at the center of the histograms corresponds to the actual telepor-

tation. One of the figures shows an increased number of counts at the center,
whereas the other one has a dip, which is expected if the retrieved state is
close to the input state |−〉.
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The fidelity of the retrieved state ρ with respect to the input state |ψ〉
is F = 〈ψ| ρ |ψ〉. It corresponds to the probability of observing |ψ〉 when
the signal photon is measured in the basis containing |ψ〉 (the probability
is conditional to the detection of the photon). For the teleportation of the
|−〉 discussed above, F can readily be estimated from the number of events
observed at the maximum and minimum for zero delays, after a bias due to
the different coupling and detection efficiencies of D3 and D4 is removed.

The measured fidelity is 92± 4%. To obtain complete information about
the state ρ, we performed quantum state tomography (Altepeter et al. 2006)
by measuring in the {|R〉 , |L〉} and {|H〉 , |V 〉} bases as well. With this infor-
mation, we can also calculate the purity P = Tr(ρ2) of the retrieved state.
Since the input state is close to pure, P is related to the depolarization
caused by the teleportation. Here, the main cause of this depolarization is
noise coming from multi-pair emission from the source and of multiple pho-
tons in the WCS. The measured purity with the input state |−〉 is 94 ± 7%.
This value allows us to find an upper bound Fmax = 1

2
(1 +

√
2P − 1) =

97± 4% on the observable fidelity.

Input state Fidelity (%) Purity (%) Fmax(%)

|H〉 94± 3 93± 3 96± 3

|−〉 = 1√
2
(|H〉 − |V 〉) 92± 4 94± 7 97± 4

|R〉 = 1√
2
(|H〉+ i |V 〉) 84± 4 73± 5 84± 4

|+〉 = 1√
2
(|H〉+ |V 〉) 82± 4 83± 9 91± 6

|+〉 (12.4 km) 81± 4 — —

TABLE 5.1: Measured fidelities and purities for all input states.
The uncertainties are obtained from Monte Carlo simulations
assuming a Poisson distribution of the number of threefold
events. Also shown is the upper bound on the fidelity Fmax
that is obtained from the measured purity.

The fidelity and the purity of the retrieved state was evaluated with
other input states, and the results are listed in Table 5.1. The expected fi-
delity of an arbitrary state is F̄ = 2

3
F̄e + 1

3
F̄p, where F̄e and F̄p are the aver-

age fidelities measured on the equator and the pole, respectively. We find
F̄ = 89±4%, which is larger than the maximum fidelity of 66.7% achievable
with a prepare-and-measure strategy that does not use entanglement (Mas-
sar et al. 1995). The fidelities for states on the equator of the Bloch sphere
(|+〉 , |−〉 , |R〉) are all smaller than for |H〉 which is consistent with the fact
teleportation of the latter is unaffected by fluctuations in the phase ϕ of the
entanglement, or by the finite jitter of the detectors. The fidelity of the |−〉 is
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the largest among the remaining input states. The differences stem mostly
from the non-uniform amount of noise (from varying pair creation proba-
bilities) that those teleportations have been subjected to, which is apparent
from variations in the measured purities.

We also performed a teleportation of the |+〉 state in a configuration
where the weak coherent state and the idler photon each travelled through
12.4 km of standard single mode optical fibres before the BSM, yielding a
combined distance nearly reaching 25 km with a loss of 4.5 dB per spool of
fibre. This distance is much greater than the previous record of 6 km (Ried-
matten et al. 2004a) for a fibre-based quantum teleportation, which did not
include a quantum memory at the receiving end. It is also worth emphasiz-
ing that single mode fibre at shorter wavelengths is much lossier and would
have precluded a long-distance experiment (25 km of standard single mode
fibre at 880 nm has a total loss of the order of 75 dB).

5.3 Conclusion
We demonstrated the first quantum teleportation from a telecom-wavelength

photon to a quantum memory (Fig. 5.3). We also demonstrated the unique
long-distance capability of our approach by successfully teleporting a state
in a configuration where the length of the telecom-wavelength channel (sep-
arating the initial location of the state to be teleported and the quantum
memory) reaches 24.8 km of optical fibre.

Our teleportation experiment was based on the detection of three pho-
tons. The rate of the experiment can be increased with simple solutions. One
is improving the memory efficiency. Another one is to add two more detec-
tors to perform the Bell-state measurement, which would give improvement
by a factor of 8, together with the single photon detectors which have high
detection efficiencies (using superconducting single photon detectors one
can reach efficiencies up to almost 90% (Verma et al. 2015)).

To use this scheme for real applications one has significantly improve the
performance of the quantum memory. This should include the storage time
which have to be increased up to millisecond scale. On demand storage
also have to be realized for an efficient synchronization between different
elementary links of a quantum repeater. To decrease the distribution time
one has to significantly increase the efficiency of the quantum memory as
well.

In a broader context, our experiment could be useful to transfer quan-
tum information between quantum network nodes with built-in nonlinear
processing capabilities. In particular, coupling between the spin levels of
rare-earth crystals and superconducting microwave resonators was recently
observed (Staudt et al. 2012; Probst et al. 2013). Combined with our work,
this could lead to the long-distance transfer of optical quantum states to su-
perconducting qubits performing two-qubit gate operations (Steffen et al.
2013).
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6 Photon multiplexing

This chapter is partly based on the results published in

A. Tiranov, J. Lavoie, A. Ferrier, P. Goldner, V. B. Verma, S. W. Nam, R. P. Mirin,
A. E. Lita, F. Marsili, H. Herrmann, C. Silberhorn, N. Gisin, M. Afzelius & F. Bus-
sières, “Storage of hyperentanglement in a solid-state quantum memory", Optica
2(4), 279-287 (2015) (pages 173-183)

A. Tiranov, P. C. Strassmann, J. Lavoie, N. Brunner, M. Huber, V. B. Verma,
S. W. Nam, R. P. Mirin, A. E. Lita, F. Marsili, M. Afzelius, F. Bussières & N. Gisin
“Temporal multimode storage of entangled photon pairs", arXiv:1606.07774 (2016)
(pages 197-209)

Progress towards practical entanglement distribution requires the use of
quantum memories compatible with various multiplexing schemes in or-
der to realize efficient quantum communication. Multiplexing can be per-
formed by using various photonic degrees of freedom (DOF). Entanglement
can be distributed using a photon pair entangled in many DOFs at the same
time (hyperentangled photon pair). At the same time the progress towards
practical entanglement distribution requires the use of quantum memories
with strong multimode capacity in order to realize efficient quantum re-
peater. Both the possibility to store hyperentanglement and the temporal
multimode capacity are an important resource in optical quantum informa-
tion processing.

In this chapter we discuss two experiments involving solid-state quan-
tum memory described in Chapter 5. First we performed quantum stor-
age of the hyperentangled state using DOFs compatible with long distance
quantum communication. While the second experiment is devoted to the
simultaneous storage of two entangled photon pairs in a solid-state quan-
tum memory. Also we present a theoretical method to certify entanglement
which can also be used as Schmidt number witness without any assump-
tions on the quantum states. It allowed us to experimentally certify the
presence of more than one entangled photon pair retrieved from the quan-
tum memory with a reduced number of resources.

6.1 Hyperentanglement storage
Complete quantum interconnectivity between remote nodes requires the

efficient distribution and storage of quantum entanglement, which is achieved
by exchanging entangled photons and storing them in quantum memories.
In this context, hyperentanglement is known to be a very useful resource for
the task of entanglement purification, which can be used to increase the rate
at which entanglement is distributed (Simon et al. 2002).

http://dx.doi.org/10.1364/OPTICA.2.000279
http://dx.doi.org/10.1364/OPTICA.2.000279
http://arxiv.org/abs/1606.07774
http://arxiv.org/abs/1606.07774


64 Chapter 6. Photon multiplexing

DM

532 nm

PBS PPLN

PPK
TP

idl
er

sig
na
l

|EE〉+ |LL〉|HH〉+ |V V 〉

QM

(a) (b)

⊗

FIGURE 6.1: Hyperentanglement storage. (a) A pair of photons entangled
in polarization (Eq. (3.15)) and energy-time (Eq. (3.13)) are generated from
SPDC. The signal photon is stored inside a quantum memory (QM) and
released after a predetermined time of τM =50 ns. The hyperentangle-
ment (Eq. (6.1)) is revealed using time-bin analyzers having short (E) and
long (L) arms and adjustable relative phases (φi and φs), followed by po-
larization analyzers. (b) Example of measurements used to violate CHSH
inequality for time-bin degree of freedom for stored signal photon. The co-
incidence histograms between show three peaks corresponding to different
path combinations . The figure represents a histogram from one measure-
ment outcome of a correlator in the Bell–CHSH inequality (Eq. (1.9)). The
insets correspond to histograms with an additional π phase shift between
the two interferometers. Varying the angles of the polarization analyzers
leads to variations of the intensity of all three peaks simultaneously.

Also it can be used for complete and deterministic Bell-state analysis in
one of the DOF of a hyperentangled pair (Kwiat et al. 1998; Walborn et al.
2003; Schuck et al. 2006) and to perform quantum teleportation (Boschi et al.
1998; Kim et al. 2001; Schmid et al. 2009) and superdense coding (Barreiro
et al. 2008; Graham et al. 2015). .

However, this is possible only if the degrees of freedom in which the hy-
perentanglement is coded are suitable for long-distance transmission, e.g. in
optical fibre. Previous demonstrations of entanglement purification where
all based on polarization and spatial modes, but the latter is not adequate
for long-distance transmission in fibre (Pan et al. 2003; Walther et al. 2005).
Energy-time (or time-bin) and polarization hyperentanglement is much bet-
ter suited for this. The requirements that then arise for quantum repeaters
is to have quantum memories that can efficiently store both DOF, combined
with the possibility of efficiently distributing entanglement over long dis-
tances in optical fibre.

6.1.1 Experiment

To realize hyperentanglement storage we used the SPDC source of the
photon pairs (Chapter 3) entangled in energy-time and polarization simul-
taneously (Fig. 6.1). The polarization preserving quantum memory based
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on two-crystal configurations (Clausen et al. 2012) was used to store po-
larization degree of freedom, while AFC technique has been shown to be
compatible to store energy-time entanglement (Clausen et al. 2010). By com-
bining both these approaches the photonic state entangled simultaneously
in polarization and energy-time was used for storage

∣∣Φ+
τ

〉
⊗
∣∣Φ+

π

〉
=

1

2
(|EE〉+ |LL〉)⊗ (|HH〉+ |V V 〉). (6.1)

The polarization entanglement is generated by sending this pump light
onto a polarization interferometer containing two nonlinear waveguides in
its arms, while the energy-time entanglement is obtained by pumping the
waveguides with a continuous-wave laser (Chapter 3).

Two analyze stored hyperentangled pair both degrees of freedom has to
be manipulated independently, and the measurement of the entanglement
in one degree of freedom should not depend on the basis in which the other
is measured. In our setup, this was achieved by compensating polarization
rotations, due to birefringence, in both arms of the unbalanced interferome-
ters used to analyze energy-time entanglement (Fig. 6.1(a)).

Both unbalanced interferometers are locked using reference lasers and
both phases φs and φi can be varied. To lock the phase of the idler’s time-bin
analyzer, we use highly coherent light at 1338 nm obtained from difference-
frequency generation from 532 and 883 nm light combined in the PPLN
waveguide. The phase of the interferometer is controlled by coiling the fiber
of the long arm around a cylindrical piezo transducer, and the interferome-
ter is locked using a side-of-fringe technique. The phase of the signal pho-
ton’s time-bin analyzer is controlled using a piezo-mounted mirror placed
in the long arm. The phase is probed using part of the CW laser at 883 nm
that is used to prepare the quantum memory. The light is frequency shifted
using an acousto-optic modulator (AOM) and then sent trough the interfer-
ometer in a spatial mode that has no overlap with the signal photon. The
phase φs in this case can be changed by changing the modulation frequency
of the AOM.

After the interferometers, the polarization of each photon is analyzed.
Each output of the polarization beamsplitter is coupled into a singlemode
fiber and sent to single-photon detectors. The results of the measurements
made at different analyzers are compared in order to reveal the nonlocal cor-
relations in both degrees of freedom. Single photon detectors with 30% (Si
avalanche photodiode) and 75% (WSi superconducting nanowire (Verma et
al. 2014)) efficiencies are used to detect signal at 883 nm and idler at 1338 nm,
respectively.

6.1.2 Results

A quantum state is hyperentangled if one can certify entanglement for
each entangled DOF. Therefore, it is enough to violate a Bell inequality in
both polarization and time independently to demonstrate hyperentangle-
ment. Here we use the CHSH inequality to witness polarization Sπ and
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S (transmitted) S (stored)

π τ π τ

π1 : {|H〉 , |V 〉} - 2.555(13) - 2.60(7)

π2 : {|+〉 , |−〉} - 2.571(11) - 2.49(4)

τ1 : φsi = 0 2.716(11) - 2.59(4) -

τ2 : φsi = π
4

2.733(12) - 2.64(4) -

TABLE 6.1: Summary of all CHSH inequality violations. Measured S pa-
rameters (Eq. (1.9)) obtained with transmitted or stored signal photons
are shown. For each case, the tests on energy-time (τ ) degree of free-
dom were done with either the polarization basis π1 = {|H〉 , |V 〉} or
π2 = {|+〉 , |−〉}, and tests on the polarization (π) degree of freedom was
done with ∆φs + ∆φi = φsi = 0 (τ1) or π

4 (τ2). These results show clear
violations of Bell-CHSH inequality and demonstrate entanglement in all
degrees of freedom studied.

energy-time Sτ entanglement (Chapter 1). To illustrate the independence
between the two degree of freedom, each polarization measurement was
performed using two different projection bases for the energy-time degree
of freedom, and vice versa. Specifically, the test on the energy-time entan-
glement was done with using either the polarization basis π1 = {|H〉 , |V 〉}
for both photons, or π2 = {|+〉 , |−〉}. The test on the polarization entangle-
ment was done with either ∆φs + ∆φi = φsi = 0 (denoted by τ1) or φsi = π

4

(denoted by τ2). The results of the CHSH inequality violations are summa-
rized in the Table 6.1.

The corresponding CHSH parameters are S
(τ1)
π = 2.59(4) and S

(τ2)
π =

2.64(4) for polarization entanglement, and S(π1)
τ = 2.49(4) and S(π2)

τ = 2.60(7)
for the energy-time. The violations exceed the local bound by more then
8 standard deviations. To see the effect of the storage process the quality
of the hyperentanglement, we performed the same analysis using the trans-
mitted signal photons The values for Sπ and Sτ are very similar in all cases,
showing that the quantum memory has little or not effect on the quality of
the hyperentanglement.

In conclusion, we certified the storage of hyperentangled photonic state
in the state solid-state quantum memory. For this we performed the vio-
lation of the CHSH inequality for both degrees of freedom, demonstrating
the independence of the polarization and energy-time entanglement after
storing it in the quantum memory.

6.2 Multiphoton Storage
Temporal multiplexing is a promising solution for long-distance quan-

tum communication based on quantum repeaters. Solid-state quantum mem-
ories offer great potential in this direction thanks to significant temporal
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multimode capacity allowing to perform efficient temporal multiplexing.
Quantum memories based on ensembles of atoms provide such a resource,
where different degrees of freedom can be used to achieve multimode stor-
age, such as spatial (Lan et al. 2009; Zhou et al. 2015; Parigi et al. 2015),
spectral (Sinclair et al. 2014) or temporal modes (Nunn et al. 2008).

Here we focus on temporal multimode storage in a single spatial mode.
This type of multimode storage is compatible with optical fiber technologies
and therefore attractive for long-distance quantum networks. Earlier stud-
ies showed, however, that most ensemble-based storage techniques require
very high optical depths for high temporal multimode capacity (Nunn et al.
2008). Using atomic frequency comb approach (Afzelius et al. 2009) one can
achieve multimode storage for much lower optical depths (Chapter 2).

Previous studies have demonstrated temporal multimode storage using
the AFC scheme, but these experiments have employed either strong (Bonarota
et al. 2011; Gündoğan et al. 2013; Jobez et al. 2016) or attenuated laser pulses (Us-
mani et al. 2010; Jobez et al. 2015; Gündoğan et al. 2015), and more rarely
true single-photon pulses (Tang et al. 2015; Saglamyurek et al. 2016). Progress
towards a practical quantum repeater requires going beyond these initial
steps.

6.2.1 Experiment

The goal of this experiment was to demonstrate simultaneous storage
of two polarisation-entangled photons in a solid-state quantum memory.
As illustrated in Fig. 6.2, two independent pairs of entangled signal and
idler photons are generated via spontaneous parametric down conversion
(SPDC) (Chapter 3) within a time window shorter than the memory time.
The idler photons are at the telecommunication wavelength of 1338 nm,
while the signal photons are at 883 nm. The two signal photons are stored
in the rare-earth ion doped crystal in the same spatial mode, but in two
independent temporal modes that differ by up to ten times their coherence
time. After a pre-determined storage time of 50 ns, the two photons are re-
emitted from the memory and detected by the single-photon detectors (and
similarly for the idler photons).

First, we demonstrate the capability to generate two independent en-
tangled photon pairs for further quantum storage. For this we generate
polarization-entangled photon pairs from SPDC inside two nonlinear waveg-
uides. The continuous pump laser has a central wavelength of 532 nm and
is modulated in intensity to obtain a 10 MHz train of 50 ns square pulses
(Fig. 6.2). This modulation defines a temporal window, corresponding to
the storage time, inside which two pairs can be generated. The configura-
tion of the nonlinear waveguides, shown in Fig. 6.2(a), is such that photons
are created in a coherent superposition of |HH〉, from the first waveguide,
or |V V 〉, from the second. We approximate each pair by the state

|φ(t)〉 =
1√
2

(|Hs, Hi〉t + |Vs, Vi〉t) , (6.2)
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FIGURE 6.2: Temporal multimode storage of entangled photon pairs. (a)
Creation of polarization-entangled photon pairs using two waveguides in-
side a polarization interferometer. Two different temporal modes are pop-
ulated by the two independent photon pairs Φ(δt) = Φt ⊗Φt+δt (Eq. (6.3)).
Temporally multiplexed photon pairs are stored in a multimode quantum
memory (QM) and released after a predetermined time τM = 50 ns. To cer-
tify entanglement after absorption and remission by the QM we analyze
the correlations in polarization of the four-photon state using polarization
projection for each photon type. (b) The two-fold coincidences between de-
tections of the signal and idler photons as a function of the delay between
two detection events. The first peak at 0 ns stems from the signal photons
not absorbed by the QM while the second peak at 50 ns corresponds to the
signal photons absorbed by the QM and released after the storage time.
Such an histogram is accumulated for each pair of detectors between signal
and idler photons. (c) The total four-fold coincidences collected during the
experiment is plotted as a function of the delay δt between photon pairs.
Events inside the storage time of the QM are delimited by dotted vertical
lines from 5 to 50 ns. Only events corresponding to the state (6.3) are con-
sidered, for this reason events within the first 5 ns are excluded (Riedmat-
ten et al. 2004b). There are 9 distinguishable time divisions, demonstrating
storage of as many temporal modes with two single excitations. For longer
delay (> 50 ns), two photons do not overlap at any time in the QM. Er-
ror bars represent one standard deviation assuming Poisson noise for the
count
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where t is the photon pair creation time within the square pump window, s
and i subscripts label signal and idler modes, while |H〉 and |V 〉 designate
horizontal and vertical polarization states of a single photon, respectively.

Two independent polarization-entangled pairs can be generated from
the same pulse, in condition that the delay between the pairs, δt, is suffi-
ciently larger than the coherence time of one pair (Riedmatten et al. 2004b).
In this case, the four-photon polarization entangled state can be described
as ∣∣Φ+

t

〉
⊗
∣∣Φ+

t+δt

〉
=

1

2
(|HH〉+ |V V 〉)t ⊗ (|HH〉+ |V V 〉)t+δt, (6.3)

where each photon pair was created at time t and t + δt with a temporal
separation δt bigger than the coherence time of he photon pair.

The signal mode of each pair is coupled to the quantum memory. The
latter consists of two Nd3+:Y2SiO5 crystals mounted around a half-wave
plate, together enabling high-fidelity polarization storage (Clausen et al.
2012; Zhou et al. 2012b). The absorption profile of the broad resonant fre-
quency transition of the atomic ensemble is tailored in a frequency comb us-
ing optical pumping techniques. The prepared AFC fixes the storage time to
τM = 50 ns and the measured total memory efficiency of the single photon
is η = 7(1)%.

To analyze the correlations between the released signal and idler pho-
tons, we use a combination of quarter-wave, half-wave plates, polarization
beamsplitter and two detectors on each side of the experiment (Fig. 6.2). To
detect the stored signal and the idler photons from each pair we put two
single-photon detectors (SPDs) at the output ports of the PBS on each side
(denoted as “+” and “−” in Fig. 6.2(a)). We use superconducting nanowire
SPDs (D(i)

± ) with 75% efficiency, 100 ns dead time and 300 ps jitter (WSi
superconducting nanowire Verma et al. 2014) for the idler photons. The sig-
nal photons are detected with two free-space free-running silicon avalanche
photodiode (D(s)

± ) with 40% efficiency, 1 µs dead time and 400 ps jitter.
Figure 6.2(b) shows two-fold coincidences as a function of the delay be-

tween the detections of a signal and an idler photons. The temporally re-
solved peak structure corresponds to the transmitted (0 ns) and stored sig-
nal photon in the QM (50 ns) from a single photon pair (Eq. (6.2)). However,
to detect and analyze the four-photon state (Eq. (6.3)) one has to look at
coincidences between all four detectors (four-folds).

The use of only two detectors on each side limits the number of possible
projections which can be applied to the four-photon state (6.3) to analyze
entanglement. Another limitation is the number of possible outcomes from
the measurement which is restricted by the deadtime of the detectors which
is bigger than the storage time of the quantum memory. The deadtime pre-
vented the two photons to be detected in the same output port of the po-
larization analyser which limits the number of possible outcomes, such that
both photons were analyzed in the same basis.

All this together required to implement new entanglement witness tech-
nique to still prove entanglement preservation of the both photons stored in
the quantum memory.
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FIGURE 6.3: Indirect entanglement witness. From the measured four-fold
correlations we can compute our central figure of merit T (Eq. (6.4)). A
value of T implies that the operator Wk(T ) has expectation value exactly
zero. For a sufficiently large value of T this implies that the expectation
value of W1(T ) (or W2(T )) is negative. Since we can prove that W1 is
an entanglement witness andW2 a Schmidt number witness, we can thus
conclude one/two entangled pairs.

6.2.2 Indirect entanglement witness

The full characterization of the state (6.3) of both photon pairs is com-
plicated by the fact that their creation time is much smaller than the dead
time of the detectors. This is typical of current single-photon detectors and
it can complicate the analysis of temporally multiplexed quantum memo-
ries storing short (broadband) single photons. One obvious solution is to
double the number of analyzers (and detectors), or use complex multiplex-
ing schemes in space or frequency (Collins et al. 2013; Donohue et al. 2014).
Here, instead, we want to use a pair of detectors on each side and apply the
same projective measurement needed to analyze a single pair. This leads to
a limited set of measurements and outcomes.

Here we give the details of the derivation of the entanglement witness
used to certify two entangled photon pairs stored in the quantum memory.
Although we expect the final state to be a product of two highly entan-
gled states (6.3), we obviously do not want to make this assumption in the
derivation of its entanglement certification. For that purpose we treat the
underlying events as originating from a 4 × 4 dimensional Hilbert space
without any assumption in its internal structure. In the ideal case that state
should correspond to a tensor product of two Bell states and thus have a
Schmidt number of 4. If only one of the pairs could retain its entanglement
through the storage in the quantum memory its Schmidt number would be
at most 2. If, on the other hand all the entanglement had been destroyed,
the resulting state would be completely separable (i.e. Schmidt number 1).

Due to the technical limitation the acquisition of complete counts in any
basis was prohibited (Fig. 6.2). For this reason it is impossible to perform full
quantum state tomography of obtaining density matrix elements through
local projective measurements (Sanpera et al. 2001). Even though there was
no access to all the projective measurements we can construct the expression
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that contains only the fraction of corresponding density matrix elements.

T =

∑
{a,b}∈X〈a, b|ρ|a, b〉∑
{a,b}∈Y 〈a, b|ρ|a, b〉

. (6.4)

Through the linearity of the trace we can conclude that the operator

W(T ) =
∑

{a,b}∈X
|a, b〉〈a, b| − T

∑

{a,b}∈Y
|a, b〉〈a, b| , (6.5)

has expectation value zero, i.e. Tr(W(T )ρ) = 0 in analogy with classical
entanglement witness described in Chapter 1. Different optimization algo-
rithms (for example semi-definite programming (SDP)) can be used to find
the lower bound on the expectation values T to prove the presence of entan-
glement or to address it’s dimensionality using entanglement witnessW .

Now applying the above formalism to the two-photon pair experiment
we can use

T =
1

N
(C00 + C01 + C10 − C11) (6.6)

where we have defined correlation functions

Cxy =
∑

a,b=±1

abNab,āb̄|xy (6.7)

and a normalization factor

N =
1

4

∑

x,y=0,1

∑

a,b=±1

Nab,āb̄|xy. (6.8)

In the case ρ contains one entangled pair (or less), the expression T is
upper-bounded by

T ≤ 5√
2
' 3.5355. (6.9)

The optimization based on SDP programming gave Schmidt number
witness for the state containing one entangled photon pair is T ≈ 3.535
(Fig. 6.3), thus showing that the indirect entanglement witnessesW(T ) in-
deed proves that more than one entangled pair is required to explain the
observed correlations.

With the increased number of modes in different multiplexing schemes
the complexity of the quantum experiments grows dramatically and re-
quires more and more resources for analysis. In this context, our approach
is important for quantum communication community and for entanglement
certification in general.

6.2.3 Results

We now use the recorded four-fold events and the entanglement witness
to show that the two pairs used to probe the multimode properties of the
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C00 C01 C10 C11 T T̃

0.96(2) 0.91(3) 0.90(3) -0.89(3) 3.67(6) 3.64(2)

TABLE 6.2: Experimental certification of two entangled pairs
after storage. Each correlator Cxy is measured as described
in the main text and used to compute the parameter T of
Eq. (6.6). T̃ is a model-based estimation of the expected T
value in our experiment (see text). There is a good agreement
between the two. These results above the bound (6.9) of 3.535
certify entanglement for each photon pair released from the
QM. The uncertainties represent one standard deviation as-
suming Poisson statistics for the counts.

memory are polarization entangled. Each correlator of Eq. (6.6) is measured
for 900 seconds and the sequence is repeated many times (see Table 6.2).
The experimental value of the entanglement witness is T = 3.67± 0.06, two
standard deviations above the upper bound (6.9) of 3.535 attainable when
only one pair is entangled while the other is separable.

To understand what limits our measured value of T , we developed a
simple model to predict it using only the measurement of the Bell–CHSH
parameter S for a single entangled pair. For this we assume that we are
measuring two independent pairs and a total quantum state of the form
ρ(V) = ρW (V) ⊗ ρW (V), where ρW (V) = V |φ+〉 〈φ+| + (1 − V)1/4 is a two-
qubit Werner state with visibility V . We should measure the value S =
2
√

2V for a single entangled pair in the state ρW (V), and we can use this to
calculate the expected value of T̃ . With the photons retrieved from the QM,
we found S = 2.58 ± 0.02 which corresponds to a visibility of V = 0.912 ±
0.007, which leads to an expected value of T̃ = 3.64 ± 0.02, in agreement
with experimentally measured value of T . We note that in this model, a
minimum visibility of V ' 0.85 (for each identical pair) is required to certify
more than one entangled pair, which is more stringent than the case where
all measurement outcomes are accessible.

In conclusion, we certified the storage of two entangled photon pairs
in a temporal multimode solid-state quantum memory. For this, we devel-
oped an entanglement certification method that can also be used as Schmidt
number witness, does not require any assumptions on the quantum states
and works even with a limited set of projective measurements. Our results
demonstrate the temporal multimode capacity directly probed by two quan-
tum excitations.

6.3 Conclusion
We demonstrated the capability of our solid-state quantum memory to

realize different multiplexing schemes for future quantum networks. The
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ability to store various photonic degrees of freedom using solid-state mate-
rial has been shown by performing hyperentanglement storage encoded in
polarization and energy-time degrees of freedom. This is the first demon-
stration of hyperentanglement storage compatible for long-distance quan-
tum communication. In this context hyperentangled states can be further
used to implement the quantum purification schemes to increase the fidelity
of the transferred quantum information. Such experiment involving quan-
tum storage and retrieval of the purified quantum state should become one
of the building blocks for future quantum communication applications. For
this, for example energy-time degree of freedom can be used to purify the
polarization state of the stored photonic excitation. One of the ways requires
the implementation of the parity measurement for given degree of freedom
in order to increase the fidelity of the state for other one (Simon et al. 2002).

The temporal multimode capacity of the atomic frequency comb quan-
tum memory protocol is the main advantage of using it to realize quan-
tum repeater. In this chapter we demonstrated it using solid-state quantum
memory and two entangled photon pairs as a probe. The main limitation
to increase the number of photons simultaneously stored in the memory is
the probabilistic nature of the photon pair generation, its storage and de-
tection. Each step has finite efficiency and is not ideal. Present experiment
was possible thanks to the increased efficiency of the detection step by use
of the superconducting single photon detectors (Verma et al. 2014) and the
optimized overall transmission of the experimental setup. Further improve-
ment should focus on increasing the efficiency of the quantum memory by
optimizing the preparation of the AFC structure. The use of high-quality
deterministic single photon sources (for example quantum dots) will allow
one to dramatically increase the rate of the entangled photon generation and
thus will help to increase the number of stored excitations,.

Both, the demonstration of the hyperentanglement storage and the tem-
poral multimode storage of entangled photon pairs are necessary require-
ments to realize efficient quantum networks using solid-state quantum mem-
ories.
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7 Multi-dimensional entanglement
storage

This chapter is partly based on the results published in

A. Tiranov, S. Designolle, E. Zambrini Cruzeiro, J. Lavoie, N. Brunner, M. Afzelius,
M. Huber & N. Gisin “Quantification of multi-dimensional photonic entangle-
ment stored in a quantum memory based on sparse data”, arXiv:1609.05033 (2016)
(pages 209-219)

Entanglement is the main resource for various applications in quantum
information processing and quantum communication. Increasing entangle-
ment structure complexity paves the way for both deeper fundamental tests
of nature and new methods for quantum information tasks. Of particular in-
terest is the possibility of using multi-dimensional entangled states, which
are proven to outperform standard two-qubit entangled states for a wide
range of applications. In particular, high-dimensional entanglement can en-
hance key rate and resilience to errors in quantum key distribution (Cerf
et al. 2002; Sheridan et al. 2010). Moreover, it is also relevant for the imple-
mentation of device-independent quantum communication protocols (Acín
et al. 2007), allowing for more robust Bell tests (Vértesi et al. 2010) and en-
hanced security (Huber et al. 2013b).

In this chapter we certify and quantify multi-dimensional energy-time
entanglement stored in a quantum memory. The certified number of ebits
exceeds all the previous experimental realizations involving quantum stor-
age. To achieve this we implemented a novel entanglement certification
scheme which gives a lower bound on the entanglement of formation based
on the incomplete data provided by the measurements. This method can be
generalized since it is based on basic properties of the density matrix and
on the limited set of projective measurements.

7.1 Quantification of multi-dimensional energy-
time entanglement

While these works open promising perspectives, the use of multi-dimensional
entanglement for practical and efficient quantum communications still faces
important challenges. Unavoidable losses in optical fibers require the use of
quantum repeater schemes featuring quantum memories in order to reach
long distances (Sangouard et al. 2011). First steps were taken in realizing

http://arxiv.org/abs/1606.07774
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quantum memories beyond qubits. Notably experiments demonstrated the
storage of three-dimensional entanglement of orbital angular momentum
(Zhou et al. 2015; Ding et al. 2016b), as well as the implementation of a tem-
poral multimode quantum memory capable of storing multiple entangled
two-qubit pairs Chapter 6, a key step for achieving efficient entanglement
distribution (Simon et al. 2007). A quantum memory which is capable of
storing high-dimensional entanglement is an essential tool to go in this di-
rection since it allows one to use the increased quantum information capac-
ity for long-distance quantum communication.
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FIGURE 7.1: Experimental setup. Spontaneous parametric down-
conversion (SPDC) in a periodically poled KTP waveguide (ppKTP) was
used to create a pair of photons (signal and idler) entangled in energy-time.
For this, we used a 532 nm wavelength monochromatic laser for pumping
and spectral filtering based on optical cavities on both photons. The sig-
nal photon was sent to a quantum memory (QM) based on Nd3+:Y2SiO5

crystal and stored for τM=50 ns. The laser intensity was modulated us-
ing an acousto-optic modulator to generate a square pulse with duration
τp smaller than the storage time of the QM. Since the coherence time of the
photon pair is much smaller than the coherence time of the pump laser, this
leads to the generation of a multi-dimensional photonic state entangled in
energy-time |Φd〉. To reveal this type of entanglement we used Franson
interferometry based on two interferometers with controllable phases φs
and φi and identical path difference in time ∆ equal to 5.5 ns. To anal-
yse two-photon interference between idler and stored signal photons two
single photon detectors (Ds and Di) were used.

7.1.1 Experiment

We start from the generation of the energy-time entanglement between
two single photons at different wavelengths using spontaneous paramet-
ric down conversion (SPDC). For this, a monochromatic continuous wave
532 nm laser pumps a nonlinear optical waveguide (periodically poled potas-
sium titanyl phosphate (ppKTP) waveguide) to generate the signal and idler
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photons at 883 nm and 1338 nm, respectively (Fig. 7.1). Two photons are cre-
ated simultaneously and are well correlated in energy. However, the use of
a monochromatic pump laser leads to an uncertainty on the photon pair cre-
ation time. This uncertainty is defined by the coherence time of the pump
laser and is approximately 1 µs in our case.

A d-dimensional two-photon state can be, in general, written as

|Φd〉 =
1√
d

d∑

j=1

|ji, js〉 . (7.1)

The entangled photon pair is filtered down to 200 MHz which corre-
sponds to a coherence time τc = 2.0 ns (Chapter 3). This coherence time is
much smaller than the coherence time of the pump laser which leads to a
high number of temporal modes coherently populating the multi-dimensional
entangled two-photon state (Eq. (7.1)).

The signal photon from the photon pair is coupled to the quantum mem-
ory based on the Atomic Frequency Comb (AFC) protocol. The storage time
was predetermined and was equal to 50 ns with an overall efficiency of 15%.

The standard way to reveal energy-time entanglement is the use of Fran-
son interferometry (Franson 1989). In our case the signal photon retrieved
from the quantum memory is sent to an unbalanced interferometer (Fig. 7.1)
and the same operation is applied to the idler photon. The travel-time dif-
ference ∆ between the short and long arms of the interferometers is bigger
than the coherence time of the photon pair and is equal to 5.5 ns for each.
In this case, the situation in which both photons passed through the short
arms is indistinguishable from one where both photons travelling through
the long arms, leading to quantum interference in the coincidence rate.

In practice, two Michelson interferometers (one bulk and one fiber based)
with controllable phases (φs and φi on Fig. 7.1) and identical travel-time dif-
ferences ∆s = ∆i = ∆ were implemented on each side of the experiment
(for signal and idler photon, respectively). A mechanical switch inside the
signal interferometer was used to analyze the diagonal elements of the den-
sity matrix.

In order to analyze energy-time entangled photonic qudits various in-
terferometric techniques could be used. The use of d interferometers is re-
quired in order to fully characterize d × d dimensional two-photon state
(Thew et al. 2004). This leads to technical difficulties which do not allow,
in practice, to reach high-dimensional energy-time entangled states. How-
ever, in order to quantify entanglement such a set of measurements can be
seen as overcomplete. In our experiment we show that with only a pair of
interferometers, one on each side of the experimental setup, it is possible
to give a lower bound on the amount of entanglement shared between two
photons.
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7.1.2 Entanglement certification with incomplete data

Our goal now is to characterize the multi-dimensional entanglement at
the output of the quantum memory. To do so, we reconstruct part of the d2×
d2 density matrix ρ, with elements 〈j, k| ρ |j′, k′〉 = Tr[ρ(|j〉i 〈j′|i ⊗ |k〉s 〈k′|s)].
Note however, that the measurement information at our disposal is very
limited, due to the simplicity of our measurement setup. Hence we can
obtain only very few elements of ρ. Specifically, we can measure

1. the diagonal of the density matrix, i.e. terms 〈j, k| ρ |j, k〉, via the time-
coincide measurement;

2. ithe coherence between two neighboring temporal modes, i.e. terms
〈j, j| ρ |j + 1, j + 1〉, via the interference measurements. Note that a full
state reconstruction of ρ would require the use of d different interfer-
ometers, and is extremely cumbersome and unpractical.

Nevertheless we will see that the limited information at our disposal
is already enough to partly characterize the state, in particular leading to
strong lower bounds on the entanglement of formation of ρ, EoF . The latter
is an operationally meaningful measure of entanglement, quantifying how
much pure entanglement (counted in ebits, i.e. number of maximally en-
tangled two-qubit pairs) is required in order to prepare ρ via an arbitrary
LOCC procedure. Following Ref. Huber et al. 2013a, we have that

EoF ≥ − log2(1− B2

2
) , (7.2)

where we have defined the quantity B as

2√
|C|



∑

(j,k)∈C
j<k

| 〈j, j| ρ |k, k〉 | −
√
〈j, k| ρ |j, k〉 〈k, j| ρ |k, j〉


 . (7.3)

Note that the indices (j, k) are taken from a set C that can be chosen at will.
The quantity B lower bounds the concurrence of ρ. For a d × d maximally
entangled state |Φd〉 one has B =

√
2(d− 1)/d, leading to the tight bound

EoF = log2(d).
Note that the evaluation of B requires only O(d2) elements of the den-

sity matrix, comparing to the total number of d4 − 1. While the diagonal
elements, i.e. 〈j, k| ρ |j, k〉, can be estimated in the experiment (see below),
measuring all coherence terms 〈j, j| ρ |k, k〉 is challenging and unpractical,
as it requires many interferometers (with time delays n∆ with n = 2, ..., d)
with controllable phases. Nevertheless we will see now that all unknown
coherence terms (e.g. 〈j, j| ρ |k, k〉 with |k − j| ≥ 2) can in fact be efficiently
lower bounded based only on accessible data.

These bounds simply follow from the requirement of the density matrix
ρ to be positive semi-definite, i.e. representing a valid quantum state. We
first notice that if a matrix is semi-definite positive, then it is also the case
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for its real part and all its sub-matrices. Hence, the following sub-matrix of
ρ is semi-definite positive




r1,1 r1,2 · · · r1,d

r1,2 r2,2
. . . ...

... . . . . . . rd−1,d

r1,d · · · rd−1,d rd,d


 (7.4)

where rj,k = rk,j = Re(〈j, j| ρ |k, k〉). From Sylvester’s criterion it follows
that every sub-determinant of a semi-definite positive matrix should be
non-negative. In particular, the following determinant of any 3 × 3 sub-
matrix of (7.4) is non-negative, i.e.

∣∣∣∣∣∣

rj,j rj,k rj,l
rj,k rk,k rk,l
rj,l rk,l rl,l

∣∣∣∣∣∣
≥ 0 , (7.5)

for all j < k < l. We thus get the lower bound:

rj,l ≥
rj,krl,k −

√
(rj,jrk,k − r2

j,k)(rk,krl,l − r2
k,l)

dk,k
. (7.6)

Notice that the square root in the above equation is real since its arguments
are 2 × 2 sub-determinants of (7.5) and therefore non-negative. Moreover,
even if we do not know the exact value of rj,k or rk,l, but only a non-negative
lower bound on them, the formula (7.6) remains valid. This property allows
us to iteratively compute a lower bound on every element of the matrix
(7.4), based only on its diagonal and its first off-diagonal. Finally, we can
lower bound B and eventually the entanglement of formation EoF via in-
equality (7.2).

Let us now focus on the situation of our experiment, for which we expect
the following form of the density matrix (omitting normalization): rj,j = 1
for j = 1, ..., d and rj+1,j = V for j = 1, ..., d − 1. The bounds on the first
unknown off-diagonal elements read:

rj+2,j ≥ 2V2 − 1 , rj+3,j ≥ V(4V2 − 3) . (7.7)

Hence the matrix (7.4), containing initially many unknown elements, can be
filled iteratively, as illustrated in Fig. 7.2. Finally, by computing parameter
B, we get a lower bound on the entanglement of formation depending on
the visibility, see Fig. 7.5(b). In particular, for a perfect visibility V = 1, the
only compatible state is the maximally entangled one (7.1), and the bound
becomes tight, i.e. EoF = log2(d).

Notice that the bounds become worse when one moves away from the
diagonal. In fact, depending on the value of V , the bound (7.6) becomes
negative at some point, and thus the corresponding (and following) off-
diagonal elements cannot be lower bounded anymore. Nevertheless, until
that point, the bounds computed are useful and it can be verified that the
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FIGURE 7.2: Illustration of the method. Given a sub matrix
where only the diagonal and first off diagonal are known (a),
the method allows us to complete the matrix (b), giving lower
bounds on all unknown elements based on positivity con-
straints. Finally this construction leads to a lower bound on
the entanglement of formation via relation (7.2).

(a) (b)

FIGURE 7.3: Illustration of the sub matrix reconstruction for
experimental data of one run. The values were normalized
with respect to the maximum dimension (10 in this case).

corresponding matrix is semi-definite positive. Hence the bound on the en-
tanglement of formation we obtain is optimal. Notice also that we can play
with the subset C in Eq. (7.3) to improve the final bound on EoF . This comes
from the fact that, while taking a larger set C makes the sum in Eq. (7.3)
larger, the denominator

√
|C| also grows. We find that in certain cases, bet-

ter bounds on EoF are obtained when considering small sets C.

7.1.3 Results

We now apply the above method to our experiment. We start by mea-
suring the coherence between neighboring temporal modes, giving access
to rj,j+1. In order to do this, we use the two interferometers (Fig. 7.1) to
extract coherences between temporal modes |j〉 and |j + 1〉. The phase of
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(a) (b)

FIGURE 7.4: Example of the interference measurement cor-
responding to destructive and constructive interference be-
tween neighbouring temporal modes. From this measurement
we extract the visibilities corresponding to different pairs of
neighbouring temporal modes.

the idler interferometer φi is fixed while the phase of the signal interfer-
ometer φs is scanned over the interval [0, 2π]. For each time-bin the phase
scan is done by measuring 15 points with 2 minutes per point. The co-
incidence rates are recorded, which correspond to local projections onto
eφs+φi |j, j〉 + |j + 1, j + 1〉 for all j = 1, ..., d − 1. The visibility values are
extracted by comparing number of coincidences corresponding to construc-
tive (maximum) and destructive (minimum) interference. Results are given
in Fig. 7.5(a). Note that the visibilities for the first two and the last two tem-
poral modes are lower due to a significant change of the intensity between
the two neighboring modes. The average visibility for the central tempo-
ral modes is ∼97%, and is limited by the interferometric stability and the
multi-pair contribution from the SPDC process.

Fig. 7.3 shows the sub-matrix before and after application of the theoret-
ical method. Only elements from the first rj,j and second rj,j+1 diagonals
were measured experimentally using a pair of interferometers. Application
of the method based on the positivity of the density matrix (described in
the main text) gives a lower bound on the elements for all other diagonals
(rj+2,j , rj+3,j and so on). These elements are further used to give a lower
bound on the entanglement of formation EoF based on Eq. (7.2). The sub-
matrix which gives maximum value of EoF is indicated by a dashed line.

Fig. 7.4 illustrates 2D image representing the coincidence measurement
for different temporal modes (Delay 1) as a function of delay between two
detectors Ds and Di (Delay 2). The coincidence histograms between detec-
tors Ds and Di shows three peaks corresponding to different path combi-
nations for travelling idler and signal photon after storage. By varying the
phase of the interferometer φs we observe the interference for central peak
which represents post-selected time-bin entangled state (7.1).
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The separation between peaks is equal to the travel-time difference be-
tween different arms of the interferometer is ∆ =5.5 ns. The central peak is
post-selected using 3 ns temporal window (Delay 2) illustrated by dashed
line. We define different temporal modes by discretizing temporal pulse
using period ∆ (Delay 1 in Fig. 7.4).

We measure the visibility for each pair of neighbouring temporal modes
by comparing number of coincidences corresponding to destructive (Fig. 7.4(a))
and constructive (Fig. 7.4(b)) interferences between different temporal modes.
The visibility is reduced at the edges of the pulse which can be seen from
increased number of coincidences for destructive interference for first and
last histogram bin (Fig. 7.4). This is explained by fast intensity variation
at the beginning and at the end of the pulse which reduces the maximum
achievable visibility. To measure intensity of each temporal mode cj we
block one of the arms of the signal interferometer and repeat coincidence
measurement described above.

We then measure correlations in the time basis, leading to the terms rj,j
for j = 1, ..., d. For this, we block the short (or long) arm of the signal in-
terferometer to project on states |j, j〉 (or |j + 1, j + 1〉) using a mechanical
switch. The results for one of the measurements is depicted in Fig. 7.5(a).

(a) (b)

FIGURE 7.5: Results for one experimental run. (a) The measured intensities
in the time-of-arrival basis (diagonal elements rj,j) and visibilities (first off-
diagonal rj,j+1) for 10 temporal modes, separated by ∆ = 5.5 ns. (b) Lower
bounds for the entanglement of formation (number of ebits) as a function of
the number d of temporal modes taken into account when reconstructing
the density matrix. Here the optimal value is ∼1.25(11) ebits. The data
shows good agreement with our model considering the measured visibility
of V of 97%. The case V = 1, corresponding to the maximally entangled
state (7.1), gives log2(d) ebits.

Next we estimate the remaining terms of the diagonal of ρ, i.e. 〈j, k| ρ |j, k〉.
Essentially the only contributions to these elements are the multipair emis-
sion of the SPDC and noise of the detectors. Since these processes are inde-
pendent of the temporal mode we assume that all diagonal terms 〈j, k| ρ |j, k〉
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are equal when j 6= k. Based on this assumption and using our interferome-
ters we then measure contributions from neighbouring modes 〈j, j + 1| ρ |j, j + 1〉
and use these values for all other terms.

We now analyze the data via the method discussed above in order to es-
timate the entanglement of formation of the state. To do so, we first lower
bound each element in the submatrix (7.4). We consider all possible sub-
matrices of ρ (of different sizes) and keep the one leading to the best bound
on EoF , see Fig. 7.5. The maximum number of ebits corresponds to the
cases where both the measured visibilities and intensities are largest and
relatively constant. This is achieved by considering the central region of
the pulse, excluding the edges where the intensity variation is limiting the
visibility (Fig. 7.5(a)).

Finally we obtain a lower bound for the entanglement of formationEoF ≥
1.18(4) ebits, based on a dozen repetitions of the measurement procedure
and analysis. Moreover, this result also certifies a genuinely 3× 3 entangled
state, as any two-qubit state contains at most one ebit. More generally, our
approach can be used to place lower bounds on the entanglement dimen-
sionality given by log2(d) ≥ EoF .

In the above analysis we certified a minimal degree of entanglement con-
sidering all possible quantum states (density matrices) compatible with our
data. It is also relevant to estimate the entanglement based on a more phys-
ical model of our experiment. Indeed, this is expected to provide a much
higher estimate of the entanglement, given that we consider here only quan-
tum states of a specific form.

The visibility measured for bigger interferometric delays will monotoni-
cally decrease due to the finite linewidth of the pump laser. The phase noise
of the pump laser can be approximated by gaussian distribution with stan-
dard deviation δφ. In this case the visibility scales as V ∼ e−δφ

2/2 (Minář
et al. 2008). In our case for different temporal modes separated by n∆ delay
we can rewrite it as

Vn = V1e
−2(πδνn∆)2 , (7.8)

where δν is the spectral linewidth of the pump laser and V1 is the visibility
between neighbouring modes.

Assuming the full-width half-maximum linewidth of the pump laser of
1 MHz and maximum delay between temporal modes of 50 ns, the expected
visibility remains almost constant decreasing only by a factor 0.99. This
verifies our approximation of coherent sum between all temporal modes
generated and stored in the quantum memory. Hence we get that rj,j+n ≈ V ,
where V is the measured visibility between two neighboring modes. This
allows us to get a lower bound on the entanglement of formation of 2.6 ebits
from our measurement data.

7.2 Conclusion
In conclusion, we characterized multi-dimensional energy-time entan-

glement between two photons where one photon was stored in a quantum
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memory and the other photon is at telecom wavelength. In particular, we
certified an entanglement of formation of 1.18(4) ebits.

To do so, we developed a general method for characterizing the a mul-
tidimensional entangled state based on very sparse measurement data. The
generality of our method may find application in other physical platforms.
Combined with the use of a quantum memory our approach offers promis-
ing perspectives for quantum communications based on multi-dimensional
entanglement.

Our method also serves as tool for certifying the dimensionality of en-
tanglement. While we could certify 3 × 3 entanglement, higher dimension
could be reached by improving the state preparation and the measurement
apparatus to achieve higher visibilities, or even use additional interferome-
ters. Another possible direction would be perform device-independent tests
of the degree of entanglement (Moroder et al. 2013) and its dimensionality
(Brunner et al. 2008).
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8 Large entanglement

This chapter is partly based on the results published in

A. Tiranov, J. Lavoie, P. C. Strassmann, N. Sangouard, M. Afzelius, F. Bus-
sières & N. Gisin “Demonstration of Light-Matter Micro-Macro Quantum Cor-
relations", Phys. Rev. Lett. 116, 190502 (2016) (pages 183-197)

Entanglement is the most striking feature of quantum mechanics which
is usually attributed to microscopic objects. Recent theoretical and experi-
mental progress in quantum physics is now opening new ways to observe
quantum effects at macroscopic scale involving large number of photons or
atoms.

