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The infrared divergence*)

by J. M. Jauch and F. Rohrlich.
Department of Physics, State University of Iowa City, Iowa.

(13. X. 1954.)

Abstract. The long standing problem of the infra-red divergence in quantum
electrodynamics is reexamined in the light of the recent progress in this field. A
general proof is given of the cancellation of the infrared divergences which arise from
real and virtual processes. This proof is valid to all orders of the coupling constant
and for all types of scattering events. The problem is solved in the iteration solution
as well as in the closed form used by Brocu and NorpsiEck and by PavrLt and
Fierz. The equivalence of the two methods is discussed and the results obtained
by Broca and NorDsIECK are found to be correct provided radiative corrections
are ignored. The ultraviolet divergences found by PauLr and Figrz in this connec-
tion has nothing to do with the infra-red divergence problem. It cannot be regarded
as a difficulty in the theory, since the method of calculation employed is no longer
valid at high frequencies. The exact calculation (iteration solution) shows that the
renormalized theory is completely free of divergences at both low and high fre-
quencies. A plausibility argument for the convergence in certain cases of the renor-
malized iteration solution is presented.

I. Introduetion and summary.

The quantum theory of radiation has for a long time been
plagued by divergence difficulties, which tended to discredit the
theory. The discovery of the electromagnetic level shift in 1947 led
to a reexamination of the divergences and to the discovery that it
1s possible to extract finite and physically observable quantities
from the divergent expressions by the process of renormalization of
mass and charge. In this method the divergent quantities are identi-
fied with the (infinite) correction to the mass and charge of the
electron. After mass and charge renormalization, the remaining
terms are all finite to all orders in the fine structure constant o?),
and they represent the observable quantities in the theory.

This method of eliminating the undesirable consequences of the
theory does not apply to the type of divergences which have been
known for a long time under the name of infrared (i.r.) divergences.
Indeed, all the divergences which are eliminated by the renormali-

*) Part of this work was completed while one of us (J.M.J.) was at the Oak Ridge
National Laboratory, Oak Ridge, Tennessee.
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zation procedure are of the ultraviolet type; they are caused by the
divergence of certain integrals at very high values of the inter-
mediate state four-momenta. In contrast, the i. r. divergences are
caused by the low values of these momenta.

The simplest type of i. r. divergence, and one of the earliest to be
noted, occurs in the inelastic scattering of electrons with the emis-
sion of photons®). The cross section for the scattering with the
emission of one photon of frequency o within dw is in lowest order
of e proportional to dw/w. The total cross section for the energy loss
Ae due to one photon emission is then proportional to

de
dw

w
0

which diverges logarithmically at the lower limit.

The fact that the 1. r. divergences are not touched by the renor-
malization procedure does not in any way affect the consistency of
the method. Indeed it was known for a considerable time (long be-
fore the invention of renormalization) that the i. r. divergences are
of an entirely different character from the ultraviolet divergences.
In a fundamental paper, Brocu and Norpsieck?®) were able to show
that the 1. r. divergence disappears entirely if a rigorous solution
of the field equations is employed for that part of the Hamiltonian
which couples the low frequency field oscillators to the electron. The
1. r. divergence 1s therefore recognized as one which is caused by the
particular features of the iteration solution of ordinary pertur-
bation theory which separates the various processes pertaining to
real and virtual photons. One of the main results of Brocr and
Norpsieck was that the probability for the emission of a finite
number of soft photons in a scattering process is exactly zero, so
that every such process is necessarily accompanied by the emission
of an wnfinite number of soft photons.

This result seems at first sight inconsistent with the result of the
perturbation theory. That this is not the case was demonstrated by
BraunseEck and WeINmMaNN?) who showed that the first term in
the development of the Bloch-Nordsieck solution in powers of a
agrees exactly with the result of the perturbation solution. How-
ever, these authors failed to point out that they took into account
explicitly the limitation on the energy of the emitted soft photons.
This limitation was ignored by Brocr and Norpsteck and is re-
sponsible for their result b = 1 for the correction factor multiplying
the cross section. We shall show that the exact result for b differs
from 1 by terms of order w.
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Although the work of Brocu and Norbpsieck offers the key to
the solution of the i. r. divergence, it was not entirely satisfactory.
The flaw was pointed out by Paurr and Frerz®). These authors im-
proved the calculation of the correction factors due to the emission
of an unlimited number of soft photons by taking correctly into
account the conservation of energy in the process which Brocu and
Norpsieck had failed to do. The latter authors had obtained the
satisfactory result 1 for this correction factor with their incorrect
procedure. In other words, they found the cross section for the in-
elastic scattering with very small energy loss equal to the cross sec-
tion for elastic scattering, neglecting the radiative interaction en-
tirely. When this same quantity was calculated by Paurt and F1erz,
taking into account the conservation of energy, it was found that
this correction factor became equal to zero.

