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The infrared divergence*)
by J. M. Jauch and F. Rohrlich.

Department of Physics, State University of Iowa City, Iowa.

(13. X. 1954.)

Abstract. The long standing problem of the infra-red divergence in quantum
electrodynamics is reexamined in the light of the recent progress in this field. A
general proof is given of the cancellation of the infrared divergences which arise from
real and virtual processes. This proof is valid to all orders of the coupling constant
and for all types of scattering events. The problem is solved in the iteration solution
as well as in the closed form used by Bloch and Nordsieck and by Pauli and
Fierz. The equivalence of the two methods is discussed and the results obtained
by Bloch and Nordsieck are found to be correct provided radiative corrections
are ignored. The ultraviolet divergences found by Pauli and Fierz in this connection

has nothing to do with the infra-red divergence problem. It cannot be regarded
as a difficulty in the theory, since the method of calculation employed is no longer
valid at high frequencies. The exact calculation (iteration solution) shows that the
renormalized theory is completely free of divergences at both low and high
frequencies. A plausibility argument for the convergence in certain cases of the
renormalized iteration solution is presented.

I. Introduction and summary.

The quantum theory of radiation has for a long time been

plagued by divergence difficulties, which tended to discredit the
theory. The discovery of the electromagnetic level shift in 1947 led
to a reexamination of the divergences and to the discovery that it
is possible to extract finite and physically observable quantities
from the divergent expressions by the process of renormalization of
mass and charge. In this method the divergent quantities are identified

with the (infinite) correction to the mass and charge of the
electron. After mass and charge renormalization, the remaining
terms are all finite to all orders in the fine structure constant a1),
and they represent the observable quantities in the theory.

This method of eliminating the undesirable consequences of the
theory does not apply to the type of divergences which have been
known for a long time under the name of infrared (i.r.) divergences.
Indeed, all the divergences which are eliminated by the renormali-

*) Part of this work was completed while one of us (J.M.J.) was at the Oak Ridge
National Laboratory, Oak Ridge, Tennessee.
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zation procedure are of the ultraviolet type ; they are caused by the
divergence of certain integrals at very high values of the
intermediate state four-momenta. In contrast, the i. r. divergences are
caused by the low values of these momenta.

The simplest type of i. r. divergence, and one of the earliest to be
noted, occurs in the inelastic scattering of electrons with the emission

of photons2). The cross section for the scattering with the
emission of one photon of frequency co within dco is in lowest order
of e proportional to dco/co. The total cross section for the energy loss
A e due to one photon emission is then proportional to

f dco

which diverges logarithmically at the lower limit.
The fact that the i. r. divergences are not touched by the

renormalization procedure does not in any way affect the consistency of
the method. Indeed it was known for a considerable time (long
before the invention of renormalization) that the i. r. divergences are
of an entirely different character from the ultraviolet divergences.
In a fundamental paper, Bloch and Nordsieck3) were able to show
that the i. r. divergence disappears entirely if a rigorous solution
of the field equations is employed for that part of the Hamiltonian
which couples the low frequency field oscillators to the electron. The
i. r. divergence is therefore recognized as one which is caused by the
particular features of the iteration solution of ordinary perturbation

theory which separates the various processes pertaining to
real and virtual photons. One of the main results of Bloch and
Nordsieck was that the probability for the emission of a finite
number of soft photons in a scattering process is exactly zero, so
that every such process is necessarily accompanied by the emission
of an infinite number of soft photons.