The question whether macroscopic quantum effects can in principle be
observed in macroscopic systems remains unsolved to date. The possibility
to observe quantum effects using classical devices can lead to the creation
of new quantum-enhanced metrological techniques since these effects are
extremely sensitive to the losses and decoherence. While the violation of
classical physics using macroscopic quantum systems is intriguing from the
fundamental point of view to test macrorealism (Leggett et al. 1985).

In this chapter we discuss the key points of the performed experiments
which demonstrate quantum correlations between a single photon and few
tens of atomic excitations in the crystal. The potential to use such entangled
state for the direct observation of the micro-macro quantum superpositions
is discussed. For details we refer to the original publications that are pre-
sented in the Appendix.

8.1 Micro-macro entanglement
The definition of quantum macroscopicity is a source of many debates

from which various theoretical approaches have been developed. Two main
problems are the quantification of macroscopicity and the quantification
of the macroscopic distinctness of the states in a quantum superpositions.
Some approaches for definition of macroscopic distinctness can be found in
(Leggett 2002; Dür et al. 2002; Fröwis et al. 2012) and especially for optical
states (Sekatski et al. 2014a; Jeong et al. 2015; Laghaout et al. 2015).

There are many purely quantum effects which can be observed at macro-
scopic scale using classical devices: superfluidity and superconductivity are
only some of them. However, these examples are based on quantum effects
at microscopic scale which are coherently added together and the quantum-
ness in their case does not involve macroscpoic degrees of freedom. The

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.190502
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observation of the macroscopic quantum superpositions is the main exper-
imental challenge in this direction (Leggett 1980; Martinis et al. 1987). The
non-classical effects have so far only been observed for microscopic objects
or microscopic properties of larger objects (Julsgaard et al. 2001; Martini et
al. 2008; Bruno et al. 2013; Lvovsky et al. 2013; Gerlich et al. 2011). While the
experimental generation of Schrödinger cat states so far was possible only
involving few of atoms or photons (Monroe et al. 1996; Ourjoumtsev et al.
2007).

The observation of macroscopically distinct states which are involved
to the quantum superpositions nowadays lies outside of the experimen-
tally feasible domain and requires measurements of macroscopically coarse-
grained observables. One of the potential realizations is based on the dis-
placement operation applied on one of the modes of the entangled single
photon state and further use of coarse grained measurement (Sekatski et al.
2014b). And potentially coupling to the optomechanical system (Ghobadi
et al. 2014).

8.1.1 Displacement of the entangled state

One of the ways to create micro-macro entangled state by use of dis-
placement operation on on eof the modes of entangled state. The displace-
ment operation can be performed by combining target state |ψ〉 with the
coherent state with amplitude α on a highly transmittive beamsplitter with
reflection amplitude r. The result will be displaced target state D(rα) |ψ〉
(Peres 1996).

First let’s consider a polarization entangled photon pair

|ψ〉 =
1√
2

(|1, 0〉s |1, 0〉i + |0, 1〉s |0, 1〉i), (8.1)

where s and i subscripts are two modes corresponding to the generated
signal and idler single photon, while |1, 0〉s(i) ≡ |H〉s(i) and |0, 1〉s(i) ≡ |V 〉s(i)
correspond to the horizontal polarization state of the signal (idler) photon
and the vertical polarization state, respectively.

By displacing one of the photons in the certain polarization mode (hori-
zontal in this case) entangled state will become analogous to the recent ex-
periments (Lvovsky et al. 2013; Bruno et al. 2013):

|Ψ〉 =
1√
2

[(DsH(α) |1, 0〉)s |1, 0〉i + |α, 1〉s |0, 1〉i] . (8.2)

This micro-macro entangled state (denoted with a capital Ψ for emphasis)
contains a displaced single-photon state of the form D(α) |1〉 in the first
term, and a coherent state |α〉 = D(α) |0〉 in the second. The idler photon
plays the role of the “micro” component of the entangled state. While two
states D(α) |1〉 and D(α) |0〉 are considered as macroscopically distinguish-
able.

The main argument is that they can be distinguished using coarse grained
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(a) (b)

FIGURE 8.1: Theoretical model for the size of the superposition state. (a)
Mean photon number distributions of the two macroscopic components
of the state (8.2) written in the {|0〉 + |1〉 , |0〉 − |1〉} basis in the case of
perfect transmission η = 1 (dashed blue line), or including experimental
losses (solid red line). (b) Size of the superposition state (Sekatski et al.
2014b) prepared before the QM for the maximum mean photon number
|α|2 = 86(3) as a function of the guessing probability Pg to distinguish
two macroscopic components of state (8.2) without (dash line, blue) and
including (solid, red) the losses up to the first displacement.

detector with limited photon number resolution. For example the variance
of a coherent state is |α|2, while the variance of the displaced single photon
is three times bigger, 3|α|2 (Oliveira et al. 1990). Using a classical thresh-
old detector with the noise much smaller than the variance |α|2 one could
distinguish the two states with a maximal probability of 74%.

By changing the measurement basis and considering the states D(|0〉 +
|1〉) and D(|0〉− |1〉) the probability can reach 91% due to the different mean
energy of these two states (Fig. 8.1(a)). Indeed the state 8.2 can be written as

[DsH(α)(|0〉Hs + |1〉Hs)] (|0〉V s |1, 0〉i + |1〉V s |0, 1〉i)−
− [DsH(α)(|0〉Hs − |1〉Hs)] (|0〉V s |1, 0〉i − |1〉V s |0, 1〉i), (8.3)

where the DsH(α)(|0〉+ |1〉) and DsH(α)(|0〉 − |1〉) components clearly appear
in superposition, as part of the micro-macro entangled state. Hence, by pro-
jecting the idler photon on the diagonal or antidiagonal states and measur-
ing the V -mode of the signal photon in the (|0〉 ± |1〉) basis, one can obtain
in the horizontal mode of the signal photon one of the these two states and
possibly try to distinguish them with a coarse-grained detector.

Importantly, increasing |α| makes these two terms become more and
more distinguishable when using a coarse-grained detector (Sekatski et al.
2014b).
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8.1.2 Size of the macroscopic quantum states

To define the size of macroscopic quantum states in optics domain differ-
ent approaches could be considered (Sekatski et al. 2014a; Jeong et al. 2015;
Laghaout et al. 2015). One of the ideas (Sekatski et al. 2014a) is to character-
ize the size of the macroscopic correlations by the maximum coarse-graining
σmax that allows one to distinguish the two components of the quantum su-
perposition with a given probability Pg, where Pg should be significantly
above 50% to be meaningful for a single-shot measurement. Using this
method, the effective size can be evaluated by comparing the results to an
archetypical state involving the superposition of |0〉 and |N〉 Fock states,
where N is the smallest value that allows distinguishing |0〉 from |N〉 with
a probability Pg and a coarse graining σmax (Fig. 8.1(b)).

All the losses in the signal mode before the beamsplitter used for the
displacement, and before the detection has to eliminated in order to max-
imize the size of the directly observed macroscopic quantum states. The
loss and finite efficiency of the detectors reduce the maximum probability
to distinguish the two macroscopic states which makes direct observation
of micro-macro entangled states technically challenging.

8.1.3 Experiment

Our experiment is conceptually represented on Fig. 8.2. First, a entan-
gled photon pair is generated in the state (8.1) To displace one of the po-
larization modes of s, the signal photon is combined with an horizontally-
polarized coherent state pulse on a highly transmittive beam splitter. This
corresponds to the unitary displacement operation DsH(α) of the horizontal
mode of the signal photon. This leads to the generated photonic micro-
macro state (8.2).

We then use a quantum memory protocol to map this all-optical state
to a light-matter micro-macro entangled state. Specifically, the state of the
signal mode is coherently mapped to the collective state of an ensemble of
neodymium ions. To store light with an arbitrary polarization, we use a con-
figuration consisting of two inline neodymium-doped yttrium orthosilicate
crystals Nd3+:Y2SiO5 separated by a half-wave plate (HWP). This configu-
ration was previously used to faithfully store polarization qubits Clausen
et al. 2012; Gündoğan et al. 2012; Zhou et al. 2012b. The bandwidth of the
prepared AFC quantum memory is 600 MHz and stores photons for 50 ns
with an overall efficiency of η = 4.6(2)%.

The number of atoms part of the collective state is about 10 billions, and
the number of excited atoms is as high as 35. After a pre-determined storage
time τs of 50 ns, the stored state is mapped back to an optical mode with an
efficiency η.

As part of the measurement, the retrieved state is superimposed with an-
other displacement DsH(−√ηα) pulse, delayed by τs with respect to DsH(α),
whose role is to undo the initial displacement. This yields the original
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FIGURE 8.2: Experimental scheme. Conceptual scheme for generation,
storage and analysis of the macroscopic quantum state (8.2). First, a dis-
placement operation DsH(α) is applied on signal mode of the micro-micro
polarization entangled state |ψ〉 using highly transmittive beam splitter
(BS). The displaced signal photon of the micro-macro state is then mapped
inside a solid-state quantum memory (QM) that has a storage and retrieval
efficiency η. To characterize the state after storage, it is first displaced
back to |ψ〉 (in the ideal case) when it it retrieved from the memory using
DsH(−√ηα), and is then analyzed using various entanglement witnesses.

micro-micro entangled state which can then be analyzed using various en-
tanglement witnesses. The two displacement operations are performed lo-
cally and they cannot increase the entanglement of the state. This means
that the amount of entanglement found in the final micro-micro entangled
state is a lower bound for the entanglement of the light-matter micro-macro
state. In practice, the second displacement is not perfect, which gradually
decreases the amount of entanglement left in the micro-micro state as the
size of the first displacement increases. This constitutes the ultimate limit
on the size of the macro part of our state.

In practice, the quantum memory itself was used to implement second
displacement operation. Light incident on the QM is either unabsorbed and
transmitted with probability T ≈ 55%, or it can be absorbed with probability
ηabs ≈ 45% and retrieved from the QM after τs (with an overall probability
η), or absorbed and kept inside the QM after τs. This was used to prepare
the displacement pulses and to store the micro-macro entangled state.

8.1.4 Results and conclusion

In our experiment, with the maximum mean number of atomic excita-
tions of ≈ 47 it was possible to demonstrate the presence of entanglement
in the system. This corresponds to initial displacement operation contain-
ing |α2| = 86 photons in average. The CHSH inequality violations and the
quantum state tomography of the polarization entangled state (Eq. (8.1))
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(a) (b)

FIGURE 8.3: Example of quantum state tomography results. (a) Real part
of the reconstructed density matrix of the micro-micro state with no dis-
placement, after storage in the quantum memory. The fidelity with the
target state |Ψ〉 of Eq. (8.1) is 96(2)%. (b) One instance of the real part of the
reconstructed density matrix of a micro-micro entangled state after both
displacements and storage in the QM. The size of the displacement was
|α2| = 72(3) before the QM. The corresponding values of the PPT test is
-0.059(10) and of the concurrence is 0.131(22). The values of the imaginary
parts are all below 0.05.

were applied (Fig. 8.3) to reconstruct the state and verify the presence of en-
tanglement for different size of the initial displacement operation (Fig. 8.4).

In ideal case, the displacement back operation should remain the initial
state (8.1) unchanged. However, the resulting state always contains some
noise pollution due interferometric instability between two displacement
operations. And when the displacement is getting larger, it becomes in-
creasingly difficult to demonstrate that the entanglement is still present in
the optical state that is obtained after re-emission by the memory. Observing
this behaviour further supports that our quantum state has physically in-
teresting quantum macroscopic properties. In previous publications, it has
been shown that this is a feature inherent to micro-macro quantum states
produced with displacements (Bruno et al. 2013; Lvovsky et al. 2013). The
main difference of our approach comparing with previous experiments is
the demonstration of light-matter micro-macro entangled state and the use
of a CHSH inequality violation to probe entanglement.

Hence, in our experiment we could have displaced the single photon
with more light (and created more atomic excitations), but we would have
been unable to show that we had entanglement, due to the increased sensi-
tivity of the entanglement measurement procedure with respect to the fluc-
tuating experimental conditions.

To summarize, we created a state that involves the superposition of two
components that are more and more easy to distinguish with a classical de-
tector as the size grows, but at the same time this makes it increasingly dif-
ficult to reveal its quantum properties (entanglement). This captures the
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(b)

nonlocality bound

entanglement bound

FIGURE 8.4: Results. (a) Measured values of the S parameter of the CHSH
Bell inequality (dots) as a function of the size of the displacement before
the QM (top x-axis) or as a function of the average number of atomic ex-
citations inside the QM (bottom x-axis). CHSH violation values are above
the local bound with up to 5.4(1) excitations on average, and above the
entanglement bound with up to 16.7(6) excitations. The error bars are esti-
mated assuming Poisson statistics for the counts. (b) PPT and concurrence
values (obtained from quantum state tomography) as a function of the size
of the displacement before the QM (top x-axis) or as a function of the aver-
age number of atomic excitations inside the QM (bottom x-axis). The solid
line is a theoretical model The error bars are estimated from the Monte-
Carlo simulation. The PPT criteria remains negative and the concurrence
value remains positive with up to 34(2) excitations on average. The solid
lines in all graphs are obtained from a theoretical model based on the in-
dependently measured parameters, and the shaded areas stem from the
uncertainty on these parameters.

essence of why it is very difficult to observe quantum effects such as quan-
tum superpositions in macroscopic systems (Fig. 8.1). From our results,
which are well reproduced by our theoretical model based on independent
measurements, we can confidently give an estimate of the size of the light-
matter state from which the entanglement is measured. For Pg = 2/3, the
state is analogous to the state |↑〉 |0〉+ |↓〉 |N〉with N ≈ 13, where |↑〉 and |↓〉
represent microscopic orthonormal states.
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In particular, by storing our optical states in quantum memories we
do not only harness entanglement between a single photon and a “macro-
scopic” light pulse, but also store the later in matter. We also emphasize that
our experiment is, to the best of our knowledge, the first one to implement
this macroscopic part of entangled state in matter.
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9 Conclusion and Outlook

In this chapter we summarize all the results presented in this thesis and
published articles. We also discuss possible improvements and further de-
velopments in the context of quantum communications and quantum infor-
mation.

Conclusions
We have experimentally demonstrated that the atomic frequency comb

quantum memory protocol implemented in the rare-earth ion-doped crys-
tals is suitable for future applications in quantum communication and quan-
tum information processing. For this, the series of experiments involving
storage of quantum light entangled in different degrees of freedom have
been realized. First, we have demonstrated quantum teleportation of a pho-
tonic polarization qubit at telecommunication wavelength onto the state of
a solid-state quantum memory - one of the building blocks of the quantum
repeater scheme. Furthermore, the storage of the hyperentangled photonic
states suitable for long-distance quantum communication and potentially
useful for quantum purification has been implemented. The temporal mul-
timode capacity - one of the basic features of solid-state quantum memo-
ries based on the atomic frequency protocol - has been demonstrated using
entangled photon pairs. All together, these results demonstrate the core
requirements to realize quantum repeaters and pave the way towards long-
distance quantum communication based on solid-state technologies.

By increasing the size of the quantum states one can probe the limits of
the quantum physics by trying to observe quantum effects (entanglement
and superposition) on macroscopic scales. While the definition of “macro-
scopic” quantum states is still a source of numerous debates, this question
triggered many experimental efforts to investigate this regime using purely
photonic or atomic systems. In one of the experiments using our quan-
tum memory, we have implemented a direct interface between a family of
micro-macro entangled photonic states and an atomic ensemble in our crys-
tal. Due to the limited storage efficiency of this interface, direct observation
of macroscopic quantum effects was not possible. However, using indirect
methods we were able to observe quantum correlations between the sin-
gle photon and the atomic ensemble containing up to 40 atomic excitations.
Further improvements of the single photon source with higher heralding
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efficiencies and the development of quantum memories with storage effi-
ciencies close to the unity will open a way to observe macroscopic quantum
effects involving different types of systems, including light and matter.

Outlook

Solid-state quantum memories for quantum networks

The creation of a highly efficient light-matter interface capable of re-
versibly mapping various quantum states of light into matter is one of the
most prominent goals in the field of long-distance quantum communica-
tion. The necessity to create quantum memories with near perfect quantum
efficiency, long storage time and high multimode capacity was initially mo-
tivated mostly from the practical aspects of quantum communication. It
should allow one to extend current quantum technologies (like quantum
key distribution) towards longer distances. While most of the main com-
ponents for long-distance quantum communication separately have been
demonstrated, their combination and direct implementation for practical
use remains unfulfilled. All these require both the creation of the fast and
pure source of entangled photons and ideal quantum memories capable to
efficiently store them and read out on-demand. This is a challenging task
for which research and the development of new materials, compatible with
certain quantum memory protocols, are necessary.

In this context, rare-earth ion-doped crystals have many advantages in
terms of practical implementations and flexibility in the choice of wave-
length and crystal host. The rich energy level structure offers a great number
of possibilities to implement quantum memory protocols, but at the same
time makes the preparation of the atomic states very challenging. The pres-
ence of a Λ-system in the energy structure is one of the requirements for
most of the quantum memory protocols. So far, non-Kramers ions, in par-
ticular Pr3+ and Eu3+, offered great possibility to perform efficient optical
pumping on the hyperfine levels together with the spin state manipulation
by means of dynamical decoupling. One of the drawbacks is inconvenient
visible wavelengths which are not compatible for long distance communi-
cation. A lot of efforts are needed to perform high fidelity down-conversion
to telecommunication wavelengths in this case.

For this reason Kramers ions, especially Er3+, have more practical spec-
tral properties. However, the search for a Λ-system in Kramers ions is com-
plicated by the strong relaxation mechanisms between magnetic levels. For
this reason, optical pumping in these materials is much less efficient and re-
quires the use of particular configurations of the magnetic fields. The efforts
to find compatible Λ-system include highly doped samples where pairs of
ions (Nd3+-Nd3+) can be spectrally separated (Laplane et al. 2016a) or iso-
topically pure crystals doped with 143Nd3+, 145Nd3+ or 167Er3+ ions with
non-zero nuclear magnetic moments.

Up to now, it has been shown that the optical pumping can be improved
for isotopically pure materials. However, big nuclear magnetic moments
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(I = 7/2) of these isotopes lead to an overloaded energy structure which
will require new and complicated preparation schemes. This can potentially
be overcome in the systems where inhomogeneous broadening is smaller
than the hyperfine splitting (for example in Nd3+:YLiF4 (Macfarlane et al.
1998)). Simpler energy level structure can be found in crystals doped with
171Yb3+ which has low nuclear spin (I = 1/2). These materials, particularly
171Yb3+:Y2SiO5, are very promising to realize optical and microwave quan-
tum memories (Welinski et al. 2016).

The main advantage is that the level-splittings for Kramers ions are much
larger than for non-Kramers which permits easier spectral separation of the
control fields and potentially bigger spectral bandwidth together with the
number of temporal modes.

Another advantage of Kramers ions is the possibility to realize the stor-
age of microwave excitations (Wolfowicz et al. 2015). In future, this could
be used to implement hybrid quantum networks (Sørensen et al. 2004) to
couple stationary superconducting qubits and photonic qubits which are
used for communication . For this purpose Er3+ doped materials have good
potential (Staudt et al. 2012; Probst et al. 2013).

Engineering multimode quantum memories directly combined with a
source of entangled photon pairs will greatly simplify the practical imple-
mentation of the quantum repeater. It will help to overcome complicated
filtering components required to match the operating bandwidth of quan-
tum memories. During this thesis the probability to have a photon before
our quantum memory was only 20% due to the losses during the filtering
step, while for DLCZ-type scheme this value reaches unity. Research in this
direction includes the realization of RASE protocol in Pr3+:Y2SiO5 and an
AFC-DLCZ quantum memories in Eu3+:Y2SiO5 and Pr3+:Y2SiO5 crystals.
The main problem in this case is the maximum spectral bandwidth which is
limited by the hyperfine energy structure.

Another exciting direction of research is the miniaturization of the quan-
tum memories for scalability purposes. The use of integrated waveguide ar-
chitectures to realize quantum memories includes different materials: Tm3+:
LiNbO3 (Saglamyurek et al. 2011), Er3+:LiNbO3 (Staudt et al. 2007) and
Pr3+:Y2SiO5 (Corrielli et al. 2016). On-chip cavities have been used to en-
hance light-matter interactions with rare-earth ions using Nd3+:Y2SiO5 (Zhong
et al. 2015b), Er3+:Y2SiO5 (Miyazono et al. 2016), Yb3+:Si3N4 (Ding et al.
2016a) and Nd3+:YVO4 (Zhong et al. 2016).

This cavity approach has been shown to increase the quantum mem-
ory efficiency of the AFC protocol up to 56% in Pr3+:Y2SiO5 (Sabooni et al.
2013) and in Eu3+:Y2SiO5 (Jobez et al. 2014). This technique should lead to
quantum efficiencies close to unity even with very low absorbing materials
(Afzelius et al. 2010b).

All these techniques combined together should finally allow one to real-
ize elementary links of the quantum repeater based on the rare-earth solid-
state technologies involving entanglement between two distant quantum
memories. This will be an important step towards practical implementation
of the quantum communication.
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The search for new materials is another branch for deep research. For
example, recently coherence time up to 39 min have been measured for
the nuclear spins of ionized donors in enriched 28Si materials (Saeedi et
al. 2013). These unique nuclear properties of 28Si, and their application to
silicon-based solid-state quantum information research could be also very
promising.

“Complex” entanglement

Quantum entanglement is a widespread resource in the field of quantum
information and quantum communication. An impressively large number
of experiments have been performed in this direction (Pan et al. 2012). The
growing complexity of the investigated systems was achieved by increasing
the number of particles or using d-level quantum bits (qudits). Mutipartite
or multidimensional entanglement is a resource for fundamental tests of
quantum mechanics as well as a key element for new capacity-increased
quantum communication protocols.

Photonic multidimensional entanglement has been implemented using
photonic qudit states entangled in different degrees of freedom. For this,
orbital angular momentum (Dada et al. 2011; Krenn et al. 2014), frequency
(Olislager et al. 2010; Xing et al. 2014; Jin et al. 2016), spatial entanglement
(Edgar et al. 2012; Fickler et al. 2014; Schaeff et al. 2015), time-bins (Riedmat-
ten et al. 2002; Stucki et al. 2005; Ikuta et al. 2016) and energy-time (Thew
et al. 2004; Richart et al. 2012) were efficiently used. The last two degrees of
freedom are the most important for quantum communication since they are
well suited for optical fiber technologies (Marcikic et al. 2002).

The ability to store high-dimensional quantum entanglement offers great
potential for quantum information applications (Zhou et al. 2015; Ding et
al. 2015; Ding et al. 2016b). It would allow one to use the large informa-
tion capacity of high-dimensional entangled states (Dixon et al. 2012) for
quantum communications. In cryptography, for example, it should allow
one to maintain the security of the information in realistic situations, in the
presence of noise and decoherence (Nunn et al. 2013).

Generating high-dimensional states often is easier than their certifica-
tion. It is a complex problem usually requiring a large number of resources
(high number of projective measurements and access to all the outcomes in
the ideal case). During this thesis an entanglement witness was developed
to be able to characterize entanglement under the experimental conditions
of limited number measurement settings and restricted access to all the mea-
surement outcomes. Such approaches are especially important for physical
quantum systems living in multi-dimensional Hilbert spaces or containing
large number of quantum particles. In this direction a great number of ex-
periments have been performed (Shalm et al. 2012; Hamel et al. 2014; Hies-
mayr et al. 2016; Malik et al. 2016; Reimer et al. 2016) demonstrating the
importance of improving entanglement certification procedures for future
quantum technologies.

Entanglement in large quantum systems (containing a large number of
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particles) is much less established, despite the strong interest motivated by
open questions on genuine quantum phenomena on large scales. On the
theoretical side, the complexity of entanglement classification just explodes
as the number of particles increases. It is therefore desirable to have some
key identifiers that allow one to describe and to compare different states
and system sizes. In addition, the precise role of entanglement in certain
situations is not always entirely clear (e.g., in quantum computation). On
the other hand, experimental challenges call for feasible entanglement veri-
fication in multipartite quantum systems. For example, access to single par-
ticles is often not possible and also collective measurements are typically
restricted to certain types and finite resolution. One obvious example is the
state of the atomic ensemble used in the storage of a single photon realized
in present thesis.

Characterization of this multipartite entanglement involving a very large
number of atoms (1010 was estimated using fluorescence measurement) with-
out a direct access is extremely challenging. For this, the concept of entan-
glement depth (Sørensen et al. 2001) has to be applied. Entanglement depth
is defined as the smallest number of mutually entangled particles that is
compatible with the measured data. This simple definition can allow one to
witness subgroups of mutually entangled particles in a state-independent
and scale-invariant way. This framework has been applied to ensembles
of two-level atoms. For example, comparison of first and second moments
of collective excitation measurements in different bases give rise to power-
ful bounds on the entanglement depth (Sørensen et al. 2001; Lücke et al.
2014). Consequently, a large entanglement depth has been measured for
so-called squeezed and oversqueezed states (Riedel et al. 2010; Gross et al.
2010; Lücke et al. 2014); recently up to 680 (Hosten et al. 2016). A promising
alternative to squeezed states are W states, which are coherent superposi-
tions of a single excitation shared by many atoms. This state is quite robust
against particle loss, dephasing and admixture of the ground states. An
entanglement depth of around 2900 was measured (Mcconnell et al. 2015).

All these approaches are based on sophisticated experimental techniques
and are very specific to the systems under study. The search for observables
offering a lower bound on the entanglement depth grounded in general as-
sumptions and using simple experimental apparatus is very important for
many-body quantum physics.

Our recent progress in developing solid-state quantum memories based
on rare-earth-ion doped crystals for quantum repeaters also offers some
ways to transfer optical macroscopic entanglement to solid objects, into
which the state of single photons are mapped to the collective state of bil-
lions of atoms. This opens new possibilities to study entanglement that is
macroscopic in terms of the number of stored modes, bits of entanglement
(ebits), dimensionality of the quantum states and the number of crystals
used for storage.
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N. Sangouard, J. Minář, H. de Riedmatten, N. Gisin, and S. Kröll
(2010a). “Demonstration of Atomic Frequency Comb Memory for Light
with Spin-Wave Storage”. Phys. Rev. Lett. 104 (4), 040503. DOI: 10.1103/
PhysRevLett.104.040503 (cited on pp. 22, 49).

AFZELIUS, M. and C. Simon (2010b). “Impedance-matched cavity quan-
tum memory”. Phys. Rev. A 82.2, 022310. DOI: 10.1103/PhysRevA.
82.022310 (cited on pp. 50, 53, 95).

AHLEFELDT, R. L., M. R. Hush, and M. J. Sellars (2016). “Ultra-narrow
optical inhomogeneous linewidth in a stoichiometric rare earth crystal”.
arXiv:1601.05013. eprint: http://arxiv.org/abs/1601.05013
(cited on p. 46).

ALBRECHT, B., P. Farrera, X. Fernandez-Gonzalvo, M. Cristiani, and
H. de Riedmatten (2014). “A waveguide frequency converter connect-
ing rubidium-based quantum memories to the telecom C-band”. Nature
Comm 5, 3376. DOI: 10.1038/ncomms4376 (cited on p. 15).

ALBRECHT, B., P. Farrera, G. Heinze, M. Cristiani, and H. de Riedmatten
(2015). “Controlled Rephasing of Single Collective Spin Excitations in a
Cold Atomic Quantum Memory”. Phys. Rev. Lett. 115 (16), 160501. DOI:
10.1103/PhysRevLett.115.160501 (cited on p. 23).

ALEXANDER, A. L., J. J. Longdell, M. J. Sellars, and N. B. Manson (2006).
“Photon Echoes Produced by Switching Electric Fields”. Phys. Rev. Lett.
96 (4), 043602. DOI: 10.1103/PhysRevLett.96.043602 (cited on
p. 19).

ALJUNID, S. A., G. Maslennikov, Y. Wang, H. L. Dao, V. Scarani, and
C. Kurtsiefer (2013). “Excitation of a Single Atom with Exponentially

http://dx.doi.org/10.1103/PhysRevLett.98.230501
http://dx.doi.org/10.1103/PhysRevLett.98.230501
http://dx.doi.org/10.1103/PhysRevA.79.052329
http://dx.doi.org/10.1103/PhysRevLett.104.040503
http://dx.doi.org/10.1103/PhysRevLett.104.040503
http://dx.doi.org/10.1103/PhysRevA.82.022310
http://dx.doi.org/10.1103/PhysRevA.82.022310
http://arxiv.org/abs/1601.05013
http://dx.doi.org/10.1038/ncomms4376
http://dx.doi.org/10.1103/PhysRevLett.115.160501
http://dx.doi.org/10.1103/PhysRevLett.96.043602


100 BIBLIOGRAPHY

Rising Light Pulses”. Phys. Rev. Lett. 111 (10), 103001. DOI: 10.1103/
PhysRevLett.111.103001 (cited on p. 31).

ALTEPETER, J. B., E. R. Jeffrey, and P. G. Kwiat (2006). “Photonic state
tomography”. Advances in Atomic, Molecular and Optical Physics. Elsevier,
New York. Chap. 3 (cited on p. 60).

ASPECT, A., J. Dalibard, and G. Roger (1982). “Experimental Test of Bell’s
Inequalities Using Time- Varying Analyzers”. Phys. Rev. Lett. 49.25, 1804–
1807. DOI: 10.1103/PhysRevLett.49.1804 (cited on p. ix).

ASPELMEYER, M., T. Jennewein, M. Pfennigbauer, W. R. Leeb, and A.
Zeilinger (2003). “Long-distance quantum communication with entan-
gled photons using satellites”. IEEE Journal of Selected Topics in Quantum
Electronics 9.6, 1541–1551. DOI: 10.1109/JSTQE.2003.820918 (cited
on p. 7).

BAO, X.-H., A. Reingruber, P. Dietrich, J. Rui, A. Duck, T. Strassel, L.
Li, N.-L. Liu, B. Zhao, and J.-W. Pan (2012). “Efficient and long-lived
quantum memory with cold atoms inside a ring cavity”. Nat Phys 8.7,
517–521. DOI: 10.1038/nphys2324 (cited on pp. 16, 23).

BARREIRO, J. T., T.-C. Wei, and P. G. Kwiat (2008). “Beating the channel
capacity limit for linear photonic superdense coding”. Nat Phys 4.4, 282–
286. DOI: 10.1038/nphys919 (cited on p. 64).

BEAVAN, S. E., M. P. Hedges, and M. J. Sellars (2012). “Demonstration
of Photon-Echo Rephasing of Spontaneous Emission”. Phys. Rev. Lett.
109 (9), 093603. DOI: 10.1103/PhysRevLett.109.093603 (cited
on p. 25).

BELL, J. (1964). “On the Einstein-Podolsky-Rosen paradox”. Physics 1, 195
(cited on pp. ix, 3, 5).

BENNETT, C. H. and G. Brassard (1984). “Quantum Key Distribution and
coin tossing”. Proceedings of the IEEE International Conference on Comput-
ers, Systems, and Signal Processing. 175–179. DOI: 10.1016/j.tcs.
2014.05.025 (cited on p. ix).

BENNETT, C. H., G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K.
Wootters (1993). “Teleporting an unknown quantum state via dual classi-
cal and Einstein-Podolsky-Rosen channels”. Phys. Rev. Lett. 70 (13), 1895–
1899. DOI: 10.1103/PhysRevLett.70.1895 (cited on pp. x, 7, 9, 59).

BENNETT, C. H., H. J. Bernstein, S. Popescu, and B. Schumacher (1996a).
“Concentrating partial entanglement by local operations”. Phys. Rev. A
53 (4), 2046–2052. DOI: 10.1103/PhysRevA.53.2046 (cited on p. 9).

BENNETT, C. H., G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin,
and W. K. Wootters (1996b). “Purification of Noisy Entanglement and
Faithful Teleportation via Noisy Channels”. Phys. Rev. Lett. 76.5, 722–.
DOI: 10.1103/PhysRevLett.76.722 (cited on p. 9).

http://dx.doi.org/10.1103/PhysRevLett.111.103001
http://dx.doi.org/10.1103/PhysRevLett.111.103001
http://dx.doi.org/10.1103/PhysRevLett.49.1804
http://dx.doi.org/10.1109/JSTQE.2003.820918
http://dx.doi.org/10.1038/nphys2324
http://dx.doi.org/10.1038/nphys919
http://dx.doi.org/10.1103/PhysRevLett.109.093603
http://dx.doi.org/10.1016/j.tcs.2014.05.025
http://dx.doi.org/10.1016/j.tcs.2014.05.025
http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1103/PhysRevA.53.2046
http://dx.doi.org/10.1103/PhysRevLett.76.722


BIBLIOGRAPHY 101
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GÜNDOĞAN, M., P. M. Ledingham, K. Kutluer, M. Mazzera, and H. de
Riedmatten (2015). “Solid State Spin-Wave Quantum Memory for Time-
Bin Qubits”. Phys. Rev. Lett. 114 (23), 230501. DOI: 10.1103/PhysRevLett.
114.230501 (cited on pp. 22, 67).

HAMEL, D. R., L. K. Shalm, H. Hübel, A. J. Miller, F. Marsili, V. B. Verma,
R. P. Mirin, S. W. Nam, K. J. Resch, and T. Jennewein (2014). “Direct
generation of three-photon polarization entanglement”. Nature Photonics
8.10, 801–807. DOI: 10.1038/nphoton.2014.218 (cited on p. 96).

HAMMERER, K., M. M. Wolf, E. S. Polzik, and J. I. Cirac (2005). “Quan-
tum Benchmark for Storage and Transmission of Coherent States”. Phys.
Rev. Lett. 94 (15), 150503. DOI: 10.1103/PhysRevLett.94.150503
(cited on p. 3).

HAMMERER, K., A. S. Sørensen, and E. S. Polzik (2010). “Quantum in-
terface between light and atomic ensembles”. Rev. Mod. Phys. 82.2, 1041–
1093. DOI: 10.1103/RevModPhys.82.1041 (cited on p. x).

HASTINGS-SIMON, S. R., M. Afzelius, M. U. Staudt, B. Lauritzen, H. de
Riedmatten, N. Gisin, A. Amari, A. Walther, S. Kröll, E. Cavalli, and M.
Bettinelli (2008a). “Spectral hole-burning spectroscopy in Nd3+ : YVO4”.
Phys. Rev. B 77 (12), 125111. DOI: 10.1103/PhysRevB.77.125111
(cited on p. 49).

HASTINGS-SIMON, S. R., B. Lauritzen, M. U. Staudt, J. L. M. van Meche-
len, C. Simon, H. de Riedmatten, M. Afzelius, and N. Gisin (2008b).

http://dx.doi.org/10.1103/PhysRevLett.98.123601
http://dx.doi.org/10.1103/PhysRevLett.98.123601
http://dx.doi.org/10.1038/ncomms8185
http://dx.doi.org/10.1038/nature08919
http://dx.doi.org/10.1016/j.physrep.2009.02.004
http://dx.doi.org/10.1088/1367-2630/15/4/045012
http://dx.doi.org/10.1103/PhysRevLett.108.190504
http://dx.doi.org/10.1103/PhysRevLett.108.190504
http://dx.doi.org/10.1103/PhysRevLett.114.230501
http://dx.doi.org/10.1103/PhysRevLett.114.230501
http://dx.doi.org/10.1038/nphoton.2014.218
http://dx.doi.org/10.1103/PhysRevLett.94.150503
http://dx.doi.org/10.1103/RevModPhys.82.1041
http://dx.doi.org/10.1103/PhysRevB.77.125111


BIBLIOGRAPHY 107

“Zeeman-level lifetimes in Er3+ : Y2SiO5”. Phys. Rev. B 78 (8), 085410.
DOI: 10.1103/PhysRevB.78.085410 (cited on p. 49).

HAU, L. V., S. E. Harris, Z. Dutton, and C. H. Behroozi (1999). “Light
speed reduction to 17 metres per second in an ultracold atomic gas”.
Nature 397.6720, 594–598. DOI: 10.1038/17561 (cited on p. 17).

HEDGES, M. P., J. J. Longdell, Y. Li, and M. J. Sellars (2010). “Effi-
cient quantum memory for light”. Nature 465.7301, 1052–1056. DOI: 10.
1038/nature09081 (cited on p. 19).

HEINZE, G., C. Hubrich, and T. Halfmann (2013). “Stopped Light and
Image Storage by Electromagnetically Induced Transparency up to the
Regime of One Minute”. Phys. Rev. Lett. 111 (3), 033601. DOI: 10.1103/
PhysRevLett.111.033601 (cited on p. 14).

HENSEN, B. et al. (2015). “Loophole-free Bell inequality violation using
electron spins separated by 1.3 kilometres”. Nature 526.7575, 682–686.
DOI: 10.1038/nature15759 (cited on p. ix).

HENTSCHEL, M., H. Hübel, A. Poppe, and A. Zeilinger (2009). “Three-
color Sagnac source of polarization-entangled photon pairs”. Opt. Ex-
press 17.25, 23153–23159. DOI: 10.1364/OE.17.023153 (cited on
p. 33).

HÉTET, G., J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J. Sell-
ars (2008). “Electro-Optic Quantum Memory for Light Using Two-Level
Atoms”. Phys. Rev. Lett. 100 (2), 023601. DOI: 10.1103/PhysRevLett.
100.023601 (cited on p. 19).

HIESMAYR, B. C., M. J. A. de Dood, and W. Löffler (2016). “Observation
of Four-Photon Orbital Angular Momentum Entanglement”. Physical Re-
view Letters 116.7, 073601. DOI: 10.1103/PhysRevLett.116.073601
(cited on p. 96).

HOFMANN, J., M. Krug, N. Ortegel, L. Gérard, M. Weber, W. Rosenfeld,
and H. Weinfurter (2012). “Heralded Entanglement Between Widely
Separated Atoms”. Science 337.6090, 72–75. DOI: 10.1126/science.
1221856 (cited on p. 16).

HONG, C. K., Z. Y. Ou, and L. Mandel (1987). “Measurement of sub-
picosecond time intervals between two photons by interference”. Phys.
Rev. Lett. 59 (18), 2044–2046. DOI: 10.1103/PhysRevLett.59.2044
(cited on p. 37).

HORODECKI, M., P. Horodecki, and R. Horodecki (1996). “Separability
of mixed states: necessary and sufficient conditions”. Physics Letters A
223.1, 1–8. DOI: 10.1016/S0375-9601(96)00706-2 (cited on p. 6).

HOSSEINI, M., B. Sparkes, G. Campbell, P. Lam, and B. Buchler (2011a).
“High efficiency coherent optical memory with warm rubidium vapour”.
Nat Commun 2, 174. DOI: 10.1038/ncomms1175 (cited on pp. 14, 23).

http://dx.doi.org/10.1103/PhysRevB.78.085410
http://dx.doi.org/10.1038/17561
http://dx.doi.org/10.1038/nature09081
http://dx.doi.org/10.1038/nature09081
http://dx.doi.org/10.1103/PhysRevLett.111.033601
http://dx.doi.org/10.1103/PhysRevLett.111.033601
http://dx.doi.org/10.1038/nature15759
http://dx.doi.org/10.1364/OE.17.023153
http://dx.doi.org/10.1103/PhysRevLett.100.023601
http://dx.doi.org/10.1103/PhysRevLett.100.023601
http://dx.doi.org/10.1103/PhysRevLett.116.073601
http://dx.doi.org/10.1126/science.1221856
http://dx.doi.org/10.1126/science.1221856
http://dx.doi.org/10.1103/PhysRevLett.59.2044
http://dx.doi.org/10.1016/S0375-9601(96)00706-2
http://dx.doi.org/10.1038/ncomms1175


108 BIBLIOGRAPHY

HOSSEINI, M., G. Campbell, B. M. Sparkes, P. K. Lam, and B. C. Buchler
(2011b). “Unconditional room-temperature quantum memory”. Nature
Physics 7.10, 794–798. DOI: 10.1038/nphys2021 (cited on p. 23).

HOSSEINI, M, B. M. Sparkes, G. T. Campbell, P. K. Lam, and B. C. Buchler
(2012). “Storage and manipulation of light using a Raman gradient-echo
process”. Journal of Physics B: Atomic, Molecular and Optical Physics 45.12,
124004. DOI: 10.1088/0953-4075/45/12/124004 (cited on p. 23).

HOSSEINI, M., B. M. Sparkes, G. Hetet, J. J. Longdell, P. K. Lam, and
B. C. Buchler (2009). “Coherent optical pulse sequencer for quantum
applications”. Nature 461.7261, 241–245. DOI: 10.1038/nature08325
(cited on p. 23).

HOSTEN, O., N. J. Engelsen, R. Krishnakumar, and M. A. Kasevich (2016).
“Measurement noise 100 times lower than the quantum-projection limit
using entangled atoms”. Nature 529.7587, 505–508. DOI: 10.1038/nature16176
(cited on p. 97).

HSIAO, Y.-F., P.-J. Tsai, H.-S. Chen, S.-X. Lin, C.-C. Hung, C.-H. Lee,
Y.-H. Chen, Y.-F. Chen, I. A. Yu, and Y.-C. Chen (2016). “EIT-based
photonic memory with near-unity storage efficiency”. arXiv 1605.08519.
eprint: http://arxiv.org/abs/1605.08519 (cited on p. 17).

HSU, M. T. L., G. Hétet, O. Glöckl, J. J. Longdell, B. C. Buchler, H.-A.
Bachor, and P. K. Lam (2006). “Quantum Study of Information Delay
in Electromagnetically Induced Transparency”. Phys. Rev. Lett. 97 (18),
183601. DOI: 10.1103/PhysRevLett.97.183601 (cited on p. 17).

HUBER, M. and J. I. de Vicente (2013a). “Structure of Multidimensional En-
tanglement in Multipartite Systems”. Physical Review Letters 110.3, 030501.
DOI: 10.1103/PhysRevLett.110.030501 (cited on p. 78).

HUBER, M. and M. Pawłowski (2013b). “Weak randomness in device-
independent quantum key distribution and the advantage of using high-
dimensional entanglement”. Phys. Rev. A 88 (3), 032309. DOI: 10.1103/
PhysRevA.88.032309 (cited on p. 75).

IKUTA, T. and H. Takesue (2016). “Enhanced violation of the Collins-Gisin-
Linden-Massar-Popescu inequality with optimized time-bin-entangled
ququarts”. Phys. Rev. A 93, 022307. DOI: 10.1103/PhysRevA.93.
022307 (cited on pp. 33, 96).

JAMES, D. F. V., P. G. Kwiat, W. J. Munro, and A. G. White (2001).
“Measurement of qubits”. Phys. Rev. A 64 (5), 052312. DOI: 10.1103/
PhysRevA.64.052312 (cited on p. 7).

JEONG, H., M. Kang, and H. Kwon (2015). “Characterizations and quan-
tifications of macroscopic quantumness and its implementations using
optical fields”. Optics Communications 337, 12 –21. DOI: 10.1016/j.
optcom.2014.07.012 (cited on pp. 85, 88).

http://dx.doi.org/10.1038/nphys2021
http://dx.doi.org/10.1088/0953-4075/45/12/124004
http://dx.doi.org/10.1038/nature08325
http://dx.doi.org/10.1038/nature16176
http://arxiv.org/abs/1605.08519
http://dx.doi.org/10.1103/PhysRevLett.97.183601
http://dx.doi.org/10.1103/PhysRevLett.110.030501
http://dx.doi.org/10.1103/PhysRevA.88.032309
http://dx.doi.org/10.1103/PhysRevA.88.032309
http://dx.doi.org/10.1103/PhysRevA.93.022307
http://dx.doi.org/10.1103/PhysRevA.93.022307
http://dx.doi.org/10.1103/PhysRevA.64.052312
http://dx.doi.org/10.1103/PhysRevA.64.052312
http://dx.doi.org/10.1016/j.optcom.2014.07.012
http://dx.doi.org/10.1016/j.optcom.2014.07.012


BIBLIOGRAPHY 109

JIN, R.-B., R. Shimizu, M. Fujiwara, M. Takeoka, R. Wakabayashi, T.
Yamashita, S. Miki, H. Terai, T. Gerrits, and M. Sasaki (2016). “Genera-
tion and distribution of high-dimensional frequency-entangled qudits”.
arXiv 1603.07887, 1–5. eprint: http://arxiv.org/abs/1603.07887
(cited on p. 96).

JOBEZ, P, I Usmani, N Timoney, C Laplane, N Gisin, and M Afzelius
(2014). “Cavity-enhanced storage in an optical spin-wave memory”. New
Journal of Physics 16.8, 083005. DOI: doi:10.1088/1367-2630/16/8/
083005 (cited on pp. 14, 22, 95).

JOBEZ, P., C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, and
M. Afzelius (2015). “Coherent Spin Control at the Quantum Level in an
Ensemble-Based Optical Memory”. Phys. Rev. Lett. 114 (23), 230502. DOI:
10.1103/PhysRevLett.114.230502 (cited on p. 67).

JOBEZ, P., N. Timoney, C. Laplane, J. Etesse, A. Ferrier, P. Goldner,
N. Gisin, and M. Afzelius (2016). “Towards highly multimode optical
quantum memory for quantum repeaters”. Phys. Rev. A 93 (3), 032327.
DOI: 10.1103/PhysRevA.93.032327 (cited on pp. 15, 22, 67).

JULSGAARD, B., A. Kozhekin, and E. S. Polzik (2001). “Experimental
long-lived entanglement of two macroscopic objects”. Nature 413.6854,
400–403. DOI: 10.1038/35096524 (cited on p. 86).

KALB, N., A. Reiserer, S. Ritter, and G. Rempe (2015). “Heralded Storage
of a Photonic Quantum Bit in a Single Atom”. Phys. Rev. Lett. 114 (22),
220501. DOI: 10.1103/PhysRevLett.114.220501 (cited on p. 16).

KIM, T., M. Fiorentino, and F. N. C. Wong (2006). “Phase-stable source
of polarization-entangled photons using a polarization Sagnac interfer-
ometer”. Phys. Rev. A 73 (1), 012316. DOI: 10.1103/PhysRevA.73.
012316 (cited on p. 33).

KIM, Y.-H., S. P. Kulik, and Y. Shih (2001). “Bell-state preparation using
pulsed nondegenerate two-photon entanglement”. Phys. Rev. A 63 (6),
060301. DOI: 10.1103/PhysRevA.63.060301 (cited on pp. 33, 64).

KIMBLE, H. J. (2008). “The quantum internet”. Nature 453.7198, 1023–1030.
DOI: 10.1038/nature07127 (cited on p. 1).

KNILL, E., R. Laflamme, and G. J. Milburn (2001). “A scheme for efficient
quantum computation with linear optics”. Nature 409.6816, 46–52. DOI:
10.1038/35051009 (cited on p. 36).

KOLESOV, R., K. Xia, R. Reuter, R. Stöhr, A. Zappe, J. Meijer, P. Hem-
mer, and J. Wrachtrup (2012). “Optical detection of a single rare-earth
ion in a crystal”. Nature Commun. 3, 1029. DOI: 10.1038/ncomms2034
(cited on p. 45).

KRAMERS, H. A. (1930). “Théorie générale de la rotation paramagnétique
dans les cristaux”. Proceedings Koninklijke Akademie van Wetenschappen 33,
959–972 (cited on p. 43).

http://arxiv.org/abs/1603.07887
http://dx.doi.org/doi:10.1088/1367-2630/16/8/083005
http://dx.doi.org/doi:10.1088/1367-2630/16/8/083005
http://dx.doi.org/10.1103/PhysRevLett.114.230502
http://dx.doi.org/10.1103/PhysRevA.93.032327
http://dx.doi.org/10.1038/35096524
http://dx.doi.org/10.1103/PhysRevLett.114.220501
http://dx.doi.org/10.1103/PhysRevA.73.012316
http://dx.doi.org/10.1103/PhysRevA.73.012316
http://dx.doi.org/10.1103/PhysRevA.63.060301
http://dx.doi.org/10.1038/nature07127
http://dx.doi.org/10.1038/35051009
http://dx.doi.org/10.1038/ncomms2034


110 BIBLIOGRAPHY

KRENN, M., M. Huber, R. Fickler, R. Lapkiewicz, S. Ramelow, and A.
Zeilinger (2014). “Generation and confirmation of a (100×100)-dimensional
entangled quantum system”. Proceedings of the National Academy of Sci-
ences 111.17, 6243–6247. DOI: 10.1073/pnas.1402365111 (cited on
p. 96).

KURKIN, I. and K. Chernov (1980). “EPR and spin-lattice relaxation of
rare-earth activated centres in Y2SiO5 single crystals”. Physica B+C 101,
233. DOI: 10.1016/0378-4363(80)90107-2 (cited on p. 51).

KUZMICH, A., W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M.
Duan, and H. J. Kimble (2003). “Generation of nonclassical photon pairs
for scalable quantum communication with atomic ensembles”. Nature
423.6941, 731–734. DOI: 10.1038/nature01714 (cited on p. 29).

KWIAT, P. G., P. H. Eberhard, A. M. Steinberg, and R. Y. Chiao (1994).
“Proposal for a loophole-free Bell inequality experiment”. Phys. Rev. A
49 (5), 3209–3220. DOI: 10.1103/PhysRevA.49.3209 (cited on p. 33).

KWIAT, P. G., K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and
Y. Shih (1995). “New High-Intensity Source of Polarization-Entangled
Photon Pairs”. Phys. Rev. Lett. 75 (24), 4337–4341. DOI: 10.1103/PhysRevLett.
75.4337 (cited on p. 33).