This conclusion of PauLt and Figrz did not make any sense at
all, since it seemed to contradict the results which one would expect
on the basis of the correspondence principle. It was all the more
puzzling when it was found that the correction factor for this
“nearly elastic” scattering vanished because of a new kind of log-
arithmic divergence at the high frequency end of the spectrum. If,
as it was usual in those days, one introduced an upper limit for the
energy of the photons, Paurt and Fierz obtained a finite result
which seemed to depend on the value of this upper limit. In physical
terms this would mean that the emission of radio waves by an accel-
erated electron depended critically on the modification of quantum
electrodynamics at ultrahigh-frequencies. This is an incredible
result.

That this new type of divergence discovered by Pavirr and Fierz
was not caused by the nonrelativistic calculation of these authors
was verified by Daxcorr®) who showed that even in a relativistic
theory this divergence reappears. Moreover Dancorr’s work showed
that the result for the soft photon emission during a scattering pro-
cess depended on the spin of the charged particle.

It was clear to everybody that these results did not make any
physical sense. But it was equally clear that a simple modification
of the theory which eliminated completely the Pauri-Fierz diver-
gence was not sufficient to remedy the defect. Any change of the
theory must be such that it leaves the result of BLocx and Norbp-
s1ECK for the soft photons essentially unchanged if the theory is to
be in accordance with the correspondence principle.

In this connection it was especially pointed out by Berer and
OppENHEIMER?) that the problem of soft photon emission furnishes
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a valuable check for any modification of quantum electrodynamics.
Using this criterion, BETHE and OPPEHEIMER were able to show that
Heitler’s form of quantum electrodynamics8) was unsatisfactory.
This same criterion was used previously?) for testing the theory
of Dirac involving negative energy photons'®) with the same nega-
tive conclusion.

It seems clear, therefore, that the renormalization theory cannot
be considered complete and satisfactory, if it does not also give the
solution to the problem of the 1. r. divergence. In this connection it
1s of interest to recall an observation already made by BRAUNBECK
and WEINMANN?) and especially emphasized by Berae and OppEN-
HEIMER?). The 1. r. divergence due to the emission of one real photon
and the 1. 1. divergence which is contained in the first order radia-
tive correction due to the emission and reabsorption of wvirtual
photons exactly cancel. The result of Blocu and Norpsieck is a
strong indication that this cancellation occurs in all orders of the
coupling constant. Special cases of this cancellation were noted by
several authors!!), but attempts to prove it in general remained
incompletel?).

If it is true that the i. r. divergences of the real and virtual photon
processes exactly cancel to any order of the coupling constant, then
the 1. r. divergence 1s a spurious phenomenon which only appears
because the real and virtual photon processes are artificially sepa-
rated in the iteration solution. When these processes are recombined,
the 1. r. divergence disappears. There 1s then no other divergence in
the theory but the renormalizable type.

In this paper we give the complete solution of the infrared prob-
lem, outlined above, by showing two things. First, we prove that
the low frequency divergences contained in the real and virtual photon
processes cancel to all orders in the fine structure constant « and for .
all types of processes. Second, we show that the new type of dwer-
gence obtawned by Pavrt and Frerz is indeed no real divergence but
15 merely caused by an unjustified extension of the approximation on
which the Bloch-Nordsieck solution is based. It is shown here that
the rigorous calculation of the collective soft photon emission is only
possible for energies of the photons much smaller than m. An argu-
ment 1s presented to show that the effect of the higher order terms
in w/m after renormalization can be roughly estimated by intro-
ducing a cut-off energy ¢ ~m. With this method the divergence
disappears and the reasonable result of Brocr and NorpsIECK 18
found to be correct within a very good approximation.

We conclude that the divergence of Paurr and Fierz has nothing
to do with the physical interpretation of the theory. It is not an
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indication of an incorrect theory but rather an indication of the
limitation of a particular method of calculation. The incorrect phys-
ical interpretation of this divergence has caused much of the confu-
sion in the history of this problem13).

IL. Canecellation of the infrared divergeneces in the iteration solution.
A. Real Photon Emission.

We shall use here and in the following the technique of the Feyn-
man diagrams which allows a simple pictorial representation of the
basic processes under discussion.

Consider a basic scattering process, involving one ingoing and one
outgoing electron. The electron may be either a negaton or a posi-
ton; the following arguments are equally valid for both cases. In
order to be specific, we shall assume that we are dealing with a

!

P

P

Fig. 1.
The basic process.

negaton (that is a negative electron). The basic process is schemati-
cally represented by the diagram of fig. 1. The generalization to
processes with more than one electron path will be discussed later.
The process may be accompanied by any number of initial or final
photons which should be indicated by additional dotted lines enter-
ing or leaving the diagram of fig. 1. We have omitted these photon
lines, since, as we shall see, their presence is entirely irrelevant to the
argument.

The shaded area in fig. 1 stands for a diagram of any arbitrary
degree of complexity. This diagram may contain any number of
closed loops of electron lines. The contribution of such a general
diagram to the matrix element will of course contain every conceiv-
able divergence of the ultraviolet type, which must be removed in
accordance with the general theory of renormalization?). The shaded
area may further contain contributions from an external field inter-
acting with the scattered electron,
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The S-matrix element is of the form
M=u(p)Q @ p) w(p (1)

where Q(p'p) is a constant times the spinor matrix associated with
the shaded area of the basic process. The spinor «(p) is the ampli-
tude of the plane wave for a negaton with momentum p. We use
the units ¢m, &, and ¢, and the metric — gy = 911 = oo = 933 = 1.