This result seems at first sight inconsistent with the result of the
perturbation theory. That this is not the case was demonstrated by
Bratjnbeck and Weinmann4) who showed that the first term in
the development of the Bloch-Nordsieck solution in powers of <x

agrees exactly with the result of the perturbation solution. However,

these authors failed to point out that they took into account
explicitly the limitation on the energy of the emitted soft photons.
This limitation was ignored by Bloch and Nordsieck and is
responsible for their result b 1 for the correction factor multiplying
the cross section. We shall show that the exact result for b differs
from 1 by terms of order a.
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Although the work of Bloch and Nordsieck offers the key to
the solution of the i. r. divergence, it was not entirely satisfactory.
The flaw was pointed out by Pauli and Fierz5). These authors
improved the calculation of the correction factors due to the emission
of an unlimited number of soft photons by taking correctly into
account the conservation of energy in the process which Bloch and
Nordsieck had failed to do. The latter authors had obtained the
satisfactory result 1 for this correction factor with their incorrect
procedure. In other words, they found the cross section for the
inelastic scattering with very small energy loss equal to the cross
section for elastic scattering, neglecting the radiative interaction
entirely. When this same quantity was calculated by Pauli and Fierz,
taking into account the conservation of energy, it was found that
this correction factor became equal to zero.

This conclusion of Pauli and Fierz did not make any sense at
all, since it seemed to contradict the results which one would expect
on the basis of the correspondence principle. It was all the more
puzzling when it was found that the correction factor for this
"nearly elastic" scattering vanished because of a new kind of
logarithmic divergence at the high frequency end of the spectrum. If,
as it was usual in those days, one introduced an upper limit for the
energy of the photons, Pauli and Fierz obtained a finite result
which seemed to depend on the value of this upper limit. In physical
terms this would mean that the emission of radio waves by an
accelerated electron depended critically on the modification of quantum
electrodynamics at ultrahigh-frequencies. This is an incredible
result.

That this new type of divergence discovered by Pauli and Fierz
was not caused by the nonrelativistic calculation of these authors
was verified by Dancoff6) who showed that even in a relativistic
theory this divergence reappears. Moreover Dancoff's work showed
that the result for the soft photon emission during a scattering process

depended on the spin of the charged particle.
It was clear to everybody that these results did not make any

physical sense. But it was equally clear that a simple modification
of the theory which eliminated completely the Pauli-Fierz divergence

was not sufficient to remedy the defect. Any change of the
theory must be such that it leaves the result of Bloch and Nordsieck

for the soft photons essentially unchanged if the theory is to
be in accordance with the correspondence principle.

In this connection it was especially pointed out by Bethe and
Oppenheimer7) that the problem of soft photon emission furnishes
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a valuable check for any modification of quantum electrodynamics.
Using this criterion, Bethe and Oppeheimer were able to show that
Heitler's form of quantum electrodynamics8) was unsatisfactory.
This same criterion was used previously9) for testing the theory
of Dirac involving negative energy photons10) with the same negative

conclusion.
It seems clear, therefore, that the renormalization theory cannot

be considered complete and satisfactory, if it does not also give the
solution to the problem of the i. r. divergence. In this connection it
is of interest to recall an observation already made by Braunbeck
and Weinmann4) and especially emphasized by Bethe and Oppen-
heimbk7). The i. r. divergence due to the emission of one real photon
and the i. r. divergence which is contained in the first order radiative

correction due to the emission and reabsorption of virtual
photons exactly cancel. The result of BIoch and Nordsieck is a
strong indication that this cancellation occurs in all orders of the
coupling constant. Special cases of this cancellation were noted by
several authors11), but attempts to prove it in general remained
incomplete12).

If it is true that the i. r. divergences of the real and virtual photon
processes exactly cancel to any order of the coupling constant, then
the i. r. divergence is a spurious phenomenon which only appears
because the real and virtual photon processes are artificially
separated in the iteration solution. When these processes are recombined,
the i. r. divergence disappears. There is then no other divergence in
the theory but the renormalizable type.

In this paper we give the complete solution of the infrared problem,

outlined above, by showing two things. First, we prove that
the low frequency divergences contained in the real and virtual photon
processes cancel to all orders in the fine structure constant a. and for
all types of processes. Second, we show that the new type of divergence

obtained by Pauli and Fierz is indeed no real divergence but
is merely caused by an unjustified extension of the approximation on
which the Bloch-Nordsieck solution is based. It is shown here that
the rigorous calculation of the collective soft photon emission is only
possible for energies of the photons much smaller than m. An
argument is presented to show that the effect of the higher order terms
in cajm after renormalization can be roughly estimated by
introducing a cut-off energy e ~ m. With this method the divergence
disappears and the reasonable result of Bloch and Nordsieck is
found to be correct within a very good approximation.