KWIAT, P. G. and H. Weinfurter (1998). “Embedded Bell-state analysis”.
Phys. Rev. A 58 (4), R2623–R2626. DOI: 10.1103/PhysRevA.58.R2623
(cited on p. 64).

KWIAT, P. G., E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard
(1999). “Ultrabright source of polarization-entangled photons”. Phys. Rev.
A 60 (2), R773–R776. DOI: 10.1103/PhysRevA.60.R773 (cited on
p. 33).

LAGHAOUT, A., J. S. Neergaard-Nielsen, and U. L. Andersen (2015). “As-
sessments of macroscopicity for quantum optical states”. Optics Commu-
nications 337, 96 –101. DOI: 10.1016/j.optcom.2014.07.046 (cited
on pp. 85, 88).

LAMEHI-RACHTI, M. and W. Mittig (1976). “Quantum mechanics and
hidden variables: A test of Bell’s inequality by the measurement of the
spin correlation in low-energy proton-proton scattering”. Phys. Rev. D 14
(10), 2543–2555. DOI: 10.1103/PhysRevD.14.2543 (cited on p. ix).

LAN, S.-Y., A. G. Radnaev, O. A. Collins, D. N. Matsukevich, T. A. Kennedy,
and A. Kuzmich (2009). “A multiplexed quantum memory”. Opt. Ex-
press 17.16, 13639–13645. DOI: 10.1364/OE.17.013639 (cited on
p. 67).

LAPLANE, C., E. Zambrini Cruzeiro, F. Fröwis, P. Goldner, and M. Afzelius
(2016a). “High-Precision Measurement of the Dzyaloshinsky-Moriya In-
teraction between Two Rare-Earth Ions in a Solid”. Phys. Rev. Lett. 117 (3),
037203. DOI: 10.1103/PhysRevLett.117.037203 (cited on p. 94).

http://dx.doi.org/10.1073/pnas.1402365111
http://dx.doi.org/10.1016/0378-4363(80)90107-2
http://dx.doi.org/10.1038/nature01714
http://dx.doi.org/10.1103/PhysRevA.49.3209
http://dx.doi.org/10.1103/PhysRevLett.75.4337
http://dx.doi.org/10.1103/PhysRevLett.75.4337
http://dx.doi.org/10.1103/PhysRevA.58.R2623
http://dx.doi.org/10.1103/PhysRevA.60.R773
http://dx.doi.org/10.1016/j.optcom.2014.07.046
http://dx.doi.org/10.1103/PhysRevD.14.2543
http://dx.doi.org/10.1364/OE.17.013639
http://dx.doi.org/10.1103/PhysRevLett.117.037203


BIBLIOGRAPHY 111

LAPLANE, C., P. Jobez, J. Etesse, N. Timoney, N. Gisin, and M. Afzelius
(2016b). “Multiplexed on-demand storage of polarization qubits in a crys-
tal”. New Journal of Physics 18.1, 013006. DOI: 10.1088/1367-2630/
18/1/013006 (cited on p. 22).

LAURITZEN, B., S. R. Hastings-Simon, H. de Riedmatten, M. Afzelius,
and N. Gisin (2008). “State preparation by optical pumping in erbium-
doped solids using stimulated emission and spin mixing”. Phys. Rev. A
78 (4), 043402. DOI: 10.1103/PhysRevA.78.043402 (cited on p. 49).
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Quantum teleportation from a telecom-wavelength
photon to a solid-state quantum memory
Félix Bussières1‡*, Christoph Clausen1†‡, Alexey Tiranov1, Boris Korzh1, Varun B. Verma2,
Sae Woo Nam2, Francesco Marsili3, Alban Ferrier4,5, Philippe Goldner4, Harald Herrmann6,
Christine Silberhorn6, Wolfgang Sohler6, Mikael Afzelius1 and Nicolas Gisin1

Quantum teleportation1 is a cornerstone of quantum information
science due to its essential role in important tasks such as the
long-distance transmission of quantum information using
quantum repeaters2,3. This requires the efficient distribution
of entanglement between remote nodes of a network4. Here,
we demonstrate quantum teleportation of the polarization
state of a telecom-wavelength photon onto the state of a
solid-state quantum memory. Entanglement is established
between a rare-earth-ion-doped crystal storing a single
photon that is polarization-entangled with a flying telecom-
wavelength photon5,6. The latter is jointly measured with
another flying polarization qubit to be teleported, which
heralds the teleportation. The fidelity of the qubit retrieved
from the memory is shown to be greater than the maximum
fidelity achievable without entanglement, even when the com-
bined distances travelled by the two flying qubits is 25 km of
standard optical fibre. Our results demonstrate the possibility
of long-distance quantum networks with solid-state resources.

Quantum teleportation1 allows the transfer of a quantum state
between remote physical systems through the use of quantum
entanglement and classical communication. The combination of
quantum teleportation with quantum memories can provide scal-
able schemes for quantum computation7, quantum repeaters2,3

and quantum networks4. Light-to-matter quantum teleportation
has been demonstrated using quantum memories based on
warm8,9 or cold10,11 atomic ensembles, single atoms12,13 or a
quantum dot spin qubit14. In these demonstrations, the memory
emits a photonic qubit, with which it is entangled, and the
photon is used to distribute the entanglement necessary to
perform teleportation.

To achieve long-distance light-to-matter quantum teleportation,
and more generally to exchange quantum information between
distant nodes of a quantum network, we require an efficient
method to distribute entanglement3. Optical fibre is naturally
suited to entanglement distribution, but it requires the flying
qubits to have a suitable telecom wavelength. Satisfying this require-
ment using emissive quantum memories is difficult, because the rel-
evant atomic transition is typically far away from the low-loss region
of standard optical fibre. An approach based on practical sources of
photon pairs combined with multimode quantum memories can
overcome this limitation15. The essential idea is that spontaneous
parametric down-conversion (SPDC) sources create pairs
comprised of one photon stored in a nearby quantum memory,

while the other telecom-wavelength photon is used to distribute
the entanglement to a remote nodes. For quantum repeaters,
multimode storage with selective recall is essential to achieve
practical rates. A promising candidate for the multimode
quantum memories of this proposal are rare-earth-ion doped crys-
tals16, which offer a technologically simple way of trapping an
atomic ensemble using a solid-state host. In recent years they have
been used to demonstrate key properties such as high-efficiency
storage17,18, coherence times as long as one minute19,20, multimode
storage21, on-demand readout at the single-photon level22, giga-
hertz-wide storage bandwidth6 and storage of photonic entangle-
ment5,6. Here, we demonstrate quantum teleportation of the
polarization state of a telecom-wavelength photon onto the state
of a single collective excitation stored in a rare-earth-ion doped
crystal. To achieve this, a pair of polarization-entangled photons
is first generated from SPDC in nonlinear waveguides. One
photon from the pair is then stored in a nearby rare-earth-ion
doped crystal for a pre-determined storage time. The other
telecom-wavelength photon from the entangled pair is sent to a
Bell-state analyser, where it is jointly measured with a photon that
is carrying the polarization qubit state to be teleported. The polar-
ization state of the photon retrieved from the quantum memory is
then analysed with quantum state tomography and the fidelity is
shown to outperform the classical benchmark. We also performed
teleportation in a configuration where the combined distance tra-
velled by both telecom-wavelength photons was 25 km in standard
optical fibre, demonstrating the long-distance capability of
the approach.

The experiment set-up is presented in Fig. 1. A pair of entangled
photons at 883 nm (the ‘signal’ photon) and 1,338 nm (the ‘idler’
photon) is created from SPDC. To achieve this, 532 nm light coher-
ently pumps two nonlinear waveguides such that the photon pair is
in a superposition of being created in a first waveguide (with hori-
zontal polarizations |HH〉) and in a second waveguide (with vertical
polarizations |VV〉). Recombining the output modes of the wave-
guides on two polarizing beamsplitters (PBSs) yields two optical
modes containing the signal and idler photons, respectively,
prepared in an entangled state that is very close to
1
�

2
√ (|HH〉 + eiφ|VV〉). The spectra of the idler photon (and conse-
quently of the frequency-correlated signal photon of the pair) are
subsequently filtered to a spectral width of ∼240 MHz, correspond-
ing to a coherence time of τ = 1.4 ns. This spectral width is more
than five times larger than in our previous experiments with the
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same type of quantum memory5, and therefore increases the intrinsic
repetition rate of our experiment by the same factor.

Following the creation of a pair, the signal photon is directly sent
to a 14-mm-long quantum memory consisting of two inline neody-
mium-doped yttrium orthosilicate crystals interspaced with a
half-wave plate. This configuration compensates for the polariz-
ation-dependent absorption of a single crystal23–25. The absorption
bandwidth of the quantum memory is 600 MHz and stores
photons for 50 ns with an overall efficiency of 5% using the
atomic frequency comb (AFC) storage protocol16. The qubit state
to teleport, hereon termed the ‘input state’, is encoded in the polar-
ization of a photon from a weak coherent state (WCS) at 1,338 nm,
which is created by means of difference-frequency generation
in a separate nonlinear waveguide. This automatically yields the
same central wavelength for the WCS and idler photons. The
Bell-state measurement (BSM) between the idler photon and
the input state is performed by sending them through a 50/50
beamsplitter, projecting their joint state onto the Bell state
|Ψ−〉 = 1

�

2
√ (|HV〉 − |VH〉) when they are detected in different

output modes. The photons are then coupled in single-mode
optical fibres and detected using tungsten-silicide superconduct-
ing-nanowire single-photon detectors26 (SNSPDs; D1 and D2 in
Fig. 1), which are designed to operate at 2.5 K in a two-stage
closed-cycle cryocooler. Their efficiency reaches 75% with a tem-
poral resolution (jitter) of 500 ps and a dark count rate of 300 Hz
(see Supplementary Information for full details). The resolution is
smaller than the coherence time of the photons, meaning that
coincidences on the SNSPDs for which the WCS and idler
photons overlap can be temporally resolved. The teleportation is
completed by retrieving the stored signal photon from the
quantum memory and sending it into a polarization analyser,

where it is detected by single-photon detector D3 or D4. The qubit
state of the retrieved photon (hereon termed the ‘retrieved state’)
requires a unitary correction1, which is included in the polarization
analyser. The overall detection rate was approximately six threefold
coincidences per hour when using a 500 ps coincidence window.

In the first series of measurements the WCS photon and the idler
photon both travelled a fewmetres before the BSM (Fig. 1), and their
detection occurred while the signal photon was stored in the
quantum memory. To post-select the threefold detections with the
correct timing, we plot the temporal distribution of the measured
threefold coincidences as a function of the delays δtj1 and δtj2
between a detection at Dj ( j = 3 or 4) and detections at D1

and D2. The results for the teleportation of the state
|−〉 = 1

�

2
√ (|H〉 − |V〉) are shown as two-dimensional histograms in

Fig. 2a (with D3 projecting on |−〉) and Fig. 2b (with D4 projecting
on |+〉). Offsets on the detection times are chosen such that
events in the vicinity of the centre of the histograms (that is, for
δtj1,δtj2 < τ = 1.4 ns) correspond to the actual teleportation.
Figure 2a shows an increased number of counts at the centre,
whereas Fig. 2b has a dip, which is expected if the retrieved state
is close to input state |−〉. This is more easily visualized in Fig. 2c
(or Fig. 2d), which shows a horizontal slice of Fig. 2a (or Fig. 2b)
centred on δt31 = 0 (or δt41 = 0).

The fidelity of the retrieved state ρ with respect to the input state
|ψ〉 (which here is effectively pure) is F = 〈ψ|ρ|ψ〉. For teleportation
of state |−〉, the fidelity of the retrieved state can be estimated from
the number of events observed at the centre of Fig. 2c (δt32 = 0)
and at the minimum of Fig. 2d (δt42 = 0). The measured fidelity is
92 ± 4%. To obtain complete information about state ρ, we per-
formed quantum state tomography. With this information, we can
assess if the reduced fidelity is due to an undesired unitary rotation
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Figure 1 | Experimental set-up. The system includes a source of polarization-entangled photons at 883 nm (the signal) and 1,338 nm (the idler) using
filtered spontaneous parametric down-conversion from two nonlinear waveguides (PPLN and PPKTP) coherently pumped with 532 nm light. After the
waveguides, the signal and idler modes are separated using dichroic mirrors (DM) and are then individually manipulated to obtain good overlap after
recombination at two polarization beam splitters (PBSs), as well as high transmission through the filtering cavity and etalon. A single pair of energy-
correlated spectral modes of the signal and idler photons are selected using volume Bragg gratings (VBG). The signal photon is sent to a neodymium-based
polarization-preserving quantum memory that was previously prepared as an atomic frequency comb using 883 nm light (see Methods). A switch (Sw)
selects either the preparation light or the signal photons. The weak coherent state (WCS) at 1,338 nm is created by means of difference-frequency
generation from 532 and 883 nm light. The WCS is then selected using a grating (Gr) and coupled in an optical fibre. The input state to be teleported is
prepared using wave plates and sent towards a 50/50 beamsplitter where it is mixed with the idler photon to perform the Bell-state measurement (BSM).
The output modes of the beamsplitter are polarization-filtered and sent towards two high-efficiency detectors based on WSi superconducting nanowires
(D1 and D2) operated at 2.5 K in a closed-cycle cryocooler 10 m away from the quantum memory. A coincidence detection at D1 and D2 heralds a successful
BSM. The signal photon retrieved from the quantum memory is sent to a polarization-state analyser where it is detected on D3 or D4. The idler and WCS
photons are each transmitted either over a short distance or over 12.4 km of single-mode optical fibre. See Supplementary Information for details.
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on the Bloch sphere, or due to depolarization, which leads to a
reduction in the purity P = Tr(ρ2) of the retrieved state. The unde-
sired rotation can stem from drifts of the phase φ and/or of the
amplitude of the |HH〉 and |VV〉 terms of the entangled state,
while the main cause of the depolarization is noise arising from
multi-pair emission of the source and/or of multiple photons in
the WCS. The measured purity with input state |−〉 is 94 ± 6%.
This value allows us to find an upper bound
Fmax =

1
2(1 +

�������

2P − 1
√

) = 97 ± 3% on the observable fidelity. See
Supplementary Information for details.

The tomography was repeated for other input states, and the
results are listed in Table 1. The expected fidelity of an arbitrary
state is �F = 2

3
�Fe +

1
3
�Fp, where �Fe and �Fp are the average fidelities

measured on the equator and the pole, respectively. We find
�F = 89 ± 4%, which is larger than the maximum fidelity of 66.7%
achievable with a prepare-and-measure strategy that does not use
entanglement27. Most of the obtained fidelities are very close to
Fmax and are therefore limited by depolarization. For the teleporta-
tion of |+〉, the measurements around the equator of the Bloch
sphere shown in Fig. 2e reveal an additional rotation of the Bloch
vector that further reduces the observed fidelity below the Fmax

upper bound (see Supplementary Information for details).
We also performed a teleportation of the |+〉 state in a configur-

ation where the WCS photon and the idler photon each travel

through 12.4 km of standard single-mode optical fibre before the
BSM. This distance exceeds the previous record of 6 km for a
fibre-based (and quantum memory-less) quantum teleportation28.
The histograms show a dip (Fig. 2f ) and a peak (Fig. 2g), which
are indicative of the teleportation. The fidelity of this measurement
is 81 ± 4%. We note that in this configuration, the signal photon was
retrieved after 50 ns, that is, before the idler photon reached the
BSM. The realization of a complete teleportation with feed-
forward over this distance requires a storage time of at least
120 µs. A promising approach towards this goal is to combine
spin-wave storage22 with dynamical decoupling19,20.

Our experiment demonstrates the feasibility of long-distance tel-
eportation of single quanta of light onto a solid-state quantum
memory. The fundamentals of our experiment could be used in
future demonstrations of a small-scale network of remote
quantum memories, or ultimately in a real-world quantum repeater
based on an optical-fibre architecture. In a broader context, our
experiment could be useful for transferring quantum information
between remote quantum network nodes made of rare-earth crystals
coupled to superconducting qubits29, which could ultimately lead
to the realization of deterministic Bell-state measurements on
photonic qubits30.

Methods
Source of polarization-entangled photons.Details about the source are provided in
the Supplementary Information. In brief, it uses two periodically poled (PP)
nonlinear waveguides (Fig. 1). One is a 1.3-cm-long waveguide embedded in
potassium titanyl phosphate (PPKTP) and the other is a 6-cm-long titanium-
indiffused waveguide based in lithium niobate (PPLN). Several procedures were
implemented to monitor and stabilize the properties of the source. First, the pump
light at 532 nm was continuously frequency-stabilized using a feedback mechanism
based on difference-frequency generation of light at 1,338 nm from mixing the
532 and 883 nm preparation light in the PPLN waveguide. This ensures that the
energy of a pump photon is correlated with the central frequency of the spectra of
the signal and idler photons, which are determined by the filters. Second, the
residual 532 nm light present in the unused output ports of the two PBSs located just
before the cavity and the etalon was used to continuously lock the phase φ of the
entangled state. To achieve this, an error signal was derived from the 532 nm light
and feedback was applied on two piezo-mounted mirrors (one for the signal photon
and one for the idler photon) located immediately after the dichroic mirrors. Fast

Table 1 | Measured fidelities and purities for all input states.

Input state Fidelity (%) Purity (%) Fmax (%)
|H〉 94 ± 3 93 ± 3 96 ± 3

|−〉 = 1
�

2
√ (|H〉 − |V〉) 92 ± 4 94 ± 6 97 ± 3

|R〉 = 1
�

2
√ (|H〉 + i|V〉) 84 ± 4 73 ± 5 84 ± 4

|+〉 = 1
�

2
√ (|H〉+ |V〉) 82 ± 4 83 ± 9 91 ± 6

|+〉 (24.8 km) 81 ± 4 – –

The uncertainties are obtained fromMonte Carlo simulations assuming a Poisson distribution of the
number of threefold events. Also shown is the upper bound on the fidelity Fmax that is obtained from
the measured purity.
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Figure 2 | Experimental results. a–d, Results of the teleportation of input state |−〉. a, Two-dimensional histogram showing the number of threefold
coincidences between detectors D1, D2 and D3 as a function of delays δt31 and δt32 between detections at D3 and D1 and D2. b, As in a, with D4 instead of
D3. Each histogram indicates onto which polarization state the retrieved photon was projected (|−〉〈−| for a and |+〉〈+| for b). Each pixel corresponds to a
square time window with sides of 486 ps. This is smaller than the coherence time of the photons, which is necessary to temporally resolve the detection
events corresponding to a successful Bell-state measurement. c,d, Horizontal slices of a and b (centred on δt31 = 0 and δt41 = 0, respectively), showing the
peak and dip, respectively, in number of detections at the centre. Black diamonds are the points used to estimate the fidelity of the teleportation. e, Detected
fraction of counts on D3 and D4 of the analyser with input state |+〉, when the retrieved state is measured in a basis that is rotated around the equator of the
Bloch sphere. Solid lines show the values expected from quantum state tomography. f,g, Results of the teleportation of |+〉 when the combined distance
travelled by the idler and weak coherent state photons is 25 km of standard optical fibre. Uncertainties are obtained assuming a Poisson detection statistics.
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fluctuations were compensated for, but φ could still slowly drift by a few degrees per
hour, at most. Third, a characterization of the properties of the source was
performed every 30 min with a completely automatized procedure. For this, the
teleportation was stopped for a few minutes by switching off the WCS. Then, by
measuring twofold coincidences between the idler photon and the transmitted
signal photon, the visibility of the source was measured, and the value of phase φ was
extracted (see Supplementary Information). The measured average visibility was
93%. From these measurements, the second-order cross-correlation function
between the idler and the signal photons was estimated and used to monitor the
probability P of emitting a pair of photons in a time window of ∼500 ps. We
measured P≈ 10−2. The monitoring and stabilization yielded stability for periods as
long as 24 h. We note that the 532 nm light was pulsed in 25-ns-long Gaussian
pulses with 100 ns between successive pulses (which is twice the storage time) to
improve the signal-to-noise ratio of the teleportation experiment (see
Supplementary Information for details).

Polarization-preserving quantum memory. The compact, broadband and
polarization-preserving quantum memory was achieved by placing two 5.8-mm-
long Nd3+:Y2SiO5 crystals around a 2-mm-thick half-wave plate, resulting in a total
device length of 14 mm. Anti-reflective coatings were added on all surfaces (cryostat
windows, crystals and half-wave plate). The resulting off-resonance transmission
coefficient was 95%. To obtain short crystals with sufficient absorption we grew
Nd3+:Y2SiO5 crystals using the Czochralski process, with a neodymium
concentration estimated to be 75 ppm. These crystals have an absorption coefficient
of α = 3.7 cm−1 (with an applied magnetic field of 300 mT, as in ref. 21).
The resulting optical depth of the polarization-preserving memory device was
d = 2.3 ± 0.1. The AFC was prepared using an acousto-optic modulator (AOM), used
in a double-pass configuration, which modulates the intensity and frequency of the
light from an external cavity diode laser at 883 nm (centred on the absorption line of
the 4I9/2–

4F3/2 transition) in order to pump some of the atoms to the other Zeeman
level (see ref. 21). This was used to create a 120 MHz comb with a spacing of
20 MHz between peaks. To increase the memory bandwidth beyond 120 MHz, the
light at the output of the AOMwas sent into a phase modulator that creates first- and
second-order sidebands separated by 120 MHz. In this way, the comb at the carrier
frequency was copied twice on each side, yielding an overall comb width of
600 MHz. The overall efficiency of the polarization preserving memory was 5% with
a 50 ns storage time.
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I. INTRODUCTION

In this Supplementary Information, we provide addi-
tional details on our experiment. Section II provides de-
tails on the fabrication of the WSi superconducting detec-
tor. Section III describes how the monitoring of the prop-
erties of the source of entangled photons and of the source
of weak coherent state is done. Section IV presents a de-
tailed description of the features of the two-dimensional
histograms of the threefold coincidences from which the
quantum state tomography results are derived. We also
model the noise stemming from multiple photon pairs
and multiple photons in the weak coherent. Section V
provides details on the how the quantum state tomogra-
phy is performed. The effect of the aforementioned noise
on the fidelity and purity is discussed.

II. SUPERCONDUCTING NANOWIRE
DETECTORS

The WSi detectors were fabricated to obtain maximum
efficiency at a wavelength of 1340 nm and for operation at
2.5 K in a two-stage closed-cycled cryocooler. Their fabri-
cation and characterization is detailed in Ref. [1]. A gold
mirror was fabricated by depositing 80 nm of gold on top
of Ti on a 3 inch Silicon wafer using electron-beam evap-
oration and photolithographically patterned using a lift-
off process. A space layer between the gold mirror and
WSi detector consisting of 195 nm of SiO2 was then de-
posited by plasma-enhanced chemical vapour deposition
(PECVD). A 4.5 nm-thick WxSi1−x layer (x ≈ 0.8) was
deposited by DC magnetron co-sputtering from separate
W and Si targets at room temperature, and capped with
2 nm of amorphous Si to prevent oxidation. Electron-
beam lithography and etching in an SF6 plasma were
used to define nanowire meanders with a width of 130 nm
and pitch of 260 nm. An antireflection coating was de-
posited on the top surface consisting of 225 nm SiO2,
179 nm SiNx, 231 nm SiO2, and 179 nm SiNx. A key-
hole shape was etched through the Si wafer around each
SNSPD, which could then be removed from the wafer

and self-aligned to a single mode optical fibre [2, 3]. The
size of the SNSPD is 16× 16 µm2, larger than the 10 µm
mode field diameter of a standard single mode fibre, to
allow for slight misalignment. The optimal system de-
tection efficiency reaches 75% with a dark count rate of
the order of 300 counts per second. However, during the
experiment, the temperature of the cryostat fluctuated
and affected the performance, yielding in the worst case
a detection efficiency of 60% with a dark count rate of a
few kHz.

III. MONITORING OF THE SOURCE OF
ENTANGLED PHOTONS AND SOURCE OF

WEAK COHERENT STATE

Complete details on the source of entangled photons
can be found in Ref. [4].

A. Characterization of the source of entangled
photon pairs

The source of entangled photons was continuously
monitored during the experiment. Here we provide de-
tails on how we monitored the relative phase ϕ of the
entangled state 1√

2
(|HH〉+eiϕ|V V 〉) that was produced,

as well as the fluctuations of the number of photon pairs
created in a given time window.

1. Entanglement visibility and phase drift compensation

Automatized monitoring of the source was performed a
least once per hour by producing a visibility curve, which
was accomplished as follows. First, the weak coherent
state (WCS) was switched off (see Fig. A1, which is the
same as Fig. 1 of the main text). Then, a half wave plate
was inserted before the 50/50 beam splitter (BS) used for
Bell state measurement, and its angle was set such that,
when combined with the polarizers placed just after the
beam splitter, a detection on D1 would project on |+〉,
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FIG. A1. Experimental setup. This figure is identical to Fig. 1 of the main text, and is shown here for convenience.

and D2 would project on |−〉. The state of the corre-
sponding signal photon, e.g. 1√

2
(|H〉+ eiϕ |V 〉) when the

detection occurred at D1, was then analyzed by rotating
the half wave plate (HWP) of the analyzer, projecting on
states on the equator of the Bloch sphere. For this mea-
surement we use only coincidences stemming from the
transmitted photons, i.e. the signal photons that passed
through the quantum memory without being absorbed.

The resulting visibility curves (see Fig. A2 for an ex-
ample) show the number of coincidences on each detector
of the analyzer (i.e. D3 and D4), as a function of the an-
gle of the HWP. The phase ϕ is determined from the
common horizontal offset of the four curves. The phase
slowly drifted with time, typically by a few degrees per
several hours. For the teleportation measurements, this
phase was effectively cancelled by rotating the quarter
wave plate of the analyzer to set the offset of the visibil-
ity curves to zero. By monitoring the overall variations
of the amplitudes of the visibility curves, we could also
monitor the balance between two waveguides, as well as
the coincidence rate of the source. The visibility, aver-
aged over all measurements, was 93%.

2. Cross-correlation of idler and signal modes

To monitor the magnitude and stability of the number
of photon pairs created in a given time window, we mea-
sured the zero-time second-order cross-correlation func-
tion between the detected idler photon and the transmit-
ted signal photon, gsi, defined as

gsi =
〈d†idid†sds〉
〈d†idi〉〈d†sds〉

,

where di (or ds) is the annihilation operator for the idler

mode (or signal mode), and d†i (or d†s) is the associated

Chs. 13
Chs. 14

Chs. 23
Chs. 24

a

b

FIG. A2. Visibility curves for, a, detector pairs D1-D3 and
D1-D4, and b, pairs D2-D3 and D2-D4, where D1 and D2 are
the detectors for the idler photons, and D3 and D4 are the
detectors of the analyzer of the signal photon.

creation operator [5]. With negligible dark counts and
single-photon detectors having a timing resolution that
is much smaller than the coherence time of the photons,
one can show that gsi = 1 + 1/p ≈ p−1, where p � 1 is
the probability to create a pair of photons in a given time
window [6]. It is also equal to the ratio of the probabil-
ity to detect a coincidence stemming from two photons of
the same pair, over the probability to detect two photons
from different pairs. Measuring a value gsi > 2 implies
that the signal and idler fields are non-classically corre-
lated [6]. Moreover, measuring a value gsi � 1 (which
implies that p � 1) is a necessary condition to create
close-to-maximally entangled states [5] and to show the
non-classical nature of the heralded signal photon [7].

© 2014 Macmillan Publishers Limited. All rights reserved. 
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FIG. A3. Histogram of the number of coincidences as a func-
tion of the delay between the detection of a signal and an
idler photon. Each bin is 162 ps wide. We see the peak corre-
sponding to the detection of a transmitted signal photon (at
0 ns) and the peak of the stored and retrieved photon (50 ns).
The transmitted peak is vertically clipped.

In practice, gsi was estimated using all the data ac-
cumulated for the visibility curves during one day. Us-
ing these data, we produced a histogram of the number
of coincidences between the idler and signal modes as a
function of the delay between them. Fig. A3-a shows
one such histogram, on which we can see two main peaks
over an oscillating background level. The peak at 0 ns is
due to coincidences involving a transmitted signal pho-
ton, and the one at 50 ns is due to a stored signal photon,
i.e. a signal photon that was stored and retrieved from
the quantum memory. Note that the transmitted peak
is clipped because we expanded the vertical scale so that
we could see the effect of the pulsed pump laser, which
gives rise to the wide and small bumps centred on -100,
0 and 100 ns, etc (we recall that the pump light at 25 ns
was shaped into 25 ns-wide gaussian pulses separated by
100 ns). We see the reduction of the number of accidental
coincidences between the bumps, which was the desired

effect. The cross-correlation of the transmitted peak g
(t)
si

is estimated by dividing the number of coincidences in
a narrow window centred on 0 ns by the number of co-
incidences in another window centred on a neighbouring

bump that is 100 ns away. The average value of g
(t)
si was

100, and varied from 80 to 150 for all the measurements.

The cross-correlation of the stored photon g
(s)
si is esti-

mated by centering the first window on the stored pho-
ton peak, and the second one 100 ns away, which is falls
on a minimum of the oscillating background. The mea-

sured value of g
(s)
si varied from 6 to 20. All values were

measured with 486 ps-wide coincidence windows. The

measured values of g
(s)
si fluctuate strongly, but they are

nevertheless well above the classical upper bound of 2,
which highlights the single-photon nature of the polar-
ization state that is retrieved from the quantum mem-
ory [6–8].

B. Weak coherent state (WCS)

As explained in the main text, the source of entangled
photons was designed such that central frequency of sig-
nal photons corresponds to the centre of the atomic fre-
quency comb that is created using the 883 nm diode laser,
and such that the frequency of the pump light at 532 nm
create photon pairs that satisfy the energy-conservation
imposed by the transmission wavelength of the Fabry-
Perot cavity of the idler photon. Hence, mixing part of
the 532 nm light and part of the 883 nm diode laser into
a separate PPKTP waveguide automatically creates co-
herent pulses of light (through difference-frequency gen-
eration, DFG) having a frequency that matches the cen-
tral frequency of the Fabry-Perot cavity, and thus of the
idler photons (see Fig A1). This light therefore has suit-
able spectral properties to be indistinguishable from the
idler photons, and therefore to encode the input state of
the teleportation. The intensity of the WCS was moni-
tored and stabilized by diverting a small portion towards
a single-photon detector creating a feedback signal con-
trolling a variable attenuator. We estimated that the
mean number of photons contained in a 486 ps-wide win-
dow at the centre of one WCS was µ ≈ 0.011± 0.002 for
the teleportation of |−〉, and 0.016 for the teleportation
of |+〉, |R〉 and |H〉.

C. Indistinguishability of the idler and the WCS

Projecting the input state and the idler photon on a
Bell state (see Fig. 1) requires the ability to post-select
events where the two photons temporally overlapped on
the 50/50 beam splitter (see Fig. 1). This is possible only
if the temporal resolution (i.e. the jitter) of the detectors
is smaller than the coherence time of the idler photon
(because the WCS is generated from DFG between two
narrowband lasers, its coherence time is much longer than
the 1.4 ns coherence time of the idler). The temporal
resolution effectively defines temporal modes on which
the photons are projected onto when they are detected.
Therefore, we need to consider the indistinguishability in
these modes, which was verified through the observation
of a Hong-Ou-Mandel dip in an experiment performed be-
fore the quantum teleportation [9]. For this, continuous-
wave (CW) light at 532 nm was used to pump the PPLN
waveguide of the source while the PPKTP waveguide was
blocked (see Fig. A1), and the filtered idler photons were
mixed on the 50/50 beam splitter with the WCS. The
signal photon was bypassing the quantum memory and
used to herald an idler photon with an horizontal po-
larization, the same as the WCS. The idler photon was
detected with a niobium nitride SNSPDs (7% efficiency)
that had jitter of about 100 ps. The photon-pair cre-
ation probability p ≈ 1/gsi was ≈ 0.0025 in a 486-ps
window, and the mean number of photon for the WCS
was µ ≈ 0.0035. Fig. A4 shows the observed dip, with a
visibility of 81%. From this, we conclude that the idler

© 2014 Macmillan Publishers Limited. All rights reserved. 
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FIG. A4. Coincidence histogram showing a Hong-Ou-Mandel
dip between an heralded signal photon and the weak coherent
light. The visibility of the dip is 81%. The horizontal axis is
the delay between the detection of the signal photon and one
of the detectors behind the 50/50 beam splitter.

photons and the WCS are close to be completely indistin-
guishable. The visibility is partly reduced by the noise
stemming from the accidental detection of two photon
from the WCS or two idler photons coming from two
pairs created simultaneously.

IV. THREEFOLD DETECTION HISTOGRAMS

A. Teleportation of |−〉, |R〉 and |+〉

Let us consider the conceptual setup of Fig. A5 rep-
resenting the teleportation of the |−〉 state. We will use
it to explain the main features of the two 2D histograms
corresponding to teleportation of the |−〉 state towards
the signal, when the analyzer is set to measure in the
{|+〉, |−〉} basis; see Fig. A6-a and Fig. A6-b (they are
identical to Fig. 2-a and 2-b on the main text). For
comparison, the histograms corresponding to the events
where the detected signal photon was not absorbed by the
memory (the transmitted photon) are shown on Fig. A7-
a and A7-b. Each histogram shows either the number
of threefold coincidences at D1, D2 and D3, or at D1,
D2 and D4. Each bin (i.e. each pixel) corresponds to
a window of fixed width and height, which is (486 ps)2

here. For a histogram with a detection at Dj (j = 3 or
4), the y-axis corresponds to the delay δtj1 between the
detections at Dj and D1, and the x-axis to the delay δtj2
between the detections at Dj and D2.

We first describe what we would expect in the vicinity
of the central bin of the histogram, at δtj1 = δtj2 = 0,
assuming ideal conditions (i.e perfect optical alignment;
negligible contribution from multi-photons in the WCS,

Polarizers

50/50 BS Analyzer

WCP Idler Signal

FIG. A5. Conceptual experimental setup for the teleportation
of the |−〉 state. The polarization of a photon in the WCS
is prepared in the the |−〉 state, and the probability to find
a photon in a given time window is µ. The idler and signal
modes are populated with a pair of polarization-entangled
photons with a probability p. The WCS and the idler modes
are mixed on a 50/50 beam splitter (BS). The output modes
of the BS are filtered with polarizers, such that a detection
at D1 projects on |H〉, and a detection at D2 projects on
|V 〉. The signal mode is sent towards a polarization qubit
analyzer set such that a successful Bell state measurement
should result in a detection of the signal photon in detector
D3 (we represent this by indicating that D3 projects on |−〉,
and D4 on |+〉).

multi-pairs and dark counts; negligible detection jitter
and dark counts). This centre region corresponds to
the threefold coincidences where the idler photon and
a photon from the WCS were temporally overlapping
at the 50/50 beam splitter (which heralds a successful
Bell state measurement), and the detected signal photon
is the entangled companion of the detected idler pho-
ton. The area of the region is of the order of τ2i , where
τi ≈ 1.4 ns coherence time of the idler photon. In this
region, the probability to have a photon from the WCS
just before the BS and to have an idler photon just be-
fore the BS, is given by pµ (we do not need to take into
account the losses and detector efficiencies in the system
because they all factor out in the final step of the calcula-
tion when we compare the probabilities for the different
events). Given this, the probability that they split at
the BS can be shown to be equal to 1/4, which corre-
sponds to the probability of a successful projection on
the |Ψ−〉 = 2−1/2(|HV 〉− |V H〉) Bell state [10]. Because
the two photons are indistinguishable, they must have
orthogonal polarizations behind the BS (otherwise they
would bunch), but there are two possibilities happening
with equal probabilities, namely V in one mode and H
in the other, or the opposite. Hence, the presence of the
orthogonally oriented polarizers after the BS further re-
duces by a factor of 2 the probability to find one photon
in each output arm after the polarizers. In practice, the
polarizers were introduced to minimize the probability
to detect two photons with the same polarization after
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the BS, which can happen if the photon are not perfectly
indistinguishable.

When a successful teleportation occurs, the polariza-
tion state of the signal photon is equal to the polarization
state of the photon from the WCS, up to a constant uni-
tary transformation that we include in the analyzer. We
assume the analyzer is oriented such that a detection at
D3 corresponds to a projection on the input state. The
total threefold coincidence probability is given by

P123(δt31 = 0, δt32 = 0) = pµ · 1

4
· 1

2
=

1

8
pµ. (A1)

Since D4 projects on |+〉, the probability to register a
threefold coincidence at D1, D2 and D4 should be zero:

P124(δt41 = 0, δt42 = 0) = 0. (A2)

Let us now consider the case where the WCS photon
is arriving later (by a time greater than τi) compared to
the two entangled photons. A possible realization of this
would be a threefold with δt31 = 0 and δt32 > τi. In
this specific case, the detection at D2 must stem from
the WCS, because its detection time is not correlated to
the detection of the signal photon, contrary to the idler
photon (this is true only if µ � p, which is shown in
section IV C to be a necessary condition to get a good
signal-to-noise ratio). The probability for this threefold
event is easily calculated to be

P123(δt31 = 0, δt32 > τi) =
1

32
pµ, (A3)

and we see that

P123(δt31 = 0, δt32 = 0)

P123(δt31 = 0, δt32 > τi)
= 4. (A4)

The same result applies to all the threefold events
where one delay is zero, and the absolute value of the
other is greater that τi, i.e. for

P123(δt31 = 0, |δt32| > τi),

P123(|δt31| > τi, |δt32| = 0),

P124(|δt41| > τi, |δt42| = 0),

P124(δt41 = 0, |δt42| > τi).

Finally, event with |δtj1| > τi and |δtj2| > τi corre-
spond to threefold detections involving the creation of
two entangled photon pairs created at different times and
the detection of a WCS photon at a another time that
differs from the previous two. These events happen with
a probability of order p2µ/32 and are thus much less fre-
quent than all the other ones consider above.

This simple model explains the 2D histograms of
Fig. A6-a-b with the stored photon, on which we see a
cross-like structure centred on the origin, and either a
peak or a dip at the centre. The one-dimensional his-
togram of Fig. A6-a corresponds to a horizontal slice of
the 2D histogram with δt31 = 0. We see a peak whose
height rises above 30 counts, while the average number

of counts away from the centre is approximately 12 per
bin. The width of the peak is of the order of 2 ns, which
is consistent with τi = 1.44 ns. Similarly, we see a dip
on the 1D histogram of Fig. A6-b that nearly reaches 0
counts. The same structure appears for the teleportation
of the |R〉 state with the analyzer set to the {|R〉, |L〉} ba-
sis (Fig. A6-i-j). Finally, we also see the structure on the
histograms of the transmitted signal photon, Fig. A7-a-
b-i-j. Since all histograms obtained with the transmitted
photon have more counts, they should be considered as
indicators of what the results with the stored photons
should be with better statistics. We note that the results
for the teleportation of |+〉 are not shown here, but the
above observations also apply for this state.

We now follow the same reasoning as above to explain
the structure of the teleportation of |−〉, but when the
analyzer is set to project in the {|R〉, |L〉} basis instead of
{|+〉, |−〉} (we recall that this measurement is used in the
quantum state tomography of the state retrieved from the
memory). For the events that are away from the centre of
the histogram, the probabilities are easily found to be the
same as the previous case. For the events at the centre,
the probability to detect the signal photon at D3 must be
half of the probability P123(δt31 = 0, δt32 = 0) calculated
above (eq. A2). This is because the retrieved state is in
the |−〉 state and is analyzed in a maximally conjugated
basis, which yields a 50% probability of detecting it in a
given detector. Hence, the 2D histograms corresponding
to a detection at D3 or D4 should both show a peak at
the centre, but with a height that is twice higher than the
value found away from the centre. Fig. A6-c-d show the
relevant 2D histograms for the stored photon, on which
the expected structure does not clearly appear, but the
results are nevertheless conclusively different from the
ones of Fig A6-a-b. The expected structure is more ap-
parent for the teleportation of the |R〉 state, when mea-
sured in the {|+〉, |−〉 basis (Fig. A6-g-h). Finally, the
expected structure clearly appears for the transmitted
photon (Fig. A7-c-d-g-h).

The structure of the teleportation of |−〉, |R〉 and |+〉
when measured in the {|H〉, |V 〉} basis is explained as
follows. Let us assume the analyzer is set such that D3

projects on |H〉. Due to the polarization entanglement
between the signal and idler, a detection at D3 remotely
prepares the idler in the state |H〉. Therefore, the latter
can only be detected at D1 with a delay δt31 = 0, which
means that the coherent state can only be detected at
D2 to create a threefold coincidence. The probability
for this process is pµ/16, and it does not depend on the
time at which the coherent state is detected. Because
D1 and D3 are both projecting on |H〉, the probability
to observe a coincidence between these two events with a
delay |δt31| > τi can only stem from the creation of more
than one pair of entangled photons, and a threefold in
this case would scale as p2µ and is much less probable.
The structure of the 2D histogram should therefore con-
sists in a peak centred on δt31 = 0 that is extending over
all values of δt32. Alternatively, the 2D histogram of D4
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should be a peak centred on δt32 that is extending over
δt31. That is indeed what we observe with the stored
photon (Fig. A6-e-f-k-l), and with the transmitted pho-
ton (Fig. A7-e-f-k-l).

B. Additional remarks

We note that the measurement time required to gen-
erate each of the histograms on Fig. A6 and A7 typically
varied from 8 to 15 hours. These variations partly explain
why the number of counts in the crosses is not always the
same. The other contribution is the different collection
and detection efficiencies of D3 and D4.

The time required to produce each histogram could
have been reduced by a factor of 4 by using two more
detectors placed on the unused ports of the polarizing
beam splitters, which are after the BS (see Fig. 1 of the
main text). This would allow the projection of the idler
and the WCS photon on the |Ψ+〉 = 2−1/2(|HV 〉+|V H〉)
Bell state with a probability of 1/4 (in the ideal case),
and thus doubling the probability to herald a Bell state
measurement [10].

C. Multiphoton emission

The setup described on Fig. A5 is also useful to esti-
mate the contribution of the emission of more than one
photon in the WCS, or the creation of more than one
photon pair, to the noise.

For the teleportation of |−〉 considered above, we can
calculate the probability P (2, 0) of getting a threefold co-
incidence stemming from two photons in the WCS, while
the idler photon is lost and the signal photon is detected
(the calculation applies to the other states as well). This
probability is given by the probability µ2/2 to have two
WCS photons; the probability p to create a pair; the
probability (1− ηi) to loose the idler photon on the path
from the source to the BS; the probability 1/8 for both
WCS photons to split at the BS and to pass through the
polarization filters; the probability 1/2 · ηs to detect the
signal photon in a given detector of the analyzer with a
transmission ηs. This amounts to

P (2, 0) = pµ2(1− ηi)ηs/32. (A5)

We can also calculate the probability P (0, 2) of a three-
fold stemming from the detection of two idler photons,
while the WCS photon is lost. For this, we need to eval-
uate the probability to create two pairs of photons and
that the two idlers have orthogonal polarizations. The
Hamiltonian H of spontaneous parametric downconver-
sion process with polarization entanglement is propor-

tional to H ∼ 1√
2
(â†H b̂

†
H + â†V b̂

†
V ), where â†H (or b̂†H) cre-

ates a photon in the idler mode (or the signal mode) with
horizontal polarization, etc. The state we get when two

pairs of photons are created is proportional to 1
2pH

2|00〉,
i.e.

p

4

[
(â†H b̂

†
H)2 + (â†V b̂

†
V )2 + 2â†H â

†
V b̂
†
H b̂
†
V

]
|00〉. (A6)

The probability to get two idler photons with orthogonal
polarizations, and the same for the two signal photons

(â†H â
†
V b̂
†
H b̂
†
V ) is therefore p2/4, and the probability that

they split at the BS and get transmitted through the
polarizer is 1/4. When this is the case, the probability
for one of the two signal photons to be detected in a given
detector of the analyzer is ηs/2, which we multiply by two
because we have two photons. Overall, the probability of
this threefold is

P (0, 2) ≈
(

1− µ− µ2

2

)
· 1

32
· p2η2i · 2ηs ≈

1

16
· p2η2i ηs.

(A7)
Using similar arguments, we can calculate the proba-

bility of other processes contributing to the noise, and
show that only the ones given above are significant. Let
P (1, 1) = pµηi/8 be the probability to register a threefold
corresponding to an actual teleportation (see eq. A1).
In order to maximize the signal-to-noise ratio, we must
satisfy P (1, 1) � P (2, 0) and P (1, 1) � P (0, 2), which
translates to

ηi �
µ

4 + µ
≈ µ

4
,

µ� 1

2
· pηi.

By combining the two inequalities we get

ηi �
µ

4
� pηi

8
. (A8)

The measured values are ηi ≈ 0.13, ηs ≈ 6.3 × 10−3,
p ≈ 10−2 and µ ≈ 0.011, which satisfy the inequality.

The value of p given here is taken as 1/g
(t)
si ≈ 1/100.

V. QUANTUM STATE TOMOGRAPHY

We performed quantum state tomography to obtain
complete information about the state retrieved from
the memory. Quantum state tomography can be per-
formed by measuring the photon in the three usual
bases ({|H〉, |V 〉}, {|+〉, |−〉} and {|R〉, |L〉}), from which
the x,y and z components of the Bloch vector are ex-
tracted [11]. Measurements with the different bases was
performed in an alternating fashion, i.e. we would mea-
sure in each basis for one hour, and then cycle through.
Quantum state tomography requires a suitable normal-
ization of the observed number of counts to compensate
for the uneven detection efficiencies of D3 and D4. The
method used is based on the following reasoning. Since
the state of the signal photon sent to the polarization
analyzer after the quantum memory is from a close-to-
maximally entangled pair, its polarization is in the com-
pletely mixed state (when we trace out the idler photon).
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The probability to observe it in D3 or D4 is therefore
be same, provided their collection and detection efficien-
cies are identical. Any observed deviation can therefore
be used to normalized the number counts observed in
a given period of time. To measure this deviation, we
used the 2D histograms discussed in section IV, but with
delays extending from -100 to 100 ns instead of -15 to
15 ns. Any threefold coincidence for which the delays
are not equal to each other (i.e. away from the diago-
nal) heralds a signal photon in a completely mixed state.
Hence, counting the total number of such events for the
histogram with a detection at D3, and comparing it to
the number extracted from the equivalent histogram for
D4, directly gives the information about the detection
efficiency mismatch. It can then be used to normalize
the number of counts. This method is reliable since the
wide area covered in the histogram yields a statistically
significant number of counts, from which a good estimate
of the mismatch is obtained. This method works only if
the source is well balanced (that is the probability to find
the pair in |HH〉 is essentially the same as finding it in
|V V 〉). This condition was satisfied in our experiment,
and was automatically checked every hour.

The above method does not work for the teleportation
of |H〉, because here the state of the signal photon is, ide-
ally, in a pure polarization state and the aforementioned
argument does not work. The efficiency mismatch was
instead extracted from the maxima of the fitted visibility
curves that are measured every hour.

The delays δtij (i = 3, 4 and j = 1, 2) of Fig. A6 and
A7 have all been adjusted to position the events corre-
sponding to an actual teleportation at the centre of the
histograms. To determine the offsets that needs to be
applied, we used the data accumulated for the visibility
curves and from which we produced histograms of the
twofold coincidences between the four detection combi-
nations (1-3, 1-4, 2-3 and 2-4). For each histogram, the
stored photon peak was fit with a gaussian, and the po-
sition of the maxima was used to adjust the offsets of the
histograms.

A. Fidelity and purity

The fidelity F of a mixed state ρ with respect to a pure
target state |ψ〉 is defined as F = 〈ψ|ρ|ψ〉. It corresponds
to the probability obtaining the result |ψ〉 when subject-
ing ρ to a projective measurement in the orthonormal
basis {|ψ〉, |ψ⊥〉}, where 〈ψ|ψ⊥〉 = 0. In practice, the ef-
fect of loss in the channel is post-selected out by keeping
only the events where the signal photon is detected. For
our experiment, the input states were always contained
in one of the measurement bases used for the quantum
state tomography of the retrieved state. Hence, the mea-
surement in that basis can readily be used to estimate the
fidelity. Let N3 (or N4) be the number of threefold coin-
cidences observed at D3 (or D4), properly normalized to
compensate for its efficiency mismatch (see section V). If

D3 is the detector projecting on the target state, then the
fidelity is directly given by N3/(N3 +N4). It can also be
written as F = (1+V )/2, where V = (N3−N4)/(N3+N4)
is called the visibility of the state.

The previous measurement is combined with the mea-
surements in the other two bases to construct the Bloch
vector r = rxx̂+ryŷ+rz ẑ of the retrieved state, which is
used to parametrize the state ρ as ρ = (1+r·σ)/2, where
σ = σxx̂ + σyŷ + σz ẑ is the vector of Pauli matrices. It
can also be used to estimate the purity P of the state,
defined as P = Tr(ρ2). It is related to the length of the
Bloch vector through

P =
1

2
(1 + |r|2). (A9)

The purity should be equal to 1 if the experimental noise
is negligible, and 1/2 if we measure unbiased noise only.
Hence, the purity is an indicator of the signal-to-noise
ratio of the teleportation itself.