We wish to calculate the matrix element M, corresponding to the
emission of one additional soft photon of momentum k= (w, R)
(w <€ m) and polarization vector e (cf. fig. 2). The result is

__de  —. , [e(k) ip'+k)-m -
Ml_ (2“)3[2 u(p) Vﬁ (pr+k)2+m2 Q(p k,p)

’ . (p—k)— k
+QW =) P Ty @) )

! !

D

P

Fig. 2.
Diagrams for the basic process with one photon emitted from external lines.

In this calculation we have ignored the emission of photons from
internal lines of M, since such processes do not give rise to 1.r.
~divergences. ‘

The expression (2) can be considerably simplified if we use the
fact that w <€ m and that the propagation functions operate on free
particle functions which satisty the equations®)

@p +m)u(p) =0
u(p) (vp + m) = 0.

Retaining only the terms of lowest order in w/m, we obtain after some

rearrangement
M, = k) M (3)
with ) ,
. e pee p'-e
ﬁ(k)__(gx)atz VEE (p-k - p’-k)' (4)

*) In the following equation, as well as in Egs. (2), (11), (14), (17), (18) and (19)
the bold-face letters indicate the four-vector product with y# (e.g.p = p,¥#).
In all other places they indicate space parts of four vectors.
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The total transition probability, and the cross section for the basic
process 1s proportional to the square of the matrix element. Hence,
the emission of one soft photon modifies the cross section by the

factor . ’
_ pre
b= (2:'I 2 f | Pk

The summation sign indicates the summation over the unobserved
polarization states of the emitted photons.

In this form the infrared divergence is manifest as a logarithmic
divergence of the k-space integral at low frequencies. There is no
divergence at the upper limit of the k-space integration since the
- k-values are restricted by w <€ m. For energies w which do not sat-
isfy this inequality, the formula (4) is no longer valid. The formula
(5), when integrated over the sphere w < 4e € m, is then the cor-
rection factor for the cross section of the basic process due to the
emission of one photon with energy o < Ae.

The angular integration in Eq. (5) cannot be carried out in terms
of elementary functions!®). For our purposes, however it is quite
sufficient to evaluate this integral in a special coordinate system,
for instance the rest system of the incident electron (p = 0). In this
system the integral (5) is elementary.

We first carry out the polarization sum which gives

/ / - k)?
Jlpeft=pr— 20

(5)

2
Using pol ’
Pk = o(p| cos & — &)
and
o2
*=4a
we find -
h ® a3k ( P’ __ poos? ¥ ) (6)
4 72 w? \ (¢'—|p’| cos #)? (&= |p’| cos¥)2 )"

By changing the variable of integration

cos ¥ =z
and using )

[Z,l — ﬁ'
Eq. (6) reduces to

+1
= 1-2% gp_ 2 (Lp1t8 _ g) [do
b 1f ﬁx)z o ﬂ(ﬁ'ln 1-p 2)/ w
_ tanh—1 g’ do
b—22( = ”_w' (7)
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B. Vawrtual Photon Processes.

We now turn to the first radiative corrections of the basic process
M shown in fig. 1, by inserting into M one internal photon line
in all possible ways. Among the diagrams thus obtained, we select
those which exhibit an 1. r. divergence.

In order to obtain all contributions, it is essential to recall the
fact that both, the second order electron self-energy and the vertex
part, exhibit an 1.r. divergence after separation of the renormaliz-
able divergences!®). On the other hand, an internal photon line
which is attached to an internal electron line at one or both ends
has no 1. r. divergence unless it produces a self-energy or a vertex
part. The radiative correction diagrams which do in fact have 1. r.
divergences are shown in fig. 8.

(e) (b)) () (c) () (d) (e)

Fig. 3.
Radiative corrections to the basic process which contain infrared divergences.

~

The meaning of diagrams (a) and (b) 1s clear. In diagrams (c) we
mean to indicate that the added photon line begins on an external
line and ends on the first internal line of M thereby creating a vertex
part at the very edge of the diagram. In (d) the added photon line
creates a vertex part and in (e) a self-energy part.

As we shall see below, the explicit evaluation of the i. r. divergent
parts of these radiative corrections are all of the form

M® = oM (8)

where o 1s a numerical factor of order «. The correction of order «
of the transition probability is obtained from these terms by cal-
culating the cross-terms of M and M®,

| M4+ MP2=|M21+20+--)

Our aim 1s to prove the compensation of the divergence in b (Eq. (7))
b
y the term F—Ba )
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1.e. we want to show that
b 4+ r = convergent. (10)
The diagram (a) gives for small &
) ter T Yt (p'—k)-m ~ i(p-k)-m . d*k
M(a)— (zn)4fu(p)yﬂ (30 p +'m2Q (p k2+m27} k2
) -1 — # d k
= 4o [ S u @) Quip) T4

'k
=0, M (11)