We conclude that the divergence of Pauli and Fierz has nothing
to do with the physical interpretation of the theory. It is not an
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indication of an incorrect theory but rather an indication of the
limitation of a particular method of calculation. The incorrect physical

interpretation of this divergence has caused much of the confusion

in the history of this problem13).

II. Cancellation of the infrared divergences in the iteration solution.

A. Beai Photon Emission.

We shall use here and in the following the technique of the Feynman

diagrams which allows a simple pictorial representation of the
basic processes under discussion.

Consider a basic scattering process, involving one ingoing and one
outgoing electron. The electron may be either a negaton or a positon;

the following arguments are equally valid for both cases. In
order to be specific, we shall assume that we are dealing with a

Pig-1.
The basic process.

negaton (that is a negative electron). The basic process is schematically

represented by the diagram of fig. 1. The generalization to
processes with more than one electron path will be discussed later.
The process may be accompanied by any number of initial or final
photons which should be indicated by additional dotted lines entering

or leaving the diagram of fig. 1. We have omitted these photon
lines, since, as we shall see, their presence is entirely irrelevant to the
argument.

The shaded area in fig. 1 stands for a diagram of any arbitrary
degree of complexity. This diagram may contain any number of
closed loops of electron lines. The contribution of such a general
diagram to the matrix element will of course contain every conceivable

divergence of the ultraviolet type, which must be removed in
accordance with the general theory of renormalization1). The shaded
area may further contain contributions from an external field
interacting with the scattered electron.
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The S-matrix element is of the form

M (p') Q (p' p) u (p) (1)

where Q(p'p) is a constant times the spinor matrix associated with
the shaded area of the basic process. The spinor u(p) is the amplitude

of the plane wave for a negaton with momentum p. We use
the units cm, %, and c, and the metric — g00 gxx g22 gS3 1.

We wish to calculate the matrix element Mx corresponding to the
emission of one additional soft photon of momentum fc (co, k)
(co <^_ m) and polarization vector e (cf. fig. 2). The result is

Mx-
(2 „)»/! U(V')

±Q(p',P-k)

e(k) i(p' + k)- Q(p'~k,p)
\/2a> (p'+k)2 + m2

i(P-k)-m A>mU(V).
(p— k)' + m |/2a> J

A

'k

(2)

Fig. 2.

Diagrams for the basic process with one photon emitted from external lines.

In this calculation we have ignored the emission of photons from
internal lines of M, since such processes do not give rise to i. r.
divergences.

The expression (2) can be considerably simplified if we use the
fact that co <^ m and that the propagation functions operate on free
particle functions which satisfy the equations*)

(ip + m) u(p) 0

u(p) (ip + m) 0.

Betaining only the terms of lowest order in ca/m, we obtain after some
rearrangement

Mx ß(k) M (3)
with

e 1 (p-e p-e
(2ti)312 x/2j, Wh~ß(k) /p_e_ _ p'-e\

\p-k p'-k
(4)

*) In the following equation, as well as in Eqs. (2), (11), (14), (17), (18) and (19)
the bold-face letters indicate the four-vector product with yt1 (e. g.p =pixy>1).
In all other places they indicate space parts of four vectors.
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The total transition probability, and the cross section for the basic

process is proportional to the square of the matrix element. Hence,
the emission of one soft photon modifies the cross section by the
factor

y fd__k_ p-e _ p'-e 2

¦^ J 2 co p-k p'-k ' *• '(2->XoT

The summation sign indicates the summation over the unobserved
polarization states of the emitted photons.