The fidelity decreases with the purity and with any
unwanted rotation around the Bloch sphere, that could
be due to, e.g. optical misalignment. We could therefore
get some indication about whether the less-than-unity
fidelities we observed are mostly due to the purity reduc-
tion (assuming the input state is pure) or to a rotation.
Specifically, let us assume there is no such rotation, and
that the effect of the teleportation is to recreate the tar-
get state |ψ〉 with a probability V , mixed with white noise
with a probability 1− V :

ρ = V |ψ〉〈ψ|+ (1− V )
I
2

(A10)

where I is the 2 × 2 identity matrix. In this model, the
probability V corresponds to the visibility of the state
defined above. Using F = (1 + V )/2, we have

ρ = F |ψ〉〈ψ|+ (1− F )|ψ⊥〉〈ψ⊥|. (A11)

In this case, the purity can be written as a function of
the fidelity:

P (F ) = Tr(ρ2) = 2F 2 − 2F + 1. (A12)

We can also write the fidelity as a function of the mea-
sured purity,

Fmax =
1

2
(1 +

√
2P − 1). (A13)

Inserting the measured value of the purity in the pre-
vious equation effectively yields an upper bound to our
measured value of the fidelity. If the measured value of
the fidelity is close to this upper bound, than we can say
that it is mostly noise-limited.

Our experimental results for the teleportation to the
stored photon are presented in Table A1. The uncertain-
ties are evaluated using Monte Carlo simulations assum-
ing that the number of counts measured follows a Pois-
son distribution. We notice that the purity varies from
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TABLE A1. Measured values of the fidelity and the purity for different input states, with either the stored or the transmitted
signal photon. The purity-limited fidelity Fmax is also given for the stored photon, for comparison with the measured fidelity.

Stored photon Transmitted photon
State Purity (%) Fidelity (%) Fmax Purity (%) Fidelity (%) Fmax

|H〉 93± 5 94± 3 96± 3 94± 1 95± 1 97± 1
|−〉 94± 6 92± 4 97± 3 77± 2 86± 1 87± 1
|R〉 73± 5 82± 4 84± 4 69± 1 79± 1 81± 1
|+〉 83± 9 82± 4 91± 6 68± 2 80± 1 80± 2
|+〉 (12.4 km) — 81± 4 — — 80± 1 —

state to state, which is an indication that the experimen-
tal parameters that affected the signal-to-noise ratio (see
section III A) also varied during the measurements. We
also notice that the measured fidelity is very close to the
noise-limited upper bound Fmax, except for |+〉.

The results of the teleportation with the transmitted
photon are shown on Table. A1. The fidelities are all close
to the results obtained with the stored photon. Close in-
spection however reveals that all the fidelities are slightly
lower than their stored photon counterparts, and the dif-
ference is more important for the purities. The most
likely explanation for this is related to the fact that stor-
age acts as a temporal filter which selects only the stored
light [12] and effectively removes other spurious sources
light.

We can compare these values to what is expected from
the model described in section IV C (assuming there is no
additional rotation of the Bloch vector). Specifically, the
fidelity can be estimated from the expressions P (1, 1),
P (2, 0) and P (0, 2) given above:

F =
P (1, 1) + P (2, 0) + P (0, 2)

P (1, 1) + 2[P (2, 0) + P (0, 2)]
, (A14)

from which the purity can also be calculated using
eq. A12. With the experimental parameters ηi ≈ 0.13,
ηs ≈ 6.3 × 10−3, p ≈ 10−2 and µ ≈ 0.011, we find
F ≈ 0.93 and P ≈ 0.88, which is close to what we
measured. This gives an indication that multi-pairs and

multi-photons are the main factors affecting the fidelities
and purities that we measured.

We note here that we assumed p ≈ 1/g
(t)
si = 1/100,

which would be correct if the transmission spectra of the
idler and the signal filters had the same widths, but this
was not the case. Hence, using that relation actually
slightly overestimates the value of p.

We also note that the measured values of p ∼ 1/g
(t)
si

varied during our measurements, by approximately a fac-
tor of two at most (see section III A 2). This contributed
to the fluctuations of the fidelity and purity.

B. Fidelity of the teleportation with the 12.4 km
fibre spools

We also performed a teleportation of the |+〉 state in a
configuration where the WCS and the idler photon each
travelled through 12.4 km of standard single mode optical
fibres before the BSM; see Fig. 1 of the main text. The
measured fidelity obtained from the measurement in the
{|+〉, |−〉} basis is 81 ± 4%. It is of the same order as
the one measured without the fibres, which is consistent
with the fact that the loss introduced by the fibre spools
is the same for the idler mode and the WCS. Specifically,
the transmission η of the fibres changes µ and ηi to ηµ
and ηηi in the inequality of Eq. A8, which satisfies it just
as well as the one without η and leaves the expression of
the fidelity of Eq. A14 unchanged (when neglecting other
sources of noise such as dark counts).
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FIG. A6. Histograms of the number of threefold coincidences with the stored signal photon. They are shown as a function of
delays δtij between detector Di of the analyzer (i = 3, 4) and detector Dj (j = 1, 2), where Dj is one of the two SNSPDs used
for the Bell state measurement. a and b show histograms corresponding to the teleportation of |−〉, when the analyzer was set
to measure in the {|+〉, |−〉} basis. For a (or b), the left histogram is a shows the number of threefold coincidences with D1, D2

and D3 (D1, D2 and D4) or as a function of δt31 and δt32 (or δt41 and δt42). Each pixel corresponds corresponds to a (486 ps)2

window. The one-dimensional histogram on the right side of a (or b) is a horizontal slice, centred on δt31 = 0 (or δt41 = 0), of
the associated two-dimensional histogram. c and d (or e and f) are the histograms corresponding to the teleportation of |−〉,
when the analyzer was set to measure in the {|R〉, |L〉} basis ({|H〉, |V 〉} basis). g through l are the histograms corresponding
to the teleportation of |R〉. The black diamonds shown on the one-dimensional histograms are the points that have been used
for the quantum state tomography.
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FIG. A7. Histograms of the number of threefold coincidences with the transmitted signal photon. They are shown as a function
of delays δtij between detector Di of the analyzer (i = 3, 4) and detector Dj (j = 1, 2), where Dj is one of the two SNSPDs used
for the Bell state measurement. a and b show histograms corresponding to the teleportation of |−〉, when the analyzer was set
to measure in the {|+〉, |−〉} basis. For a (or b), the left histogram is a shows the number of threefold coincidences with D1, D2

and D3 (D1, D2 and D4) or as a function of δt31 and δt32 (or δt41 and δt42). Each pixel corresponds corresponds to a (486 ps)2

window. The one-dimensional histogram on the right side of a (or b) is a horizontal slice, centred on δt31 = 0 (or δt41 = 0), of
the associated two-dimensional histogram. c and d (or e and f) are the histograms corresponding to the teleportation of |−〉,
when the analyzer was set to measure in the {|R〉, |L〉} basis ({|H〉, |V 〉} basis). g through l are the histograms corresponding
to the teleportation of |R〉. The black diamonds shown on the one-dimensional histograms are the points that have been used
for the quantum state tomography.
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Abstract
We present a source of polarization-entangled photon pairs suitable for the
implementation of long-distance quantum communication protocols using
quantum memories. Photon pairs with wavelengths 883 nm and 1338 nm are
produced by coherently pumping two periodically poled nonlinear waveguides
embedded in the arms of a polarization interferometer. Subsequent spectral fil-
tering reduces the bandwidth of the photons to 240 MHz. The bandwidth is well-
matched to a quantum memory based on an Nd:YSO crystal, to which, in
addition, the center frequency of the 883 nm photons is actively stabilized. A
theoretical model that includes the effect of the filtering is presented and
accurately fits the measured correlation functions of the generated photons. The
model can also be used as a way to properly assess the properties of the source.
The quality of the entanglement is revealed by a visibility of =V 96.1(9)% in a
Bell-type experiment and through the violation of a Bell inequality.
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1. Introduction

Spontaneous parametric down-conversion (SPDC) is a simple and efficient technique for the
generation of non-classical light and of photonic entanglement. Several important tasks of
quantum communication require photonic entanglement, but also optical quantum memories to
store this entanglement [1]. A prominent example is the quantum repeater [2, 3], which can
extend the transmission distance of entanglement beyond the hard limit dictated by loss in
optical fibre. In this context, the combination of photon pair sources and multimode quantum
memories was proposed [4]. The essence of this proposal is that the sources create pairs
comprised of one telecom-wavelength photon that is used to distribute entanglement between
distant nodes, while the other photon is stored in a nearby quantum memory. This increases the
probability of successfully heralding a stored photon when the telecom photon is detected.
Multimode storage with selective recall then multiplies the entanglement distribution rate by the
number of stored modes, and is essential to reach practical rates over distances of 500 km or
more [3].

Creating photon pairs such that one photon exactly matches the absorption profile of the
quantum memory, while the other is within a telecom wavelength window of standard optical
fibre, is a challenging task in itself. Sources of photon pairs based on emissive atomic
ensembles or single emitters [3] typically generate photons at wavelengths in the vicinity of 800
nm, where the loss in standard optical fibre is on the order ∼ −3 dB km 1, i.e. at least ten times
larger than in telecom fibres. Reaching telecom wavelengths with such sources therefore
requires frequency conversion techniques, which has been demonstrated [5–10], but imposes an
important technical overhead. SPDC offers much more flexibility, since the wavelengths of the
pump can be easily chosen (and tuned) to directly generate the desired wavelengths. However,
unfiltered SPDC photons have a bandwidth on the order of hundreds of GHz or more. Hence,
they still need to be spectrally filtered to the memory absorption bandwidth, which typically
ranges from a few MHz to a few GHz at most [1].

Different approaches for the filtering of SPDC photons were demonstrated. Direct filtering
(using Fabry–Perot cavities) of frequency-degenerate photon pairs created in a lithium niobate
waveguide was first demonstrated [11], and used for storage of an heralded photon on the D1

line (795 nm) of cold rubidium atoms. The high conversion efficiency of the waveguide was
here used to counterbalance the extreme filtering (down to 9MHz), which effectively rejects
almost all of the generated SPDC bandwidth. A similar source was also developed to
demonstrate the heralded single-photon absorption by a single calcium atom at 854 nm [12].
Another approach is based on pumping a bulk crystal put inside a cavity, yielding a doubly
resonant optical parametric oscillator (OPO) operated far below threshold. The cavity
effectively enhances the length of the nonlinear medium, and is well-suited to generate
narrowband photons. This was first demonstrated with frequency-degenerate photons resonant
with the D2 line of rubidium (780 nm) [13, 14], and later with photons resonant with the D1 line
(795 nm) [15]. It was also demonstrated with photon pairs generated at 1436 nm and 606 nm
[16], and used for storage in a praseodymium-doped crystal [17]. One important technical
difficulty in using an OPO is to fulfill the doubly resonant condition and simultaneously lock
one photonʼs frequency on the quantum memory. Even though such sources can in principle
emit the photons in a single longitudinal mode with the help of the clustering effect [18, 19],
current state-of-the-art sources [16, 20, 21] do not yet achieve all the requirements, and in
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practice some additional filtering outside of the cavity is still necessary to remove spurious
longitudinal modes.

All the aforementioned experiments produced photons with linewidths Δν ranging from 1
to 20MHz, which is dictated by the absorption bandwidth of the respective quantum memory
they were developed for. The coherence time τ Δν∼ 1c of the photons produced can therefore
be as long as a microsecond, which impacts on the rate at which those photons can be
distributed. It is therefore desirable for the quantum memory to absorb over a large bandwidth
to increase the photon distribution rate.

In this article, we present a CW-pumped source of polarization-entangled photon pairs
with 240MHz linewidth using a direct filtering approach. This source was designed for
experiments involving quantum memories based on the atomic frequency comb (AFC) protocol
[22] in a Nd:YSO crystal. Earlier versions of this source produced energy-time entangled
photons with a smaller linewidth, and was used to demonstrate the quantum storage of photonic
entanglement in a crystal [23], heralded entanglement of two crystals [24] and the storage of
heralded polarization qubits [25]. Recently, the source described in this paper was used to
demonstrate the teleportation from a telecom-wavelength photon to a solid-state quantum
memory [26]. We note that a similar source, based on a pulsed pump, was used for the storage
of broadband time-bin entangled photons in a Tm : LiNbO3 waveguide [27].

The paper is organized as follows. We give the requirements for the photon-pair source in
section 2. The concept behind the implementation is given in section 3 with the details of the
actual implementation following in section 4. In section 5 the spectral properties and the
correlation functions of the filtered photons are presented and compared to the predictions of a
model that includes the effect of the filtering. The efficiency and detection rate of the source is
presented in section 6. Section 7 presents measurements showing the high degree of
polarization entanglement of the photon pairs, as well as its nonlocal nature. The appendices
contain all the details pertaining to the characterization of the source.

2. Requirements

The source was designed for experiments involving an AFC type of quantum memory in a
Nd:YSO crystal, so the signal photon of a pair has to be in resonance with the transition from
the I4

9 2 ground state to the F4
3 2 excited state of the Nd3+ ion at λ = 883 nms . Quantum

communication over long distances in optical fibre requires the wavelength of the idler photon
of a pair to be inside one of the so-called telecom windows, which span the region from
1300 nm to 1700 nm. The condition for the idler wavelength can be conveniently satisfied using
a pump wavelength of λ = 532 nmp , for which high-quality solid-state lasers are readily
available. This places the idler wavelength at λ λ λ= − =− − −( ) 1338 nmi p

1
s

1 1 .
The bandwidth of the generated photon pairs is dictated by the bandwidth of the quantum

memory. In earlier experiments this bandwidth was 120MHz [23, 24]. Recently it has been
increased to about 600MHz [26]. Although this is fairly large for a quantum memory, it is still
three orders of magnitude narrower than the typical bandwidth of photons generated by SPDC,
which is given by the phasematching condition and can be as large as 1 THz.

We also require quantum entanglement between the signal and idler photons.
Entanglement can be established between various degrees of freedom. In particular energy-
time entanglement is intrinsically present when using a highly coherent pump laser. In this
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work, however, we focus on polarization entanglement because of the experimental
convenience in manipulating and measuring the polarization state of light.

3. Concept

Various schemes have been devised to generate polarization-entangled photon pairs through
SPDC. These schemes include selective collection of photon pairs emitted at specific angles for
non-collinear type-II phasematching [28], collinear SPDC in two orthogonally oriented crystals
[29, 30], and SPDC in Sagnac interferometers [31, 32]. We wanted to extend our existing and
well-functioning waveguide source [23], which is inherently collinear, to a configuration that
can create polarization-entangled photon pairs. Putting two waveguides back to back is in
principle possible, but as the cross-section of the waveguides is only a few micrometres and
may vary from waveguide to waveguide, efficient and stable coupling from one to the other is
experimentally extremely challenging. Using a waveguide in a Sagnac configuration is
complicated by the need for achromatic optics for coupling into and out of the waveguide and
for the necessary polarization rotation.

To be able to efficiently employ our waveguides we follow the ideas of [33, 34] that
suggest using a nonlinear crystal in each arm of a polarization interferometer, as sketched in
figure 1. We consider the situation of type-I phasematching and that the two nonlinear crystals
may have different down-conversion efficiencies. Let the photons from the pump laser be in a
polarization state ∣ 〉 ⊗ ∣ 〉A BH V , where ∣ 〉A H corresponds to a horizontally polarized coherent
state of complex amplitude A, and similarly for ∣ 〉B V . A polarizing beam splitter (PBS) at the
entrance of the interferometer splits the two coherent state components in two paths. In the
horizontal path the photons can be converted into a photon pair ∣ 〉HH with a probability
amplitude α ∝ A by a first nonlinear waveguide. A second waveguide rotated by 90° in the
vertical path can produce a photon pair ∣ 〉VV with probability amplitude β ∝ B. Another PBS
recombines the two paths, and the final single-pair state ψ∣ 〉1 is given by

Figure 1. Creation of polarization-entangled photon pairs with the help of two
waveguides inside a polarization interferometer. A PBS coherently splits the pump
photons according to their polarization. Each polarization component has a certain
probability to be converted into a photon pair with the same polarization. The two
polarization components of the photon pair are then recombined into the same spatial
mode by a second PBS. The relative phase can be adjusted by moving one of the
mirrors.
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ψ α β∣ 〉 ∝ + ϕHH VVe , (1)1
i

where the phase ϕ depends on the path-length difference of the interferometer, and on the
relative phase between α and β. By choosing the pump polarization such that it compensates the
efficiency difference, i.e. α β∣ ∣ = ∣ ∣, and by slightly varying the position of one of the mirrors to
obtain = ±ϕe 1i , the single-pair state becomes equivalent to one of the two Bell-states
Φ∣ 〉 = ∣ 〉 ± ∣ 〉± HH VV( ) 2 . However, one could equally well produce non-maximally
entangled states by choosing the polarization of the pump laser accordingly.

4. Implementation

In the following we detail the actual implementation of the source of polarization-entangled
photon pairs. We start by describing the two waveguides that have been used. We then discuss
the problem of matching the spatial modes of the photons with the same wavelength from
different waveguides. Next, we consider the relative phase ϕ in equation (1). Finally, we
describe the measures taken to reduce the bandwidth of the photons.

4.1. The waveguides

Waveguides are used instead of bulk crystals because they yield a much higher conversion
efficiency. This is necessary because the spectral filtering we apply is much narrower than the
intrinsic spectral width of the down-conversion process, so only a small fraction of the pump
power is used to create photons in the desired spectral range. Hence, the larger conversion
efficiency essentially compensates the loss in power of the pump.

The photon pair source is based on two nonlinear waveguides made from different
materials and with different parameters. The choice of using two different types of waveguides
was made for practical reasons that are not important for the results presented in this paper.
However, this choice allows for a direct comparison of the performance of the two waveguides.
A selection of parameters for the two waveguides is shown in table 1.

The first waveguide was obtained from AdvR Inc. and has been fabricated in a chip of
periodically poled potassium titanyl phosphate (PPKTP) by ion exchange. The chip contains a
collection of identical waveguides of width and height approximately 4 μm and 7 μm,
respectively. Each waveguide spans the entire 13mm length of the chip. The poling period of
8.2 μm allows to achieve type-I phase matching for the signal and idler wavelengths of 883 nm
and 1338 nm at a temperature of about 53 °C. The chip is heated to this temperature using a

Table 1. A selection of the parameters of the two waveguides for direct comparison.

Waveguide

PPKTP PPLN

Supplier AdvR Inc. University of Paderborn
Poling period 8.2 μm 6.45 μm
Length of poled region 13mm 50mm
Waveguide width ∼4 μm ∼6 μm
Waveguide height ∼7 μm ∼6 μm
Phase-matching temperature ∼53 °C ∼173 °C
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custom oven based on a thermo-electric cooler. No dielectric coatings have been applied to the
end faces of the chip. We previously used this waveguide, henceforth referred to as the PPKTP
waveguide, for the generation of narrowband photon pairs in a series of experiments with solid-
state quantum memories [23–25].

The second waveguide was custom designed at the University of Paderborn. It was
fabricated by titanium indiffusion on a periodically poled lithium niobate (PPLN) chip. The
chip is 62mm long and contains 25 groups of 50mm long regions with poling periods between
6.40 μm–6.75 μm. Within each group there are three waveguides of 5μm, 6μm and 7μm width,
respectively. We achieved the best results with a waveguide of poling period 6.45 μm and 6 μm
width, where the temperature for type-I phase matching at the desired wavelengths is about
173 °C. The chip is heated to this temperature with the help of an oven by Covesion Ltd, which
has been slightly modified to accommodate the long chip. The elevated temperature is chosen to
mitigate the deterioation of the phasematching by photorefraction.

The custom design of the second waveguide, from now on called the PPLN waveguide,
allowed for the addition of a number of features which make it especially suitable for SPDC at
the desired wavelengths. On the input side, a λ 4 SiO2-layer has been applied to the input face
to provide an anti-reflective coating for the pump laser at 532 nm. Additionally, the input side
has a 12mm long region without periodic poling where the waveguide width is linearly
increased from 2 μm to the final width. Such a taper should facilitate the coupling of the pump
laser to the fundamental spatial mode of the waveguide. The output side of the chip has been
coated with a 15-layer SiO2/TiO2 stack optimized for high reflection of the pump light and high
transmission of the signal and idler photons. Measurements on a reference mirror that was
coated simultaneously with the chip revealed reflectivities of 94%, 2.4% and 12% at 532 nm,
880 nm and 1345 nm, respectively.

4.2. Matching of the spatial modes

To obtain a high degree of entanglement between the photon pairs generated in the two
waveguides, it is essential that the spatial mode of the photon does not reveal in which
waveguide it has been created. A small mismatch can be corrected with a suitable spatial-mode
filter, such as a single-mode optical fiber. If, however, the mismatch is large, the asymmetric
losses introduced by the filter can significantly reduce the amount of entanglement.

In theory, the use of identical waveguides should ensure a perfect overlap of the spatial
modes of the generated photons. In practice, however, the production process often introduces
small variations between identically designed waveguides. In our case, the situation is
complicated by the fact that the waveguides are made of different materials, have different
dimensions and the signal and idler photons are at widely separated wavelengths. In short, these
factors make a simple configuration with just a single interferometer, as depicted in figure 1,
impossible for several reasons, in particular when only a single aspheric lens is used to collect
the signal and idler photons at the output of the waveguides. Already for a single waveguide,
the chromatic aberration of the lense does not allow for simultaneous collimation of the signal
and idler beams. On top of that there is the more fundamental problem that the refractive index
profiles of the waveguides depend on the chip and on the wavelength. The result is that the
signal and idler spatial modes have different sizes and are not centered with respect to each
other, even if generated in the same waveguide. For different waveguides, signal and idler
beams can in general not be pairwise matched by even the most sophisticated lens system.
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One way to properly match the spatial modes is to part ways with the idea of using a single
interferometer and instead use two interleaved interferometers, as shown in figure 2. This gives
control of all four spatial modes involved. A single uncoated achromatic lens (Thorlabs C220-
TME) after each waveguide is positioned such that the idler beams are collimated. Right after
that, dichroic mirrors separate signal and idler beams, leading to four individual beam paths.
Telescopes in three of the paths adapt the spatial modes such that the signal and idler modes are
separately matched to each other and to the single-mode fibers that will eventually receive the
photons. Finally, the signal and idler modes are, respectively, recombined on two PBSs.

4.3. Relative phase

The relative phase from equation (1) has contributions from signal and idler photons,
ϕ ϕ ω ϕ ω= +( ) ( )s s i i , and depends, in general, on the frequencies ωs and ωi of the signal and
idler photons, respectively. In turn, ϕs is the difference phase acquired between the horizontal
and vertical paths of the respective interferometer, and similarly for the idler photon. To obtain
a high degree of entanglement, it is important that ϕ is well-defined for all frequencies within
the final bandwidth of the photons. Hence, the path length difference ΔLx ( =x s, i) for the two
interferometers should be much smaller than the coherence length of the photons after spectral
filtering. For the estimation of ΔLx one should not forget the dispersion inside the waveguides
and that also the propagation of the pump light up to the waveguides is important.

In the experiment we actively stabilize ϕ. For this purpose, each interferometer contains a
mirror mounted on a piezo-electric transducer. We use the pump light at 532 nm that is
transmitted through the waveguides and leaks into all parts of the interferometer to continuously
probe the phase. The PBSs at the input and outputs of the interferometers are not perfect at this
wavelength, such that residual interference can be seen on the intensity variations picked up by
two photodiodes. Note that, in general, the pump light transmitted through the horizontal and
vertical paths of the interferometers will not have the same intensity. Additionally, the coating
on the end face of the PPLN chip, the reliance on imperfections and the bad spatial mode-
matching of the 532 nm light at the output result in peak-to-peak intensity variations as low as a
few 10 nW. Using a lock-in technique, an error signal can nevertheless be extracted and used to
stabilize the phases of the interferometers.

Figure 2. The spatial modes of the photons generated in different waveguides can be
efficiently matched by using two interleaved interferometers with appropriate
telescopes.
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Using this technique, the stabilization works reliably for a typical duration of 5–10 h, a
duration after which the thermal drift in the laboratory would typically exceed the compensation
range of the piezos. However, the technique has two limitations to keep in mind. First, the
absolute value of the phase can not be chosen at will and is more or less random for every
activation of the lock. Second, since the 532 nm light follows a slightly different path than the
signal and idler photons, and the temperature dependence of the refractive index inside the
waveguides is wavelength dependent, differential phase shifts can appear. In practice, we
observe residual phase drifts on the order of 1° per hour, as determined by repeatedly applying
the measurement procedure described in section 7.

4.4. Spectral filtering

In experiments where one of the photons in a pair is coupled to a narrowband receiver, such as
an atomic ensemble, spectral filtering is essential. In the typical scenario of SPDC with a
narrowband pump laser, energy conservation ensures that a detection of, say, the idler photon
after a suitable spectral filter guarantees that the signal photon is within the target spectral range.
At first glance such one-sided filtering might seem entirely sufficient. In practice, however, and
in particular in the case of strong filtering, multi-pair production can add a significant
background of signal photons outside the desired bandwidth, which leads to a reduction of the
signal-to-noise ratio of coincidence detections. Hence, also the signal photon needs to be
filtered at least to some extent.

Efficiency, stability and ease of use are typical criteria for choosing suitable spectral filters.
For a given bandwidth, one wants to use as few filtering elements as possible, as all of them are
bound to introduce photon loss and have stabilization requirements. The case of polarization-
entangled photon pairs adds the concern that both the spectrum and the efficiency of the filters
need to be independent of polarization. This precludes the use of traditional techniques such as
diffraction gratings, but also of some more recent developments such as phase-shifted fiber
Bragg gratings and Fabry–Perot cavities based on coated lenses [35].

The spectra of the two waveguides were measured using custom-built spectrometers based
on diffraction gratings and single-photon-sensitive CCD cameras; see figure 3. The
spectrometers have an estimated resolution on the order of 200GHz full width at half
maximum (FWHM) at 883 nm and 100GHz at 1338 nm. Gaussian fits to the respective signal
and idler spectra serve to estimate the phasematching bandwidth. For the PPKTP waveguide the
two fits approximately agree, yielding a FWHM of 791(28) GHz for the signal and 724(39)GHz
for the idler. The signal photons generated in the PPLN waveguide are measured to be
443(12) GHz wide, and the idler photons 328(11) GHz. While both values may be resolution
limited, the discrepancy is most likely due to the inferior resolution at 883 nm.

Assuming the sinc2-shaped spectrum of ideal SPDC and neglecting the dispersion caused
by the refractive index profile of the waveguide, we can use Sellmeier equations for KTP [36]
and LiNbO3 [37] to find a theoretical estimate of the bandwidths (see appendix A). For the
waveguide from AdvR the FWHM is estimated to 540GHz, while for the guide from Paderborn
we find 100GHz. In both cases, the measured bandwidths are larger. Apart from the limited
resolution of the spectrometer, we attribute this deviation to inhomogeneities of the waveguide
structure over the interaction length, which also explains why the measured spectra do not
exhibit a sinc2 shape. Finally, propagation losses of the pump laser in the waveguide can lead to
a reduced effective interaction length and hence a broadening of the spectra.
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We shall now describe the filtering system used to reduce the spectral width of the photon
pairs to 240MHz FWHM. We use two-sided filtering, that is, filters are applied to both the
signal and idler photons. At first glance, it would seem that one-sided filtering is sufficient,
because energy conservation dictates that the two photons in a pair created by a narrowband
pump laser have the same bandwidth, if detected in coincidence. However, accidental
coincidences stemming from different pairs do not have this restriction, such that the cross-
correlations for one-sided filtering are strongly reduced. This reduction is typically much
stronger than the increase in the pair detection rate (corrected for accidental coincidences)
gained by one-sided filtering. A quantitative comparison between one-sided and two-sided
filtering is given in appendix C.

The filtering for the signal and idler photons is very similar and is done in two steps. The
signal photon is first sent onto a volume Bragg grating (VBG) made by Optigrate. The VBG has
a nominal diffraction efficiency of 98.6%, although the value in the experiment is ≈90%. The
spectral selectivity is specified to 54GHz at FWHM. Grating parameters are such that the
diffracted beam forms an angle of about 7°with the incoming beam. We have not seen any
polarization dependence of significance in the performance of the VBG. The second filtering
step is an air-spaced Fabry–Perot etalon made by SLS Optics Ltd. The etalon has a line width of
Γ π =(2 ) 600 MHzs and a free spectral range (FSR) of 50GHz, corresponding to a finesse of
83. The peak transmission of the etalon is about 80%.

For the idler photon, the first filter is a custom-made Fabry–Perot cavity with line width
Γ π =(2 ) 240 MHzi and an FSR of 60GHz, corresponding to a finesse of 250. By itself, we
achieved peak transmissions through the cavity exceeding 80%. Integrated in the setup of the
photon pair source, mode matching was slightly worse, giving a typical transmission around
60%. The cavity was followed by a VBG with a FWHM diffraction window of 27GHz and
nominal efficiency of 99.6%. In this case, experimental observations were compatible with
specifications.

Figure 3. Non-filtered spectra of the photons generated by the two waveguides.
Detunings are given with respect to a reference laser at 883.2 nm for the signal photon,
and for the idler with respect to light from difference-frequency generation using the
same laser. Gaussian fits (solid lines) give estimates of the spectral bandwidths (see
text). For these plots, the temperature of the waveguides had not yet been properly
adjusted.
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The idea behind the combination of Fabry–Perot filter and VBG is to select only a single
longitudinal mode of the cavity or the etalon. In practice, however, a typical reflection spectrum
of a VBG can have significant side lobes [38]. From the measured second-order auto-correlation
functions (see section 5), we estimate that more than 70% of the transmitted signal photons and
more than 95% of the idler photons belong to the desired longitudinal mode.

One issue with narrowband filters is the spectral stability. Long-term stability for the
VBGs is easily achieved by using a stable mechanical mount, as they have practically no
sensitivity to temperature fluctuations. The Fabry–Perot filters are stabilized in temperature, but
exhibit residual drifts on the order of 100MHz per hour. If the center frequencies of the signal
and idler filters drift such that they no longer add up to the frequency of the pump laser, the
coincidence rate will drop. We compensate this by using a reference laser at 883 nm, which may
be stabilized to the etalon, for difference frequency generation (DFG) in the PPLN waveguide,
effectively giving coherent light at the idler frequency. The frequency of the pump laser is then
adjusted to optimize the transmission of the DFG light through the cavity. During experiments,
we switch between DFG and SPDC every few tens of milliseconds, and the transmitted DFG
light is detected with single-photon detectors and integrated over approximately 1 s. The
stabilization was implemented in software for previous work [23–25], and reliably compensates
the slow and weak thermal drifts. This technique also provides a means for active stabilization
to the Nd:YSO quantum memory: tuning the 883 nm reference laser to the relevant transition
ensures that the photon pairs are simultaneously in resonance with the idler cavity and the
quantum memory.

An advantage of the direct filtering approach to generate narrowband photon pairs is the
low sensitivity to fluctuations of the temperature of the waveguides themselves. Techniques
based on OPO are much more sensitive [18, 20, 21]. In our case, temperature fluctuations shift
the phase-matching spectrum as a whole. Since the frequency filters post-select a very small part
of the whole spectrum, these variations can be tolerated as long as the shift is small compared to
the phase-matching bandwidth, such that the pair-creation rate at the position of the filters
remains approximately constant. We measured a temperature-dependent shift of the phase-
matching spectrum of 280GHzK−1 and 190GHzK−1 for the PPLN and PPKTP waveguides,
respectively. Requiring that the spectra shift less than, say, 5% of their width corresponds to a
temperature stability below 0.05K and 0.2K, respectively, which is routinely achieved also in
the long term.

5. Spectral characterization via correlation functions

Correlation functions are a useful tool for the characterization of light sources. We consider, in
particular, the normalized second-order correlation functions, which are unaffected by photon
loss or detector inefficiency. They are defined as

τ
τ τ

τ τ
≡ + +

+ +g
E t E t E t E t

E t E t E t E t
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
, (2)jk

j k k j

j j k k

(2)
† †

† †

where the indices ∈j k, {s, i} represent the signal or idler photon, respectively. A
measurement of τg ( )jk

(2) consists of first determining the rate of coincidence detections between
modes j and k at a time delay τ. This is effectively a measurement of the non-normalized
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second-order coherence function, which is the numerator in equation (2). The normalization is
then performed with respect to the rate of coincidences between photons from uncorrelated
pairs created at times differing by much more than the coherence time of the photons.

By itself, the second-order cross-correlation function τg ( )si
(2) gives a measure of the quality

of a photon-pair source, because noise photons stemming from imperfect spectral filtering or
fluorescence generated in the down-conversion crystal inevitably reduce the amount of
correlations. The auto-correlation functions τg ( )ss

(2) and τg ( )ii
(2) give information about the

multimode character of the photons and their spectra. Finally, the cross- and auto-correlation
functions can be combined in a Cauchy–Schwarz inequality whose violation proves the
quantum character of the photon-pair source [39].

In this section we look at the normalized auto- and cross-correlation functions of the signal
and idler photons. We show that the shape of the correlation functions is exactly as one would
expect from the spectral filtering, if the jitter of the detectors is taken properly into account.
Additionally, we use the auto-correlation functions to deduce the probability that a detected
signal (or idler) photon stems from the desired mode of the filtering etalon (or cavity).

5.1. Correlation functions

The spectral filtering reduces the uncertainty in energy of the signal and idler photons. The
effect can be directly seen on the normalized second-order auto- and cross-correlation functions,
for which simple analytical expressions can be derived for collinear, low-gain, SPDC with
plane-wave fields. The detailed derivation is given in appendix B. In brief, it procedes as
follows. First, expressions for the first-order field correlation functions without filtering can be
obtained via the Bogoliubov transformation that describes the input–output relation of the
SPDC process [40, 41]. Next, spectral filtering is included through the convolution of the
correlation functions with the filter impulse response [42]. In the case where the bandwidth of
the filters is much smaller than the bandwidth of the SPDC process, the temporal dependence of
the correlation functions is entirely given by the spectral filtering. Finally, higher-order
correlation functions are obtained by applying the quantum form of the Gaussian moment-
factoring theorem [40]. We arrive at the following expressions for the normalized second-order
cross- and auto-correlation functions for Lorentzian-shaped spectral filters
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where the temporal dependence is given by

⎧⎨⎩τ τ
τ

= <
⩾

Γ τ

Γ τ−f ( )
e for 0

e for 0
. (4)jk

j

k

The cross-correlation function depends on the inverse of the ratio of the R B. Here, B is the
phase-matching bandwidth and R is the rate of photon pair creation. Hence, B1 is seen as the
duration of one temporal mode. The low-gain limit of the source is obtained with the probability
to create a pair per temporal mode is much smaller than one, i.e. ≪R B 1. In this regime, the
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rate R is proportional to the pump power. Additionally, the cross-correlation depends on the
ratio of the filter bandwidths. For a given value of R B, a larger mismatch makes it more likely
that only one of the photons in a pair passes the filters, which leads to a reduction of the cross-
correlation.

5.2. Detector jitter

Figure 4 shows an example of a measured cross-correlation function for the PPKTP waveguide.
The combination of detectors, a Perkin–Elmer SPCM-AQRH-13 silicon avalanche photo diode
and a super-conducting nanowire single-photon detector (SNSPD), had negligible dark count
rates. To compare the measured temporal dependence with theory, the jitter of the detection
system has to be taken into account. This can be done by convoluting the expression in
equation (4) with the distribution function of the jitter. In our case the jitter is well modeled by a
normal distribution, and the expression for the refined temporal dependence τf̃ ( )jk is given in
the appendix. After this modification, we find excellent agreement between the measurement
and a theoretical fit, where the only free parameters are a horizontal offset and the ratio R B.
Note that the jitter of σ = 250 ps for this combination of detectors reduces the maximum cross-
correlation by a factor =f̃ (0) 0.65si .

5.3. Multimode properties

Contrary to the cross-correlation function, the normalized auto-correlation functions do not
depend on the spectral brightness. Instead, they reach a maximum value of =g (0) 2jj

(2) , which
reveals the thermal nature of the individual signal and idler fields.

A comparison between theory and experiment for the auto-correlation function of the idler
photons generated in the PPKTP waveguide is plotted in figure 5. Detector jitter has been
included as before by using τf̃ ( )ii instead of τf ( )ii . The detectors were a pair of SNSPDs with
σ = 125 ps. The theoretical prediction is in excellent agreement with the measured data.

Figure 4. Example of a cross-correlation function measured for the PPKTP waveguide
using a binning of 162 ps. The solid line is a fit to the theoretical line shape
(equation (3)), corrected for detector jitter, where the only free parameters are the ratio
R B and a horizontal offset. The dashed line is the cross-correlation that we could have
obtained with a jitter-free detection system.
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A measurement of the second-order auto-correlation function allows, additionally, to
characterize the presence of spurios spectral modes, that is, undesired modes of the Fabry–Perot
filters, in the signal and idler fields. This has first been shown for pulsed and broadband SPDC
in [43], where a set of orthogonal spectral modes is obtained via Schmidt decomposition of the
joint-spectral amplitude of the signal and idler fields. By normalizing the occupation
probabilities pn of these modes such that ∑ =p 1n , the authors define an effective number of
modes = ∑K p1 n

2. This number, also known as the Schmidt number, quantifies the amount of
spectral entanglement and is the reciprocal of the purity of the reduced states of the signal and
idler modes [44]. Furthermore, it is shown in [43] that the inability to resolve these spectral
modes results in a reduction of the auto-correlation functions, given by = +g K(0) 1 1jj

(2) .
Hence, a measurement of g (0)jj

(2) allows to directly determine K.

For continuous-wave SPDC subjected to narrow-band Fabry–Perot filters, the longitudinal
modes of the filter form a suitable basis for the spectral decomposition. We define p0 as the
probability to find the photon in the desired longitudinal mode, and let pn be the nth red-detuned
(or blue-detuned) mode for >n 0 (or <n 0). We would like to determine a lower bound on p0
via a measurement of the auto-correlation function. As in the case of pulsed SPDC, the presence
of spurious longitudinal modes of the Fabry–Perot filter reduces the auto-correlation function.
This is easily seen from the fact that τf ( )jj is proportional to the absolute square of the Fourier
transform of the power spectral density of the cavity transfer function (see also equations (B.6)
and (B.8)). The presence of multiple longitudinal cavity modes will hence lead to oscillations of

τg ( )jj
(2) at a frequency corresponding to the FSR of the filter. If the detectors do not resolve these

oscillations, they will be averaged out, leading to a reduction of τg ( )jj
(2) . However, in our case

the detector jitter is sufficiently strong to give a reduction of the g (0)jj
(2) even for the single-

mode case. To more clearly separate the contributions from detector jitter and spurious modes,
we rewrite the auto-correlation function of equation (2) as

Figure 5. The second-order auto-correlation function of the idler photons generated in
the PPKTP waveguide. Bins are 162 ps. The solid line is a fit to the theoretical line
shape (equation (3) with jitter included), where the only free parameter is a horizontal
offset. The dashed line is the auto-correlation that we could have obtained with a jitter-
free detection system. The dotted line is a simulation corresponding to a 2.5%
occupation of each nearest-neighbor longitudinal cavity mode.
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τ τ= +g f( ) 1 ˜ ( ), (5)jj K jj
(2) 1

where jitter has been taken into account explicitely via the use of τf̃ ( )jj .
For the idler photon, the red dotted line in figure 5 shows the case of p0 = 0.95 for the

central cavity mode and =±p 0.0251 for the neighboring red- or blue-detuned modes, giving
K = 1.1. The mismatch with the experimental data at zero delay is consistent with the selection
of a single cavity mode by the filtering system.

The situation is different for the signal photon, for which auto-correlation measurements
are shown in figure 6. Here, the bandwidth of the VBG is comparable to the FSR of the etalon,
and contributions from spurious modes are to be expected. From a fit of equation (5) to the data,
with K and σ as free parameters, we obtain =K 1.71(8) for the PPKTP waveguide and

=K 1.22(6) for the PPLN waveguide. Assuming the worst case of only a total of two etalon
modes with non-zero population, this corresponds to probabilities of =p 0.71(3)0 and

=p 0.90(3)0 , respectively, for the photon being in the desired etalon mode. We attribute the
larger value of K for the PPKTP waveguide to the larger phase-matching bandwidth.

6. Efficiency characterization of the filtered photon sources

In this section we show a characterization of the individual performances of the two
waveguides, including spectral filtering. The characterization aims at determining the spectral
brightness and the collection and detection efficiencies of the photons. It consists of measuring
as a function of the pump power the detection rates of signal and idler photons. Furthermore, we
measured the photon-pair rate, that is, the signal-idler coincidence rate, corrected for accidental
coincidences, for a coincidence window that is large compared to the coherence time. Finally,
we also determined the power-dependence of the second-order cross-correlation function

τg ( )si
(2) at delay τ = 0. The results are shown in figure 7.

For comparison to a theoretical model, we use the same derivation as for the correlation
functions in the previous section. However, in the previous section the dark counts of the
detectors were negligible. Dark counts add an offset to the signal and idler detection rates.
Additionally, they give rise to accidental coincidences, which set an upper bound on the

Figure 6. The second-order auto-correlation function of the signal photons generated in
the PPKTP (left) and PPLN (right) waveguides. Spurious etalon modes prevent the peak
from reaching a value of 2, even after the correction for detector jitter. Bins are 162 ps.
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normalized cross-correlation function at low pump powers. We included the dark count rate Dj

in the model and also added finite detection efficiencies ηj to end up with the following set of
equations (see also appendix B),
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Figure 7. Characterization of (a) the PPKTP and (b) the PPLN waveguide. For each
waveguide, the signal, idler and pair detection rates are plotted, as well as the value of
the cross-correlation function at τ = 0 delay. The dashed horizontal lines in the panels
for the signal and idler rates indicate the detector noise level. For the measurement of
the pair rate, a coincidence window of 6 ns was used, which is sufficiently large to
encompass the entire coincidence peak (see figure 4). Additionally, accidental
coincidences have been subtracted. The values of the cross-correlation function are
based on a binning of 162 ps. A common fit (solid lines) to all four data sets for each
waveguide was used to extract the spectral brightness and collection efficiencies (see
also table 2).
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Here, the signal and idler rates Ws and Wi are essentially given by the spectral brightness of the
waveguide times the respective bandwidth of the filtering system and attenuated by the
detection efficiency. Since R is proportional to the pump power, so are Ws and Wi. Ws has also
been corrected for the contribution of spurious etalon modes, which will increase the detection
rate by a factor p1 0. The behavior of the pair rate W2 is similar, except that the photon pairs
have an effective bandwidth of Γ Γ Γ Γ+( )s i s i , which is smaller than the bandwidth of the signal
and idler photons individually. Note that the measurement of W2 includes correction for
accidental coincidences, and no correction for dark counts needs to be applied to the theory.
Finally, the expression for g (0)si

(2) is equivalent to the one given in equation (3), but the
inclusion of dark counts prevents further simplification.

We used commercially available detectors for the measurements presented in figure 7. The
signal detector by Perkin–Elmer has a dark-count rate of 150Hz and a detection efficiency of
about 30% at 880 nm. As detector for the idler photon served an ID220 by Id Quantique with
20% efficiency. To reduce the contribution of afterpulsing, the dead time of this detector was set
to 20 μs, and we observed a dark-count rate of 3.0 kHz. The offset on the signal and idler count
rates given by the dark counts is indicated by dashed lines in the top panels of figure 7.

A simultaneous fit to the equations (6) reproduces the measurements to a high extent. The
free parameters in the fit are the spectral brightness R B and the overall collection and detection
efficiencies ηs and ηi. The results of the fit are shown in table 2. For the PPKTP waveguide the
idler rate shows a negative deviation from the expected behavior at pump powers above 1mW,
where the detector starts being saturated. For the PPLN waveguide the saturation seems to be
compensated by a higher pair-creation efficiency, indicated by a positive deviation of the signal
rate and a significant drop in the cross-correlation.

In terms of the spectral brightness, the two waveguides perform on a similar level. We note
however, that the specified pump power is measured in front of the waveguide. For both
waveguides we estimate a coupling of the pump laser into the waveguide between 40–50%. Of
this, only a fraction is coupled into the fundamental spatial mode, and hence contributing to
SPDC. In principle, we would expect a higher brightness for the waveguide from Paderborn,
since it is longer and PPLN has a larger nonlinear coefficient than PPKTP. The reason that we
observe something different could be a non-optimal temperature of this waveguide in this
measurement, which shifts the perfect phase matching slightly away from the filter transmission
maximum. We also note that at pump powers above a few milliwatts, the operation of the PPLN
waveguide is impaired by photorefraction, which leads to strong fluctuations of the spatial mode
of the pump laser inside the waveguide.

Table 2. Parameters as extracted from fitting the data in figure 7 to equations (6).
π R B2 is the spectral brightness, given in conventional units, for a pump power of
1mW. ηs (or ηi) is the overall collection and detection efficiency for the signal (or idler)
photon.

Waveguide

PPKTP PPLN

π R B2 × −2.45(6) 10 (s MHz)3 1 × −3.08(6) 10 (s MHz)3 1

ηs 3.1(2)% 2.6(2)%
ηi 7.4(1)% 6.6(1)%
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In our experiments we are rarely constrained by the available pump laser power, and the
spectral brightness is only of minor importance. More important are the achievable coincidence
rates and the correlations between signal and idler photons. The coincidence rate is proportional
to the product of the signal and idler collection and detection efficiencies, ηs and ηi. Also here
we see similar values for the two waveguides, indicating a spatial mode-matching better than
80% for the signal photon and around 90% for the idler. The expected peak transmission for the
signal path is η ≈ 3.6%s with contributions from a long-pass filter that removes the pump light
(80%), the VBG (90%), the etalon (80%), fiber coupling (60%) and detector efficiency (30%).
Additionally, the setup was already prepared for storage and retrieval in the quantum memory,
adding losses due to a fiber-optical switch (70%), fiber connectors (70%) and another fiber
coupling (70%). On the idler side, we expect η ≈ 8%i , distributed over the cavity (60%), fiber
coupling (70%) and detector efficiency (20%). The measured value for ηs and ηi, given in
table 2, corresponds quite well to the expected values. We attribute the small differences to loss
inside and at the end facets of the waveguides.

The measured cross-correlation function reaches for both waveguides a peak value of
approximately 2600 at a pump power of 50 μW. At lower pump power correlations are reduced
by dark counts, at higher pump powers by multi-pair emission.

7. Entanglement

The characterization of the two waveguides showed that a very high degree of mode-matching
for the photons originating from the two waveguides has been obtained. Additionally, the
spectral brightness is about the same. This means that it should be possible to achieve a high
degree of entanglement by setting the pump polarization to an approximately equal
superposition of horizontal and vertical, such that similar amounts of light arrive at the two
waveguides. In practice, we neglect the small differences in coupling efficiencies and adjust the
pump polarization such that the rate of coincidences from the two waveguides is about the
same. It remains to be shown that the horizontally and vertically polarized photon pairs form a
coherent superposition with a stable phase, which corresponds to an entangled state between the
two photons.

Let us, for simplicity, assume that the photon pairs are produced in the maximally
entangled state

+ ϕ( )HH VV
1

2
e . (7)i

A measurement that verifies the coherent nature of this state is illustrated in figure 8(a). First,
the idler photon is measured in the basis ∣±〉 = ∣ 〉 ± ∣ 〉H V( ) 2 using a half-wave plate and a
PBS. If a photon is detected in the port of the beam splitter corresponding to, say, ∣+〉, the signal
photon is projected onto the state ϕ∣ 〉 = ∣ 〉 + ∣ 〉ϕ+ H V( e ) 2i . Sending this through a quarter-
wave plate and a half-wave plate whose fast axes are at angles of π 4 and θ to horizontal,
respectively, transforms the signal photon into the linearly polarized state
β β β∣ 〉 = ∣ 〉 − ∣ 〉H Vsin cos with β θ ϕ π= + +2 2 4. We hence expect that the probability
of detecting the signal photon after a PBS shows sinusoidal fringes as a function of θ with a
period of π 2. The phase of the fringes depends on the phase ϕ of the initial entangled state (7),
such that this kind of measurement can be used to determine ϕ. If, instead, the photon pairs are
generated in a maximally mixed state ∣ 〉〈 ∣ + ∣ 〉〈 ∣HH HH VV VV( ) 2, the same measurement of
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the coincidence rate will not show any dependence on θ. A fringe visibility larger than 33% is
necessary to infer the presence of entanglement [45].

In figure 8(b) we show the outcome of the described measurement procedure. A pair of
SNSPDs has been used for the idler photon, and Si avalanche photo diodes (Perkin–Elmer) for
the signal photon. For each value of θ the number of coincidences in a 2 ns window have been
integrated over a duration of 60 s for each of the four possibly detector combinations. The
number of measured coincidences oscillates as a function of θ, as expected. A sinusoidal fit
reveals an average visibility =V 96.1(9)%, which indicates that the source generates photon
pairs that are close to maximally entangled in polarization.

To unequivocally prove the presence of entanglement we performed a violation of the
Clauser–Horne–Shimony–Holt (CHSH) inequality [46]. A quarter-wave plate was added to the
polarization analysis of the idler photon, such that the setups for signal and idler photon of
figure 8(a) were now identical. Additionally, the SNSPDs were replaced by ID220s for their
higher detection efficiency. The wave plate allows to switch the measurement basis of the idler
photon between ∣±〉 and the circular polarizations ∣ 〉 ± ∣ 〉H V( i ) 2 by a rotation of the half-
wave plate. These two basis sets were used for the measurement. Since we do not a priori know
the relative phase ϕ of the photon pairs, we determine the optimal settings for the signal
analyzer as follows. We set the idler analyzer to ∣±〉 and perform another measurement of the

Figure 8. Characterization of the coherence of the pair source. (a) The idler photons are
measured in the bases of diagonal polarization. This projects the signal photon onto a
coherent superposition of ∣ 〉H and ∣ 〉V with unknown relative phase. A quarter-wave
plate at fixed angle transforms this state into a linear polarization, which is analyzed
with the help of a half-wave plate and a polarizing beam splitter. (b) Corresponding
coincidence measurement for a coincidence window of 2 ns for the four detector
combinations. Solid lines are sinusoidal fits with a fixed period and common phase. The
fits yield an average visibility of =V 96.1(9)%.
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type of figure 8 to determine the angle θmax of the half-wave plate of the signal analyzer that
gives a maximum between detectors Si1 and ID2201. For the violation of the CHSH inequality
we then use the angles θ π± 16max . For an acquisition time of 5min per setting we find a
CHSH parameter of =S 2.708(9), which is almost 80 standard deviations above the bound for
separable states of ⩽S 2.