; o & 4
L= zjr‘*_/ p’?!?k ik dkzk ’ (12)
The integration over k° in Eq. (12) has to be carried out over the
path which avoids the negative pole on the real axis by a detour
in the negative imaginary half plane and the positive pole by a
similar detour into the positive imaginary half plane. We can there-
fore rotate the path in the complex k°-plane by #/2 and integrate
over the 1maginary axis. Replacing k° by ¢k° we have

with

+ o0
= A3 td k0
€1 7? p'p / (w2+ k%) (|p’| w cos & — i’k (|p|w cos & —iek®)
e imo d3lc p cosd”  Pcosd ] 1
T 4nd g w® | 1—82 cos2®  1—f2cos?d| p’ cosd —fBcosd”

As in the evaluation of b, we can choose the reference frame defined
by p =0, so that p"-p = —m

1

- +
01 = — Gc_/ anl B2 22
-1

. o 1+ﬂ do _ tanh—lﬁ
- — ?— - - /
From Eq. (9) follows
ro=20, = — 27:& tanh—1 g dw . (18)

Comparing this value with (7), we see that it exactly cancels the first
term of Eq. (7)16).

For the cancellation of the remaining term we must examine the
diagrams (b) to (e) in fig. 8. Their contribution to the i. r. diver-
gence will be denoted by g,. Its value need not be calculated by inte-
gration of the respective matrix elements, but can be obtained from
the general properties of the divergent diagrams. In order to show
this we need some of the results contained in the papers of references
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15 and 1. We summarize here briefly the pertinent properties but
refer to these papers for details.

The self-energy part X' (p) and the vertex part A,(p’ p) are both
free of i. r. divergences. However, when the (ultraviolet) divergent
parts are separated we introduce an i.r. divergence in the (other-
wise) finite part of these expressions. Consequently, the ultraviolet
divergent part will also contain an 1. r. divergence.

These separations have the form

; 2(p)=A—(@p+m B+ (p+m)~ 2 (p) (14)
an

A,u(p” p) = L?’,u -t A,uf(p’a p) - (15)

The constants 4, B, and L are ultraviolet divergent. The charge
renormalization constants B and L are also i.r.-divergent. The
theorem of Ward (see ref. 1) says that

B=L. (16)

The functions free of ultra-violet divergences are denoted by Zx(p)

and Ayt (p’, p).

From the preceding remarks follows that we have the following
relations with respect to the i1.r. divergences

— Bi4-(ip+m)~t 2 =0 y Li+A4L, =0 Bi=L: (17)
The superscript © means “infrared divergence of”. Therefore,
v, (ip+m)-t X+ AL = 0. (18)

This statement can be interpreted to mean that A7 cancels half of
X from either side of the electron path. Therefore, the sum of the
diagrams (b), (c), (d), and (e) would exactly cancel in their infrared
contributions, were it not for the fact that the terms X;(p’) and
2¢(p) in the external lines (diagrams (c)) vanish because of

(ip + m) u(p) =0
u(p) (ip + m) = 0.

The corresponding parts of the divergences in (c¢) are therefore not
compensated. The missing parts are

— 3 20 Gt m) — Bp) Gpm) = B (19)
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The part B? has been obtained explicitly'?). In our notation,

Bi—_2% [do
T o=n w ’
1.e.
2 d
2= (20

These diagrams are seen to yield an infrared divergence which
exactly compensates the second term in b, Eq. (7). We can combine
Eqgs. (18) and (20),

7'=fr1—;—r2=—2: (tan};,lﬁ wl) d—;)—=——b. (21)
This completes the proof of the statement (10).

We may add the remark that according to this proof, closed loops
can never contribute to the i. r. divergences, because in the case of
a closed loop the cancellation of the i.r. divergences between the
self-energy and vertex parts is complete. This is in accord with the
fact that the contribution of closed loops to soft photon emission
vanishes in the limit of vanishing energy'8). Thus, closed loops con-
tribute neither to b nor to r.

C. Generalization.

We shall now briefly indicate how the result thus far obtained can
be generalized so as to include all types of processes to any order
in «. Let us first consider the basic process of fig. 1 with more than
one additional soft photon emission.

For instance, in order to prove that the cancellation occurs for n
soft photons, we proceed by induction. We assume that the cancel-
lation is true for the process involving n — 1 real soft photon emis-
sions. We then consider the diagram corresponding to this process
as a new basic diagram. We note that the number of real photons
emitted does not enter into the explicit proofs of subsections 4 and
B. Thus, the reasoning of these sections can now be applied to this
new basic diagram; it follows that the i.r. divergence from the
emission of n real soft photon cancels the i.r. divergence of the
radiative correction of corresponding order. Since we have proven
this cancellation explicitly for the one photon process, we have
established that in the process of fig. 1 no i.r. divergence exists.

Next, we need also a generalization with respect to the direction
and number of electron paths. It is clear that the direction of the
electron path can be reversed without affecting in any way the
result of sections 4 and B.
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The result of these sections can also be extended to the case of
more than one electron path. Indeed, it follows that for every open
electron path separately, the required cancellations occur. There-
fore, the result is general.

We have thus established that the 1. r. divergence 1s entirely due
to the unphysical description of certain processes by the iteration
solution. The processes of soft photon emission and radiative cor-
rections due to soft virtual photons are evaluated as two quite dif-
ferent processes in the iteration solution, and originate in S-matrix
elements of different order in e. Physically, these processes should
not be separated. Their separation causes the appearance of 1.r.
divergences which are thus introduced in an artificial way due to
the particular mathematical treatment adopted.

The recombination of soft photon emission and soft photon corrections
eliminates the infrared divergences in all processes and in all orders of
the approximation. '

III. The closed form of the soft photon emission.

In the preceding section we have come to the important conclu-
sion that the model for the mechanism of radiative processes which
follows so naturally from the iteration solution in the form of the
Feynman diagrams, is actually a very poor model. It breaks down
completely for the description of soft photon processes, as we have
just seen.

In order to arrive at a better description of this case we evidently
must obtain closed expressions which contain the effect of photons
of various low energies, and which are independent of the number
of the participating photons. This number is not observable, since
the “‘free’” and the virtual photons apparently become indistinguish-
able in the soft photon limit. In fact, there seems to exist no very
sharp separation between photons which are observable individu-
ally, and photons which are observable only collectively. The latter
appear as an energy loss, Ae, whose details cannot be differentiated.

To study these conjectures we ask for the modification of a given
process due to this collective soft photon effect. We thereby expect
to obtain a dependence on Ae, so that the whole collective effect
vamshes for Ae = 0. This calculation will be free of infrared diver-
gences, as follows from the above proof. It was first carried out in
the fundamental paper by Brocr and Norpsieck?).

We shall go beyond the result of these authors as well as that of
Paurr and Fierz®) by demonstrating that there is no other diver-
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gence 1n this theory. This is in contradiction to the results contained
in reference 5 and the resolution of this contradiction is one of the
main problems to be solved. In addition, we have made use of the
covariant formalism, which allows us to remove several of the re-
strictions which had to be made in previous work on this subject.
Specifically, we do not need to assume that the electrons move with
nonrelativistic velocities, nor do we have to restrict ourselves to the
first order Born approximation of the scattering problem under
discussion. All these restrictions are recognized as irrelevant to the
problem on hand and their removal is necessary for a satisfactory
treatment of the question.

In fact, our treatment is so general that it applies to any type of
process involving any number of open electron paths. As in the pre-
ceding section, we shall discuss in detail only the case of electron
scattering, but this restriction is merely made for the convenience
of presentation. The necessary modifications in the general case will
be obvious once the method is clearly understood for the simple
special case discussed here.

The method to be used is an adaptation of the transformation of
Brocu and Norpsieck. It consists of two steps. In the first step
we show that the calculation of the soft photon emission is equiva-
lent to the calculation of the S-matrix associated with a certain
classical current distribution. In the second step we give the rigor-
ous expression for the S-matrix associated with such a classical
current.

Consider the basic process of fig. 1. The single photon emission
probability (k) was calculated in Eq. (4). This same value for the
photon emission probability amplitude can also be obtained from
a classical current distribution

1 ~

su(x) = -(ﬂ)ﬁ/ s, (k) eF= d*k, (22)
provided we choose
ie Py P
5ulh) = g (35~ 50 (28)

Indeed, the first order S-matrix element for the emission of a photon
of momentum k and polarization e by a classical current 1s given by

B == sul) (24)

which agrees with Eq. (4) and with the choice (23). We see therefore
that for soft photon emission the matrix element of the basic process
M behaves just like a classical current. This is correct not only for

*
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the first order process of single photon emission, but remains true
for processes of any order.

Therefore, we can calculate the correction factor g for the emission
of any number of soft photons in the process M by calculating the
probability amplitude for any number of soft photons created by the
classical current density (22) and (23). This problem can be solved
rigourously.

We note here in passing that the classical current with the FOURIER components
8, (k) as given in Eg. (23) has a simple physical interpretation which can be seen
most easily when it is transformed into a-space. The identities '
0

i Tdtk
— — ikx
fé?(:c vT) dT PEL o

— 00
oo

i (A% .,
/6(x—UT)dT—W/ R et

0
allow us to express the current in z-space in the form

] o0

8, () =—e./.v“ d(x—v1) dr—e’/v#’é(x—v’r) dt (25)
—_00 0
with
1 S
G L O

This is the current of a classical point-charge —e moving for 2° < 0 with the
constant four-velocity v, and for 2% > 0 with the velocity v/,

Before we proceed with the calculation, we consider a lemma which
1s of importance for the S-matrix of a classical current distribution.

Let H(t) be an interaction operator which satisfies the condition
[H (2), H (v')] = 1 0 (v, 7) (26)

where C(r, ') is a c-number. The S-matrix for this system differs

from the matrix
S’ = e % (27)

+o0
z :fH(-;) dv (28)

only by a phase factor.

The significance of this lemma lies in the fact that the phase fac-
tor can be ignored and that the S-matrix can be calculated accord-
ing to Eq. (27).