8. Summary and outlook

We have presented a source of polarization-entangled photon pairs based on the nonlinear
waveguides of different materials embedded in the arms of a polarization interferometer. We
have shown that the source emits photon pairs with a high degree of entanglement and is
compatible with the storage of one of the photons in a quantum memory. The wavelength of the
other photon is in a telecom window, which permits the low-loss transmission over optical fiber.
This combination makes the source particularly useful for quantum communication
experiments.

Even though the photon-pair source is conceptually simple, a higher degree of integration
would be desirable. Recent work along this direction includes the integrated spatial separation
of signal and idler photons using an on-chip wavelength-division multiplexer [47] and the direct
generation of 150MHz broad photon pairs using a monolithic waveguide resonator [21]. Both
of these techniques were demonstrated with similar wavelengths as used in this work. In
particular the latter could greatly simplify the efficient generation of narrowband photon pairs,
provided that the intrinsic resonator loss can be reduced. If this could further be combined with
the on-chip generation of polarization-entangled photons using an interlaced bi-periodic
structure [48], one would have the equivalent of the whole setup of figure 2 on a single chip,
including spectral filtering. Together with the recent progress in solid-state quantum memories,
these are promising perspectives for the development of compact and practical nodes for
quantum communication.
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Appendix A. Estimation of phase-matching bandwidth

The frequency dependence of SPDC is given by the joint spectral amplitude ω ωf ( , )s i , which
can be written as the product of two functions,

ω ω α ω ω Φ ω ω= +f ( , ) ( ) ( , ), (A.1)s i s i s i

where ωs (or ωi) is the frequency of the signal (or idler) photon, α ω( ) represents the spectrum of
the pump laser and Φ ω ω Δ= kL( , ) sinc( 2)s i is the phase-matching function. The state of a
single photon pair can be written in terms of the joint spectral amplitude as
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∫ ∫Ψ ω ω ω ω ω ω∝
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∞
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where ωa ( )† is the photon creation operator at frequency ω. We recognize, that ω ωf ( , )s i is the
spectral wavefunction of the photon pair. It follows that the spectral distribution, that is, the
probability to find a photon in an infinitesimal interval at frequency ω, of the signal or idler
photon is given by
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In the case of a highly coherent pump laser, α ω( ) can be approximated by a Dirac delta
function, δ ω ω−( )p , and the spectra of the signal and idler photons is given by the phase
matching, only, i.e.

ω Δ∝S kL( ) sinc ( 2). (A.4)j
2

The phase mismatch is given by
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with nx and λ =x( p, s, i)x the refractive index and wavelength of pump, signal and idler
photons, respectively. Λ is the period of poling. Here, as a first approximation, we have
neglected the effect of the waveguide. A more accurate expression would use the propagation
constants of the pump, signal and idler modes for the given waveguide refractive index profile.

We want to estimate the FWHM bandwidth of the photons generated by SPDC. To this
end, we first remember that λ λ λ= −− − −( )i p

1
s

1 1 due to energy conservation, such that the phase
mismatch becomes a function of the signal wavelength only. For phase-matching Δ =k 0, and
the bandwidth is determined by the dispersion, which to first order is given by
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2

Note that the contributions of the pump wavelength and the periodic poling to Δ λk ( ) are
constant, so they will not affect Δ ′k . Using equation (A.6), the argument of the sinc2 function in
equation (A.4) becomes Δ Δν= ′x k L 2. Knowing that the sinc squared reaches half its
maximum value at =x 1.391561 2 , the FWHM bandwidh is given by

Δν
Δ

= ′
x

k L

4
. (A.7)FWHM

1 2

Using the Sellmeier equations for KTP [36] and LiNbO3 [37], we can calculate Δ ′k and the
resulting values for ΔνFWHM. These are given in table A1.
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Appendix B. Analytical model for SPDC with spectral filtering

We shall here give a brief derivation of the expressions for the signal and idler rates, the
coincidence rate and the second-order correlation function of the waveguides, including the
application of spectral filtering. As a starting point we will take the treatment presented by
Razavi et al [40] (see also [41]), assuming collinear SPDC with plane-wave fields. Furthermore,
the depletion of the pump and group-velocity dispersion have been neglected.

We start by giving expressions for the first-order correlation functions, from which one can
calculate the event rates. With the help of the quantum form of the Gaussian moment-factoring
theorem, all higher-order correlation functions can be derived [40].

B.1. First-order correlation functions

Defining scalar photon-units positive-frequency field operators

∫π
ω ω= =ω

−∞
∞ −E t a j( )

1
2

d ( )e , s, i, (B.1)j
ti

where ωa ( ) is the photon annihilation operator in the frequency domain, Razavi et al use a
Bogoliubov transformation to derive the following set of first-order correlation functions for the
SPDC output state
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where δjk is the Kronecker delta function and ∈j k, {s, i}. In the low-gain regime of SPDC, the
envelope functions τC ( )auto and τC ( )cross are given by
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cross

Here, R is the rate of photon pair creation and proportional to the pump power, and
π Δ= ′B k L2 ( ) is proportional to the bandwidth. The ratio R B is often termed the spectral

brightness of the photon pair source.
When adding spectral filtering, the envelope functions get convoluted with the impulse

response functions Fj(t) of the filters [42]. For the autocorrelation,

Table A1. Values for the estimation of the FWHM bandwidth of the two waveguides.
For the PPLN waveguide we assume a temperature of 180 °C.

Waveguide Δ ′k ( −(mm GHz) 1) L (mm) ΔνFWHM (GHz)

PPKTP −7.93 ×10−4 13 539
PPLN −1.14×10−3 50 97
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where we have taken α δ′ − ″ ≈ ′ − ″C t t t t( ) ( )auto , which is valid if the bandwidth of the filter
is much smaller than B. The constant α is
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We further consider a Lorentzian filter with FWHM Γj whose transfer and impulse response
functions are given by
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where Θ τ( ) is the Heaviside step function. We then arrive at the final expression for the auto-
correlation envelope
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Performing a similar calculation for the cross-correlation envelope, we get
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Finally, let us introduce, for convenience, the signal and idler flux,
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, (B.10)j
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and the pair flux

∫ τ τ
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The last line of equation (B.11) says that the pair flux is equal to the flux if signal or idler
rescaled by the probability that a photon that has already been projected onto the spectrum of
one of the filters also passes the second filter. We note that this expression is valid only for
perfectly correlated photon pairs and does not contain contributions from multi-pair emission.
These will be included in the next section, where we consider second-order correlation
functions.
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B.2. Second-order correlation functions

The normalized second-order cross-correlation function is defined as

τ
τ τ

τ τ

τ

≡ + +
+ +

=

g
E t E t E t E t

E t E t E t E t
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W W

( )
( ) ( ) ( ) ( )
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, (B.12)
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where the numerator is the non-normalized second-order cross-correlation function. Applying
the Gaussian moment-factoring theorem, it can be shown that

τ τ= +G W W C( ) ( ) , (B.13)si
si
(2)

s i cross
( ) 2

where the first term is proportional to the coincidence rate that is expected for completely
uncorrelated photons, often called accidental coincidences. Using equations (B.9) and (B.10),
we find
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The derivation of the second-order auto-correlation functions for the signal and idler
photons proceeds along the same lines as that of the cross-correlation. The auto-correlation
function is defined as

τ
τ τ

τ τ
≡ + +
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Applying the same steps as before, this can be shown to be equal to

τ
τ

τ= + = +g
C

W
f( ) 1

( )
1 ( ), (B.16)jj

j

j
jj

(2) auto
( ) 2

2

where we have reused the definition of τf ( )jk from equation (B.14).

B.3. Inclusion of experimental imperfections

Before the expressions derived in the appendices B.1 and B.2 can be compared to the
experimental data, they need to be slightly modified to take into account experimental
imperfections in the shape of finite efficiencies, dark counts and electronic jitter.
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Let us start by considering the jitter of our detection system, which is well modeled by a
normal distribution

πσ
= σ−j t( )

1

2
e . (B.17)t

2
(2 )2 2

The effect on the measured cross- and auto-correlation functions can be calculated as the
convolution of τf ( )jk from equation (B.14) with j(t), and one obtains
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The spectral filters do not have unit peak transmission. Additionally, the detectors have a
finite efficiency and there is loss on the surfaces of optical elements and when coupling into
single-mode fiber. By gathering all the losses into a single coefficient, they can be taken into
account by adding a prefactor of η j to the transfer function (B.6). This leads to a reduction of
the signal and idler flux (B.10) by a factor of ηj, and the pair flux (B.11) is correspondingly
reduced by a factor η ηj k.

Besides the finite efficiency of the filtering, the etalon or cavity may not be well-
approximated by a single Lorentzian filter. This is the case if more than one longitudinal mode
is excited. Spurious modes contribute the photon flux and increase it by a factor p1 0 where p0 is
fraction of the photons that end up in the desired mode. However, spurious modes cannot
contribute to the pair flux, since the FSR of etalon and cavity are incommensurate. As explained
in the main text, the signal filtering suffers from such spurious modes, and a correction has been
added to the signal flux.

Detector dark counts add an offset to the detected photon flux and will also contribute to
the accidental coincidences. This effect can be added to the formalism by introducing a constant
term Dj to equation (B.10) and using equations (B.12) and (B.13) for comparison with the
measurements, instead of the simplified expression (B.14). Please note that the pair flux W2 by
definition does not contain contributions from accidental coincidences. In summary, the
experimental data presented in figure 7 has been fitted to the expressions
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with the free parameters η η R B, ,s i .
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Appendix C. Comparison between one- and two-sided filtering

We can use our theoretical model to quantitatively compare the situations for one- and two-
sided filtering. In particular, we show that the gain in pair rate obtained by removing the loss
caused by the filters typically does not justify the strong reduction of the cross-correlation.

Suppose that only the idler photon is filtered. This can be introduced into the formulas of
equation (B.19) by substituting Γs with Γ Γ′ ≫s i, and ηs with η η η′ =s s filt, where η = 0.72filt is
the peak transmission of the combination of etalon and VBG. After this substition, the modified
pair rate can be approximated by

η
η

η Γ
η

Γ Γ
Γ

′ ≈ = +
W

R

B
W

1
4

1
. (C.1)2

s

filt
i i 2

filt

s i

s

In our experiment, Γ Γ= 2.5s i, so switching to one-sided filtering would improve the pair rate
by a factor of 2.

Neglecting, for simplicity, detector dark counts, the expression for the zero-delay cross-
correlation function reduces to

Γ Γ

Γ Γ
= +

+( )
g f

B

R
(0) 1 4˜ (0) , (C.2)si

(2)
si

s i

s i
2

which is independent of the filter transmission. Note that the highest cross-correlation is
achieved for Γ Γ=s i. For Γ Γ′ ≫s i, on the other hand, the modified cross-correlation is
approximately

⎡⎣ ⎤⎦ Γ
Γ

′ ≃ + ′g f
B

R
(0) 1 4˜ (0) . (C.3)si

(2)
si

i

s

Without filtering of the signal photon Γ ′s is on the order of the phase-matching bandwidth,
which is three orders of magnitude larger than Γi, practically removing any correlations. This is
because the pair rate becomes negligible compared to the accidental coincidences caused by the
large amount of unfiltered signal photons.

The visibility of the sinusoidal fringes used to characterizate the entanglement in section 7
is related to the cross-correlation function via = − +V g g( 1)/( 1)si

(2)
si
(2) . Hence, a reduction of

the cross-correlation entails a lower-quality entanglement.

Appendix D. Details for the violation of the CHSH inequality

The violation of the CHSH inequality requires the joint measurement of the signal and idler
photons in four combinations of bases. In our case, we chose the idler bases X1 and X2 to
correspond to the Pauli matrices σx and σy, respectively. If the source would produce the Bell
state Φ∣ 〉+ , i.e. equation (7) with ϕ = 0, an optimal choice for the signal photon could be

σ σ= ±Y ( ) 2x y1,2 . For non-zero ϕ, this can be generalized to θ σ θ σ= +± ±Y cos sinx y1,2 with
θ ϕ π= ±± 4. In the experiment, we first determined ϕ by a separate measurement and then
proceeded to the violation of the CHSH inequality, which consists of measuring the four
correlators
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= + − −
+ + +( )E X Y

N N N N

N N N N
, , (D.1)i i

11 22 12 21

11 22 12 21

where, e.g., N11 is the number of coincidences between detectors Si1 and ID2201. The CHSH
parameter is then given by

= + + −S E X Y E X Y E X Y E X Y( , ) ( , ) ( , ) ( , ) . (D.2)1 1 1 2 2 1 2 2

We obtained the following values for the correlators

=
=
=
= −
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( )
( )

E X Y

E X Y

E X Y

E X Y

, 0.638(5),

, 0.702(5),
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, 0.669(5)

1 1

1 2

2 1
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which gives =S 2.708(9).
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Two photons can simultaneously share entanglement between several degrees of freedom such as polari-
zation, energy-time, spatial mode, and orbital angular momentum. This resource is known as hyperentan-
glement, and it has been shown to be an important tool for optical quantum information processing. Here
we demonstrate the quantum storage and retrieval of photonic hyperentanglement in a solid-state quantum
memory. A pair of photons entangled in polarization and energy-time is generated such that one photon is
stored in the quantum memory, while the other photon has a telecommunication wavelength suitable for
transmission in optical fiber. We measured violations of a Clauser–Horne–Shimony–Holt Bell inequality
for each degree of freedom, independently of the other one, which proves the successful storage and retrieval
of the two bits of entanglement shared by the photons. Our scheme is compatible with long-distance quan-
tum communication in optical fiber, and is in particular suitable for linear-optical entanglement purifi-
cation for quantum repeaters. © 2015 Optical Society of America

OCIS codes: (270.0270) Quantum optics; (270.5565) Quantum communications; (270.5585) Quantum information and processing;
(160.5690) Rare-earth-doped materials.

http://dx.doi.org/10.1364/OPTICA.2.000279

1. INTRODUCTION

Quantum entanglement is an essential resource for quantum
information processing, and in particular for quantum com-
munication and for quantum computing. There are many
ways in which quantum systems can be entangled. For exam-
ple, two photons can be entangled in their polarization, or in
their energy. They can also be entangled in more than one of
their degrees of freedom (DOFs), i.e., hyperentangled [1–3].

Two photons can thus share more entanglement bits (ebits)
than what a singly entangled pair allows.

Hyperentanglement is an important resource in optical
quantum information processing [4]. For example, complete
and deterministic Bell-state analysis in one of the DOFs of
a hyperentangled pair is possible with linear optics [5–7]. This
was used to perform quantum teleportation [8–10] and super-
dense coding [11]. Hyperentanglement also has applications in
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optical tests of nonlocality [12], as well as linear-optical quan-
tum computing [13,14] and the generation of multi-qubit en-
tangled states using a smaller number of photons [15]. In this
context, light–matter hyperentanglement was demonstrated
using spatial and polarization DOFs, and was used in a dem-
onstration of one-way quantum computing [16]. The optical
implementation of entanglement purification can be simplified
greatly using hyperentanglement [17]. This could play an im-
portant role in the context of long-distance quantum commu-
nication with quantum repeaters, where purification can be
used to increase the rate at which entanglement is distributed
[18,19]. However, this is possible only if the DOFs in which
the hyperentanglement is coded are suitable for long-distance
transmission, e.g., in optical fiber. Previous demonstrations of
entanglement purification were all based on polarization and
spatial modes [20,21], but the latter is not adequate for long-
distance transmission in fiber. Energy-time (or time-bin) and
polarization hyperentanglement is much better suited for this.
The requirements that then arise for quantum repeaters is to
have quantum memories that can efficiently store both DOFs,
combined with the possibility of efficiently distributing entan-
glement over long distances in optical fiber.

Here we report on the quantum storage of hyperentangle-
ment that is compatible for long-distance quantum communi-
cation in optical fiber. A source first generates photons
hyperentangled in polarization and energy-time. One photon
from the pair is then stored in a quantum memory based on
rare-earth-ion doped crystals that is designed to store both

DOFs. The other photon has a telecommunication wavelength
and can be distributed over long distances.

The paper is organized as follows. In Section 2 we describe
our experimental setup, including the source of hyperen-
tangled photons. Details on the quantum memory are given
in Section 3. Section 4 describes how the Clauser–Horne–
Shimony–Holt (CHSH) Bell inequalities on each DOF are
measured, and Section 5 presents the main results.

2. EXPERIMENTAL SETUP

A conceptual setup of our experiment is depicted in
Fig. 1(a). It consists of a source of pairs of entangled photons
(denoted as signal and idler photons) entangled in both polari-
zation and energy-time, a solid-state quantum memory based
on rare-earth-ion doped crystals, analyzers (denoted as τ) used
to reveal the energy-time entanglement, followed by analyzers
(denoted as π) used to reveal the polarization entanglement.

Figure 1(b) shows a detailed version of our setup. Photon
pairs entangled in both DOFs (hyperentangled photon pairs),
consisting of a signal photon at 883 nm and an idler photon at
1338 nm, are produced by spontaneous parametric downcon-
version (SPDC) in nonlinear waveguides. Energy-time entan-
glement is obtained by pumping the waveguides with a
continuous-wave laser at 532 nm with an average power of
2.5 mW. Photons from a given pair are created simultaneously
at a time that is uncertain within the coherence time of the
pump, which creates the entanglement. The polarization en-
tanglement is generated by sending diagonally polarized pump
light onto a polarizing beam splitter (PBS) that transmits

Fig. 1. Experimental setup. (a) Conceptual setup of hyperentanglement storage inside a solid-state quantum memory (QM). A pair of photons
entangled in polarization (jΨπi) and energy-time (jΨτi) are generated from SPDC. The signal photon is stored inside a quantum memory and released
after a predetermined time of 50 ns. The hyperentanglement is revealed using time-bin analyzers (τ) having short (S) and long (L) arms and adjustable
relative phases (ϕi and ϕs), followed by polarization analyzers (π). (b) Experimental setup (see text for details). Polarization-entangled photon pairs are
created by coherently pumping two nonlinear waveguides (PPLN and PPKTP) and recombining the optical paths. The pump is a CW laser at 532 nm,
which inherently produces pairs that are also energy-time entangled. A dichroic mirror (DM) separates signal and idler photons. The appropriate line-
width for storage of the signal photon in the QM is obtained with narrow filtering (NF), which consists of a cavity and a volume Bragg grating for the
signal (883 nm) and the idler (1338 nm). An optical switch is used to direct either the light necessary for the preparation of the QM, or the signal photons,
to the QM. The time-bin analyzers of the signal and idler photons are made with free-space and fiber components, respectively, using 50/50 beam splitters
(BSs), and are both actively locked. Piezo elements are used to control the phases ϕs and ϕi of the analyzers. They are followed by free-space polarization
analyzers composed of quarter-wave and half-wave plates (QWPs and HWPs) followed by polarizing beam splitters (PBSs). D!s"

1;2 are avalanche
photodiodes, and D!i"

1;2 are WSi superconducting nanowire single-photon detectors.
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horizontal polarization and reflects vertical. The horizontal
output of the PBS is followed by a periodically poled lithium
niobate waveguide (PPLN) oriented to ensure nondegenerate,
collinear type-0 phase matching generating horizontally
polarized photons. Similarly, the vertical output is sent to a
potassium titanyl phosphate waveguide (PPKTP) generating
vertically polarized photons. After each waveguide, the signal
and idler are separated by a dichroic mirror (DM), and the
modes are recombined at a PBS. A photon pair is then in a
coherent superposition of being emitted by the first (jHHi)
and second waveguides (jV V i), yielding a state close to the
maximally entangled Bell state

jΨπi #
1ffiffiffi
2

p !jHH i$ eiθjV V i": (1)

Using the residual pump light collected at the unused out-
put port of the PBS, we derive a feedback signal that is used to
stabilize the phase θ. The polarization entanglement of this
source was described in detail in Ref. [22].

Storage of the photon in an atomic ensemble requires
reducing its spectral width from its initial ≈500 GHz line-
width down to a fraction of the storage bandwidth of the
memory, which is ∼600 MHz. The narrow filtering (NF)
for the signal and idler photons is done in two steps: in each
path, we combine a filtering cavity and a volume Bragg grating
(VBG) to select only a single longitudinal mode of the cavity.
The idler photon first passes through a Fabry–Perot cavity with
linewidth of 240 MHz and free spectral range (FSR) of
60 GHz. It is then followed by a VBG with a FWHM diffrac-
tion window of 27 GHz. The signal photon is first sent onto a
VBG with a spectral bandwidth of 54 GHz and then sent
through an air-spaced Fabry–Perot etalon with a linewidth
of 600 MHz and FSR of 50 GHz. Due to the strong energy
correlation between both photons, the heralded signal
photon’s linewidth is effectively filtered to ≈170 MHz, corre-
sponding to a coherence time τc ≈ 1.9 ns [22].

The signal photon is then sent for storage in a compact,
polarization-preserving, and multimode solid-state quantum
memory (QM), as described in Section 3. It is then retrieved
from the QM after a predetermined 50 ns storage time with an
efficiency of ≈5%.

To reveal energy-time entanglement of the photon retrieved
from the memory, a Franson interferometer [23] is used.
Specifically, each photon is then sent through unbalanced
interferometers with controllable phases and identical travel-
time differences between the short (S) and long (L) arms [these
interferometers are shown as all-fiber Mach–Zehnder interfer-
ometers in Fig. 1(a)]. In practice [Fig. 1(b)], the idler is sent
through an unbalanced all-fiber Michelson interferometer us-
ing Faraday mirrors, and the signal is sent through a free-space
Mach–Zehnder interferometer. The travel-time difference
between the short and long arms is 5.5 ns, which is greater
than the coherence time of the photons τc and eliminates
single-photon interference. However, due to the large uncer-
tainty in the creation time, a coincidence stemming from both
photons traveling the short arms is indistinguishable from one

in which both photons travel the long arms, leading to quan-
tum interference in the coincidence rate.

Hence, interference fringes can be observed by varying the
phase in each interferometer. These coincidences can be seen
as stemming from a time-bin entangled state that is close to the
maximally entangled Bell state

jΨτi #
1ffiffiffi
2

p !jSSi$ jLLi": (2)

Coincidences between photons traveling different arms are
also observed, but they do not yield any kind of interference
and are discarded when analyzing the energy-time DOF. They
can, however, be kept when analyzing the polarization DOF.

When considering entanglement in both DOFs, the state of
a single pair can be written as

jΨτi ⊗ jΨπi: (3)

Both DOFs of a hyperentangled pair can in principle be
manipulated independently, and the quality of the entangle-
ment in one DOF should not depend on the basis in which
the other is measured. In our setup, this is possible only if
polarization rotations, due to birefringent optics, are the same
in both arms of the unbalanced interferometers. For the idler
photon, this is happening automatically, thanks to the Faraday
mirrors reflecting the light with a polarization that is orthogo-
nal to the one at the input of the 50/50 fiber beam splitter
(BS). For the signal photon, this is more challenging because
free-space mirrors affect the phase of the jH i and jV i polar-
izations in different ways. This effectively means that without
any kind of compensation the measurement basis of the time-
bin analyzer is not the same for an input jH i or an input jV i
polarization state. To eliminate this problem, we insert a wave
plate in the long arm. The fast axis is set to horizontal, and the
plate is tilted with respect the beam (see Fig. 1). The tilt con-
trols the relative phase between horizontal and vertical polar-
izations, and is adjusted to equalize the birefringence of both
arms and therefore eliminate the polarization-dependent
relative phase between the two arms.

To lock the phase of the idler’s time-bin analyzer, we use
highly coherent light at 1338 nm obtained from difference-
frequency generation (DFG) from 532 and 883 nm light com-
bined in the PPLN waveguide. A feedback mechanism locks
this DFG light on the idler’s cavity transmission peak [22].
The phase of the interferometer is controlled by coiling the
fiber of the long arm around a cylindrical piezo transducer,
and the interferometer is locked using a side-of-fringe tech-
nique. The phase of the signal photon’s time-bin analyzer is
controlled using a piezo-mounted mirror placed in the long
arm. The phase is probed using part of the CW laser at 883 nm
that is used to prepare the QM. The light is frequency shifted
using an acousto-optic modulator (AOM) and then sent
through the interferometer in a spatial mode that has no over-
lap with the signal photon. The phase of the interferometer is
modulated with a sinusoidal signal oscillating at 18 kHz. This
yields intensity fluctuations that can be demodulated using a
lock-in technique and allows us to obtain the derivative of the
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transmission of the interferometer. To scan the phase, we fix
the locking point to a maxima of the transmission (i.e., a zero
of its derivative) and sweep the frequency of the probe laser
using the AOM. The time difference of 5.5 ns between the
short and long arms yields a period that can be covered by
scanning the frequency over ≈180 MHz. One advantage of
this technique compared to a side-of-fringe lock is that it yields
a locking point that is unaffected by fluctuations of the inten-
sity of the laser that probes the phase.

After the interferometers, the polarization of each photon is
analyzed. Each output of the PBS is coupled into a single-
mode fiber and sent to single-photon detectors. The results
of the measurements made at different analyzers are compared
in order to reveal the nonlocal correlations in both DOFs.
Single-photon detectors with 30% (Si avalanche photodiode)
and 75% (WSi superconducting nanowire [24]) efficiencies are
used to detect the signal at 883 nm and the idler at 1338 nm,
respectively.

The heralding efficiency of signal photons up to the quan-
tum memory is ≈20%, while the overall detection efficiency of
idler photons is ≈10%. The average input pump power at
532 nm of 2.5 mW was used and corresponds to a photon pair
creation probability of ≈0.015 for the time window of τc #
1.9 ns [22]. The overall coincidence rates for the transmitted
and stored photons were ≈20 and 2 Hz, respectively.

3. MULTIMODE AND POLARIZATION-
PRESERVING BROADBAND QUANTUM MEMORY

In this section we describe our quantum memory and how it
can store both DOFs. The storage is implemented using the
atomic frequency comb (AFC) storage protocol in rare-earth-
ion doped crystals [25]. To realize this, the inhomogeneously
broadened absorption profile of the crystal is first shaped into a
comb-like structure in frequency using optical pumping.
When a photon is absorbed by the AFC, it creates an atomic
excitation delocalized over all atoms inside the comb. The col-
lective state then dephases and the excitation is stored. Thanks
to the periodic profile of the AFC, the atoms then collectively
interfere after a specific time, which can lead to reemission of
the signal photon into the same spatial mode it was absorbed
in. The storage time is predetermined and equal to 1∕Δ, where
Δ is the period of the frequency comb.

The temporal multimode capacity for this protocol is given
by the ratio of the storage time over the duration of the tem-
poral modes that are stored. For a given storage time, the
multimode capacity therefore increases with the storage band-
width. The large inhomogeneous broadening of rare-earth-ion
doped crystals makes them an excellent material to realize mul-
timode quantummemories at the single-photon level [26], and
they are well suited for the storage of energy-time and time-bin
entanglement, as demonstrated in [27,28].

We implement the AFC quantum memory protocol using
rare-earth-ion dopedNd3$:Y2SiO5 crystals with a dopant con-
centration of ≈75 ppm. Optical pumping is used to shape the
absorption profile of the QM in an AFC. This requires split-
ting the ground state 4I9∕2 into two Zeeman levels [Fig. 2(a)]
using a static magnetic field of 300 mT [26]. This is done to

spectrally resolve two optical transitions that are inhomogene-
ously broadened to 6 GHz and to perform optical pumping
from one ground Zeeman state to another. The Zeeman split-
ting of the excited state is not spectrally resolved in this con-
figuration. We measured a ground-state Zeeman lifetime of
43 ms using spectral hole burning measurements, which is
much greater than the 300 μs radiative lifetime of the optical
transition, as required for optical pumping. We note that this
lifetime is, however, shorter than the ∼100 ms measured in
30-ppm-doped crystals [26], which unavoidably affects the
quality of the AFC that we can prepare; see below.

The efficiency η of the AFC protocol [25] depends on the
optical depth d through η # d̃ 2e−d̃ e−d 0ηdeph, where d̃ # d

F is
the average optical depth of the comb, F is the finesse of the
comb, d 0 the residual optical depth, and ηdeph is the dephasing
term, which is maximized for square peak shapes [29]. The
storage of polarization qubits in rare-earth-ion doped crystals
is therefore hindered by their polarization-dependent optical
depth. It is, however, possible to mitigate this problem, as
demonstrated in [30–32]. Specifically, consider a crystal cut
such that its input face contains two principal axes of the di-
electric tensor; see Fig. 2(a). Let D1 and D2 be those axes,

Fig. 2. Scheme for storage of polarization qubits. (a) Energy level
structure of Nd3$ ions inside a Y2SiO5 crystal with and without applied
external magnetic field B # 300 mT. External magnetic field lies in
D1–D2 plane with 30° angle with respect to D1 axis. (b) The compact
configuration of the quantum memory is obtained by placing a HWP
between two identical Nd3$:Y2SiO5 crystals. The fast axis of the HWP
is oriented at 45° with respect to the axesD1 andD2, which are the two of
the principal axes of the dielectric tensor. The 14-mm-long arrangement
is cooled to 2.7 K and placed in a static magnetic field to split the ground
into two Zeeman levels. (c) The optical depth of the two-crystal configu-
ration is shown as a function of the linear polarization angle of the input.
The green squares and blue circles correspond to transitions [(1) and (2)]
from each of the Zeeman-split ground states shown in (a). Lines are fits of
the model described in [33].
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which we assume coincident with the polarizations for which
the optical depth is minimum and maximum. This condition
is satisfied for a yttrium orthosilicate crystal doped with neo-
dymium ions [30], Nd3$:Y2SiO5, the material we use here.
Let d 1 and d 2 be the optical depth for light polarized along the
D1 and D2 axes. By placing two identical crystals on each sides
of a half-wave plate (HWP) oriented to rotate a D1-polarized
photon to D2 and vice versa, an absorbed single photon with
an arbitrary polarization will be in superposition of being
stored in both crystals with an effective optical depth equal
to d 1 $ d 2, yielding a polarization-independent efficiency.

Here we realize this polarization-independent scheme in a
compact manner using two 5.8-mm-long Nd3$:Y2SiO5 crys-
tals placed on each side of a 2-mm-thick HWP, resulting in a
total length of about 14 mm [Fig. 2(b)]. This setup system is
cooled to a temperature of 2.7K using a closed-cycle cryocooler.
The Nd3$ dopant concentration is higher than we used in a
previous demonstration of polarization-independent storage
of single photons [30]. The higher doping level allows us to use
shorter crystals for a more compact setup. All faces of the crys-
tals, HWP, and cryostat windows are coated with antireflective
films, and the overall transmission through the system is higher
than 95%, when factoring out the absorption of the crystals.

We achieve an average optical depth of 2.35% 0.10, aver-
aged over all linear polarization states, for the optical transition
starting from the higher-energy level of the Zeeman doublet.
The variations are smaller than 5% [Fig. 2(c)]. They may be
attributed to the imperfect alignment and retardation of the
HWP, as well as an imperfect optical alignment of the beam
with respect to the input face. The transition from the other
Zeeman level yields 2.85% 0.11 [see Fig. 2(c), blue circles].
This difference is consistent with thermalized populations,
which dictates that the ratio of the optical depths should be
exp!−ΔE∕kBT ", where ΔE # hΔν, Δν # 11 GHz, kB is
Boltzmann’s constant, and T is the temperature. For our tem-
perature of 2.7 K, the expected ratio is 0.82, which matches the
observed ratio of 2.35∕2.85 # 0.825. For our storage of hy-
perentangled photons, we could only use the optical transition
with the lowest optical depth due to the limited tuning
range of the Fabry–Perot etalon of the source. Using the other
optical transition could have led to a higher quantum memory
efficiency.

The AFC is prepared with an AOM that modulates the in-
tensity and frequency of the light from an external cavity diode
laser centered on the absorption line of the 4I9∕2 → 4F 3∕2
transition. In this way we create a 120 MHz absorption comb
with a spacing of Δ # 20 MHz between the peaks, which cor-
responds to 1∕Δ # 50 ns storage time [25]. To extend the
bandwidth of QM beyond the 120 MHz limit imposed by
the double-pass in the AOM, the light from the AOM is
coupled inside an electro-optical phase modulator that creates
first- and second-order sidebands separated by 120 MHz from
each other. This yields an overall comb width of 600 MHz,
larger than the 170 MHz spectrum of the heralded signal pho-
ton, as shown in Fig. 3. The contrast of the absorption profile
is reduced on the sides due to the smaller optical power
available in the second-order sidebands. The fact that the

maximum optical depth of the comb (1.8) is less than the
one of the transition itself (2.35) can be attributed to power
broadening, which can reduce the maximum optical depth
between the peaks. The remaining absorption of d 0 ≥ 0.25
also reduces the storage efficiency. The efficiency of the quan-
tum memory with this comb is ≈5% for a 50 ns storage time,
while the total absorption and the transmission of the memory
are both close to 50%. Imperfect rephasing and reabsorption
processes inside the memory lead to the decrease of the QM
efficiency [25]. The photons that were not absorbed could be
used to analyze storage process and calibrate the analyzers for
CHSH inequality violation.

4. BELL TESTS ON HYPERENTANGLEMENT

A quantum state is hyperentangled if one can certify entangle-
ment for each entangledDOF. Therefore, it is enough to violate
a Bell inequality in both polarization and time independently to
demonstrate hyperentanglement. Here we use the inequality
derived by Clauser et al. [34] (CHSH) to witness entanglement.
The Bell–CHSH inequality for a single DOF reads

S# jE!X;Y"$E!X 0;Y"$E!X;Y 0"−E!X 0;Y 0"j≤ 2; (4)

where X and X 0 (Y and Y 0) are two observables that are mea-
sured on the signal (idler) side. E is the correlator corresponding
to the expectation value of the correlation between measure-
ment results obtained on both photons of an entangled pair.
Those correlators are calculated from the number of coinciden-
ces between idler detectorD!i"

k and signal detectorD!s"
l , denoted

Rkl , where k; l ∈ f1; 2g are the possible outcomes for each
measurement. In terms of the coincidence rate, the correlation

Fig. 3. Spectrum of the AFC prepared by optical pumping inside the
absorption profile. The central 120-MHz-wide region is prepared by the
carrier frequency of the laser diode that is modulated in intensity and
frequency by an AOM. The subsequent 120-MHz-wide regions on both
sides are prepared by generating first- and second-order sidebands sep-
arated by 120 and 240 MHz from the carrier frequency, respectively,
using an electro-optic phase modulator placed after the AOM. The fi-
nesse of the comb is ≈2, and the width of the comb is ≈600 MHz.
For comparison, the dashed red line shows the power spectra of a
170 MHz Lorentzian, which is close to the spectral width of the heralded
signal photon. The values of d and d 0 used in equation of efficiency are
shown for the central part.
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function is written as E # &R11 $ R22 − R12 − R21'∕RT , where
RT #

P
k;l Rkl is the total rate of coincidences.

Let us first consider the polarization DOF only, and
suppose for now that the time-bin analyzers in the setup of
Fig. 1 are bypassed. Consider as well that the signal and idler
photons are measured in the set of linear polarizations. This is
done by setting the QWPs of the analyzers at 0° with respect to
horizontal, and the HWPs at θs and θi for the signal and idler,
respectively. Finally, let us assume the phase θ of state jΨπi is
equal to zero [Eq. (1)]. One can show that the coincidence
rates should be R!π"

11 # R!π"
22 ∼ !1$ V π cos&4!θs − θi"'" and

R!π"
12 # R!π"

21 ∼ !1 − V π cos&4!θs − θi"'". In these expressions
we introduced the polarization entanglement visibility 0 ≤
V π ≤ 1 that arises by assuming the experimental imperfections
can be described by replacing jΨπi with a Werner state of
visibility V π [35].

Let us now consider the case in which the interferometers are
inserted before the polarization analyzers, as in Fig. 1. This
yields a Franson interferometer, and one can show that the ob-
served coincidence rate between D!s"

k and D!i"
l (when consider-

ing the appropriate time difference between detections; see
below) is given by

R!π;τ"
kl # R!π"

kl · R!τ"; (5)

where R!τ" ∼ !1$ V τ cos&Δϕs $ Δϕi'", and Δϕs (or Δϕi) is
the relative phase between the long and short arms of the signal
(or idler) interferometer. Like the polarization DOF, we
assumed the measurement is performed on a Werner state of
visibilityV τ instead of jΨτi. Note that in our setup, we use only
one of the output ports of the interferometers. This translates
into saying thatR!τ" corresponds to one of the four rates possible
R!τ"
mn (m; n ∈ f1; 2g" at a time.Which one is measured is decided

by an appropriate choice of the relative phases Δϕs;i. This limi-
tation can nevertheless be used to violate a Bell–CHSH inequal-
ity, assuming fair sampling of the outcomes.

When measuring the Bell–CHSH inequality on the polari-
zation DOF only, R!π"

kl is obtained from a measurement of
R!π;τ"
kl by considering R!τ" as a constant loss factor. Measure-

ment of R!τ" is obtained by summing all coincidences between
either D!s"

1 or D!s"
2 and D!i"

1 or D!i"
2 . Quantum mechanics pre-

dicts that Sπ ≤ 2
ffiffiffi
2

p
V π (or Sτ ≤ 2

ffiffiffi
2

p
V τ) for polarization (or

energy-time), where the inequality is saturated with an optimal
set of measurements. The local bound is Sπ;τ # 2.

5. RESULTS

Before characterizing quantum correlations, we first need to
determine the phase θ of the polarization-entangled state
jΨπi, as well as the sum Δϕs $ Δϕi of the phases of the inter-
ferometers. Once they are known, we consider them as phase
offsets in R!π"

kl and R!τ". For this, we use the signal photons that
are transmitted by the quantum memory (i.e., not stored). We
do so because the signal photons are more likely to be trans-
mitted than stored and retrieved, and this allows a faster char-
acterization of the phases. Figure 4(a) shows coincidence

histograms between the pair of detectors D!s"
1 and D!i"

1 (the
other histograms are similar). The coincidences are resolved
into two satellite peaks and a central peak. The rate estimated
from the central peak corresponds to R!π;τ"

11 . The rate in the
satellite peaks is proportional to R!π"

11 only since the timing be-
tween detections cannot lead to quantum interference due to
the energy-time entanglement. Hence, the satellite peaks are
included in the analysis of the polarization entanglement,
but not in that of the energy-time.

To extract Δϕs $ Δϕi, we scan the free-space interferom-
eter as described in Section 2, while the polarization is mea-
sured in the basis fjHi; jV ig on both sides. In this way,
detectors D!s"

1 and D!i"
1 are revealing the energy-time entangle-

ment of the jHH i component of jΨπi, while D
!s"
2 and D!i"

2 are
revealing that of the jV V i component. Figure 5(a) shows
coincident events in the central peak as a function of Δϕs,
while Δϕi is kept constant. The rates R!π;τ"

11 (solid line) and
R!π;τ"
22 (dashed line) overlap, as is required to measure both

DOFs independently. The visibility is V τ # 92!3"%.
To extract the value of θ, we set Δϕs $ Δϕi # 0 and

Fig. 4. Example of measurements used to violate CHSH inequality for
time-bin qubits. The coincidence histograms between detectors D!s"

1 and
D!i"

1 show three peaks corresponding to different path combinations for
(a) transmitted signal photon, i.e., not absorbed by the QM, and
(b) stored signal photon. Each figure represents a histogram from one
measurement outcome, R!π;τ"

11 , of a correlator in the Bell–CHSH inequal-
ity [Eq. (4)]. The insets correspond to histograms with an additional π
phase shift between the two interferometers. Varying the angles of the
polarization analyzers leads to variations of the intensity of all three peaks
simultaneously.
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project the idler photon in the basis fj$i; j−ig, where
j%i # 1ffiffi

2
p !jHi% jV i". This prepares the signal photon in

the state 1ffiffi
2

p !jH i% eiθjV i". The QWP of the signal polariza-
tion analyzer is then set to transform that state into one with a
linear polarization. Figure 5(b) shows the rates R!π"

11 and R!π"
22 , as

a function of the HWP angle, from which the phase of the
polarization Bell state can be extracted from the horizontal
offset. The visibility V π # 96!2"%.

Once the phases are estimated, we measure correlations that
violate the Bell–CHSH inequality for each DOF using the
photons that are stored and retrieved from the quantum
memory. To illustrate the independence between the two
DOFs, each polarization measurement was performed using
two different projection bases for the energy-time DOF,
and vice versa. Specifically, the test on the energy-time
DOF was done using either the polarization basis π1 #
fjH i; jV ig for both photons, or π2 # fj$i; j−ig. The test
on the polarization DOF was done with either Δϕs $ Δϕi #
ϕsi # 0 (denoted by τ1) or ϕsi # π

4 (denoted by τ2). The values
of the measured correlators are shown on Fig. 6. The corre-
sponding CHSH parameters are S!τ1"π # 2.59!4" and S!τ2"π #
2.64!4" for polarization entanglement, and S!π1"τ # 2.60!7"
and S!π2"τ # 2.49!4" for the energy-time. The violations ex-
ceed the local bound by more than eight standard deviations.
To see the effect of the storage process on the quality of
the hyperentanglement, we performed the same analysis using
the transmitted signal photons. Table 1 summarizes all the
results.

The values for Sπ and Sτ for stored photons are all lower
than for transmitted photons except the Sτ value for the π1
polarization basis (which we believe is higher due to a statistical
fluctuation). The lower values are most likely caused by acci-
dental coincidences between idler photon (from one photon
pair) and signal photon (from another photon pair) generated
within the time delay equal to the storage time of the memory.
This effect was studied in detail in a previous publication [36].
It limits the maximally achievable visibility and reduces the
CHSH inequality violation. The relative difference between
the transmitted and the stored cases is at most 5%, and hence
the storage in the QM has very little effect on the quality of the
hyperentanglement.

Fig. 5. Calibration of the analyzers using transmitted signal photons.
(a) Rates in the central coincidence peak of Fig. 4(a) are plotted as a
function of the sum of the phases of each interferometer, for both output
ports of the polarization analyzer. The small phase shift between the
curves appears due to a residual phase difference between jH i and
jV i components at the output of the interferometer on the signal side.
(b) Rates in the central coincidence peak of Fig. 4(a) as a function of
polarization analyzer’s HWP angle of the signal photon (with the
QWP at 45°), for two pairs of detectors, namely D!s"

1 and D!i"
1 (solid line)

or D!s"
2 and D!i"

2 (dashed line). Each curve represents a fit to data points
using a sinusoidal function, and the error bars are estimated assuming
Poisson statistics for the counts. The average visibilities for polarization
and energy-time entanglement are V τ # 92!3"% and V π # 96!2"%,
respectively.

Fig. 6. Correlators for stored photons. The four panels are different
sets of correlation measurements that violate the Bell–CHSH inequality
of Eq. (4) reported in Table 1. The top row shows the values for polari-
zation measurements with either (a) measurement on the energy-time
entanglement such that Δϕs $ Δϕi # 0 or (b) Δϕs $ Δϕi # π∕4.
In the bottom row we show the values for energy-time measurements
while projecting the polarization of both the signal and the idler in
(c) the fj$i; j−ig basis, or (d) the fjH i; jV ig basis (right).

Table 1. Summary of all Bell–CHSH Violationsa

S (Transmitted) S (Stored)

π τ π τ

π1:fjHi; jV ig – 2.555(13) – 2.60(7)
π2:fj$i; j−ig – 2.571(11) – 2.49(4)
τ1:ϕsi # 0 2.716(11) – 2.59(4) –
τ2:ϕsi # π

4 2.733(12) – 2.64(4) –
aMeasured S parameters obtained with transmitted or stored signal photons are

shown. For each case, tests on the energy-time (τ) DOF were done with either the
polarization basis π1 # fjHi; jV ig or π2 # fj$i; j−ig, and tests on the
polarization (π) DOF were done with Δϕs $ Δϕi # ϕsi # 0 (τ1) or π

4 (τ2).
These results show clear violations of Bell–CHSH inequality and demonstrate
entanglement in all DOFs studied.
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6. CONCLUSIONS

We have shown the storage of energy-time and polarization
hyperentanglement in a solid-state quantum memory. This
choice of DOFs, combined with the fact that one of the pho-
tons of each pair is at a telecom wavelength, makes our source
and memory very attractive for the implementation of linear-
optical entanglement purification in quantum repeaters. This
would ultimately require the use of a quantum memory that
can retrieve photon on-demand using a complete AFC storage
scheme [25,37]. Alternatively, a scheme based on spectral
multiplexing [38] could be used. The storage of hyperentan-
glement demonstrated here is suitable with both of the ap-
proaches. Our experiment also shows that we can store two
ebits in a single quantum memory. Expanding on this idea,
our memory could be used to store other DOFs, and an even
larger number of ebits, by using frequency, orbital angular mo-
mentum, and spatial modes. The multimode capacity of rare-
earth-ion doped quantum memories goes beyond the temporal
DOF, and this might prove a useful tool for optical quantum
information processing.
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Quantum mechanics predicts microscopic phenomena with undeniable success. Nevertheless, current
theoretical and experimental efforts still do not yield conclusive evidence that there is or is not a fundamental
limitation on the possibility to observe quantum phenomena at the macroscopic scale. This question prompted
several experimental efforts producing quantum superpositions of large quantum states in light or matter. We
report on the observation of quantum correlations, revealed using an entanglement witness, between a single
photon and an atomic ensemble of billions of ions frozen in a crystal. The matter part of the state involves the
superposition of two macroscopically distinguishable solid-state components composed of several tens of
atomic excitations. Assuming the insignificance of the time ordering our experiment indirectly shows light-
matter micro-macro entanglement. Our approach leverages from quantum memory techniques and could be
used in other systems to expand the size of quantum superpositions in matter.

DOI: 10.1103/PhysRevLett.116.190502

Quantummechanicshasbeen tested inmanysituationswith
a remarkably excellent agreement between theory and experi-
ments. There remains, however, one interesting challenge,
namely, to demonstrate quantum effects at larger and larger
scales [1–3]. This is a timely topic, especiallywith the advance
ofquantumtechnologies thatallowone toentanglemanykinds
of systems involving photons, artificial solid-state atoms,
trapped ions, atomic ensembles, nanomechanical oscillators,
and large molecules, to name but a few. These approaches all
involve “individual” quantum systems (even though each
system may be composed of a large number of particles) and
should be distinguished from ensemble quantum effects such
as superconductivity [4]. These individual systems offer a
uniqueapproach to studymacroscopicquantumeffects,which
raises interesting questions: How far can entanglement hold
in such systems? How can one compare different systems?
There are many approaches trying to define what

constitutes a quantum superposition of macroscopic states
[5–7]. The one we use is based on the distinguishability
between the states forming the superposition, as formalized
in Ref. [8]. More precisely, we say that two quantum states
are macroscopically distinct if they can be distinguished
with a detector that has a coarse-grained resolution, and we
use “macroscopic” to mean “macroscopically distinguish-
able.” This introduces some degree of arbitrariness in what
should be the minimum level of coarse-graining, which
reflects the challenge of defining such a measure. Instead of
trying to achieve this, we use a way to compare different
kinds of states to assign them an effective size, as detailed
in Ref. [9]. Consequently, the number of particles (or
photons) is not used to define the macroscopic nature of the
superposition state. Rather, the number of particle is a
property of the state that, when increasing, makes the two

components easier to distinguish with a given coarse-
grained detector (and hence look more like distinct macro-
scopic objects). Interestingly, the more distinguishable the
states become, the more challenging it is to experimentally
reveal that they have quantum features (such as entangle-
ment in a micro-macro entangled state) [8], which explains
why we do not easily observe such kind of states.
Quantum optics offers a powerful approach to study the

quantum features of superpositions of macroscopic states.
Purely photonic experiments for example have reported
on superposition of coherent states with opposite phases
[10–14], squeezing [15,16], and micro-macro entanglement
[17–21]. Hybrid systems have also been exploited for
micro-macro entanglement where the micro part was an
atom and the macro part contained up to 4 photons [22]. It
was proposed to use mirror-Bose-Einstein condensate to
observe macroscopic quantum superpositions between
light and matter [23]. In matter, GHZ-type states have
been produced with up to 14 trapped ions [24]. Here we
report on the observation of quantum correlations between
a single photon and an atomic ensemble containing up to
47 atomic collective excitations. We give evidence that it
constitutes genuine light-matter micro-macro entangle-
ment. Hereinafter in the article the term micro-macro
entanglement is used assuming the irrelevance of the time
order of the measurements. Correctness of this approxi-
mation was recently emphasized with a delayed-choice
entanglement swapping experiment [25].
Our implementation, inspired from the proposal of

Ref. [26] and experiments [18,19], lies within this scenario.
More precisely, we start from two photons entangled in
polarization and use a local displacement operation to
displace, in optical phase space, one polarization mode of
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one photon from the pair. The displacement populates one
of the polarization modes with a large number of photons,
without affecting the amount of entanglement. The dis-
placed photon is then mapped to an atomic ensemble,
creating the light-matter micro-macro entangled state.
Our experiment is conceptually represented on Fig. 1(a).

First, an entangled photon pair is generated in the micro-
micro state

jψi ¼ 1
ffiffiffi

2
p ðj1; 0isj1; 0ii þ j0; 1isj0; 1iiÞ; ð1Þ

where s and i subscripts are two modes corresponding to
the generated signal and idler single photon, while
j1; 0isðiÞ ≡ jHisðiÞ and j0; 1isðiÞ ≡ jVisðiÞ correspond to
the horizontal polarization state of the signal (idler) photon
and the vertical polarization state, respectively. To displace
one of the polarization modes of s, the signal photon is
superimposed with a horizontally polarized coherent state
pulse (CSP) on a highly transmissive beam splitter. This
corresponds to a unitary displacement operation Ds

HðαÞ on
the horizontal mode of the signal photon transmitted
through the beam splitter [27]. The average number of
photons contained in the displacement pulse is given by
jαj2. After displacement, the state is written as

jΨi ¼ 1
ffiffiffi

2
p ½ðDs

HðαÞj1; 0iÞsj1; 0ii þ jα; 1isj0; 1ii�: ð2Þ

This micro-macro entangled state (denoted with a capitalΨ
for emphasis) contains a displaced single-photon state of
the form DðαÞj1i in the first term, and a coherent state
jαi ¼ DðαÞj0i in the second. The idler photon plays the
role of the “micro” component of the entangled state.
Importantly, increasing jαj makes these two terms become
more and more distinguishable when using a coarse-
grained detector (on the signal mode) [9]. This is discussed
in detail below.
We use a quantum memory (QM) protocol to coherently

map the state of the signal mode to the collective state of an
ensemble of neodymium atoms frozen in a crystal host
[32]. This creates ηabsjαj2 atomic excitations on average,
where ηabs is the absorption probability of the QM. The
atomic state obtained after this linear mapping contains the
atomic equivalents of the optical states jαi andDðαÞj1i [5].
These atomic states can in principle be directly distin-
guished using a readout technique that has an intrinsically
limited microscopic resolution, as it was shown experi-
mentally in Ref. [33]. Instead, here we analyze the
reemission and infer, i.e. indirectly, the atomic state from

(a) (b)

FIG. 1. Experimental scheme. (a) Conceptual scheme for the creation and analysis of the light-matter micro-macro entangled state jΨi.
First, a displacement operation Ds

HðαÞ is applied on the signal mode of the micro-micro polarization entangled state jψi using a beam
splitter (BS) with high transmittance. The displaced signal photon of the micro-macro state jΨi is then mapped inside a solid-state
quantum memory (QM) that has a storage and retrieval efficiency η. To characterize the state, it is first displaced back to jψi (in the ideal
case) when it is retrieved from the memory using Ds

Hð−
ffiffiffi

η
p

αÞ, and is then analyzed using various entanglement witnesses. (b) Detailed
setup. A polarization entangled pair of photons is created using spontaneous parametric down-conversion from two periodically poled
nonlinear waveguides (PPLN and PPKTP) placed in the arms of a polarization interferometer [28] seeded by a continuous wave laser
(532 nm wavelength). Dichroic mirror (DM) is used to separate two photons spatially. After the spectral filtering the idler photon is

detected by one of the detectors (DðiÞ
1 or DðiÞ

2 ). This event heralds a single photon in the signal mode, and it triggers the generation of a
coherent state pulse (CSP) using an electro-optical intensity modulator (EOM) that carves a pulse out of a continuous wave laser at
883 nm. The CSP is sent in the QM in a different spatial mode than the signal mode. This further allows preparing both the displacement
and back-displacement pulses with the required delay and amplitudes (see text and [29] for details). The relative phase necessary for this
is set by an electro-optic phase modulator (PM). The first displacement pulseDs

HðαÞ is synchronized with the heralded single photon on
a BS that has a 99.5% transmittance. The resulting state jΨi is stored inside the QM and released after a predetermined time of
τs ¼ 50 ns. The second displacementDs

Hð−
ffiffiffi

η
p

αÞ is then applied on the state retrieved from the QM. The state is analyzed, together with
the idler photon previously measured, using free-space polarization analyzers composed of quarter-wave (λ=4) and half-wave (λ=2)
plates followed by polarizing beam splitters (PBS).
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a model using independent measurements discussed in the
text. Thus, after a predetermined storage time τs ¼ 50 ns,
the atomic state is mapped back to the optical signal mode.
We note that the storage time is much shorter than the 57 μs
coherence time and 300 μs lifetime of the optical transition.
Hence, the collective atomic state is coherent throughout
the whole process.
As part of the measurement of the light-matter entangled

state, the state retrieved from the QM is first displaced back
with Ds

Hð−
ffiffiffi

η
p

αÞ, where the amplitude is reduced by
ffiffiffi

η
p

to
match the limited storage efficiency η of the QM. To
achieve this, an optical pulse is sent through the QM. The
timing is such that the part of this pulse that is transmitted
(i.e. not absorbed) by the QM precisely overlaps with the
displaced signal photon retrieved from the QM. This is
equivalent to overlapping them on a beam splitter that has a
limited transmittance, and thus it corresponds to a dis-
placement operation accompanied by loss (see [29] for
details). In the ideal case, the back-displacement would
entirely remove the initial displacement and yield the
original micro-micro optical entangled state jψi. In prac-
tice, the displacement back is never perfect in amplitude
and phase, which creates noise that limits the maximum
size of macroscopic component that can be observed. We
note that the displacement happens after the detection of
the idler photon. This order could be reversed by using a
pulsed laser to generate the entangled photons. The
formalism of quantum mechanics indicates that this would
lead to the same results as the ones observed here (see [29]
for details). Under this natural assumption, our results
demonstrate light-matter micro-macro entanglement.
As shown in Fig. 1(b) a 532 nm continuous wave laser is

coherently pumping two nonlinear waveguides, which
probabilistically creates photon pairs at 883 nm (the signal
photon) and 1338 nm (the idler photon). Each photon pair
is in superposition of being created in the first waveguide
(with horizontal polarizations) and in the second waveguide
(with vertical polarizations). Recombination of the output
modes of the waveguides leads to a state that is close to the
maximally entangled state (1) [28]. The spectrum of the
idler photon (the signal photon) is filtered to a Lorentzian
linewidth FWHM of 240 MHz (600 MHz) using the
combination of a Fabry-Perot cavity (etalon) and a highly
reflective volume Bragg grating (see Ref. [28] for details).

Detection of the idler photon by detector DðiÞ
1 or DðiÞ

2

heralds a single photon in the signal mode. The detection
signal is also used to generate a CSP using an electro-
optical intensity modulator which carves a pulse out of a
continuous wave laser at 883 nm.
The QM is based on the atomic frequency comb storage

protocol [32]. To store light with an arbitrary polarization,
we use a configuration consisting of two inline neodymium-
doped yttrium orthosilicate crystals Nd3þ∶Y2SiO5 separated
by a half-wave plate. This configuration was previously used
to faithfully store polarization qubits [34–36], to perform

light-to-matter quantum teleportation [37] and to store
hyperentanglement [38]. The bandwidth of the prepared
QM is 600 MHz and it stores photons for 50 ns with an
overall efficiency of η ¼ 4.6ð2Þ%. The back-displacement
operation is performed with an interference visibility of
99.85%, which is remarkably close to being perfect; this is
crucial to maximize the size of the displacement.
To quantify how much of the light contained in the

displacement pulse is actually displacing the single photon,
we must evaluate to what extent their modes are indis-
tinguishable [9]. This was done using Hong-Ou-Mandel
interference and measured a visibility of 74% compared to
85% expected (see [29] for details).
To reveal quantum correlations in the light-matter micro-

macro state, we use two methods: the violation of a
Clauser-Horne-Shimony-Holt (CHSH) Bell inequality
[39] and quantum state tomography.
We first performed the CHSH test without any displace-

ment operations and obtained a parameter S ¼ 2.59ð3Þ,
which is above the local bound of 2 by 20 standard
deviations. This was then repeated with an increasing
displacement size jαj2. The results shown on Fig. 2 are
in a good agreement with a theoretical model based on
independently measured experimental parameters (see [29]
for details). We note that the bases used for all CHSH tests
are composed of states of even superposition of jHi and
jVi. A value of S ¼ 2.099ð31Þ is obtained for a displace-
ment containing a mean photon number of jαj2 ¼ 13.3ð3Þ
before mapping the state in the QM. Using the absorption
probability ηabs ≈ 55%, this corresponds to about 7 excited
atoms (see [29] for details). Interestingly, violating the

FIG. 2. Measured values of the S parameter of the CHSH-Bell
inequality (dots) as a function of the size of the displacement
before the QM (top x axis) or as a function of the average number
of atomic excitations inside the QM (bottom x axis). CHSH
violation values are above the local bound with up to 7 excitations
on average, and above the entanglement bound with up to 23
excitations on average. The error bars are estimated assuming
Poisson statistics for the detections. The solid line is obtained
from a theoretical model based on independently measured
parameters, and the shaded area represents a one standard-
deviation uncertainty on the predictions of the model.
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CHSH inequality shows that the light-matter micro-macro
state could lead to the strongest form of quantum correla-
tions, namely, nonlocal correlations. Alternatively, the Bell
inequality can be used as an entanglement witness if we find
S ≥

ffiffiffi

2
p

≈ 1.41 [40]. We measured S ¼ 1.65ð5Þwith a mean
photon number of jαj2 ¼ 42ð2Þ before the QM, correspond-
ing to ≈23 excited atoms inside the QM. This is above the
separability bound by 4 standard deviations.
To fully characterize the entanglement of the retrieved

micro-micro quantum state, we performed an overcomplete
set of tomographic measurements and reconstructed the full
density matrix. To prove that the state is still entangled we
use two criteria, namely, the positivity under partial trans-
position (PPT) [41], and the concurrence (which is based
on the concept of the entanglement of formation) [42].
Figure 3(a) shows results obtained for increasing the size
of the displacement. A negative value of −0.055ð10Þ is
obtained for the PPT test and a positive concurrence of
0.246(41) is obtained for displacements with jαj2 ¼ 86ð3Þ
photons before the QM. This corresponds to ≈47 excited
atoms in the atomic ensemble. These results are in a good
agreement with our theoretical model described in the SM.
We attribute the scatter of the data to the fluctuations of the
visibility of the back-displacement operation.
The reported light-matter state can be considered as a

micro-macro entangled state for the following reason. Let us
illustrate first how the size of a given state can be evaluated
from the coarse-grained measure presented in Ref. [9] by
focusing on the state (2), which can be rewritten as

½Ds
HðαÞðj0isH þ j1isHÞ�ðj0isV j1; 0ii þ j1isV j0; 1iiÞ
− ½Ds

HðαÞðj0isH − j1isHÞ�ðj0isV j1; 0ii − j1isV j0; 1iiÞ;

where the normalization is omitted. The state therefore
involves the superposition of Ds

HðαÞðj0i þ j1iÞ and
Ds

HðαÞðj0i − j1iÞ in the horizontal mode of the signal
photon, and one can obtain one or the other by measuring
the idler photon in the basis of diagonal polarizations.
Although these two components partially overlap in the
photon number space, the distance between their mean
photon numbers is given by 2jαj; see Fig. 3(b). For
jαj2 ≳ 2, they can be distinguished with a single measure-
ment with a probability of ≈91% using a detector that has a
perfect resolution [9]. If measured with a coarse-grained
detector, this probability is reduced to 50% when the coarse
graining is of the order of jαj or more. The effective size of
the state (2) can be naturally quantified by the maximum
coarse-graining σmax that allows one to distinguish the two
components Ds

HðαÞðj0i þ j1iÞ and Ds
HðαÞðj0i − j1iÞ with a

given probability Pg, where Pg should be significantly above
50% to be meaningful for a single-shot measurement.
Similarly, the effective size can be evaluated by comparing
the results to an archetypical state involving the super-
position of j0i and jNi Fock states, where N is the smallest

value that allows distinguishing j0i from jNi with a
probability Pg and a coarse graining σmax. From our results,
which are well reproduced by our theoretical model based on
independent measurements, we can confidently give an
estimate of the size of the light-matter state from which
the entanglement is measured. For Pg ¼ 2=3, the state is
analogous to the state j↑ij0i þ j↓ijNi with N ≈ 13, where
j↑i and j↓i represent microscopic orthonormal states.
Naturally, one must also carefully consider the effect of

loss in the signal mode before the beam splitter used for the
displacement, aswell as the absorption probability in theQM.
In the SMwe show that if the heralding probability to find the
signal photon at the beam splitter is ηh and the absorption in
the QM is ηabs, the displacement creates a mixture of the
state jΨi with a displacement of amplitude

ffiffiffiffiffiffiffi

ηabs
p

α with
probability ηhηabs, and a separable state with the complimen-
tary probability. In our case we have ηhηabs≈10%, which
makes the two macroscopic states nearly indistinguishable,
evenwith a detectorwith perfectmicroscopic resolution. This
exemplifies that the direct observation of macroscopic fea-
tures is a very challenging task. Nevertheless, we stress that

(a)

(b)

FIG. 3. Quantum state characterization. (a) PPTand concurrence
values (obtained from quantum state tomography) as a function of
the size of the displacement before the QM (top x axis) or as a
function of the average number of atomic excitations inside the
QM (bottom x axis). The error bars are estimated fromMonte Carlo
simulations assuming Poisson noise. The PPT criteria remains
negative and the concurrence value remains positive with up to 47
excitations on average. The solid lines in all graphs are obtained
from a theoretical model based on the independently measured
parameters, and the shaded areas are the uncertainty on these
parameters. (b) Distribution of number of atomic excitations of the
two macroscopically distinguishable components DðαÞj1i and jαi
when expressed in the fj0i þ j1i; j0i − j1ig basis.
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the entanglement signature that we directly observe is
stemming from the micro-macro state component of the
mixture, whose effective size is defined as above. The
observation of this entanglement, and its behavior with
increasing size, is the main result of this Letter. The direct
observation of the size of the superposition with an actual
coarse-grained detector is left for future work. This would
require reduced loss and a highly efficient quantummemory.
Achieving this is certainly conceivable, given the large
storage efficiencies that can now be obtained with some
quantum memories [43] and with the progress of linear
detectors to achieve subshot-noise resolution (e.g. see [44]).
Homodyne detection could also prove useful for distinguish-
ing the states, as demonstrated in Ref. [19]. Overall, our
approach could certainly be improved with other types of
quantum memory, which has the potential to yield larger
quantum superpositions in matter.
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In this Supplemental Material, we provide details on
our experiment and we describe the theoretical model.
Section I describes the details of the implementation of
the displacement operations. Section II presents the
Hong-Ou-Mandel dip experiment to prove the indistin-
guishability of the heralded single photon and the co-
herent state pulse. Section III presents two theoretical
models to compare to our experimental results.

I. IMPLEMENTATION OF THE
DISPLACEMENT OPERATION

Displacement with an arbitrary polarization state

Here we show that the polarization state of the dis-
placement pulse can be arbitrary without changing the
description of our experiment. Let us consider the case
where the polarization of the displacement is expressed
as |ψ〉 = α|H〉 + β|V 〉. The displacement is applied to
1√
2

(
|H〉s |H〉i + eiθ |V 〉s |V 〉i

)
. We note that

1√
2

(
|H〉s |H〉i + eiθ |V 〉s |V 〉i

)

=
1√
2

(
|ψ〉s |φ〉i + eiθ

∣∣ψ⊥
〉
s

∣∣φ⊥
〉
i

)
, (1)

where |φ〉 = α∗ |H〉 + eiθβ∗ |V 〉, 〈φ|φ⊥〉 = 〈ψ|ψ⊥〉 =
0. We see directly that a displacement with polariza-
tion |ψ〉 will produce a state equivalent to displacing
1√
2

(
|H〉s |H〉i + eiθ |V 〉s |V 〉i

)
with a horizontal polariza-

tion.

Displacement with a quantum memory

Here we explain how the quantum memory (QM) can
be used to realize the displacement operations. For our
purpose, the QM can be seen as a storage loop. As shown
on Fig. 1a, light incident on the QM is either absorbed
with probability ηabs ≈ 55% or transmitted with proba-
bility 1 − ηabs. This is physically equivalent to a beam
splitter whose outputs are the directly transmitted opti-
cal mode and the atomic mode onto which light is linearly
mapped to a collective atomic state [1].

The AFC storage protocol that we use is such that the
re-emission process occurs when all the spectral compo-
nents of the collective atomic state are in phase, which

QM

QM

τs

(a)

(b)

FIG. 1. Quantum memory represented as a storage loop. For
our purpose, the AFC quantum memory can be seen as a
light-matter beam splitter that loops back onto itself, and
the length of the loop corresponds to the storage time τs of
the QM. (a) When an optical pulse is incident on the QM,
it acts like a beam splitter that splits the light on a optically
transmitted part and onto the collective state of the atomic
ensemble. (b) At the time of re-emission, the QM acts again
like a beam splitter that maps the collective atomic state to
the optical mode and back onto itself. The number of photons
re-emitted is thus accompanied by the corresponding reduc-
tion in the number of atomic excitations in the QM.

in our case happens at τs = 50 ns after absorption [1].
However, this rephasing is not perfect, and therefore only
part of the atomic excitations are converted back to light.
In the storage loop representation, the atomic mode is
looped back onto the “light-matter” beam splitter after
the storage time (see Fig. 1b), albeit with a beam split-
ting ratio that is different than the one of the absorption
process, which is due to the details leading to the rephas-
ing.

To realize a near-perfect back displacement operation
one has to achieve the lowest phase and amplitude noise
between the two displacements. This is especially diffi-
cult to realize with free-space optics for long delays such
as 50 ns. However, we note that the QM itself can be
used to create the two pulses; see Fig. 2. First, the coher-
ent state pulse (CSP), created whenever an idler photon
is detected, is sent through the QM in a spatial mode
that is distinct from the one of the signal photon. This
creates two pulses delayed by the storage time of the
QM (τs = 50 ns). The pulses then go through a fibre-
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(1) (2) (3)
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PM

τs τs

D(α)

D(eiφ
√
ηα)
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√
ηtα)

D(eiφ
√
ηtηα)D(

√
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QM

PM

QM
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preparation

(1)

(2)
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Polarizer
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controller

(b)

QM

FIG. 2. (a) presents the conceptual evolution of the pulses used for the displacements, and (b) shows how it was implemented.
(1) A coherent state pulse is generated by the detection of the idler photon. It corresponds to the displacement D(α) applied
on vacuum. This pulse is incident on the QM in an optical mode that is distinct from the one used to store the signal mode.
(2) After the QM and the phase modulator (PM), we obtain two pulses corresponding to the displacements D(

√
ηtα) and

D(eiφ
√
ηα), where ηt and η are the transmission probability and storage efficiency of the QM, respectively, and φ is the phase

applied on the second pulse by the PM. (3) After the second passage through the QM, we have three pulses. The middle one
corresponds to the displacement D(eiφ

√
ηtηα)D(

√
ηηtα), and is the one that is applied on the displaced signal photon retrieved

from the QM. We see that the amplitudes are perfectly balanced, and setting φ = π will yield destructive interference, which
constitutes the back displacement.

pigtailed electrooptic phase modulator (PM) applying a
phase of φ = π on the second one. The first displacement
operation is performed by combining the heralded sig-
nal photon and the first component of the optical signal
emerging from the PM. For this we use a non polarizing
beam splitter with a transmittance T = 99.5%, resulting
in a lossless displacement operation. The back displace-
ment operation corresponds to the interference between
the part of the second pulse emerging from the PM that
is directly transmitted by the QM, and the part of the
atomic excitation that is converted into the optical mode.
Because the probability to map the atomic state into the
optical state is smaller than 100%, this corresponds to
a displacement operation with some loss into the atomic
mode. To quantify the quality of the back displacement,
we measured the visibility of the interference between the
two displacements with the signal photon blocked. We
obtained an average visibility of 99.85(2)%, which is very
close to being perfect.

To create a representative theoretical model of our ex-
periment, we characterized the polarization of the light
that is remaining after back displacement operation. For
this the photon pair source was blocked and polarization
state tomography was performed on the weak coherent
state. We expected to find a pure polarization state, be-
cause the remaining light is expected to comes from the
well polarized CSP. Surprisingly, we found that the po-
larization state is almost completely depolarized, having
a fidelity of 97(1)% with completely depolarized state.
This indicates that the limit to the visibility of the back
displacement is at least partly due to some process that
we could not identify. This will require further investiga-
tion.

Effect of loss

We now describe the effect of loss in our experiment.
The first loss to consider is the heralding efficiency ηh,
which is the probability to find the heralded signal pho-
ton at the beam splitter used for the displacement. If
the photon is lost, the displacement pulse is applied on
vacuum |0〉 rather than on |1〉. In this case, the state ρ
created is a mixture of the desired micro-macro entangled
state |Ψ〉 = DsH(α)|ψ〉, where

|ψ〉 =
1√
2

(|1, 0〉s|1, 0〉i + |0, 1〉s|0, 1〉i),

|Ψ〉 =
1√
2

[(DsH(α)|1, 0〉)s |1, 0〉i + |α, 1〉s|0, 1〉i] ,

with a separable component:

ρ = ηh|Ψ〉〈Ψ|+ (1− ηh)|α, 0〉s〈α, 0| ⊗ Ii
2

(2)

where Ii is the 2× 2 identity matrix representing a com-
pletely mixed polarization for the idler photon.

The loss caused by the finite absorption probability in
the QM then reduces the size of the displacement and
create another separable component to the mixture. Us-
ing ηabs and ηt = 1 − ηabs to denote the absorption and
transmission probabilities, one can show that the light-
matter entangled state obtained is

ρ′ = ηabsηhDsH(
√
ηabsα)|ψ〉〈ψ|DsH†(

√
ηabsα)

+ (1− ηhηabs)|
√
ηabsα, 0〉s〈

√
ηabsα, 0| ⊗ Ii

2
. (3)

The first term corresponds to the desired light-matter
micro-macro entangled state, where the amplitude of the
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FIG. 3. Size of the light-matter entangled states ρ′ (Eq. 3)
with |α|2 = 47 atomic excitations on average as a function
of the guessing probability Pg to distinguish two macroscopic
components of state ρ′ for different values of ηh and ηabs.

displacement is given by ηabs|α|2. The other term is sep-
arable, and do not contribute to detected signature of
entanglement. Rather, they create noise that masks the
entanglement signature, which reduces the maximum size
of the displacement that we can apply.

One can consider how the loss would affect our ability
to directly observe the distinguishability of the macro-
scopic states of the superposition using a coarse-grained
detector. On Fig. 3 we show how loss affects the effec-
tive size of the superposition in the cases ηh = 1 (no
loss), ηh = 0.19 (before the QM) and ηh = 0.19 with
ηabs = 0.55 (inside the QM). The loss and finite ab-
sorption probabilities reduce the maximum probability
to distinguish the two macroscopic states to a value that
is ≈ 53% with a detector that has a perfect single-photon
resolution. This exemplifies that the direct observation
of the distinguishability of the macroscopic components
requires maximizing ηh and ηabs, which is a challenging
but conceivable task for future work.

Double detection events

We note that in all of our measurements, the proba-
bility to detect two photons in the signal mode was at
least fifty times smaller than detecting a single photon
(which was obtained for the case of 47 atomic excita-
tions). Hence, double detection events could essentially
be ignored.

Ordering of detection times

Although the displacement of the signal mode happens
after the detection of the idler mode, we here show that
this does not prevent us to report on micro-macro light-
matter entanglement. All along the manuscript, the opti-
cal modes are described through their polarizations. For
example |1, 0〉s means that the signal mode is filled with
one horizontal photon. In order to specify all the degrees
of freedom that are relevant for our observables, we can
add the information about the detection time. With this

additional information, the state that is ideally detected
is given by

|1t` , 0t`〉s|1te , 0te〉i + |1t` , 0t`〉s|1te , 0te〉i (4)

where the subscript te (t`) clarifies on the detection of the
idler (signal) at an early (late) time. Going backward in
time when the signal mode is displaced in phase space,
we get

[DsH(|0ts〉sH + |1ts〉sH)] (5)

⊗ (|0ts〉sV |1te , 0te〉i + |1ts〉sV |0te , 1te〉i)
−[DsH(|0ts〉sH − |1ts〉sH)]

⊗ (|0ts〉sV |1te , 0te〉i − |1ts〉sV |0te , 1te〉i) .

Defining ts as the time at which the signal mode is stored
in the crystal, the state (5) corresponds to micro-macro
light-matter entanglement. Even if the state (4) is not a
faithful description of the state obtained experimentally
due to noise and loss, the measurement results show un-
ambiguously that the polarization of the idler mode at
an early time is entangled with the polarization of the
signal mode at a late time. Since the storage protocol is
a local operation, entanglement was there before the sig-
nal mode was released, i.e. between the idler mode and
the doped crystal. We emphasize that the macroscopic
character of this light-matter entangled state is inferred
by a detailed model of the experimental setup that is
validated by independent measurements, c.f. below.

II. HONG-OU-MANDEL INTERFERENCE

To probe for the indistinguishability between the her-
alded single photon (HSP) and the coherent state pulse
(CSP), a Hong-Ou-Mandel (HOM) type interference ex-
periment was performed. This characterization is im-
portant to determine the size of the displacement. The
reason is simple: if the displacements are not applied on
the mode of the HSP, then the single photon is not dis-
placed at all. The case where the modes of the CSP and
HSP overlap only partially was theoretically considered
in Ref. [3], where it is shown that the ratio R = Vm/Ve

between measured Vm and expected Ve HOM visibilities
gives a lower bound on the fraction of the CSP that ac-
tually displaces the HSP. Hence, if the size of the CSP is
|α|2, then the size of the displacement is R|α|2.

In our case, the main mismatch between the modes
of the CSP and HSP is due to their temporal modes;
see Fig. 4. The mode of the HSP is determined by the
energy correlation between the signal and idler photons,
combined with filtering bandwidths used in the source
of entanglement; see details in Ref. [4]. The CSP has an
almost Gaussian temporal profile, which is defined by the
high speed pulse generator used to drive the electrooptic
EOM that is carving the pulse out of a continuous wave
laser at 883 nm. For comparison, the temporal modes of
the CSP and the HSP are shown in Fig. 4.
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(a) (b)

(c)

FIG. 4. Temporal profiles of the CSP and HSP. (a) Temporal
mode of the coherent state pulse (CSP) shaped from CW laser
using electro-optical modulator (EOM). (b) Temporal profile
of the heralded single photon (HSP). (c) Difference between
two histograms corresponding to the CSP and HSP, where
each histogram was normalized. A coincidence window of
3 ns (shaded regions) was used for further analysis.

(a) (b)

FIG. 5. Hong-Ou-Mandel dip measurement between HSP and
CSP. (a) Measured visibility Vm of the HOM dip as a func-
tion of coincidence window. A window of 3 ns was used during
the experiment. The visibility goes down as one increases the
postselection window due to the lower overlap between the
temporal modes of HSP and CSP. (b) Comparison between
experimentally measured visibility of HOM dip (square) and
theoretical model (solid line). The mean photon number of
the CSP was 0.012(1) and the creation probability of the pho-
ton pair was 0.005, while the heralding efficiency was equal to
19%. Since the photon number statistics of HSP and CSP are
different the maximum visibility of HOM dip between them
for the given photon pair creation probability can be obtained
only for certain mean photon number µ of the CSP. The visi-
bility for the low µ of the CSP is limited by the multi photon
creation from the photon pair source while for the high µ the
higher terms of Poisson distribution of the CSP will reduce
the maximum visibility [2].

To measure the HOM dip visibility, the HSP and CPS
are combined on a 50/50 beam splitter and synchronized
in time. To extract the visibility of the HOM dip, we

measure the coincidence rate with the polarization of the
CPS either parallel R‖ or perpendicular R⊥ to the HSP.
The measured visibility is given by Vm = (R⊥−R‖)/R⊥.
This value depends on the temporal width of the coinci-
dence window. This is because using a short window
compared to the width of the temporal modes erases
differences between them, which increases their indistin-
guishability, but it also reduces ηh and the detection rate.
The value of the measured visibility as a function of the
width of the coincidence window is shown in Fig. 5a. A
tradeoff value was chosen with a coincidence window of
3 ns, which yielded an heralding efficiency of ηh = 0.19.

The expected visibility Ve is calculated taking into ac-
count the heralding efficiency, the photon pair creation
probability p = 5×10−3 inside the coincidence time win-
dow of 3 ns, as a function of the mean photon number
contained in the CSP. The result of this calculation is
shown on Fig. 5b. For the value |α|2 = 0.012 used with
the 3 ns window on Fig. 5a, the expected visibility is
Ve = 85%. The measured visibility is Vm = 74(2)%,
which shows that we do not have perfect overlap between
the HSP and CSP. The difference is due partly to the
imperfect spectral-temporal modes overlap between two
waveforms, and also to the fluctuations on the central
frequency of the HSP, which is due to the small fluctu-
ations on frequency of the pump laser at 532 nm (the
latter are caused by the frequency stabilization mecha-
nism that we need to apply to get frequency correlated
photons, see [4]).

The measured ratio R = 0.74/0.85 = 87% is used to
correct the size of the displacements that are presented
in this work.

III. THEORETICAL MODEL OF THE
EXPERIMENT

Simple theoretical model

Here we derive a simple theoretical model to com-
pare to our experimental results. First, we include in
our description that actual micro-micro entangled state
ρmm (obtained without any displacement) is itself not an
ideal pure state, but can rather be approximated by the
Werner state

ρmm = Vmm|ψ〉〈ψ|+ (1− Vmm)
I
4

(6)

where I is the 4 × 4 identity matrix, and Vmm ≈ 94%
is the entanglement visibility of the micro-micro entan-
gled state. Next, to include the contribution of the dis-
placement in our description, we recall that we found
that light remaining after the imperfect back displace-
ment was almost entirely depolarized. Hence, the actual
state ρ′mm emerging from the QM can be seen, at first
approximation, as a mixture of ρmm (obtained when the
signal photon was not lost) and the completely mixed
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two-qubit state obtained when the signal photon is re-
placed with a completely mixed polarization photon. We
have

ρ′mm = (1− ε)ρmm + ε
I
4

= Vmm(1− ε)|ψ〉〈ψ|+ [1− Vmm(1− ε)] I
4

(7)

where we denote ε as the noise probability.
We then need to properly model ε as a function of inde-

pendently measured experimental parameters. Assuming
the interference visibility V between two displacements
operations, one can calculate ε assuming a Poisson pho-
ton number statistics. On the one hand, the probability
to detect a photon from the noisy background is propor-
tional to

pn = e−µ
∞∑

n=1

µn

n!
[1− (1− 2η(1− V ))

n
] , (8)

where η is the efficiency of the quantum memory and
µ is the mean photon number in the back displacement
operation. On the other hand, the probability that no
photon (other than the heralded signal photon) leaks out
of the QM after the back displacement is

p̄n = e−µ
∞∑

n=1

µn

n!
[1− 2η(1− V )]

n
. (9)

Finally, the probability to detect the heralded signal pho-
ton while no photon from the noisy background leaks out
is proportional to

ps = ηhTη p̄n, (10)

where ηh = 0.19 is the heralding efficiency of the signal
photon and T = 99.5% is the transmission of the first
beam-splitter. Using these definitions, the noise proba-
bility ε of the Werner state (7) can be expressed as

ε =
pn

ps + pn
. (11)

Using the independently measured parameters ηh =
19(2)%, T = 99.5%, η = 4.6(2)%, V = 99.85(2)% and
Vmm = 94%, we can estimate the expected S-parameter
value for the CHSH violation as a function of the size of
the displacement. We can also predict the values for the
PPT criterion and the value of the concurrence (Fig. 2
and 3 of the main text).

Detailed theoretical model

Here we derive a more detailed model for predicting the
expected value of the CHSH S parameter, which can be
compared with the result of the simple model. We show
that both models produce essentially the same results,
and they both correspond very well with our experimen-
tal results. This strengthens our claim.

This model starts with a description of the sponta-
neous parametric down conversion source which produces
photons in coupled modes, labelled by the bosonic op-
erators a and b. The photons are created in maxi-
mally entangled states in polarization, meaning that each
mode splits into two orthogonal polarizations a − a⊥
and b − b⊥. The Hamiltonian of such a process is

H = iχ(a†b†⊥−a
†
⊥b
†+h.c), where χ is proportional to the

non-linear susceptibility of the crystal and to the power
of the pump. The expression of the corresponding state
|ψ〉 is obtained by applying e−iHt on the vacuum |0〉 ,
as we are focusing on spontaneous emissions (0 is under-
lined to indicate that all modes are in the vacuum). It
can be written as [5]

|ψ〉 =
(
1− T 2

g

)
eTga

†b†⊥eTga
†
⊥b

† |0〉 , (12)

where Tg = tanh g, g = χt being the squeezing parame-
ter.

For the detectors, we used non-photon number resolv-
ing detectors with non-unit efficiency η and dark count
probability pdc. The no-click event for the mode a for
example, is associated to a positive operator [5]

Da
nc = (1− pdc)(1− η)a

†a, (13)

while the click event corresponds to Da
c = 1−Da

nc.
We now calculate the conditional state in modes b, b⊥

once the modes a, a⊥ are detected. Note first that the
structure of the Hamiltonian is such that we can con-
sider that for any measurement choice, a and a ⊥ are the
eigenmodes of the measurement device. The state that
is conditioned on a click in a and no click in a⊥ is given
by

ρb,b⊥ = (1− pdc)tra,a⊥

(
(1− η)a

†a ⊗ 1a⊥ |ψ〉 〈ψ|
)
−

− (1− pdc)2tra,a⊥

(
(1− η)a

†a ⊗ (1− η)a
†
⊥a

† |ψ〉 〈ψ|
)

.

(14)

Using xa
†af(a†) = f(xa†)xa

†a, we get [6]

ρb,b⊥ = (1− pdc)
1− T 2

g

1− T 2
gR

2
ρbth(Tg)ρb⊥th (RTg)−

− (1− pdc)2

(
1− T 2

g

)2
(
1− T 2

gR
2
)ρbth(RTg)ρ

b⊥
th (RTg) (15)

with ρbth(Tg) =
(
1− T 2

g

)∑+∞
n=0 T

2k
g |k〉b 〈k|, ρb⊥th (RTg) =(

1− (RTg)
2
)∑+∞

n=0(RTg)
2k |k〉b⊥ 〈k| ... i.e. the condi-

tional state can be written as a difference between prod-
ucts of thermal states.

As thermal states are classical states, they can be writ-
ten as a mixture of coherence states, that is

ρbth(Tg) =

∫
d2γP n̄(γ) |γ〉b 〈γ| (16)
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with P n̄(γ) = 1
πn̄e
−|γ|2/n̄ and n̄ = T 2

g /(1 − T 2
g ). The

result of Bob measurements can thus be deduced from
the distribution of results obtained with coherent states.
In particular, a state

|α〉b 〈α| ⊗ |β〉b⊥ 〈β| (17)

becomes

|ᾱ+ cos θM〉b 〈ᾱ+ cos θM︸ ︷︷ ︸
α̂

|⊗| β̄ + cos θM︸ ︷︷ ︸
β̂

〉b⊥
〈
β̄ + cos θM

∣∣

(18)
after the memory where ᾱ = αT1T2

√
ηc
√
ηd (similarly

for β̄) accounts for the transmission of the beamsplitter
used for the displacement operation, ηc for the coupling
efficiency and... M = iT2γφ where γ2 is the size of the
displacement and φ is the error on the relative phase be-
tween the two displacements. It is averaged out with
gaussian noise to account for the limited accuracy of our
back displacement operation. θ accounts for the angle
between the measurement setting of Alice and the polar-
ization of the laser used to implement the displacement
operation. For Bob’s measurement setting with eigen-
modes bθ

′
= cos θ′b+ sin θ′b⊥ and bθ

′
⊥ = sin θ′b− cos θ′b⊥,

the probability to get no click in bθ
′

and one click in bθ
′
⊥

with the state (18) is given by

trbθ′ ,bθ′⊥

[
(1− ηd)b

θ′†,bθ
′
⊗ (1− (1− ηd)b

θ′†,bθ
′
)

∣∣∣cos θ′α̂+ sin θ′β̂
〉
b′

〈
cos θ′α̂+ sin θ′β̂

∣∣∣
∣∣∣sin θ′α̂− cos θ′β̂

〉
b′⊥

〈
sin θ′α̂ cos θ′β̂

∣∣∣
]

= e−|cos θ′α̂+sin θ′β̂|2ηd(1− e−|sin θ′α̂−cos θ′β̂|2ηd). (19)

Attributing the result +1 to the events {no click in a

and one click in a⊥} and {no click in bθ
′

and one click in

bθ
′
⊥} the joint probability p(+1 + 1|θθ′) can be obtained

the previous result together with Eqs. (15) and (16). A
similar calculations done to compute the three other joint
probability p(−1+1|θθ′), p(+1−1|θθ′) and p(−1−1|θθ′)
where the result −1 is attributed to events where there
is either { a click in a and no click in a⊥ } or { a click

in a and a click in a⊥} (similarly for the modes bθ
′

and

bθ
′
⊥). We find

p(+1 + 1|θθ′) =

= (1− pdc)
1− T 2

g

1− (RTg)2
[f(n̄, m̄, ζ)− g(n̄, m̄, ζ)]−

− (1− pdc)2
(1− T 2

g )2

(1− (RTg)2)2
[f(m̄, m̄, ζ)− g(m̄, m̄, ζ)] ,

(20)

p(+1− 1|θθ′) = [f(n̄, n̄, ζ)− g(n̄, n̄, ζ)]−

− (1− pdc)
(1− T 2

g )

(1− (RTg)2)
[f(n̄, m̄, ζ)− g(n̄, m̄, ζ)] , (21)

p(−1 + 1|θθ′) =

= (1− pdc)
1− T 2

g

1− (RTg)2
[1− f(n̄, m̄, ζ)]−

− (1− pdc)2
(1− T 2

g )2

(1− (RTg)2)2
[1− f(m̄, m̄, ζ)] , (22)

p(−1− 1|θθ′) = [1− f(n̄, n̄, ζ)]−

− (1− pdc)
(1− T 2

g )

(1− (RTg)2)
[1− f(n̄, m̄, ζ)] . (23)

Here

f(n̄, m̄, ζ) =
1

1 + cos2 θn̄η + sin2 θm̄η

(
1

1 + 4ζε

)1/2

,

(24)

and

g(n̄, m̄, ζ) =
1

(1 + n̄η)(1 + +m̄η)

(
1

1 + 4ζε

)1/2

(25)

with

ζ =
T 2

2 γ
2ηd cos2(θ − θ′)

1 + cos2 θn̄η + sin2 θm̄η
, (26)

ζ̄ = T 2
2 γ

2ηd

(
cos2 θ′

1 + n̄η
+

sin2 θ′

1 + m̄η

)
(27)

and

η = ηdT
2
1 T

2
2 ηcηd, (28)

n̄ =
T 2
g

1− T 2
g

, m̄ =
(RTg)

2

1− (RTg)2
(29)

and ε = 1−V stands for the error on the viability associ-
ated to the displacement operation. Note that the experi-
ment is being performed under the fair sampling assump-
tion, the four probabilities p(±1 ± 1|θθ′), p(±1 ∓ 1|θθ′)
are re-normalized to sum up to one before being used to
predict the value of the CHSH inequality.
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Multiplexed quantum memories capable of storing and processing entangled photons are essential
for the development of quantum networks. In this context, we demonstrate and certify the simul-
taneous storage and retrieval of two entangled photons inside a solid-state quantum memory and
measure a temporal multimode capacity of ten modes. This is achieved by producing two polariza-
tion entangled pairs from parametric down conversion and mapping one photon of each pair onto a
rare-earth-ion doped (REID) crystal using the atomic frequency comb (AFC) protocol. We develop
a concept of indirect entanglement witnesses, which can be used as Schmidt number witness, and
we use it to experimentally certify the presence of more than one entangled pair retrieved from
the quantum memory. Our work puts forward REID-AFC as a platform compatible with temporal
multiplexing of several entangled photon pairs along with a new entanglement certification method
useful for the characterisation of multiplexed quantum memories.

Quantum memories are key elements for developing
future quantum networks [1]. Optical quantum mem-
ories [2, 3] allow storage of parts of optical quantum
states, for instance the storage of one photon out of a
pair of entangled photons. This ability can be used to
herald entanglement between stored excitations of re-
mote quantum memories [4–6], which is a basic resource
for long-distance quantum networks. A prominent ex-
ample is the quantum repeater [7, 8], which in principle
can distribute quantum entanglement over continental
distances, thereby allowing long-distance quantum key
distribution over scales impossible by current technolo-
gies [9].

Most quantum repeater schemes require efficient mul-
tiplexing in order to achieve any useful rate of entangle-
ment distribution [10], which in turn requires quantum
memories (QM) that are highly multimode [11]. Quan-
tum memories based on ensembles of atoms provide such
a resource, where different degrees of freedom can be used
to achieve multimode storage, such as spatial [12–16],
spectral [17, 18] or temporal modes [19]. The ensemble
approach also provides strong collective light-matter cou-
pling [20, 21], making high memory efficiencies possible.

In this work we address the challenge of demonstrating
and certifying simultaneous storage of several quantum
excitations in different temporal modes of a QM. We fo-
cus on temporal multimode storage in a single spatial
mode, which is compatible with optical fiber technolo-
gies and therefore attractive for long-distance quantum

∗ Current address: Present address: Department of Physics and
Oregon Center for Optical Molecular & Quantum Science, Uni-
versity of Oregon, Eugene, OR 97403, USA; jlavoie@uoregon.edu
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FIG. 1. (color online) Conceptual scheme of the experiment.
Temporally multiplexed photon pairs generated from spon-
taneous parametric down conversion (SPDC) are stored in a
multimode quantum memory (QM) and released after a pre-
determined time τM . The pump is pulsed with a 10 MHz repe-
tition rate and with duration τp. Two polarization-entangled
pairs are generated probabilistically by the same pulse and
separated by a time δt ≤ τM . The duration of the pulse
equals the storage time such that the stored photons are both
in the QM for a time (τM −δt). To certify entanglement after
absorption and remission by the QM we analyze the correla-
tions in polarization of the four-photon state.

networks. We use the atomic frequency comb (AFC)
approach [22], which can achieve multimode storage for
much lower optical depths compared to other ensemble-
based storage techniques [19]. This protocol is specif-
ically developed for rare-earth-ion doped (REID) crys-
tals [23]. Previous studies have demonstrated tempo-
ral highly multimode storage using the AFC scheme,
but these experiments have employed either strong [24–
26] or attenuated laser pulses [27–29], and true single-
photon pulses [30] but without entanglement. Here we
demonstrate simultaneous storage of two entangled pho-
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ton pairs. The certification of multi-pair entanglement
in our experiment requires novel tools, given the limited
available data. This is achieved by constructing indirect
entanglement witnesses, which we use experimentally to
certify the presence of more than one entangled pair re-
trieved from the quantum memory.

The setup of our experiment is illustrated in Fig. 1.
Two independent pairs of entangled signal and idler pho-
tons are generated via spontaneous parametric down con-
version (SPDC) within a time window shorter than the
memory time. The idler photons are at the telecommu-
nication wavelength of 1338 nm, while the signal photons
are at 883 nm [31]. The two signal photons are stored
in the REID crystal in the same spatial mode, but in
two independent temporal modes that differ by up to ten
times their coherence time. After a pre-determined stor-
age time, the two photons are re-emitted from the mem-
ory and detected by the single-photon detectors (and sim-
ilarly for the idler photons).

The full characterization of the state of both photon
pairs is constrained by the fact that their creation time is
much smaller than the dead time of the detectors. This
is typical of current single-photon detectors and it can
complicate the analysis of temporally multiplexed quan-
tum memories storing short (broadband) single photons.
One obvious solution is to double the number of analyzers
(and detectors), or use complex multiplexing schemes in
space or frequency [32, 33]. Here, instead, we want to use
a pair of detectors on each side and apply the same pro-
jective measurement needed to analyze a single pair. This
leads to a limited set of measurements and outcomes.
Previous efforts have been devoted to addressing non-
linear functions of density matrix elements, which due
to the lack of convexity proved very challenging [34, 35]
and still lack assumption-free certification methods. To
address this, we develop a new concept of induced wit-
ness operators, where an incomplete set of count rates
can conclusively certify entanglement, or even Schmidt
numbers, without any assumptions about the state. We
then apply this new concept to certify the presence of
two entangled pairs in our experiment.

First, we demonstrate the capability to generate two
independent entangled photon pairs for further quantum
storage. For this we generate polarization-entangled pho-
ton pairs from SPDC inside two nonlinear waveguides.
The continuous pump laser has a central wavelength of
532 nm and is modulated in intensity to obtain a 10 MHz
train of 50 ns square pulses (Fig. 1). This modulation
defines a temporal window, corresponding to the storage
time, inside which two pairs can be generated. The con-
figuration of the nonlinear waveguides, shown in Fig. 2,
is such that photons are created in a coherent superpo-
sition of |HH〉, from the first waveguide, or |V V 〉, from
the second [31]. We approximate each pair by the state

|φ(t)〉 =
1√
2

(|Hs,Hi〉t + |Vs,Vi〉t) , (1)

where t is the photon pair creation time within the square

532 nm
cw laser

AOM

ppnw

ppnw

DM

Cavity

VBG

VBGQMD
(s)
−

PBS

HWP and QWP

D
(s)
+

D
(i)
+ D

(i)
−

2.7K

2.4K

FIG. 2. (color online) Detailed experimental setup. Our
source of polarization-entangled photon pairs is based on
parametric down conversion inside two periodically poled non-
linear waveguides (ppnw) phase matched for Type-0 downcon-
version. Both crystals are coherently pumped by a 532 nm
continuous wave (cw) laser. The pump laser is intensity mod-
ulated by an acousto-optic modulator (AOM) at a 10 MHz
repetition rate producing a train of 50 ns square pulses. Signal
(883 nm) and idler (1338 nm) photons are spatially separated
by a dichroic mirror (DM) and spectrally filtered using a cav-
ity and a volume Bragg grating (VBG) in each output mode.
The signal mode is coupled to a polarization-preserving solid
state quantum memory (QM) based on two Nd3+:Y2SiO5

crystals separated by a half-wave plate. To increase the stor-
age efficiency, we use a double-pass configuration through the
QM. Finally, we analyze the polarization states of the photon
pairs with a set of half-wave (HWP) and quater-wave (QWP)
plates, polarizing beamsplitter (PBS) and single photon de-

tectorsD
(s,i)
± ; fiber-coupled superconducting nanowires on the

idler side and free-space APDs on the signal side.

pump window, s and i subscripts label signal and idler
modes, while |H〉 and |V 〉 designate horizontal and ver-
tical polarization states of a single photon, respectively.

Two independent polarization-entangled pairs can be
generated from the same pulse, in condition that the de-
lay between the pairs, δt, is sufficiently larger than the
coherence time of one pair [36]. In this case, the joint
state of two pairs is described by

|Φ(δt)〉 = |φ(t)〉 ⊗ |φ(t+ δt)〉. (2)

The measured coherence time of a photon pair, τc =
1.9 ns, is defined by the filtering system which is applied
to the both photons (for the details see [31]). Overall,
the rate of two-fold coincident detections after storage is
200 Hz for an average pump power of 4 mW (2 mW at
the input of each waveguide).

The signal mode of each pair is coupled to the QM.
The latter consists of two Nd3+:Y2SiO5 crystals mounted
around a half-wave plate, together enabling high-fidelity
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polarization storage [37–39]. The absorption profile of
the broad resonant frequency transition of the atomic
ensemble is tailored in a frequency comb using optical
pumping techniques [39]. The prepared AFC fixes the
storage time to τM = 50 ns [22] and the measured total
memory efficiency of the single photon is η = 7(1)% in
the double-pass configuration depicted in Fig. 2. To ana-
lyze the correlations between the released signal and idler
photons, we use a combination of quarter-wave, half-wave
plates and a polarizing beam splitter (PBS) on each side.

To detect the stored signal and the idler photons from
each pair we put two single-photon detectors (SPDs) at
the output ports of the PBS on each side (denoted as “+”
and “−” in Fig. 2). We use superconducting nanowire

SPDs (D
(i)
± ) with 75% efficiency, 100 ns dead time and

300 ps jitter (WSi superconducting nanowire [40]) for
the idler photons. The signal photons are detected with
two free-space free-running silicon avalanche photodiode

(D
(s)
± ) with 40% efficiency, 1 µs dead time and 400 ps

jitter.

Figure 3(a) shows two-fold coincidences as a function
of the delay between the detections of a signal and an
idler photons. The temporally resolved peak structure
corresponds to the transmitted (0 ns) and stored sig-
nal photon in the QM (50 ns) from a single photon
pair (Eq. (1)). However, to detect and analyze the four-
photon state (Eq. (2)) one has to look at coincidences be-
tween all four detectors (four-folds). Our main limitation
comes from the ∼ 1 µs dead time of the signal mode de-
tectors. Given that one photon of the first pair is detected
at one output port of the PBS, the photon of the second
pair cannot be detected in the same output port, as the
separation is smaller than the dead time. For example,

if the first photon pair is detected in (D
(s)
+ ,D

(i)
+ ), the

only way to detect the following photon pair is with the

complementary detector combination (D
(s)
− ,D

(i)
− ). For a

given pair of measurement settings (denoting x and y the
choice of measurement setting for Alice and Bob, respec-
tively), there are thus four accessible event rates labelled
Nab,āb̄|xy, where a, b = ±. Figure 3(b) shows the his-
togram of measured four-fold events, for different delays
δt between pairs. The triangular shape is caused by the
square wave pumping of the SPDC: the probability to
generate two photon pairs with the delay between them
equal to the pump length (in our case 50 ns) is much
smaller for smaller delays.