An alternative way of expressing this lemma is to state that the
time-ordering operation in the iteration solution contributes only
a phase factor.
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In order to prove it we carry out the z-dependent canonical trans-
formation _
o' (1) = %@ w (7). (29)

The new state vector satisfies a transformed SCHRODINGER equa-
tion
1 o' (1) = H'(7) o' (7)
with H'(7) given by '

H'(¢) = 69 (H (1) — i ) 6=,

This expression can be written in terms of iterated commutators

H'(x) = H(x) +i[2(2), H@)]—2(0) +=[2(), Z@)]+---.  (30)

If we choose X(7) such that it satisfies

2(r) = H(7)

and Z(—o0) =1, (31)

then the omitted commutators in Eq. (80) are all zero and the terms
in (30) which are explicitly written out constitute the rigorous ex-
pression for H'(z). In this case, the transformed interaction operator
1s given by

Eﬂﬂ:+%fMﬂﬂdf (82)

and 1s a e-number.

We now finish the proof of the lemma by expressing the S-oper-
ator of the original problem in terms of the transformation matrix
V(z, 7y) of the transformed problem. This transformation matrix is
defined by the relation

' (z) = V(7, 79) " (%)
and 1s given explicitly by

T
—ifH’(r’)dz’
Vi, x5)=e ™

Using the transformation law Eq. (29) we find for the S-operator

S = ¥ V(00, —o00) ¥ (=),
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With Egs. (31) and the definition
+o0
2= X (c0) :fH(T) dr

we may write

S = ¢'® ¢~i% (33)
where
i + oo T
6 = ?/drf(](r', 7) d’. (34)

This proves the lemma.

Returning now to the problem of soft photon emission, we see
that the interaction operator

H(v) = m/sﬂ(x) a(z) do

o(r)

with the classical current density (22) and (23) satisfies the condition
of our lemma. We therefore write for the S-operator (omitting the
irrelevant phase factor) according to Eq. (27)

G i 3 =" o

5 = —fd‘ln:c:s#(x) at(x) .

In order to calculate explicitly a specific matrix element we divide
the k-space into finite but small cells 4, (r =1, ...) and denote by
k, a representative value of the k-vector in 4,. We evaluate the
matrix element M which connects the photon vacuum state with
a state representing precisely n, photons in 4,, n, photons in 4,, etc.

The matrix element in question is obtained from those terms in
the expansion (35) of S for which m < 2'n,. For, the operator 2

with

contains a sum of one creation and one annihilation operator for
the photons. The power 2™ must contain at least 2n, creation oper-
r

ators. Hence m >2'n,. For a particular value of m which satisfies
r

this condition the contribution of ™ to the matrix element can be
obtained by the use of the ordering theorem of Wick!?). According
to this theorem one selects from 2™ all possible factor pairings and
replaces each pairing by the value of the contraction symbol. These
contraction factors describe the effect of the virtual photon pro-
cesses.

In the present case there is a considerable simplification as com-
pared to the general case treated by Wick due to the fact that the
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current is a c-number and the time ordering process is not needed.
One verifies by inspection that as a result the matrix element M can
be written as a product

M =[] M, (36)
71

such that each M, contains only the contributions from photon
operators referring to the cell 4,. Furthermore, each contraction of
a pair of photon operators a, (k,), a}; (R,) produces a factor

A4

0, =0lk) — 5 si(k) 5" (k). (37)

If 1 is the number of contractions from photon operators referring

to 4, and m = n, + 21, we obtain from X™ a factor ¢! and also a

. 3 1 ! ; ; ;
combinational factor ] %—, which is the number of times !
T

ordered pairs can be selected from m distinet objects. When this
1s summed over [, we obtain the total contribution to M, in the form

(o.¢]

y 1 +1 \ Ty _ ﬁ
M, = (72;;; s, (R,) e" (k,},))- %’ (— 1y (38)
The total transition probability for the emission process is thus

P= S [[n! M2 A (39)

pol r=1

The factors A" are the densities of final states and the factors n,!
take account of the different possible sequences in which n, distinct
photons can be emitted. In this expression we have also summed
over the unobserved polarization states of the emitted photons
which can be evaluated as follows:

: 1
D7 Is, (B e (0] = [ (]2 ——g s (k) - k2 = s#(R) s5(k) .~ (40)
pol
The last equation i1s a simple consequence of the conservation law
for the current in the form s, (k) k* = 0.
The transition probability (39) becomes, with Eqgs. (40), (87), and
(36),

T =0, OO

This result shows that the final photons are emitted according to
the Poisson distribution law into each volume element in k-space,
and that therefore the average number of photons emitted into
A, 1s just exactly ¢, (Eq. (36)).
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We also see that the average total number of emitted photons is

N-fZQr 2——“3 o) s (k) . | (42)

When this expression is transformed into an integral by letting
A, > 0 and the current (23) is substituted, we obtain precisely the
integral for b in Eq. (5), which was shown to be logarithmically
divergent. It follows that the average number of photons emitted
into all phase space 1s infinite. This divergence is now no longer a
difficulty since it appears as an infinity for the total number of
photons emitted rather than as an infinite transition probability?29).

The result up to this point is in complete agreement with the
conclusions of Broci and Norpsieck, except for the fact that the
validity of this result 1s now secured for much more general cases.