Two detections on the idler’s side, with delay δt, her-
ald two signal photons, also with delay δt (within their
coherence times), counted and analyzed after storage in
the QM. In the data analysis, the delay between two pairs
is bounded by the storage time τM = 50 ns. Hence, we
only consider the overall range delimited by two dotted
vertical lines on Fig. 3(b). Importantly, by comparing
the histograms corresponding to different delays between
photon pairs, we see that the presence of two excitations
does not change the efficiency of the QM. The multimode
capacity of the QM is given by the number of modes (bins
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FIG. 3. (color online) Temporal multimode storage. (a) The
two-fold coincidences between detections of the signal and
idler photons as a function of the delay between two detec-
tion events. The first peak at 0 ns stems from the signal
photons not absorbed by the QM while the second peak at
50 ns corresponds to the signal photons absorbed by the QM
and released after the storage time. Such an histogram is ac-
cumulated for each pair of detectors between signal and idler
photons. A coincidence window of 4 ns (depicted by the dot-
ted lines) is used to calculate the rates. (b) The total four-fold
coincidences collected during the experiment is plotted as a
function of the delay δt between photon pairs. The events
corresponding to the stored state (2) inside the storage time
of the QM are delimited by dotted vertical lines from 5 to
50 ns. There are 9 distinguishable time divisions, demonstrat-
ing storage of 10 modes containing single photon excitations.
For longer delay (> 50 ns), two photons do not overlap at any
time in the QM. Error bars represent one standard deviation
assuming Poisson noise for the counts.

on the histogram) and equal to 10. Those results are di-
rect signatures of temporal multimode capacity of our
QM using simultaneous storage of two single photons.

The limited set of projection measurements used in
this experiment does not allow us to probe entanglement
of the four-photon state (Eq. (2)) using standard tools.
To certify the presence of two entangled pairs in differ-
ent temporal modes we therefore devise an entanglement
witness based on the event rates Nab,āb̄|xy for different
pairs of measurement settings.

To distinguish the different temporal modes the over-
lap between adjacent modes should be minimized. The
size of the temporal bins must be larger than the co-
herence time of the photon pair generated from the
SPDC (∼ 2 ns). For this reason, we consider only the
events when photon pairs are separated more than 5 ns
(Fig. 3(b)), which corresponds to 2.5 times the tempo-
ral width of a photon pair. Specifically, we denote the
final quantum state (after the memory) ρ, which is of
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FIG. 4. (color online) Entanglement witness. From the mea-
sured four-fold correlations we can compute our central figure
of merit T (Eq. (3)). A value of T implies that the operator
Wk(T ) has an expectation value equal to exactly zero. For a
sufficiently large value of T this implies that the expectation
value of W1(T ) (or W2(T )) is negative. Since we can prove
that W1 is an entanglement witness and W2 a Schmidt num-
ber witness, we can thus conclude on one or two entangled
pairs.

dimension 4 × 4. Our goal is to prove that ρ contains
two entangled pairs (Fig. 4) and do not have to assume
a priori that ρ consists of two independent pairs (as in
Eq. (2)). That is, violation of our entanglement witness
certifies the presence of more than one entangled pair,
even if the two pairs may have become correlated inside
the QM. Surprisingly this is achieved even without direct
access to density matrix elements, but only proportion-
ality relations between them [41].

Our witness involves two local measurement settings
per party. Using Bloch vector notation, Alice’s measure-
ments are given by vectors σ̂x (for x = 0) and σ̂y (for

x = 1), while Bob’s measurements are (σ̂x + σ̂y)/
√

2

(for y = 0) and (σ̂x − σ̂y)/
√

2 (for y = 1). Note that
this choice of measurements is typical for Bell-CHSH
tests [39] and suitable for the entanglement witness de-
scribed below. For a given choice of local measure-
ments, the event rates Nab:āb̄ are thus proportional to

Tr(Pa⊗Pā⊗Pb⊗Pb̄ρ), where Pa = (11 +av̂ · ~̂σ)/2 denote
qubit projectors. Our entanglement witness is based on
the expression

T =
1

N
(C00 + C01 + C10 − C11) (3)

where we have defined correlation functions

Cxy =
∑

a,b=±1

abNab,āb̄|xy (4)

and a normalization factor

N =
1

4

∑

x,y=0,1

∑

a,b=±1

Nab,āb̄|xy. (5)

In the case ρ contains one entangled pair (or less), the
expression T is upper-bounded by

T ≤ 5√
2
' 3.535. (6)

Hence any violation of the witness, i.e. T > 5/
√

2, im-
plies the presence of more than one entangled pair in the
output state ρ. For any separable state ρ we prove that
the expression T has an upper bound of 2

√
2. This al-

lows to use the actual value of the witness to certify the
presence of entanglement in general (Fig. 4); the value
of T can be attributed to the expectation value of an in-
duced operator W(T ). Depending on the value of T the
fact that this operator has a vanishing expectation value
certifies entanglement of one or more entangled photon
pairs. The details of the derivation of the bounds are
given in [41].

C00 C01 C10 C11 T T̃

0.98(6) 0.92(7) 0.88(6) -0.88(6) 3.67(6) 3.64(2)

TABLE I. Experimental certification of two entangled pairs
after storage. Each correlator Cxy is measured as described
in the main text and used to compute the parameter T of
Eq. (3). T̃ is a model-based estimation of the expected T
value in our experiment (see text). There is a good agree-
ment between the two. These results above the bound (6) of
3.535 certify entanglement for each photon pair released from
the QM. The uncertainties represent one standard deviation
assuming Poisson statistics for the counts.

With the recorded four-fold events in hand, we use the
entanglement witness to show that the two pairs used to
probe the multimode properties of the memory are polar-
ization entangled. Each correlator of Eq. (3) is measured
for 900 seconds and the sequence is repeated many times
(see Table I). The experimental value of the entanglement
witness is T = 3.67±0.06, two standard deviations above
the upper bound (6) of 3.535 attainable when only one
pair is entangled while the other is separable. One can
find all the counts to reconstruct the witness in the [41].

To understand what limits our measured value of T ,
we developed a simple model to predict it using only the
measurement of the Bell–CHSH parameter S for a single
entangled pair (see the details in the [41]). For this we as-
sume that we are measuring two independent pairs and a
total quantum state of the form ρ(V) = ρW (V)⊗ ρW (V),
where ρW (V) = V|φ+〉〈φ+| + (1 − V)11/4 is a two-qubit
Werner state with visibility V. We should measure the
value S = 2

√
2V for a single entangled pair in the state

ρW (V), and we can use this to calculate the expected

value of T̃ . With the photons retrieved from the QM,
we found S = 2.58 ± 0.02 corresponding to a visibility
of V = 0.912 ± 0.007, which leads to an expected value
of T̃ = 3.64 ± 0.02, in agreement with experimentally
measured value of T . We note that in this model, a min-
imum visibility of V ' 0.85 (for each identical pair) is
required to certify more than one entangled pair, which
is more stringent than the case where all measurement
outcomes are accessible. The maximum value reachable
with a state of the form ρW is T = 8

√
2/3 ' 3.77
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with V = 1. The visibility V in our experiment was
limited equally by the imperfect preparation of the po-
larization entangled state and multi-pair generation from
the SPDC source [31].

In conclusion, we quantified the temporal multimode
capacity of our solid-state QM using two entangled pho-
ton pairs as a probe. To ascertain the high-fidelity stor-
age, we developed an entanglement certification method
that can also be used as a Schmidt number witness. The
latter does not require any assumptions on the quantum
state and works even with a limited set of projective mea-
surements. Our approach can be adapted to certify en-
tanglement involving multiple stored excitations in mul-
tiplexing quantum memories harnessing other degrees of
freedom such as frequency and spatial modes of light.

Progress towards a quantum repeater requires the use
of a quantum memory that can retrieve photons on-
demand using a complete long-duration AFC spin-wave
storage [28, 29, 46] with high multimode capacity [47].
Alternatively, a scheme based on spectral multiplexing
which does not require temporal on-demand readout
could be used [17]. Our experiment demonstrating stor-
age of several entangled excitations in ten different tem-
poral modes of a quantum memory together with previ-
ous demonstrations open promising perspectives in the

direction of long-distance quantum communication.
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Sørensen, and M. D. Lukin, Phys. Rev. Lett. 98, 123601
(2007).

[21] K. Hammerer, A. S. Sørensen, and E. S. Polzik, Rev.
Mod. Phys. 82, 1041 (2010).

[22] M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin,
Phys. Rev. A 79, 052329 (2009).

[23] W. Tittel, M. Afzelius, T. Chanelière, R. Cone, S. Kröll,
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I. INDIRECT ENTANGLEMENT WITNESSES

Here we present the details of the derivation of the
entanglement witness used in the main text. Although
we expect the final state to be a product of two highly
entangled states, we obviously do not want to make this
assumption in the derivation of its entanglement certifi-
cation. For that purpose we treat the underlying events
as originating from a 4 × 4 dimensional Hilbert space
without any assumption in its internal structure. In the
ideal case that state should correspond to a tensor prod-
uct of two Bell states and thus have a Schmidt number of
4. If only one of the pairs could retain its entanglement
through the storage in the quantum memory its Schmidt
number would be at most 2. If, on the other hand all
the entanglement had been destroyed, the resulting state
would be completely separable (i.e. Schmidt number 1).

Ideally we could now derive a Schmidt number witness
Wk [1], tailored towards this state. One could then de-
compose this witness into a linear combination of local
measurements and acquire all the required coincidences
until that witness is constructed and assumption-free en-
tanglement of both pairs is certified. As pointed out in
the main text, however, the dead times between the two
signals prohibit the acquisition of complete counts in any
basis. It is thus impossible to follow the canonical ap-
proach of obtaining density matrix elements through lo-
cal projective coincidences as:

〈α,β|ρ|α,β〉 =
Nα,β∑

i

∑
j Ni,j := Ntot

, (1)

since Ntot inevitably contains terms that cannot be mea-
sured in the current setup. What we can measure instead
are proportionality constants T between different count
rates, i.e.

∑
{a,b}∈X ca,bNa,b∑
{a,b}∈Y da,bNa,b

= T , (2)

with arbitrary real coefficients ca,b and da,b. Even though
we do not have access to Ntot we can now use it to rewrite
the above as a fraction of corresponding density matrix

elements.

T =

1
Ntot

∑
{a,b}∈X Na,b

1
Ntot

∑
{a,b}∈Y Na,b

=

∑
{a,b}∈X〈a, b|ρ|a, b〉

∑
{a,b}∈Y 〈a, b|ρ|a, b〉 . (3)

Through the linearity of the trace we can conclude that
the operator

W(T ) =
∑

{a,b}∈X
|a, b〉〈a, b| − T

∑

{a,b}∈Y
|a, b〉〈a, b| , (4)

has expectation value zero, i.e. Tr(W(T )ρ) = 0. Now
we can continue to look at the following optimization
problem

min
σ∈SEP

Tr(W(T )σ) := Emin . (5)

If we can prove that Emin > 0, we have thus proven
entanglement of the state ρ, through the induced witness
W(T ). Even though the above optimization problem is
convex, it may nonetheless be hard to solve. We can
however use the concept of positive maps to address it
through a relaxation (even in the multipartite case, see
[2]). As an exemplary case consider the partial transpose
map, i.e.

min
σ∈PPT

Tr(W(T )σ) := EPPT ≤ Emin . (6)

Since the explicit form of the above optimization problem
is a semi-definite program (SDP), it can be easily solved
using SDP solvers, where the maximization of the dual
yields analytic lower bounds on the minimum. It is even
possible to address the dimensionality of entanglement
in this context. Since the negativity N (ρ) is bounded
for states of Schmidt rank k as k−1

2 [3], we can make
use of its variational form N (ρ) = min(Tr(M−)), s.t.
ρTA = M+ − M−,M± ≥ 0 to introduce the following
SDP

min
σ

Tr(W(T )σ) := Ek, (7)

s.t. σTA = M+ −M−,M± ≥ 0, Tr(M−) ≤ k − 1

2
. (8)

This is again an SDP, and thus possible to compute an-
alytic bounds. Now it is obvious that if Ek > 0 the
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Schmidt number (i.e. entanglement dimensionality) of
the experimental state ρ has to be greater than k.

Now applying the above formalism to the two-photon
pair experiment we can use

T =
1

N
(C00 + C01 + C10 − C11) (9)

where we have defined correlation functions

Cxy =
∑

a,b=±1

abNab,āb̄|xy (10)

and a normalization factor

N =
1

4

∑

x,y=0,1

∑

a,b=±1

Nab,āb̄|xy. (11)

Now we can optimize over all T such that:

TPPT := max T (12)

s.t. EPPT ≤ 0 (13)

and

T1−photon := max T (14)

s.t. E2 ≤ 0 (15)

In the last program we can furthermore add Schmidt
number witnesses [1] to be non-violated as a linear con-
straint. We have implemented these programs with
MATLAB using the SDPT3 solver and the YALMIP
package [4] and found that TPPT = 2

√
2 and with a

bounded negativity and choosing the optimal Schmidt
number witness for the unconstrained state the value for
one photon is T ≈ 3.535, thus showing that the induced
entanglement witnesses W(T ) indeed proves that more
than one entangled pair is required to explain the ob-
served correlations.

II. CONSISTENCY CHECK

The consistency of the experimentally obtained value
of T can be verified with the following model. As-
sume two independent photon pairs, each pair being in a
Werner state with visibility V: ρW (V) = V|φ+〉〈φ+| +
(1 − V)11/4, where |φ+〉 = 1√

2
(|00〉 + |11〉) is a Bell

state. Hence the total state is of the form ρ(V) =
ρW (V) ⊗ ρW (V). For such a state, the witness value T
can be directly expressed in function of the visibility

T =
4
√

2V
1 + V2/2

. (16)

Equivalently, this can be expressed in terms of the Bell-
CHSH parameter S for a single photon pair:

T =
2S

1 + S2/16
. (17)

Stored Transmitted

x0, y0 x0, y1 x1, y0 x1, y1 x0, y0 x0, y1 x1, y0 x1, y1

N++,−− 76 70 61 4 195 220 200 6

N−−,++ 112 113 112 6 216 227 198 11

N+−,−+ 1 2 5 92 10 12 11 222

N−+,+− 2 7 4 82 9 10 13 223

TABLE I. Experimental certification of two entangled pairs.
The total number of four-fold events detected for each com-
bination of four detectors (two detectors on each side of the
experiment). The data was collected for the maximum delay
between photon pairs of 50 ns. For this reason only 4 detec-
tor combinations are available due to their deadtime. Each
column is used to calculate the correlators Cxy (Eq. (10)) for
different sets of projective measurements as described in the
main text. Their values are used to compute the parameter
T of Eq. (9) for stored entangled photon pairs or transmitted
through the QM. For stored photons we obtained the value of
entanglement witness of T = 3.67(6), while for the transmit-
ted part it is 3.63(4). Both values are above the entanglement
bound to certify two entangled pairs.

Here the CHSH parameter is given by

S =
∑

x,y=0,1

(−1)xyExy (18)

where we have defined the usual correlators Exy =∑
a,b=±1 abp(ab|xy). For a single photon pair in a Werner

state ρW (V), the CHSH value is a simple function of the

visibility: S = 2
√

2V. Notice that the measurement set-
tings used in our witness are the optimal settings for
testing CHSH on the Bell state |φ+〉.

Experimentally, we measured for a single photon pair
S = 2.58± 0.02. Given the above model, we thus expect
a witness value of T̃ = 3.64±0.02, in excellent agreement
with our data.



3

0 100 200 300 400 500
Max. delay between pairs, ns

3.0

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

T
 e

n
ta

n
g
le

m
e
n
t 

w
it

n
e
ss

T50ns=3.67±0.06, T500ns=3.65±0.02

0 100 200 300 400 500
Delay between pairs (δt), ns

0

100

200

300

400

500

600

T
o
ta

l 
fo

u
r-

fo
ld

s

Transmitted

0 100 200 300 400 500
Delay between pairs (δt), ns

0

50

100

150

200

250

T
o
ta

l 
fo

u
r-

fo
ld

s

Stored

(a)

(b) (c)

FIG. 1. (a) The value of entanglement witness as a function
of the delay between photon pairs which were transmitted or
stored in the quantum memory. Bigger delay decreases stan-
dard deviation due to the bigger statistics. All the values
are above entanglement bound (dash line), which certifies the
presence of entanglement for both photon pairs. The values
for 50 ns and 500 ns maximum delay are equal inside standard
deviation. (b) The total number of quadruples is plotted in
function of the delay between photon pairs which were trans-
mitted (right graph) or stored in the quantum memory (left).
Triangular shape comes from the square shape of the pump
and convolution. To certify storage of both photon pairs we
consider a maximum delay of 50 ns between two photon pairs.
For longer delay, one cannot certify that two stored for at least
some time. The number of stored quadruples from the first
pulse or any other is the same which underlines that the ef-
ficiency of the QM doesn’t depend on the number of stored
excitations.
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(a)

(b)

FIG. 2. Histograms of the number of four-fold coincidences with the stored (a) and transmitted (b) signal photon that were

used to verify entanglement for both photon pairs. They are shown as a function of delays δt(sk − il) between detector D
(s)
k of

the signal analyzer (k = +;−) and detector D
(i)
l (l = +;−), where D(i) is one of the two SNSPDs used to detect idler photon.

The histograms were measured in four different bases that are equivalent to the CHSH inequality violation. The binning of the
histogram in each direction was set to be 0.486 ps. The coincidence window of 5 ns around the center of the histograms was
used to collect the four fold events and calculate entanglement witness (9).
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FIG. 3. (a) The total number of quadruple events plotted as a function of the delays between different pairs of detectors by
which they were detected. The maximum delay of 500 ns was considered. Four different coincidence peaks correspond to four
different cases: (A) both signal photons were stored in the QM, (C) both signal photons were transmitted without absorption
in the crystal and two cases (B, D) where only one of the signal photon was stored while other was transmitted. (b) The total
number of stored quadruples (case A) as a function of the delays between different pairs of detectors.
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Multi-dimensional entanglement offers interesting possibilities in quantum information e.g. quan-
tum cryptography. Here we report the characterization of two-photon multi-dimensional energy-time
entanglement between many temporal modes, after one photon has been stored in a solid-state quan-
tum memory. We develop a method for entanglement quantification which makes use of only very
sparse data, namely coincidences in the time-of-arrival basis and coherences between two neigh-
boring temporal modes. This allows us to certify that the quantum state after storage in our
experiment features at least 1.18 ebits of entanglement of formation. The theoretical methods we
develop can be readily extended to a wide range of experimental platforms, while our experimental
results demonstrate the suitability of energy-time multi-dimensional entanglement for a quantum
repeater architecture.

Quantum entanglement represents a key resource for
quantum information processing, e.g. in quantum com-
munications. Of particular interest is the possibil-
ity of using multi-dimensional entangled states, which
are proven to outperform standard two-qubit entangled
states for a wide range of applications. In particular,
high-dimensional entanglement can increase the quantum
communication channel capacity [1], as well as enhance
key rate and resilience to errors in quantum key distri-
bution [2–4]. Moreover, it is also relevant for the imple-
mentation of device-independent quantum communica-
tion protocols [5], allowing for more robust Bell tests [6]
and enhanced security [7].

In recent years a strong effort has been devoted to
the experimental implementation of multi-dimensional
entangled systems, in particular in the context of pho-
tonic experiments. Different degrees of freedom were
considered, such as orbital angular momentum [8–10],
frequency [11–14], spatial modes [15–17], time-bins [18–
20] and energy-time [21, 22]. Several experiments also
demonstrated the potential of multi-dimensional entan-
glement for quantum cryptography [23–26]. For this
time-bins and energy-time entangled systems are suitable
for implementations using optical fibres [27].

While these works open promising perspectives, the
use of multi-dimensional entanglement for practical and
efficient quantum communications still faces important
challenges. Unavoidable losses in optical fibers require
the use of quantum repeater schemes featuring quantum
memories in order to reach long distances [28]. First
steps were taken in realizing quantum memories beyond

∗ alexey.tiranov@unige.ch
† Present address: Department of Physics and Oregon Center for
Optical Molecular & Quantum Science, University of Oregon,
Eugene, OR 97403, USA
‡ marcus.huber@univie.ac.at

qubits. Notable experiments demonstrated the storage of
three-dimensional entanglement of orbital angular mo-
mentum [29, 30], as well as the implementation of a
temporal multimode quantum memory capable of stor-
ing multiple entangled two-qubit pairs [31], a key step
for achieving efficient entanglement distribution [32].

An important challenge consists of certifying and char-
acterizing multi-dimensional entanglement. Indeed, the
complexity of these systems (i.e. in terms of the num-
ber of parameters for characterizing their quantum state)
renders usual methods, such as quantum state tomogra-
phy, completely unpractical. More efficient techniques
have been developed, based e.g. on compressed sens-
ing [33, 34], but usually require partial prior knowl-
edge of the state. In general the problem of develop-
ing reliable and efficient methods for characterizing high-
dimensional entanglement based on experimentally ac-
cessible data, which is typically limited, is an active area
of research [35–37].

In the present work we address both of these chal-
lenges by demonstrating the characterization of multi-
dimensional energy-time entanglement stored in a solid-
state quantum memory based on very sparse data. We
first develop a method for quantifying multi-dimensional
entanglement based on the knowledge of the diagonal el-
ements of the density matrix, and a few off-diagonal ele-
ments. In our experiment, this corresponds to measuring
in the time-of-arrival basis, and observing the coherence
between neighboring temporal modes. From simple posi-
tivity constraints, our method imposes strong constraints
on the remaining elements of the density matrix, despite
the limited knowledge.

We demonstrate the practical relevance of the method
in our quantum storage experiment, involving energy-
time entanglement of a photon pair containing up to 9
temporal modes. In particular we certify that the quan-
tum state after storage has an entanglement of forma-
tion of at least 1.18 ebits. To the best of our knowledge,
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FIG. 1. Experimental setup. A pair of photons (signal and
idler) is generated in a ppKTP waveguide via SPDC of a
532 nm pump photon. Both photons are spectrally filtered
using optical cavities. Since the resulting coherence time of
the photon pair is much smaller than the coherence time of
the pump laser, this leads to the generation of two-photon
energy-time entanglement. The signal photon is sent to a
quantum memory (QM) based on a Nd3+:Y2SiO5 crystal and
stored for τM=50 ns. The pump laser intensity is modulated
using an acousto-optic modulator to generate a square pulse
with duration τp smaller than the storage time of the QM.
Finally the photon pair is analyzed via an unbalanced inter-
ferometers, with controllable phases φs and φi and identical
delays ∆ = 5.5 ns, and single-photon detectors (Ds and Di).
Hence the entangled state generated and measured in our ex-
periment can be compactly described by an entangled state
of d temporal modes of the form |Φd〉. The experimental pa-
rameters allow for up to d = 9 modes.

this is the highest value certified so far in any experi-
ment (even without storage). These results demonstrate
the potential of energy-time entanglement combined with
multimode quantum memories for creating and certifying
multi-dimensional entanglement on long distances.

We start by presenting our experimental scheme.
Energy-time entanglement between two single photons
at different wavelengths is generated using spontaneous
parametric down conversion (SPDC). A monochromatic
continuous-wave 532 nm laser pumps a nonlinear opti-
cal waveguide (periodically poled potassium titanyl phos-
phate (ppKTP) waveguide) to generate the signal and
idler photons at 883 nm and 1338 nm, respectively
(Fig. 1). The two down-converted photons are created
simultaneously and are well correlated in energy. How-
ever, the use of a monochromatic pump laser leads to an
uncertainty on the photon pair creation time. This un-
certainty is defined by the coherence time of the pump
laser ∼ 1 ms and leads to energy-time entanglement be-
tween the two down-converted photons.

The entangled photon pair is filtered down to 200 MHz
which corresponds to a coherence time τc ≈ 2.0 ns (the
details about the SPDC source can be found in [38]).
The fact that τc is much smaller than the coherence time
of the pump laser, combined with the detection scheme

we use (see below), allow us to describe the entangled
two-photon state as

|Φd〉 =
1√
d

d∑

j=1

|j〉i ⊗ |j〉s , (1)

where |j〉i (|j〉s) denotes the state of the idler (signal)
photon in temporal mode j = 1, ..., d.

The signal photon is coupled to the quantum mem-
ory, which is based on a rare-earth ion-doped orthosili-
cate crystal, Nd3+:Y2SiO5, which is cooled down to 3 K.
Photon storage is achieved via the atomic frequency comb
(AFC) quantum memory protocol, implemented on the
optical transition 4I9/2 ←→4 F3/2 of Nd3+ ions. The
storage time of τM = 50 ns is predetermined, with an
overall efficiency of 15%. More details about the quan-
tum memory can be found in [39].

Finally, local measurements are performed on each
photon using unbalanced interferometers (see Fig. 1).
The delay ∆ = 5.5 ns between the short and long arms
of the interferometers is bigger than the coherence time
of the photon pair τc. In this case, the situation in which
both photons passed through the short arm is indistin-
guishable from one where both photons travel through
the long arm, leading to quantum interference in the co-
incidence rate [40]. In practice, two Michelson interfer-
ometers (bulk for the signal photon and fiber-based for
the idler photon) with controllable phases (φs and φi on
Fig. 1) and identical delays ∆s = ∆i = ∆ were imple-
mented and actively phase stabilised [41].

The experiment thus generates an energy-time entan-
gled state between d temporal modes, of the form (1),
which can also be viewed as a post-selected time-bin en-
tangled state. The maximum number of temporal modes
that is possible to couple to the QM is defined by its
storage time τM . Thus the ratio τM/∆ corresponds to
the maximum dimension of d ∼ 9 for the state (1) which
can be stored and certified in our experiment.

Our goal now is to characterize the multi-dimensional
entanglement at the output of the quantum memory by
reconstructing part of the d2× d2 density matrix ρ, with
elements 〈j, k|ρ|j′, k′〉 = Tr[ρ(|j〉i〈j′|i ⊗ |k〉s〈k′|s)]. Note
however, that the measurement information at our dis-
posal is very limited, due to the simplicity of our mea-
surement setup. Hence we can obtain only very few el-
ements of ρ. Specifically, we can measure: i) the diag-
onal of the density matrix, i.e. terms 〈j, k|ρ|j, k〉, via
the time-coincide measurement, and ii) the visibility V
between two neighboring temporal modes, i.e. terms
〈j, j|ρ|j + 1, j + 1〉, via the interference measurements.
Note that a full state reconstruction of ρ would require
the use of d different interferometers, and is extremely
cumbersome and unpractical.

Nevertheless we will see that the limited information at
our disposal is already enough to partly characterize the
state, in particular leading to strong lower bounds on the
entanglement of formation of ρ, EoF . The latter is an op-
erationally meaningful measure of entanglement, quanti-
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FIG. 2. Illustration of the method. Given a sub matrix where
only the diagonal and first off diagonal are known (a), the
method allows us to complete the matrix (b), giving lower
bounds (7) on all unknown elements based on positivity con-
straints. Finally this construction leads to a lower bound on
the entanglement of formation via relation (2).

fying how much pure entanglement (counted in ebits, i.e.
the number of maximally entangled two-qubit pairs) is
required in order to prepare ρ via an arbitrary LOCC
procedure. Following Ref. [42], we have that

EoF ≥ − log2(1− B2

2
) , (2)

where we have defined the quantity B as

2√
|C|



∑

(j,k)∈C
j<k

|〈j, j|ρ|k, k〉| −
√
〈j, k|ρ|j, k〉〈k, j|ρ|k, j〉


 .

(3)
Note that the indices (j, k) are taken from a set C that
can be chosen at will. The quantity B puts a lower bound
on the concurrence of ρ [43]. For a d×d maximally entan-

gled pure state |Φd〉 one has B =
√

2(d− 1)/d, leading
to the tight bound EoF = log2(d).

Note that the evaluation of B requires only O(d2) el-
ements of the density matrix, comparing to the total
number of d4 − 1. While the diagonal elements, i.e.
〈j, k|ρ|j, k〉, can be estimated in the experiment (see be-
low), measuring all coherence terms 〈j, j|ρ|k, k〉 is still
challenging and unpractical, as it requires many interfer-
ometers (with time delays n∆ with n = 2, ..., d) with con-
trollable phases. Nevertheless we will see now that all un-
known coherence terms (e.g. 〈j, j|ρ|k, k〉 with |k−j| ≥ 2)
can in fact be efficiently lower bounded based only on ac-
cessible data.

These bounds simply follow from the requirement of
the density matrix ρ to be positive semi-definite, i.e. rep-
resenting a physical quantum state. We first notice that
if a matrix is positive semi-definite, then it is also the
case for its real part and all of its sub-matrices. Hence,

the following sub-matrix of ρ is positive semi-definite




r1,1 r1,2 · · · r1,d

r1,2 r2,2
. . .

...
...

. . .
. . . rd−1,d

r1,d · · · rd−1,d rd,d




(4)

where rj,k = rk,j = <(〈j, j|ρ|k, k〉). From Sylvester’s cri-
terion it follows that every sub-determinant of a positive
semi-definite matrix should be non-negative. In partic-
ular, the following determinant of any 3 × 3 sub-matrix
of (4) is non-negative, i.e.

∣∣∣∣∣∣

rj,j rj,k rj,l
rj,k rk,k rk,l

rj,l rk,l rl,l

∣∣∣∣∣∣
≥ 0 , (5)

for all j < k < l. We thus get the lower bound:

rj,l ≥
rj,krl,k −

√
(rj,jrk,k − r2j,k)(rk,krl,l − r2k,l)

rk,k
. (6)

Notice that the square root in the above equation is real
since its arguments are 2×2 sub-determinants of (5) and
therefore non-negative. Moreover, even if we do not know
the exact value of rj,k or rk,l, but only a non-negative
lower bound on them, the formula (6) remains valid. This
property allows us to iteratively compute a lower bound
on every element of the matrix (4), based only on its
diagonal and its first off-diagonal. Finally, we can lower
bound B and eventually the entanglement of formation
EoF via inequality (2).

Let us now focus on the situation of our experiment,
for which we expect the following form of the density
matrix (omitting normalization): rj,j = 1 for j = 1, ..., d
and rj,j+1 = V for j = 1, ..., d − 1. The bounds on the
first unknown off-diagonal elements read:

rj,j+2 ≥ 2V2 − 1 , rj,j+3 ≥ V(4V2 − 3) . (7)

Hence the matrix (4), containing initially many unknown
elements, can be filled iteratively, as illustrated in Fig. 2.
Finally, by computing parameter B, we get a lower bound
on the entanglement of formation depending on the vis-
ibility, see Fig. 3(b). In particular, for a perfect visibil-
ity V = 1, the only compatible state is the maximally
entangled one (1), and the bound becomes tight, i.e.
EoF = log2(d). See Appendix B for more details.

Notice that the bounds become worse when one moves
away from the diagonal. In fact, depending on the value
of V, the bound (6) becomes negative at some point, and
thus the corresponding (and following) off-diagonal ele-
ments cannot be lower bounded anymore. Nevertheless,
until that point, the bounds computed are useful and it
can be verified that the corresponding matrix is semi-
definite positive. Hence the bound on the entanglement
of formation we obtain is tight. Notice also that we can
play with the subset C in Eq. (3) to improve the final



4
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FIG. 3. Results for one experimental run. (a) The measured intensities in the time-of-arrival basis (diagonal elements rj,j) and
visibilities (first off-diagonal rj,j+1) for 10 temporal modes, separated by ∆ = 5.5 ns. (b) Lower bounds for the entanglement
of formation (number of ebits) as a function of the number d of temporal modes taken into account when reconstructing the
density matrix. Here the optimal value is ∼1.25(11) ebits. The data shows good agreement with our model considering the
measured visibility of V of 97%. The case V = 1, corresponding to the maximally entangled state (1), gives log2(d) ebits.

bound on EoF . This comes from the fact that, while tak-
ing a larger set C makes the sum in Eq. (3) larger, the

denominator
√
|C| also grows. We find that in certain

cases, better bounds on EoF are obtained when consid-
ering small sets C.

To apply the above method to our experiment, we start
by measuring the coherence between neighboring tempo-
ral modes, giving access to rj,j+1. In order to do this,
we use the two interferometers (Fig. 1) to extract co-
herences between temporal modes |j〉 and |j + 1〉. The
phase of the idler interferometer φi is fixed while the
phase of the signal interferometer φs is scanned over the
interval [0, 2π]. For each time-bin the phase scan is done
by measuring 15 points with 2 minutes per point. The
coincidence rates are recorded, which correspond to lo-
cal projections onto eφs+φi |j, j〉 + |j + 1, j + 1〉 for all
j = 1, ..., d − 1. The visibility values are extracted by
comparing number of coincidences corresponding to con-
structive (maximum) and destructive (minimum) inter-
ference. Results are given in Fig. 3(a). Note that the
visibilities for the first and the last temporal modes are
lower due to a significant change of the intensity between
the two neighboring modes. The average visibility for the
central temporal modes is ∼97%, and is limited by the
interferometric stability and the multi-pair contribution
from the SPDC process.

We then measure correlations in the time basis, lead-
ing to the diagonal terms rj,j for j = 1, ..., d. For this, we
block the short (or long) arm of the signal interferometer
to project on states |j, j〉 (or |j + 1, j + 1〉) using a me-
chanical switch. The results for one of the measurements
is depicted in Fig. 3(a). The remaining terms of the diag-
onal of ρ, i.e. 〈j, k|ρ|j, k〉 are also estimated. Essentially
the only contributions to these elements are the multi-
pair emission of the SPDC and noise of the detectors.
Since these processes are independent of the temporal

mode we assume that all diagonal terms 〈j, k|ρ|j, k〉 are
equal when j 6= k. Based on this assumption and using
our interferometers we then measure contributions from
neighboring modes 〈j, j + 1|ρ|j, j + 1〉 which is approxi-
mately equal to ≈ 1% and use these values for all other
terms.

We analyze the data via the method discussed above
in order to estimate the entanglement of formation of the
state. We first lower bound each element in the subma-
trix (4); details are given in the Appendix. We consider
all possible sub-matrices of ρ (of different sizes) and keep
the one leading to the best bound on EoF , see Fig. 3(b).
The maximum number of ebits corresponds to the cases
where both the measured visibilities and intensities are
large and relatively constant. This is achieved by con-
sidering the central region of the pulse, excluding the
edges where the intensity variation is limiting the visibil-
ity (Fig. 3(a)).

Finally we obtain a lower bound for the entanglement
of formation EoF ≥ 1.18(4) ebits, based on a dozen
repetitions of the measurement procedure and analysis.
The statistical error was measured for each experimental
set and after propagated for all measurements. More-
over, this result also certifies a genuinely 3 × 3 entan-
gled state, as any two-qubit state contains at most one
ebit. More generally, our approach can be used to place
lower bounds on the entanglement dimensionality given
by log2(d) ≥ EoF .

In the above analysis we certified a minimal degree
of entanglement considering all possible quantum states
(density matrices) compatible with our data. It is also
relevant to estimate the entanglement based on a more
physical model of our experiment. Indeed, this is ex-
pected to provide a much higher estimate of the entangle-
ment, given that we consider here only quantum states of
a specific form. Specifically, considering gaussian phase
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noise of the pump laser (with linewidth ∼1 kHz), we
find that the visibility remains essentially constant for
all temporal modes stored in the memory (see Appendix
for details). Hence we get that rj,j+n ≈ V, where V is the
measured visibility between two neighboring modes. This
allows us to get a lower bound on the entanglement of
formation of 2.6 ebits from our measurement data which
is limited by the visibility V.

In conclusion, we characterized multi-dimensional
energy-time entanglement between two photons where
one photon was stored in a quantum memory and the
other photon is at telecom wavelength. In particular, we
certified an entanglement of formation of 1.18(4) ebits
by developing a general method for characterizing mul-
tidimensional entangled state based on very sparse mea-
surement data. The generality of our method may find
application in other physical platforms. Combined with
the use of a quantum memory our approach offers promis-
ing perspectives for quantum communications based on
multi-dimensional entanglement.

Our method also serves as tool for certifying the di-
mensionality of entanglement. While we could certify
3 × 3 entanglement, higher dimension could be reached

by improving the state preparation and the measurement
apparatus to achieve higher visibilities, or even use addi-
tional interferometers. Another possible direction would
be to perform device-independent tests of the degree of
entanglement [44] and its dimensionality [45].
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APPENDIX FOR “QUANTIFICATION OF
MULTI-DIMENSIONAL PHOTONIC

ENTANGLEMENT STORED IN A QUANTUM
MEMORY BASED ON SPARSE DATA”

In this Appendix we provide more details about exper-
imental results and theoretical method that was imple-
mented to quantify multi-dimensional entanglement.

Appendix A: Details of experimental results

We have performed 12 complete experiments follow-
ing the method explained in the main text. Here we
describe in more details one of these runs and provide
details about final results.

First, we provide details about the measurement of
the visibility between the neighboring temporal modes.
Fig. 5 illustrates 2D image representing the coincidence
measurement for different temporal modes (Delay 1) as
a function of delay between two detectors Ds and Di

(Delay 2). The coincidence histograms between detectors
Ds and Di shows three peaks corresponding to different
path combinations for travelling idler and signal photon
after storage. By varying the phase of the interferometer
φs we observe the interference for central peak which
represents post-selected time-bin entangled state

|Φd〉 =
1√
d

d∑

j=1

cj |j〉i ⊗ |j〉s . (A1)

The separation between peaks is equal to the travel-time
difference between different arms of the interferometer
∆ =5.5 ns (Fig. 5). The central peak is post-selected us-
ing 3 ns temporal window (Delay 2) illustrated by dashed
line. We define different temporal modes by discretizing
temporal pulse using period ∆ (Delay 1 in Fig. 5).

We measure the visibility for each pair of neighboring
temporal modes by comparing number of coincidences
corresponding to destructive (Fig. 5(a)) and construc-
tive (Fig. 5(b)) interferences between different temporal
modes. The visibility is reduced at the edges of the pulse
which can be seen from increased number of coincidences
for destructive interference for first and last histogram
bin (Fig. 5). This is explained by fast intensity varia-
tion at the beginning and at the end of the pulse which
reduces the maximum achievable visibility. To measure
intensity of each temporal mode cj we block one of the
arms of the signal interferometer and repeat coincidence
measurement described above.

After we show the full sub-matrix reconstruction.
Fig. 4 shows the sub-matrix before and after application
of the theoretical method. Only elements from the first
rj,j and second rj,j+1 diagonals were measured experi-
mentally using a pair of interferometers. Application of
the method based on the positivity of the density matrix
(described in the main text) gives a lower bound on the
elements for all other diagonals (rj,j+2, rj,j+3 and so on).

(a)

(b)

FIG. 4. Illustration of the sub matrix reconstruction for ex-
perimental data of one run. The values were normalized with
respect to the maximum dimension (10 in this case).

These elements are further used to give a lower bound on
the entanglement of formation EoF based on expression
from Ref. [42]

EoF ≥ − log2(1− B2

2
) , (A2)

where we have defined the quantity B as

2√
|C|



∑

(j,k)∈C
j<k

|〈j, j|ρ|k, k〉| −
√
〈j, k|ρ|j, k〉〈k, j|ρ|k, j〉


 .

(A3)
The sub-matrix which gives maximum value of EoF is
indicated by a dashed line.

Same set of data was accumulated many times and for
each the certified number of ebits was calculated. Due to
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(a) (b)

FIG. 5. Example of the interference measurement corresponding to destructive and constructive interference between neighbor-
ing temporal modes. From this measurement we extract the visibilities corresponding to different pairs of neighboring temporal
modes.

FIG. 6. Summary of all results without (a) and including
white noise contribution (b).

the instability of each interferometer the visibility value
varied from time to time. The average visibility of 97%
was measured. Final certified values of entanglement of
formation are given in Fig. 6 and are all above one for
both cases without or including white noise contribution
which modifies the diagonal element of the density matrix
and reduces certified number of ebits.

Appendix B: Bounds on entanglement: noise
sensitivity

We discuss here in more details the characterization
of the density matrix obtained via the method described
in the main text. In particular we consider again the

situation expected from our experiment, that is, rj,j =
1 and rj,j+1 = V. Applying the method, we get the
following bounds for the (unmeasured) coherence terms

rj,j+2 ≥ 2V2 − 1
rj,j+3 ≥ V(4V2 − 3)
rj,j+4 ≥ 8V4 − 8V2 + 1
rj,j+5 ≥ V(16V4 − 20V2 + 5).

(B1)

Based on these bounds, one can then obtain a lower on
the entanglement of formation, as discussed in the main
text. In Fig. (7) we plot the obtained bound on EoF as
a function of the dimension of the quantum state. We
consider different values of the visibility V. For V = 1,
one obtains EoF = log2(d), which corresponds to the
maximally entangled state of dimension d× d, i.e. |Φd〉.
Notice that the maximally entangled state is here the
only quantum state compatible with the requirement that
V = 1. For V < 1, one can see that the bound on EoF
reaches a maximum (for some dimension, which depends
on the value of V) and then remains constant. Hence
for limited visibility V < 1, there is a maximal amount
of EoF that can be certified, independent of the Hilbert
space dimension.

Appendix C: Physical model of the phase noise

The visibility measured for bigger interferometric
delays will monotonically decrease due to the finite
linewidth of the pump laser. The phase noise of the pump
laser can be approximated by gaussian distribution with
standard deviation δφ. In this case the visibility scales

as V ∼ e−δφ
2/2 [46]. In our case for different temporal
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FIG. 7. Lower bound on the entanglement of formation (in
terms of number of ebits) as a function of the dimension d,
for visibilities V from 1 to 0.98.

modes separated by n∆ delay we can rewrite it as

Vn = V1e
−2(πδνn∆)2 , (C1)

where δν is the spectral linewidth of the pump laser and
V1 is the visibility between neighboring modes.

Assuming a full-width half-maximum linewidth of the
pump laser of 1 kHz and a maximum delay between tem-
poral modes of 50 ns, the expected visibility remains al-
most constant decreasing only by a factor 0.999. This
verifies our approximation of coherent sum between all
temporal modes generated and stored in the quantum
memory.
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We present a detailed study of the lifetime of optical spectral holes due to population storage in
Zeeman sublevels of Nd3+:Y2SiO5. The lifetime is measured as a function of magnetic field strength
and orientation, temperature and Nd3+ doping concentration. At the lowest temperature of 3 K we
find a general trend where the lifetime is short at low field strengths, then increases to a maximum
lifetime at a few hundreds of mT, and then finally decays rapidly for high field strengths. This
behaviour can be modelled with a relaxation rate dominated by Nd3+-Nd3+ cross relaxation at low
fields and spin lattice relaxation at high magnetic fields. The maximum lifetime depends strongly
on both the field strength and orientation, due to the competition between these processes and their
different angular dependencies. The cross relaxation limits the maximum lifetime for concentrations
as low as 30 ppm of Nd3+ ions. By decreasing the concentration to less than 1 ppm we could
completely eliminate the cross relaxation, reaching a lifetime of 3.8 s at 3 K. At higher temperatures
the spectral hole lifetime is limited by the magnetic-field independent Raman and Orbach processes.
In addition we show that the cross relaxation rate can be strongly reduced by creating spectrally
large holes of the order of the optical inhomogeneous broadening. Our results are important for the
development and design of new rare-earth-ion doped crystals for quantum information processing
and narrow-band spectral filtering for biological tissue imaging.

I. INTRODUCTION

Rare-earth (RE) ions doped into solid-state materials
(amorphous or crystalline) are currently investigated in
the domain of quantum technology for both storing and
processing quantum information [1, 2]. A strong mo-
tivation behind this effort is the long optical and spin
coherence times that can be achieved at low tempera-
tures [3, 4]. The large number of RE ions that can be
considered (RE = Eu, Pr, Tm, Nd, Er, Yb, Ce, etc.) also
implies a wide range of possibilities in terms of optical
wavelength (ultraviolet to near-infrared), spin transition
frequencies (MHz to GHz) and transition dipole moments
of the relevant optical and spin transitions [5].

The RE ions can be grouped into Kramers or non-
Kramers ions, depending on the number of 4fN electrons
in the RE3+ state of the ion [5]. Kramers ions have an
odd number of electrons, while non-Kramers ions have
an even number of electrons. In low-symmetry crystal-
lographic sites, the non-Kramers ions have a completely
lifted J degeneracy and the ground state spin structure
results from nuclear Zeeman and nuclear quadrupole type
interactions. These nuclear states generally have long co-
herence times [4, 6] and can be used as qubits [7, 8] or as
long-duration storage states for optical quantum memo-

∗ Current address: Present address: Department of Physics and
Oregon Center for Optical Molecular & Quantum Science, Uni-
versity of Oregon, Eugene, OR 97403, USA
† Correspondance: mikael.afzelius@unige.ch

ries [9–11]. However, the spin transition frequencies are
low, in the 10-100 MHz range, which limits the useful
bandwidth and the speed with which one can manipu-
late the spin states.

In Kramers ions the degeneracy is not completely lifted
by the interaction with the crystal lattice. In low-
symmetry crystallographic sites, Kramers ions have a
two-fold J degeneracy of the ground state (a Kramers
doublet). The doublet can often be treated as an effec-
tive S = 1/2 spin with a magnetic moment in the range
of 1 - 10 Bohr magnetons µB (in erbium as high as 15µB).
This effective spin model can break down at high mag-
netic fields and/or low crystal-field splittings [12]. Us-
ing Kramers doublets one can achieve spin transition fre-
quencies in the GHz range by applying a moderate mag-
netic field, which implies large bandwidth and fast oper-
ations. Several Kramers ions also have relevant optical
transitions that are easily accessible with diode lasers,
such as Nd (883 nm), Yb (980 nm) or Er (1530 nm), an
important practical aspect. On the other hand, the large
magnetic moments of Kramers ions couple more strongly
to lattice phonons and to other magnetic ions in the lat-
tice, which might shorten the spin population (T1) and
coherence (T2) times, as well as the optical coherence life-
times, with respect to non-Kramers ions. To fully exploit
the advantages of Kramers ions it is therefore important
to understand and optimise their spin properties.

In this article the focus is on the spin relaxation
mechanisms of a Kramers ion. The relaxation processes
strongly affect the degree of spin polarization that can be
achieved through optical pumping, which is a crucial step
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for quantum processing and storage schemes using both
single spins and ensembles of spins. The spin population
lifetime also puts an upper limit on the achievable spin
coherence time such that T2 ≤ 2T1. A long spin popula-
tion time is thus a basic requirement for many quantum
applications.

Optical pumping and partial spin polarization in
Kramers doublets was first observed by Macfarlane and
Vial in Nd3+:LaF3 [13]. Specifically, they used spec-
tral hole burning (SHB) to optically pump ions into a
Kramers sub-level for a small sub-ensemble of ions in
the large optical inhomogeneous broadening. Only re-
cently, however, the optical pumping using Kramers dou-
blets received renewed interest in the context of quantum
light storage experiments [14–16]. There, efficient opti-
cal pumping using SHB is a requirement for achieving
high storage efficiencies. This led to a few limited stud-
ies of spin population lifetimes measured using SHB. In
both neodymium and erbium doped single crystals the
lifetimes have been limited to about 100 ms [14, 17, 18],
which in turn reduces the maximum efficiency of quan-
tum storage protocols [19]. In general the lifetime limi-
tation is thought to be due to the spin-lattice relaxation
(SLR) and/or spin cross relaxation (flip-flop or FF) pro-
cesses [20, 21]. But the relative importance of these two
processes remains unknown, particularly at the low dop-
ing concentrations often used in the context of quantum
storage experiments (<100 ppm).

In this article we experimentally characterize the spin
population dynamics of a Kramers ion, as a function
of the applied magnetic field, temperature and dopant
concentration. Specifically, we study neodymium-doped
Y2SiO5 crystals, which is a typical Kramers case that
we believe is representative of a large class of Kramers-
ion doped crystals. One of our main findings is that the
spin FF process is limiting the spectral hole lifetime at
concentrations as low as 30 ppm. Only in a extremely
low-doped sample (< 1 ppm) did we measure a spectral
hole lifetime solely limited by the SLR, where the life-
time approaches 4 seconds at low magnetic fields. As
the neodymium ion has a moderate magnetic moment
among Kramers ions, we expect that the spin FF process
has a large impact on the spectral hole lifetime of many
Kramers doublets.

The article is organized as follows. In Sec. II we dis-
cuss the different relaxation processes (SLR and spin
FF) and their expected dependence on relevant exper-
imental parameters. We also discuss the difference in
measuring the population lifetime using SHB and more
conventional electron paramagnetic resonance (EPR) ex-
periments. In Sec. III, we discuss basic properties of
neodymium-doped Y2SiO5 and the employed experimen-
tal methods. In Sec. IV we present measurements of
the spectral hole lifetime as a function of the external
magnetic field (in Sec. IV A), temperature (Sec. IV B),
neodymium concentration (Sec. IV C) and overall spin
polarization (Sec. IV D). In Sec. V we summarize our re-
sults and give an outlook on possible future experiments.
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B > 0
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FIG. 1. Kramers doublet splitting under an external mag-
netic field B for the case of Nd3+:Y2SiO5. Each crystal field
level within the electronic states 4I9/2 and 4F3/2 consists of
two magnetic sublevels ms = ±1/2. Note that only the lowest
crystal field level of each electronic state is shown here. The
magnetic sublevels become non-degenerate under the presence
of a magnetic field. The splitting in energy depends linearly
on the magnetic field B and on the effective g factor g(θ),
which characterizes the angular dependence of the splitting.
On the right, the convention used for the magnetic field an-
gle θ is shown. The magnetic field is static and is applied
in the D1-D2 plane, where D1 and D2 are the so-called po-
larization extinction axes of Y2SiO5 crystal. Absorption is
maximal when the polarization of light is linear and aligned
with D1.

II. THEORY

A. Kramers doublets

We here consider the electronic ground state 2S+1LJ of
a Kramers ion such as neodymium, ytterbium or erbium.
If the site symmetry of the ion is sufficiently low, then
the interaction with the crystal lattice splits the 2J + 1
magnetic sublevels into J + 1/2 Kramers doublets. At
the low temperatures considered here (3 ≤ T ≤ 5.5 K),
only the lowest Kramers doublet is populated. Moreover,
only the doublet with the lowest energy typically has long
population lifetimes, while the other doublets have very
short lifetimes due to fast phonon emission towards the
lowest doublet. We note also that the optically excited
state is also a Kramers doublet, although its spin dynam-
ics is not characterized in this work. In the following, all
experimental data relates to the lowest doublet in the
electronic ground state (Fig. 1).

Under application of a magnetic field each doublet
splits into two levels. The doublet can be modelled as
a spin-half system S = 1/2 with a corresponding spin
Hamiltonian H = µBB · g̃ · S [22]. Here µB is the Bohr
magneton, B is the magnetic field vector, g̃ the g factor
matrix and S the spin operator vector. The g̃ matrix
is often highly anisotropic, which results in a strong an-
gular dependence of the Zeeman energy split ∆E. In
this work we vary the magnetic field in a certain plane
(see Fig. 1), such that the energy split can be written in
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terms of an effective, angle-dependent g factor g(θ), i.e.
∆E(θ) = µBg(θ)B.

At a given temperature T , the ratio of spins in the two
levels is given by the Boltzmann distribution for a sys-
tem in thermal equilibrium. At 3 K, and for magnetic
fields around 1 T, these levels are roughly equally popu-
lated, given that g(θ) varies between 1.5 and 2.7 in the
plane of interest (see Fig. 1) [23]. The goal of optical
pumping is to create a population distribution far from
thermal equilibrium, such as a completely spin-polarized
state with all ions in one of the doublet states. After the
optical pumping the spins will rethermalize because of
the different population relaxation mechanisms. This, in
turn, will limit both the time during which the desired
state can be used and the maximum degree of spin polar-
ization that can be achieved. We will therefore start by
discussing the different relaxation mechanisms that are
relevant for Kramers ions at low temperatures.

B. Spin lattice relaxation

The Kramers doublet states can thermalize to the bath
temperature through different interactions with phonons,
which together are denoted as spin lattice relaxation
(SLR) [24–27]. The SLR rate is a single-ion property,
i.e. it has no dependence on the concentration of param-
agnetic ions. In some rarer cases, however, a spin concen-
tration dependence can be observed due to the “phonon
bottleneck” phenomenon [25].

There are three main types of SLR processes; direct,
Raman and Orbach. The direct process involves the ab-
sorption or emission of a phonon with the same energy
as the doublet energy separation ∆E(θ). This process
is thus strongly dependent on the density of phonons
at a given energy, which scales as ∆E2(θ). The Ra-
man and Orbach processes, on the other hand, are two-
phonon processes. The Raman process only requires a
two-phonon resonance and therefore uses a larger range of
the phonon spectrum. The Orbach process is resonantly
enhanced by also involving a one-phonon resonance with
a second Kramers doublet, with an energy separation ∆O

with respect to the ground state doublet. The three pro-
cesses add up to a total SLR rate that can be written as
[26, 27],

RSLR = αD(θ)g3(θ)(µBB)5 coth(
∆E(θ)

2kBT
)

+ αRT
9 + αOe

− ∆O
kBT , (1)

where αD, αR, αO are the coupling parameters for the
direct, Raman and Orbach processes, respectively.

The Raman and Orbach processes are strongly temper-
ature dependent, but they normally have no magnetic-
field dependence. A field dependence might appear, how-
ever, if the Zeeman split ∆E(θ) becomes comparable to
the crystal-field split with respect to the first excited
crystal-field level [27]. Since all experiments presented

in this article are far from this regime we consider the
Raman and Orbach processes to be field-insensitive.

Kurkin and Chernov [28] have measured the Raman
and Orbach coupling parameters in Nd3+:Y2SiO5 us-
ing EPR techniques. They found αR = 1.2 · 10−5,
αO = 3.8 · 1010 and ∆O/kB = 97 K (for the crystallo-
graphic site relevant to this article, see Sec. III A). Using
these parameters we calculate that, for temperatures of
3 and 5 K, the Raman and Orbach processes combined
amount to a SLR rate of 0.24 and 166 Hz, respectively.
These rates correspond to population lifetimes of 4.2 s
and 6 ms, respectively. For efficient optical pumping the
population lifetime must be much longer than the radia-
tive lifetime of the optically excited state (see Sec. III B),
which is 300 µs in Nd3+:Y2SiO5 [14]. One can thus im-
mediately conclude that for Nd3+:Y2SiO5 pumping can-
not be efficient at a temperature of 5 K or above. Since
Raman and Orbach parameters have been measured for
many Kramers ions in different host crystals, such a sim-
ple analysis permits to evaluate below which temperature
efficient optical pumping could potentially be achieved.

The direct process is only weakly dependent on tem-
perature, as compared to Raman and Orbach, but dis-
plays a strong dependence on both the angle and magni-
tude of the magnetic field. As a consequence much less
information can be found in the literature, typically the
direct contribution to the relaxation rate is character-
ized only for a fixed angle and magnetic field, such as
for Nd3+:Y2SiO5 [29]. In the limit where ∆E � 2kBT ,
which holds for most of the data presented in this article,
the direct process scales as αD(θ)g2(θ)B4. There is thus
often a known angular dependence due to g2(θ), but the
angular dependence in the coupling parameter αD(θ) is
generally unknown. One of the goals of this work is to
measure αD(θ) in Nd3+:Y2SiO5.

C. Cross relaxation

Another type of spin relaxation process is the cross
relaxation between two spins [27, 30, 31], which is also
called the spin flip-flop (FF) process. If two spins with
the same energy splitting ∆E are spatially close enough
they can swap excitation through a magnetic dipole-
dipole interaction. As a consequence it depends on the
concentration of spins. In EPR experiments the cross
relaxation process is often considered between two dif-
ferent types of paramagnetic ions, ensembles A and B,
which are tuned into resonance by making their g(θ) fac-
tors similar for specific angles of the magnetic field [27].
If ensemble A has been saturated by an initial microwave
pulse, its spins can relax by flip-flopping with the ensem-
ble B spins, causing an increased relaxation rate at those
specific angles of the magnetic field.

In our experiment we perform optical pumping using
spectral hole burning and we need to consider how cross-
relaxation can affect the lifetime of the spectral hole. The
spectral hole burning creates a strongly spin-polarized
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ensemble A for a small frequency range within the large
optical inhomogeneous broadening. All other spins, en-
semble B, remain, however, in a thermal distribution be-
tween the two spin states (see Fig. 2). We stress that
ensembles A and B both contain Nd3+ ions with identi-
cal spin properties, but whose optical frequencies are dif-
ferent (Fig. 2). In typical spectral hole lifetime measure-
ments [17, 32], ensemble A contains much less than 1% of
the total number of spins. For some broadband quantum
memory applications, this fraction can approach 10%
[33, 34]. We note that the effect of spin flip-flops on the
spectral hole lifetime has also been considered in EPR
experiments [31]. There, however, only off-resonant flip-
flops can cause a decay of the spin hole, while in our case
resonant spin flip-flops can cause a decay of the optical
hole.

In our spin flip-flop model we assume that there is
no correlation between the inhomogeneous broadening of
the spin transition and the optical transition. Hence,
the spectral hole only appears on the optical transition
and not on the spin transition where the A and B spins
cannot be distinguished in frequency, i.e. in ∆E. As a
consequence there are always many spins within ensem-
ble B that can resonantly spin flip-flop with the initially
spin-polarized ensemble A, effectively causing a fast re-
laxation and a limitation in the initial spin polarization
that can be achieved for ensemble A. This is true as long
as ∆E � 2kBT , while in the opposite limit a very differ-
ent behaviour can be expected depending on if spins A
are polarized into the upper or lower energy level.

The calculation of the cross-relaxation rate between
identical spins having isotropic g tensors was first con-
sidered by Portis [30], in the limit of equally populated
spin states (∆E � 2kBT ). Böttger et al. [20] proposed
a modified formula which is valid for any temperature
range, which can be written as,

RFF = αFF
g4n2

Γ
sech2

(
∆E(θ)

2kBT

)
, (2)

where αFF is the coupling parameter, Γ is the inhomoge-
neous spin linewidth and n is the concentration of dopant
ions.

In the case of spins with anisotropic g tensors the cal-
culations are much more complicated [35]. In the Supple-
mentary Material we use a simpler approach to calculate
the expected angular dependence of the average spin flip-
flop rate. It is based on a dipole-dipole interaction and
Fermi’s golden rule. Our calculations show that one can
not simply replace the isotropic g factor in Eq. (2) with
the effective g(θ) factor for anisotropic spins. In some
cases one can still derive simple formulas for the angular
dependence, such as for g tensors with axial symmetry
and measurements in planes containing the principal axes
of the g tensor. In general, however, the angular depen-
dence of the rate cannot be written as a simple formula.
Therefore we henceforth write the FF rate as

RFF = βFF(θ)
n2

Γ
sech2

(
∆E(θ)

2kBT

)
, (3)
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FIG. 2. Illustration of the creation of two spin populations
by spectral hole burning on an optical transition within a
four-level system as shown in Fig. 1. For simplicity we as-
sume that only two transitions are allowed, originating from
each 4I9/2 spin level. These optical transitions are inhomo-
geneously broadened with average frequencies ω1 and ω2. A
narrow hole is burnt into the ω2 absorption line by optically
pumping the spins into the upper 4I9/2 spin level. This cre-
ates a highly polarized spin ensemble in that narrow spectral
region, denoted ensemble as A (in red), while the remaining
ions have a thermal distribution, denoted ensemble as B (in
cyan). A spin of ensemble A can flip-flop with a spin of ensem-
ble B, as depicted by dashed arrows. This causes a decrease
in the spin polarization of ensemble A and a time-dependent
decay of the spectral hole. The associated increase in absorp-
tion on the ω1 line is not measurable since it is distributed
over the large spectral region made up of ensemble B spins.

where the angular dependence is in the parameter βFF(θ).
We further note that for the range of fields and tem-

peratures considered here, the sech2(∆E/2kBT ) term is
close to 1, such that one would expect a very weak B-
field dependence of the FF rate. But on the contrary
we will show experimental evidence of a strong B de-
pendence of the FF process, prompting a modification
of Eq. (3). Similar results were recently observed in an
erbium-doped silicate fiber [21] and we will discuss the
similarities and differences with respect to that work in
relation to the experimental results in Sec. IV A.

III. EXPERIMENTAL DETAILS

A. Nd3+-doped Y2SiO5

The Y2SiO5 host crystal is interesting because its
low nuclear spin density generally results in long opti-
cal and hyperfine coherence times when doped with RE
ions [4, 6, 20, 36]. The optical properties of Nd3+:Y2SiO5

have been studied since the mid 1980s for its use as a laser
medium [37–40]. The Nd3+:Y2SiO5 crystal was first in-
troduced in the field of quantum information with the
demonstration of storage of light at the single-photon
level in 2010 [14]. Since then it has been used in numerous
quantum storage experiments [15, 33, 41–43] and in co-
herent storage of microwave excitations [23]. A nanopho-
tonic cavity has also been fabricated in a Nd3+:Y2SiO5
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crystal, showing enhanced interaction between Nd3+ ions
and light [44].

The optical transition of interest for coherent light-
matter interactions is between the lowest Kramers dou-
blet in the electronic ground state 4I9/2 and in the elec-

tronically excited state 4F3/2. The radiative lifetime of
the excited state is about 300 µs [14], one of the short-
est of any RE ion with an optical transition having good
coherence properties. The short lifetime makes optical
pumping more efficient, given a fixed spin population
lifetime, as compared to RE ions having long radiative
lifetimes such as erbium (about 10 ms).

The Nd3+ ions replace Y3+ ions in two possible crys-
tallographic sites in the lattice [29], both having a site
symmetry of C1. In this work only ions in site 1 are
studied, following the site notation of Ref. [38], since the
corresponding absorption coefficient is higher. The tran-
sition wavelength for site 1 is 883.0 nm (11325 cm−1).
We note that this site notation is inverted with respect
to the EPR notation introduced in Ref. [29].

All crystals we use have a natural abundance of Nd3+

isotopes, hence 80% with zero nuclear spin I = 0 (with
even atomic mass number) and 20% with nuclear spin
I = 7/2 (12.2% 143Nd and 8.3% 145Nd). For the isotopes
with I = 7/2 the ground state has more than the two
levels of the simple Kramers doublet. The coupling to
the nuclear spin also affects the population lifetime and
opens up more decay channels. In this work we aimed at
only characterizing even isotopes with I = 0. In Sec. III B
we discuss how we could extract lifetimes that, to a high
confidence, only pertain to even isotopes.

Part of this work concerns the concentration depen-
dence of the spectral hole lifetime, therefore we study
three crystals with different concentrations. We use a
crystal nominally doped with 30 ppm Nd3+ grown by
Scientific Materials and another one with 75 ppm grown
by us. The latter crystal was grown by the Czochral-
ski method using an inductively heated irridium crucible.
The starting oxides were of at least 99.99% purity (Alfa
Aesar). We also used a crystal more strongly doped with
Eu3+ (1000 ppm), which contains a residual concentra-
tion of Nd3+. Using absorption spectroscopy we esti-
mated the Nd3+ concentration to be 0.5±0.3 ppm. Since
we expect no cross relaxation between Nd3+ and Eu3+

ions this crystal represents in a good approximation a
pure Nd3+:Y2SiO5 crystal with extremely low Nd3+ con-
centration.

All crystals were cut along the polarization extinction
axes D1,D2 and b [45], where b coincides with the unit
cell axis that has C2 symmetry. Light was propagat-
ing along b with its polarization along D1 for highest
absorption. The crystals had peak absorption coeffi-
cients of α30 = 3 cm−1 [14], α75 = 7.4 cm−1 [33] and
α0.5 = 0.05 cm−1 (at zero magnetic field). The magnetic
field was applied in the D1-D2 plane where all ions are
magnetically equivalent. Out of this plane the ions split
into two magnetically non-equivalent sub-ensembles, re-
lated by the C2 symmetry around b, having different

Zeeman splittings ∆E(θ). This would complicate the in-
terpretation of the data, since these are expected to have
different spin population lifetimes.

B. Spectral hole decay measurements

Spectral hole burning (SHB) is a common technique
to measure spin dynamics of RE ions at low tempera-
tures [17, 21, 32, 46, 47]. It consists of a burn pulse that
optically pumps ions out of a specific ground state, ei-
ther to the optically excited state or to another ground
state through spontaneous emission. By pumping for a
long time with respect to the excited state lifetime T opt

1

one can polarize most of the spins in a particular ground
state, as shown in Fig. 1. This requires that the spec-
tral hole lifetime T SHB

1 = 1/(RFF +RSLR) is much longer

than T opt
1 and that the branching ratio of the two opti-

cal transitions is high enough as discussed thoroughly in
Refs [19, 48, 49].

To probe the hole a second optical pulse measures the
population of the optically pumped state after some de-
lay, which allows one to measure the recovery of the
thermal population. In our case the shortest delay was
much longer than T opt

1 , such that the recovery only in-
volved spin dynamics. We also emphasize that we mea-
sure the spectral hole area, such that we are not sensitive
to spectral diffusion which can decrease the hole ampli-
tude through a time-dependent broadening of the hole.
In general we did not observe spectral diffusion in these
measurements. Therefore, measuring the decay of the
hole area or the hole depth is equivalent in our case.

For all the measurements presented in this article we
observed recovery signals consisting of a short decay on
the scale of 100 ms or less and a long decay of a few
seconds. The hole depth related to the short decay de-
pends strongly on the magnetic field strength, for a fixed
angle, and there is a clear correlation with the lifetime
given by the decay constant. For some fields this depth
corresponded to almost the entire optical depth, which
means that it cannot stem from odd isotopes with nu-
clear spin I = 7/2 as these only make up 20% of the
ensemble (and hence the total optical depth). In general
we can be certain that holes deeper than about 20% can-
not come from odd isotopes. We therefore assume that
the short decays with large amplitudes stem from even
isotopes with no nuclear spin I = 0. Each data set for a
fixed field angle was examined in this way and only the
decay constants of sufficiently deep holes were selected
for the final analysis. This limited our measurements to
a certain magnetic field range, depending on the crystal
(i.e. doping concentration) and the field angle θ.

The long decay is related to a much smaller relative
fraction of the hole depth which is consistent with a con-
tribution to the hole from odd isotopes with I = 7/2. The
related hole depth is much less dependent on the mag-
netic field strength and angle, which is also consistent
with its much longer lifetime that would make optical
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pumping efficient for any field configuration. We have
also performed a few SHB measurements on an isotopi-
cally enriched 145Nd3+:Y2SiO5 crystal, supporting this
hypothesis. The characterization of hyperfine population
lifetimes is out of the scope of this article.

C. Experimental setup

The crystal is placed in an optical cryostat which
can be cooled down to 3 K. A superconducting magnet
mounted inside can produce a variable magnetic field be-
tween 0 and 2 T. The crystal is rotated with respect
to the magnetic field using a piezo stage. In the center
of the rotator there is a small 1.5 mm hole such that a
laser beam can pass through the crystal and rotator. The
883.0 nm laser beam is derived from a continuous-wave
external cavity diode laser. An acousto-optic modulator
(AOM) is used to modulate the intensity and frequency
of light. The AOM was used to create the burn and probe
pulses, and to scan the probe pulse a few tens of MHz
around the spectral hole. A digital-delay generator cre-
ates all the trigger signals for the experiment, while an
arbitrary function generator drives the AOM.

IV. RESULTS AND DISCUSSION

A. Magnetic field dependence

In a first series of measurements we study the spectral
hole lifetime T SHB

1 as a function of the magnetic field
strength for eight fixed angles. The Nd3+ concentration
was 30 ppm and the crystal was cooled to the temper-
ature of 3 K. Three examples of experimental data sets
are shown in Fig. 3 for θ = 0° (D1 axis), θ = 90° (D2

axis) and θ = 120°.
All measurements display the same general trend as

a function of field strength. At low fields the lifetime
is small, typically below 10 ms. By increasing the mag-
netic field one can reach the maximal lifetime at a certain
point in the range 0.3-0.6 T, depending on the angle, af-
ter which it starts to decrease again. Note that in Fig. 3
we show the data that was retained for the final fit to
the model, using the procedure discussed in Sec. III B,
but the general trend of a reduction in hole lifetime with
decreasing field continues towards zero field. For lower
fields, however, it becomes increasingly difficult to use
our method for extracting lifetimes of even isotopes with
respect to odd isotopes (see Sec. III B).

The decrease in spectral hole lifetime in the high-field
limit is well understood. It is due to the increase in the
SLR rate caused by the direct phonon process. As dis-
cussed in Sec. II B the spectral hole lifetime is expected
to scale as T SHB

1 ∝ 1/(αD(θ)g2(θ)B4) in this region. All
experimental data sets fits well to the SLR theory in the
high-field limit, as shown in Fig. 3.
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FIG. 3. Lifetime of the spectral hole versus magnetic field
strength, for a Nd3+ concentration of 30 ppm and at three dif-
ferent angles θ = 0° (blue circles), θ = 90° (red filled squares),
and θ = 120° (black diamonds). Data for θ = 90° and the
crystal with 75 ppm Nd3+ concentration is also shown (red
open squares). The figure shows both experimental data and
fits from the model based on SLR and FF (see Sec. IV A for
details). The temperature was 3 K for all data sets.

In the low-field limit the reduction in lifetime cannot
be explained by the cross relaxation rate given by Eq. (3).
Indeed, as already discussed in Sec. II C the B-field de-
pendence should be weak, because the thermal popula-
tion distribution does not change significantly over the
relevant range of magnetic fields at 3 K. Yet, by compar-
ing the lifetimes measured for the samples doped with 30
and 75 ppm of Nd3+ at the angle of θ = 90° (D2 axis),
see Fig. 3, it is clear that the T SHB

1 is concentration de-
pendent in the low-field region. Further data showing the
concentration dependence are presented in Figs 6 and 7.
There is thus a strong indication of cross-relaxation being
the dominant process at low fields.

A similar trend was observed in recent measurements
of the spectral hole lifetime in erbium-doped silica glass
fibers [21]. There it was proposed that the inhomoge-
neous spin linewidth increases linearly with the magnetic
field, which results in an inverse dependence on the field
for the cross relaxation rate RFF ∝ 1/Γ ∝ 1/(Γ0 + κB),
cf. Eq. (3), where κ is a constant and Γ0 is the inho-
mogeneous spin linewidth at zero field. This assumption
is justified for an amorphous glass where the inhomoge-
neous spin linewidth stems from the anisotropy of the
g-tensor, which generally is large for Kramers ions. In
our case a similar linear dependence of the spin linewidth
could arise from an inhomogeneity in the g factor, caused
by strain or defects [50].

There is some experimental support for an increase in
the spin linewidth with increasing magnetic field. We
performed optically-detected (OD) EPR in the sample
with 30 ppm Nd3+ concentration, using a method we re-
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FIG. 4. Maximum spectral hole lifetime for each of the mea-
sured angles in the crystal with 30 ppm Nd3+ concentration at
a temperature of 3 K. We can distinguish a global maximum
at θ = 120° and a local maximum at θ = 0°. As discussed in
Sec. IV A, the global maximum is at θ = 120° because the FF
rate is minimal at this angle.

cently presented in Ref. [51], which gave a spin linewidth
of 5 MHz for a low field (< 10 mT) along D2. In
Ref. [23] conventional EPR gave a linewidth of 12 MHz
for 561.5 mT along D1, in a sample with 10 ppm Nd3+

concentration. But due to the difference in field direction
and Nd3+ concentration used in the two experiments we
cannot make any quantitative estimations of the increase
in linewidth. We also note that a field-dependent spin
linewidth has been observed in Er3+:Y2SiO5 [52]. Even
more recent EPR measurements of the angular depen-
dence of the spin linewidth in Er3+:Y2SiO5 also support
our hypothesis of a strain-induced field-dependent spin
linewidth [53].

For a spin linewidth of the form Γ = Γ0+κB we would
expect a weak dependence of the FF rate with the field
for sufficiently low fields, hence the T SHB

1 would reach a
plateau for low fields. Since we do not observe this (see
Fig. 3) we cannot fit Γ0 using our data. By using Γ = κB
as a model, Eq. (3) can then be written as

RFF =
γFF(θ)

B
sech2

(
∆E(θ)

2kBT

)
(4)

where βFF(θ), κ and n have been included in the effective
coupling parameter γFF(θ) = βFF(θ)n2/κ.

The spectral hole lifetimes measured as a function
of magnetic field strength were fitted to the theoretical
model using Eqs. (1), (4) and T SHB

1 = 1/(RFF + RSLR).
The model yielded a good fit for all eight angles, as
shown for three of the angles in Fig. 3. This supports
our assumption that there is a linear increase of the spin
linewidth as a function of field strength, which causes a
reduction of the cross relaxation in the low-field limit.
To further strengthen this conclusion it would be highly
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FIG. 5. Angular dependence of the coupling parameters pre-
sented in the main text and the relaxation rate. In (a) we
show the angular variation of αD(θ)g(θ)2 (in units of Hz/T5)
and γFF(θ) (in units of Hz ·T). The direct SLR process varies
somewhat like a sine function, with a minimum around D1,
while the FF appears to have two minima, at D1 and θ = 120°,
respectively. In (b) we show the angular dependence of the
total relaxation rate RSLR + RFF for B = 0.1, 0.4, 0.7 and
1 T. The minimum rate at about θ = 120°, for a field of 0.4
T, explains the maximum lifetime of 156 ms observed for this
field strength (cf Fig. 4).

interesting to measure the spin linewidth as function of
strength and angle of the magnetic field, for instance us-
ing the methods applied in Ref. [51]. Recently, Welinski
et al. took steps in this direction by measuring the an-
gular dependence of the spin linewidth in erbium-doped
Y2SiO5. We also note that different Kramers ions could
display different field dependence of the spectral hole life-
time, in the low-field limit, if the field-independent part
of the spin linewidth Γ0 is larger than κB.

As a result of the competition between the cross re-
laxation and the SLR direct process there is a maxi-
mum spectral hole lifetime for each magnetic field angle
(Fig. 3). This maximum has a strong angular dependence
and the field strength at which it is reached also depends
on the angle. As shown in Fig. 4 the maximum lifetime
goes from 17.5 ± 1.1 ms at B = 0.55 T for θ = 60°, to
156±6 ms at B = 0.4 T for θ = 120°, as shown in Fig. 4.
There is also a local maximum of 76±4 ms at B = 0.65 T
for an angle of θ = 0°. In the following we will discuss
how the maximum lifetime, and the field at which it is
reached, is a complex interplay between the angular vari-
ations in the g factor and in the coupling parameters for
SLR and FF.

For the cross relaxation process the angular depen-
dence is given by the FF coupling parameter γFF(θ). For
the SLR direct process we need to consider the product
of the coupling parameter and the g(θ)2 factor, as dis-
cussed in Sec. II B. For both processes we neglect, for
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simplicity, the dependence on the ratio ∆E(θ)/(2kBT ).
This is a good approximation for fields of 1 T or less. In
Fig. 5(a) we thus show αD(θ)g(θ)2µ5

B and γFF(θ). The
SLR direct process alone has a minimum rate at θ = 0°
and maximum rate at θ = 90°, suggesting that in absence
of cross relaxation the optimal field orientation would be
along the D1 rather than at θ = 120° (see Fig. 4). The
cross relaxation has a very different behaviour, with two
local minima at θ = 0° and θ = 120°, and a maximum
rate at θ = 60°.

The angular dependencies of the two processes show
that there should be two local minima of the total rate,
at θ = 0° and θ = 120°, which corresponds well to the
observed maxima of the spectral hole lifetime at those an-
gles (see Fig. 4). We also note that the particularly short
lifetimes around θ = 60° are due to the fact that both
coupling parameters are large in this region. Looking
at Fig. 5(a) it is not directly evident, however, why the
maximum at θ = 120° gives a particularly long lifetime.
It is not surprising that it cannot be deduced directly
from Fig. 5(a), as both processes have a different depen-
dence on the field strength B. To better understand the
maximum at θ = 120° we plot the total relaxation rate
RSLR + RFF as a function of angle for several magnetic
field strengths, see Fig. 5(b). At the lowest field (0.1 T)
the rate is entirely dominated by the FF process and the
lowest rate is reached around θ = 120°. Increasing the
field to 0.4 T results in a similar angle dependence, hence
the rate is dominated by the FF process, but with sig-
nificantly lower rate. Since 0.4 T is the field strength at
which the longest lifetime of 156 ms is reached, we can
conclude that it is given by the low FF coupling param-
eter at θ = 120°. Further increasing the field increases
the SLR rate and progressively shifts the minimum rate
towards θ = 0°. At the highest field of 1 T it is entirely
dominated by the SLR process.

The angular variation of the direct SLR relaxation
is defined by the wavefunctions of the Kramers dou-
blets within the 4I9/2 ground state [26]. Therefore one
requires knowledge of the crystal-field Hamiltonian of
Nd3+:Y2SiO5 in order to make a comparison with our
experimental results. To our knowledge, however, the
crystal-field Hamiltonian has not been determined. Con-
cerning the angular dependence of the flip-flop process,
we have made comparisons with the simple theoretical
model discussed in Sec. II C and further developed in the
Supplemental Material. The model predicts a minimum
rate in the region around θ = 110°, in rather good agree-
ment with the data in Fig. 5(a). It completely fails to
describe, however, the second minimum at θ = 0°. A pos-
sible explanation could be that the spin linewidth Γ has
an angular dependence, as recently observed in erbium-
doped Y2SiO5 [53], which is not included in our simple
model. To make further progress one would need to ex-
perimentally measure the spin linewidth as a function of
magnetic field and its orientation in neodymium-doped
Y2SiO5.

We conclude this section by emphasizing that opti-

mization of both the magnetic field magnitude and its
direction is important when both cross relaxation and
SLR play a role in the spectral hole lifetime. The impor-
tance of the spin linewidth also suggests that the flip-flop
rate could be reduced by co-doping the sample with an-
other rare-earth ion. An increase in the spin linewidth
due to co-doping was observed in Er3+:Y2SiO5 [53], by
co-doping with Sc3+. However, co-doping also results
in an increase in the optical inhomogeneous broadening
[53, 54]. It is an open question, then, if it is possible to
reduce the spin flip-flop rate significantly by co-doping,
without causing a large decrease in the optical depth due
to a simultaneous increase in the optical linewidth.

B. Temperature dependence

We now turn to the temperature dependence of the
spectral hole lifetime. We measured the lifetime at dif-
ferent temperatures ranging from 3 to 5.5 K, for the crys-
tals with 30 ppm and 75 ppm Nd3+ concentrations, see
Fig. 6. The measurements were made for the optimal an-
gle of θ = 120° (cf. Fig. 4). The static magnetic field in
these measurements was given by a permanent magnet
installed inside the cryostat, as opposed to the supercon-
ducting magnet used for all other measurements. The
field was estimated to be 300 mT, but the exact value
could be a few tens of mT higher or lower.

At the lowest temperatures the lifetimes in the 30 ppm
doped crystal are about twice as long as compared to the
75 ppm doped crystal, which shows that also at the op-
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FIG. 6. Spectral hole lifetime as a function of temperature
for the Y2SiO5 crystals doped with 30 ppm (blue diamonds)
and 75 ppm (black squares) of Nd3+ ions. The magnetic
field strength was B = 0.3 T, oriented with an angle of θ =
120° with respect to the D1 axis. Both full and dashed lines
represent different models used to interpret the data, and are
discussed in detail in Sec. IV B.
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timal angle the spin FF process is important for these
low concentrations. This concentration dependence is a
further strong indication that the lifetimes depend on
the FF process at this field strength. For both concen-
trations the lifetime decreases rather slowly at the low-
est temperatures, which is due to the linear temperature
dependence of the direct SLR process. Above 4 K the
lifetimes decrease more rapidly and both samples reach
similar lifetimes of less than 20 ms at around 5 K. The
rapid decrease is due to the Raman and Orbach pro-
cesses, which have strong temperature dependence as dis-
cussed in Sec. II B. It is also expected that the lifetimes
at temperatures higher than 5 K do not depend on the
Nd3+ concentration, since neither the Raman process nor
the Orbach process depend on the concentration.

For the 30 ppm doped crystal we compare the data
with the model as fitted to the field-dependent data in
Sec. IV A, including the Raman and Orbach contribu-
tions, with no further tuning of the parameters. As dis-
cussed in Sec. II B we use the Raman and Orbach param-
eters measured independently by Kurkin and Chernov
[29] using EPR. The agreement with our spectral hole
lifetime measurements is rather good (Fig. 6).

One can now use the model developed for the 30 ppm
doped crystal in order to predict the spectral hole life-
times for the 75 ppm doped crystal. The SLR processes
do not have a concentration dependence, while the FF
process is expected to have a quadratic dependence n2,
see Eq. (3) in Sec. II C. In Fig. 6 we compare the pre-
dicted lifetimes with the experimental data by only scal-
ing the flip-flop parameter γFF(θ) for the 30 ppm crystal
by (75/30)2. This model predicts too short lifetimes at
low temperatures, as shown by the dashed line in the
graph, which suggests a different concentration depen-
dence. In Fig. 6 we also show the prediction based on
a linear scaling (75/30) of the γFF(θ) parameter, which
perfectly reproduces the experimental data.

The discrepancy with Eq. (3) is possibly due to a con-
centration dependence of the spin linewidth Γ. Kittel
and Abrahams have shown, for instance, that the dipo-
lar broadening of a spin resonance line depends linearly
on the concentration (at low concentrations) [55]. It is
also possible that the linear coefficient κ is concentration
dependent. We again emphasize that measurements of
the spin linewidth as a function of field strength, field
angle and concentration would be highly valuable for un-
derstanding the details of the cross relaxation process.
To this end, one could do OD-EPR measurements using
the method developed in [51].

C. Concentration dependence

To further investigate the concentration dependence of
the spectral hole lifetimes we compare the lifetimes for
three different Nd3+ concentrations. In addition to the
crystals doped with 30 and 75 ppm of Nd3+ ions, we
also include a comparison with the Eu3+:Y2SiO5 crystal
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FIG. 7. Spectral hole lifetimes for the crystals with 30 ppm
(red circles), 75 ppm (blue squares) and ≤ 1 ppm (black stars)
Nd3+ doping concentrations. The temperature was 3 K and
the field was oriented along the D2 axis (θ = 90°). We also
provide an extrapolation of the model for the spectral hole
lifetime (solid line) for a crystal where there is no flip-flop
mechanism (see Sec. IV C for details). The green star shows
the lifetime achieved by burning a very large spectral hole in
the 30 ppm crystal, as discussed in Sec. IV D.

containing a small Nd3+ impurity concentration of less
than 1 ppm (see Sec. III A).

In Fig. 7 we compare the spectral hole lifetimes as a
function of magnetic field strength for all three crystals.
The field was oriented along the D2 axis (θ = 90°) and
the temperature was 3 K. We emphasize that the mea-
surement data for the 30 and 75 ppm of Nd3+ crystals
are identical to those shown in Fig. 3.

The spectral hole lifetimes measured in the crystal
doped with ≤ 1 ppm of Nd3+ ions shows a radically dif-
ferent behaviour with respect to the crystals with higher
doping. The lifetime increases monotonically as the field
strength is reduced and reaches a plateau at low fields.
The maximum lifetime is 3.8±0.8 s, which is a 75-fold
increase with respect to the maximum lifetime of 51±6
ms obtained in the 30 ppm Nd3+ doped crystal, for this
orientation of the field (cf. Fig. 4). Clearly the cross-
relaxation process at low magnetic fields poses a serious
limitation on the maximum achievable lifetime, even at
doping concentrations as low as 30 ppm. Although the
extremely low-doped crystal results in long-lived spectral
holes, the associated low optical depth prevents it from
being used directly in quantum memory applications, as
it would lead to very low storage efficiencies. A poten-
tial solution is to use cavity-enhanced quantum memory
schemes [56, 57], or a slightly more doped sample, or even
a combination of both these approaches.

In Fig. 7 we also show an extrapolation of the model
fitted to the field-dependent data obtained for the crys-
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tal doped with 30 ppm of Nd3+ ions. Specifically we use
the fitted αD(θ) parameter at θ = 90° to calculate the
direct process, to which we add the Raman and Orbach
rate contributions. The flip-flop contribution is not in-
cluded, such that the spectral hole lifetime is calculated
using only T SHB

1 = 1/RSLR and Eq. (1). The agreement
with the lifetimes measured in the extremely low-doped
sample is excellent, for all measured field strengths. Note
that the signal-to-noise ratio was too low to measure the
lifetime beyond 0.6 T, due to the low optical depth.

We conclude that the flip-flop process has been com-
pletely eliminated at a concentration of ≤ 1 ppm of Nd3+

ions. We estimate that the already observed linear de-
pendence of the lifetime on concentration can in itself
explain this effect (see Sec. IV B). In addition one could
expect that the presence of Eu3+ ions further reduces the
flip-flop rate by increasing the Nd3+ spin linewidth.

D. Lifetime of a spectrally large hole

In the previous sections we have seen strong evidence
for a concentration dependence of the spectral hole life-
times due to cross relaxation. As explained in Sec. II C
this decay process is possible because only a small spec-
tral region is spin polarized during the pumping process
(ensemble A), while the majority of spins (typically 99%
or more) are not affected by the pumping process (en-
semble B). As a consequence one would expect that the
spectral hole lifetime would change if a very large spec-
tral hole was burnt into the optical linewidth, cf. Fig. 2,
which would largely reduce the number of spins in ensem-
ble B and increase the spins in ensemble A. The result
should be a strongly reduced spin flip-flop probability
and long spectral hole lifetime.

We investigated this possibility in the crystal doped
with 30 ppm of Nd3+ ions. The magnetic field strength
was 350 mT, oriented along D2 (θ = 90°), and the tem-
perature was 3 K. It is important to note that a minimum
magnetic field strength is required to be able to split the
ground state doublet more than the optical inhomoge-
neous broadening, as illustrated in Fig. 2. This is a con-
dition in order to be able to optically spin polarize a large
part of the inhomogeneous spectrum. This prevents the
technique to be used at very low fields, where the flip-flop
process dominates, unless the inhomogeneous broadening
is particularly weak.

In Fig. 8 we show the decay curve of both a narrow hole
and a large and deep spectral hole where about half of the
inhomogeneous broadening has been optically pumped.
The spectral hole lifetime increases from 50 ms to 320 ms
by burning a large hole, a rather spectacular increase. If
we compare this lifetime with the one obtained for the
extremely low-doped crystal it actually gives a similar
lifetime, as shown by the green star in Fig. 7. This is
rather surprising since we estimate that only about 50%
of the spins where polarized by burning a large hole.

While this experiment shows the potential of modify-
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FIG. 8. Spectral hole decay measurements for a narrow
spectral hole (blue squares) and a large spectral hole (red dia-
monds). The narrow hole has a linewidth of a few MHZ, while
the large hole represents optical pumping of about 50% of the
ions within the optical inhomogeneous linewidth of about 6
GHz. The solid lines show the fitted single-exponential curves,
which give lifetimes of 50 ms (blue line) and 320 ms (red line),
respectively.

ing the cross relaxation rate by optical pumping, the de-
tailed underlying mechanism is not well understood and
further experiments will be necessary to be able to apply
this method to various quantum memory schemes. An-
other interesting perspective is to decrease spectral dif-
fusion using optical pumping of large spectral regions.
Indeed, in many cases the optical coherence times of
Kramers ions are limited by spectral diffusion driven by
spin flip-flops at low fields [20].

A related and interesting question is if the cross-
relaxation rate can be suppressed by decreasing the tem-
perature such that all spins point in the same direction.
This limit is reached when ∆E(θ) � (2kBT ) where all
the spins would polarize into the lower Zeeman state
(cf. Fig. 2) by the low temperature. Looking at Eq. (3)
one would naively conclude that the cross relaxation rate
would be highly suppressed. However, if a small fraction
of the spins are excited to the higher Zeeman state, then
rapid spin flip-flops will occur with the spins in the lower
Zeeman state. As the SLR rate should be very weak
at such temperatures, we expect the flip-flop rate to be
the limiting process for storage of quantum information.
Similarly any narrow spectral features created through
SHB using these Zeeman states would also decay due to
flip-flop rates. But as our results show one could go to
much lower concentration to mitigate this problem, or
possibly co-dope the material in order to increase the
spin linewidth and reduce the cross relaxation rate. We
also emphasize that the overall population difference be-
tween the two states will of course not be affected by cross
relaxation, which is the typical measure of spin popula-
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tion lifetimes at extremely low temperatures (tens of mK)
[52]. Hence, some caution has to be exercised when us-
ing such measurements to predict useful spin coherence
times, which are likely to be affected by spin flip-flops,
rather than SLR processes, at low temperatures.

V. CONCLUSIONS AND OUTLOOK

We have studied the relaxation mechanisms of spec-
tral holes in neodymium-doped orthosilicate under dif-
ferent magnetic fields, temperatures and dopant concen-
trations. Our main finding is that the limiting factor in
achieving long-lived spectral holes is the spin cross re-
laxation, or flip-flop, process. We have also shown that
both the strength and angle of the magnetic field must be
carefully optimized to maximize the hole lifetime. By de-
creasing the concentration to as low as ≤ 1 ppm of Nd3+

ions, we could eliminate the flip-flop process and reach a
hole lifetime of 3.8 s at 3 K. Our results show that opti-
mization of the dopant concentration is crucial in order
to find a compromise between the spectral hole lifetime
and optical absorption coefficient. We have also shown

that the cross relaxation rate can be drastically reduced
by creating very large spectral holes, which could open
up new ways of engineering spectral hole lifetimes in a
given crystal and to improve optical pumping in crys-
tals doped with rare-earth Kramers ions. We also argue
that lowering the temperature to the mK regime would
not suppress the effect of cross relaxation on quantum
coherence measurements. We believe that these results
should allow better optimization of these crystals for ap-
plications in quantum memories [1, 2] and narrow-band
spectral filtering for biological tissue imaging [58–60].
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M. Siegel, A. V. Ustinov, and P. A. Bushev, Phys. Rev.
Lett. 110, 157001 (2013).

[53] S. Welinski, C. Thiel, J. Dajczgewand, A. Ferrier,
R. Cone, R. Macfarlane, T. Chanelière, A. Louchet-
Chauvet, and P. Goldner, Optical Materials (2016),
http://dx.doi.org/10.1016/j.optmat.2016.09.039.
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In this Supplementary Material we provide a model
for spin-spin relaxation due to flip-flop transitions, in a
special case of anisotropic g-tensor in Sec I. In Sec. II
also give extended experimental results presented in the
main text.

I. SPIN FLIP-FLOPS IN ANISOTROPIC MEDIA

The average flip-flop rate for spins under a magnetic
field B and temperature T , is usually written in the form
of Eq. (3) of Section II in the main text, where βff is a con-
stant that depends on the details of the crystal structure,
its magnetic properties and spin resonance line shape [1].
The temperature and field dependence of the flip-flop
process arises from the probability for each spin pair
in the lattice to be antiparallel and causes the flip-flop
rate to decrease rapidly with increasing field or decreas-
ing temperature. In the case of an isotropic ĝ-tensor the
rate has been shown to be proportional to βff ∝ g4. How-
ever, in the case of strong anisotropy, which is the case for
most rare-earth ion doped crystals, this does not hold any
more and the equation has to be modified. Anisotropic
magnetic properties of the rare earth Kramers ion-doped
crystals were confirmed for many materials and ions (for
example Er3+, Nd3+ and Yb3+ in YSO crystal) [2–4].

The easiest way to derive the expression for βff in the
anisotropic case is to follow the same approach as for the
isotropic one and to consider the dipole dipole interaction
as an perturbation for Zeeman Hamiltonian. To further
calculate the average flip-flop rate one has to integrate
it around some crystal volume, taking into account the
angular dependence of the dipole-dipole interaction. The
resulting Hamiltonian for the simplest case of a spin pair
S1 and S2 interacting with the external magnetic field B
and between each other through magnetic dipole-dipole
interaction Ĥdd is

Ĥ = µB
~Bĝ~S1 + µB

~Bĝ~S2 + Ĥdd + c.c. (1)

In the case of identical spins and parallel principal axes
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of their respective ĝ-tensors, Hdd can be written as

Ĥdd = µ2
Br
−3
[
(1− 3l2)g2

xŜ1xŜ2x+ (2)

+(1− 3m2)g2
yŜ1yŜ2y + (1− 3n2)g2

z Ŝ1zŜ2z−
−3lmgxgy(Ŝ1xŜ2y + Ŝ1yŜ2x)−
−3lngxgz(Ŝ1xŜ2z + Ŝ1zŜ2x)−
−3mngygz(Ŝ1yŜ2z + Ŝ1zŜ2y)

]
,

where {l,m, n} are the direction cosines of the vector
~r connecting two spins 1 and 2, and ĝ-tensor is of the
diagonal form

ĝ =



gx 0 0
0 gy 0
0 0 gz


 . (3)

We consider the dipole-dipole interaction Ĥdd as a per-
turbation to the Zeeman interaction, which holds in the
case of rare earth ion-doped crystals with low doping con-
centrations. This allows one to use Fermi golden rule to
calculate the flip-flop rate,

Rff ∼ | 〈↑↓| Ĥdd |↓↑〉 |2 + | 〈↓↑| Ĥdd |↑↓〉 |2, (4)

where |↓↑〉 and |↑↓〉 are degenerate eigenstates of the Zee-
man Hamiltonian corresponding to antiparallel orienta-
tions of the spins. Due to the degeneracy, the transition
between these two states (flip-flop transition) is possible
without any energy transfer. This process is considered
to be one of the main sources of transverse relaxation of
spin systems, which reduces the coherence lifetime T2 [5].

To calculate the flip-flop rate of the spins in an

anisotropic media we assume that the magnetic field ~B
is oriented in the plane containing two principal axes
of the ĝ-tensor which consists of three different compo-
nents noted gx, gy and gz (3). The magnetic field in this

case can be written ~B = B{cos(θ), sin(θ), 0}, where θ is
the angle with respect to x-axis. The magnetic moment
for the case of an anisotropic ĝ-tensor stops to be ori-
ented along the magnetic field and is accordingly to the
anisotropy in the x, y plane. To integrate over the volume
we assume that average distance r between the spins is
constant while the orientation is random. The calculated
flip-flop rate Rff using Eq. (4) and integrated around the
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FIG. 1. Flip-flop rate in anisotropic media and g-factor as a
function of magnetic field orientation in the plane containing
two principal axes of the ĝ-tensor with gx = 1, gy = 10 and
gz = 1.

sphere with radius r is expressed by

βff ∼ µ4
B

2π
(
8g4

xg
4
y + g2

z(A+B)
)

5
(
g2
x cos2(θ) + g2

y sin2(θ)
)2 , (5)

where

A = (g2
x − g2

y)
(
4
(
g2
z

(
g2
x + g2

y

)
− g2

xg
2
y

)
cos(2θ)+ (6)

+g2
z(g2

x − g2
y) cos(4θ)

)

B = 4g2
xg

2
y

(
g2
x + g2

y

)
+ g2

z

(
3g4

x + 2g2
xg

2
y + 3g4

y

)
. (7)

In the case of an isotropic ĝ-tensor, the flip-flop rate
is simply proportional to g4. However, when gx 6= gy
and the gz component is much smaller than one of the
orthogonal components (ĝ-tensor has a “cigar”-shape)
the reduction of the flip-flop rate is observed along the
strongest component in x, y plane (Fig. 1). In this case,
the general expression (5) can be written as

βff ∼ µ4
B

16πg4
xg

4
y

5
(
g2
x cos2(θ) + g2

y sin2(θ)
)2 . (8)

In the opposite situation, when gz is much bigger than
the other components the flip-flop rate ceases to depend
on the orientation of the magnetic filed in x, y plane and
is expressed as

βff ∼ µ4
B

16πg4
z

5
. (9)

Finally, we notice that this expression holds when gz ≈
gx (or gz ≈ gy), and gz � gy (gz � gx) (the ĝ-tensor
has a “disc”-shape). This means that the “optimization”
of the flip-flop rate in this situation is not possible in
contrast to the “cigar” tensor shape.

The g-tensor of site I of the Nd3+:Y2SiO5 crystal, for
the 4I9/2 ground state has been measured before and is
strongly anisotropic [3]

ĝ =




1.33 −0.57 −0.23
−0.57 −2.13 1.63
−0.23 1.63 −2.9




(D1,D2,b)

(10)

FIG. 2. Calculated flip-flop rate and g-factor as a function of
magnetic field orientation in D1 −D2 plane for ground state
of the Nd3+:Y2SiO5 (site I).

In our experiment the magnetic field was oriented in the
D1-D2 plane. Since the magnetic field is not oriented
along the principal axes one has to use the general form
of the dipole-dipole interaction in order to calculate the
flip-flop rate

Ĥdd = µ2
Br
−3
[
ĝ ~Siĝ ~Sj − 3r−2(ĝ ~Si~r)(ĝ ~Sj~r)

]
. (11)

We performed a numerical simulation to calculate the
variation of the flip-flop rate as a function of the angle
θ between the D1 axis and the external magnetic field
~B applied in the D1-D2 plane (Fig. 2). The optimal
orientation is expected around θ ≈ 110° which coincides
with the experimental observation, however the predicted
angular variation of the flip-flop component was not ob-
served in our experiment. Further investigation is re-
quired to explain this inconsistency, which could be at-
tributed to additional relaxation processes. These pos-
sible processes could be observed by measuring spectral
diffusion [6] on large timescales using for example three-
pulse photon echo techniques.

The measurement of the spin resonance linewidth at
different magnetic fields and different orientations would
also simplify the search for the orientation with minimi-
mal relaxation.

II. EXTRACTED RELAXATION RATES

In Table I we summarize extracted parameters for dif-
ferent magnetic filed orientations corresponding to differ-
ent relaxation mechanisms: direct and cross relaxations.
We also give the optimal values of magnetic filed am-
plitudes together with the maximum lifetimes obtained
during the experiment.
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TABLE I. Experimental results. Extracted values of SLR αD and cross-relaxation γFF coupling from measured data as a
function of magnetic field orientation θ with respect to D1 crystal axis. Maximum lifetimes T SHB

max together with corresponding
optimal magnetic field amplitudes Bopt are given for every orientation. For this, the model described in the main text was
used.

θ, ° αD(×10−7), Hz−4· T5 γFF , Hz·T g T SHB
max , ms Bopt, T

-30 20.97 ± 0.77 10.23 ± 1.74 1.82 51.7 ± 3.7 0.5

0 22.79 ± 0.65 6.62 ± 0.93 1.46 76.2 ± 405 0.65

30 70.23 ± 2.00 12.87 ± 5.79 1.89 29.9 ± 3.2 0.35

45 37.05 ± 1.11 13.13 ± 3.01 2.21 32.0 ± 2.5 0.5

60 51.39 ± 4.27 25.15 ± 0.88 2.49 17.5 ± 1.1 0.55

90 43.65 ± 0.48 6.86 ± 1.50 2.71 51.0 ± 5.7 0.3

115 27.37 ± 1.86 1.90 ± 0.25 2.51 144.4 ± 42.6 0.45

120 29.55 ± 0.19 2.06 ± 0.39 2.44 156.0 ± 6.1 0.4

125 18.49 ± 3.12 2.58 ± 0.74 2.35 92.6 ± 14.8 0.45
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