We turn to the question of the effect of soft photon emission on
the scattering cross section of the basic process (fig. 1). From the
preceding conclusion, it 1s evident that the cross section ¢’ which
includes the emission of soft photons is related to the cross section
o without such photons by a multiplicative numerical factor. The
value of this factor depends on the energy resolution 4 & which can
be detected in the observation of the scattering process. In fact, we
find from (41)

o' =b(de) o (43)
where
bde)= 3" [[eor & (44)
(np) r=1 r

The summation sign 1s written with a prime. This symbol indi-
cates a restriction on the summation to such values of w,, that the
total energy lost to the soft photons is less than A &%),

an w,< de. . (45)
r=1 |

*) In general, there should also be a restriction on the momenta

oo

2 i< SUp

F=1
corresponding to an experimental inaccuracy 4 p in the measurement of momentum
balance. However, the error in the energy measurement, A¢/e, implies an error of
momentum |Ap/p| of at least the order Ae/e. Therefore, only when the error in
momentum is much smaller than the error in energy need 4Ap be taken into account.
In this case the equations become more complicated, but little is gained in the
understanding of the basic problem. Furthermore, the presence of external fields
always precludes a measurement of the momentum balance. We shall therefore
ignore the momentum restriction in the following.
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This is an essential point in the following discussion. Brocr and
Norpsieck?®) had omitted this restriction and obtained the desirable
value b = 1. Paurwr and Figerz did include this restriction®) and ob-
tained the physically incomprehensible result b = 0. We shall in-
clude this restriction and show that the latter result is incorrect and
that in fact b = 1 to a high degree of approximation.
We can restore the unrestricted summation by introducing the
discontinuous function I(n,) with the property
i 1for Y'm, 0, <Ae I
I(n,) = _ | (46)
l 0 for Zn,‘wr>/Js. l

A useful analytical expression for this function 1s

As oo

1 (Z Np Op— a:)(:

Ae
1) — (6 ( Xm0, —zyde— " [da [doe "
(n,) Uf (;’fnw ) z m/ oe

U

The restriction in the summation (44) can now be dropped and
we obtain

b(de) = ;/dw / dige=lPI—tas (47)
With | ¢ Wy ,?1
(1 (o) __. ZHG—U;P 97‘ n ' 4. (48) ‘

(ny) r=

The summation is now unrestricted and therefore the product and
the sum can be interchanged. Each individual sum for any r 1s of
the form

iw a)n

Z(Qen! =&

n

Therefore, we obtain for G(o)
o) = Yo, (6" —1). (49)

This function can be reduced to an integral in the limit A4, — 0

iwo

pe

Go) = [T E szl s#(8) (6177~ 1) (50)

It 1s now easy to see how the i. r. divergence has disappeared. For,
when we substitute the expression (23) in Eq. (50), we obtain

o >k ( p® p*  2pp i =
60 = [ (Goms ~ e ~ b em) @ - 61
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The factor ¢“” — 1 approaches iwo for @ - 0 and eliminates the
singularity at the origin. One can trace the term e?*° to the real
processes and the term — 1 to the virtual processes, so that the can-
cellation between these two types of processes is here exhibited ex-
plicitly, and is complete in the limit w = 0. After the angular inte-
gration the expression (51) becomes

Gwy:aofﬂﬁ@WW—n (52)

(3}
0

where C is a positive numerical factor of order one which depends
on p and p’. In the coordinate system in which the initial electron
1s at rest (p = 0), C was evaluated to be :

2 (tanhlp »
C == - 1). (53)
We have purposely avoided writing an uper limit in (52) because
this limit needs careful discussion. If we integrate in (52) simply to
+ oo, we obtain the result of Pavrr and Firrz:

G(o) = —oo, b = 0.

At this point we must recall the restriction for the validity of the
expression for b. The derivation of b in the form (47) 1s based on the
formula (3) which allowed us to replace the matrix element M,
(Eq. (2)) by the matrix element of the classical current density (23).
The validity for (3) is only assured for @ <€ m as was stated explic-
1tly in connection with this equation.

For values of @ which do not satisty @ <€ m, we would have to
work with the rigorous formula (2) for the real emission processes
and the complete expressions corresponding to the diagrams of
fig. 3 for the virtual processes. In this case it 1s of course impossible
to sum the contributions from virtual photon processes to all orders
of « as we did in the case w <€ m.

Fortunately, the complete expression of the rigorous solution is
not needed for the clarification of the problem caused by the
Pavri-Fierz divergence. We need only recall that the divergences
in the high frequency limits of virtual processes are all of the type
which can be removed by the renormalization of mass and charge?).
The remaining finite terms are small corrections of order a.

While it 1s thus assured that the contribution of the radiative cor-
rections from each order of « 1s finite we do not know whether the
sum of the contributions from all orders 1s finite. This involves the
difficult and as yet unsolved question whether the infinite series of
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the renormalized radiative corrections converges. We shall return
to this problem at a later point.

If we wish to obtain quantitative results for the correction factor
b(Ae), we must take account of the limitation involved in the deri-
vation of (44) and restrict the expression to values of w, such that
w <€ m. We can do this in a crude way by introducing a cut-off at
an energy value & o~ m throughout the calculation. The integral in
(52) 18 then to be extended only up to the value w = e.

We emphasize here that the need for a cut-off in the evaluation
of e1s not a prineiple difficulty. It is merely caused by the limitation
of the approximation, @ <€ m. With this crude method we cannot
expect to obtain a result which can be trusted in detail. However,
there are certain features of the result which are essentially inde-
pendent of the cut-off and which will be very likely characteristic
for the correct result also.

In order to illustrate this point we shall study the expression for
b(Ae) for two different cut-offs. We write for (52)

[8.0]

~

Glo) = a0 [ 22 (e"—1) g (o) (54)
' 0
where g(w) 1s some form factor.
We discuss the following two cases?!)

o () — 1 for o < ¢ ] 554)
SV Ofor o > e | !
g(w) = g (55b)

Case (a) corresponds to a sharp cut-off at w = &. In this case,

Ae + 00 &
b(Ae) = 2]‘&/ d:r/ do exp {— 120 + ocC’f L

0 ==L o

L=l (56)

It then follows that, independently of e,
b(0) = 0. (57)

The probability for elastic scattering is strictly zero. This result
1s in complete agreement with Brocu and NoRDSIECK.

We did not succeed in evaluating the integrals (56) in closed form.
The first few coefficients of the power series development in « can
be evaluated analytically with the result:

AN 1 EE T
b({de) =1—aCln iz --3(73—-% (ln

)2)oc202+---. (58)

€
Ae,
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This series shows that for all but the smallest values of 4e this cor-
rection factor is nearly equal to one. In fact the first order term
aC In ¢/Ae 1s of the same order of magnitude as the correction factor
due to the emission of one photon with total energy loss A& combined
with the radiative correction of first order. In the imit A& - 0 this
series expansion diverges. We find, therefore, that the correction
factor b(/e) departs appreciably from unity only for
1

Ae <ge 0, (59)
The cut-off function (551)) Vield% when inserted into Eq. (54),

A

b(e) = d:r,fda e\p —fz ro+ och (s wﬁem%‘)}. (60)

This integr al can be evaluated in closed form. Since the method of
evaluation 1s discussed in detail in reference 5, we shall give here
only the result

Adefe
_ b e w1 .
b(de) = /e 2o C Dy (61)

0

The integral 1s the incomplete Gamma function
Y
I'z,y)= [e 72* "dz, I'(xz,00) =TI'(x),
/

which has the development

'@,y Y oy w1l oyt wtd _
T rem T E ey ) (6
For le/e €1 1t 15 sufficient to retain the first order term only,
1 Ae\eC :
blde) = praor (T) ‘ (63)
For 1e = 0 we find again
b(O) =0
— Ae\aC
The factor (—;—) reduces to - f(n
-
Ae=52 =9, (64)

This condition differs very little from the condition (59) which
was found for the case (a). For Ae substantially larger than ¢ 2-1/>¢
the expression for b can be written as a power series in o.

b(1e) =21 —aCln /—33 + O(a?) (65)
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Where y 1s Euler’s constant:

Iny =0,6772. ..

In this case we find again the result that b(Ae) differs from 1 only
by a term of order a.

In order to investigate this point further, we compare the expan-
sions (58) and (65) with the result of the iteration solution. In this
solution the successive terms in « correspond each to a combination
of radiative corrections and the emission of a finite number of soft
photons. As was shown in the previous section, each term in « is free
of the infrared divergence. The successive terms in the expansions
(58) and (65) approximate the exact results of the iteration solution.
In fact, it is always possible to choose the cut-off £ in such a way
that the expansion (58), say, coincides exactly with the iteration
solution. ¢ must then be a function of n, the power of «, and also
depends on the particular process under consideration.

The series (58) can then be written

S L Y R

- It seems reasonable to assume that the upper bound of &, is within
the radius of convergence of the infinite sum (58), which would imply
the convergence of the renormalized iteration solution®).

The two methods of calculation discussed in the preceding and
the present section, respectively, are, in a certain sense, equivalent.
The cross section for any process, as calculated for the bare electron,
can be corrected to represent the physical electron in one of two
different ways. Either the radiative corrections and the associated
soft photon emission can be calculated to arbitrarily high order in
« by the iteration solution, or the cross section can be multiplied by
the factor b(Ae). The two methods of calculation are complemen-
tary, in that the first method is exact in each power of «, but neces-
sarily restricted to a finite number of terms, whereas the second
method includes all powers of «, 1. e. an infinite number of soft
photons, but is only approximate in its account of the intermediate
states of high energy.

The two procedures show the disappearance of the infrared diver-
gence from two different aspects, of which the method discussed in

*) Certain cases, e. g. those in which the system has bound states, are of course
excluded a priori, since then the iteration solution is known to diverge.
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the present section is of particular interest. We refer to the proper-
ties of b(4 ) which are independent of the cut-off:
(1) b(0) = 0.
(2) I'orall finite values of Ae b differs from 1 by terms of order o
only, in contradistinction to the result of Pavrt and Figrz.

We conclude further that the result of BLocu and Norpsieck which
1s obtained by disregarding the energy conservation in the soft
photon emission process is very nearly correct, radiative corrections
being negligible in most cases.
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