In this form the infrared divergence is manifest as a logarithmic
divergence of the fc-space integral at low frequencies. There is no
divergence at the upper limit of the fc-space integration since the
fc-values are restricted by ca <^ m. For energies co which do not satisfy

this inequality, the formula (4) is no longer valid. The formula
(5), when integrated over the sphere co < As <^ m, is then the
correction factor for the cross section of the basic process due to the
emission of one photon with energy co < Ae.

The angular integration in Eq. (5) cannot be carried out in terms
of elementary functions14). For our purposes, however it is quite
sufficient to evaluate this integral in a special coordinate system,
for instance the rest system of the incident electron (p 0). In this
system the integral (5) is elementary.

We first carry out the polarization sum which gives

Using

and

2J\p'-e\2 p'2-
poi

ip'- fc)2

p'-k co(\p'\ cos ff — e')

4 n
we find

» _ a f d3k 1 jt»'2 p'2 cos2 ¦&' \ ,ps
4ji2 J ~FA~ \(£'-|p'|cos#')2 ~ (e'-\p'\ cos#')2 " *¦ >

By changing the variable of integration

cos ff — x
and using

Xl=/3'.
Eq. (6) reduces to

+i
a 0,2 f dco f 1-x2 j a / 1 -, 1 + jS' n\ f dco

2 71 r J (O J (1-ßx)2 31 \ß 1-ß I J CO

-1
_ 2a /tanh-1/r \ f dco ,r?\
~~

n \ B' J a>
\
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B. Virtual Photon Processes.

We now turn to the first radiative corrections of the basic process
M shown in fig. 1, by inserting into M one internal photon line
in all possible ways. Among the diagrams thus obtained, we select
those which exhibit an i. r. divergence.

In order to obtain all contributions, it is essential to recall the
fact that both, the second order electron self-energy and the vertex
part, exhibit an i.r. divergence after separation of the renormalizable

divergences15). On the other hand, an internal photon line
which is attached to an internal electron line at one or both ends
has no i. r. divergence unless it produces a self-energy or a vertex
part. The radiative correction diagrams which do in fact have i. r.
divergences are shown in fig. 3.

(b) fb") (e)(a) fc"J (d) (e)
Fig. 3.

Radiative corrections to the basic process which contain infrared divergences.

The meaning of diagrams (a) and (b) is clear. In diagrams (c) we
mean to indicate that the added photon line begins on an external
line and ends on the first internal line of M thereby creating a vertex
part at the very edge of the diagram. In (d) the added photon line
creates a vertex part and in (e) a self-energy part.

As we shall see below, the explicit evaluation of the i. r. divergent
parts of these radiative corrections are all of the form

M<2> qM (8)

where o is a numerical factor of order a. The correction of order a
of the transition probability is obtained from these terms by
calculating the cross-terms of M and M{2),

| M + M(2)|2 \M\2(1 + 2q+--.)
Our aim is to prove the compensation of the divergence in b (Eq. (7))
by the termJ r 2 q (9)
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i.e. we want to show that

b + r convergent. (10)

The diagram (a) gives for small k

Mm _ ie2 fü(r>'\ v „__£X_ n _______v,

with

(2jl)4y Vr ' r/i (p,_ty2+m2. Y, (j,_fc)2+OT2
ta f — ipA —/.»/-> r —i pß d*k

-A^J^^u{-V)Q^(v)-p-rk--W-
QxM

p'-p d* k
QX 4 ji3 y p'-k p-k k2

d*k
k2

(11)

(12)

The integration over fc° in Eq. (12) has to be carried out over the
path which avoids the negative pole on the real axis by a detour
in the negative imaginary half plane and the positive pole by a
similar detour into the positive imaginary half plane. We can therefore

rotate the path in the complex fc°-plane by n/2 and integrate
over the imaginary axis. Replacing fc° by ik° we have

+ 00

*a / /"ni /" idk"
ei ~T^rP 'P d*k

4j_3 f fj <*> "¦j („2 + ^02) (\p'\m cosft'-ie'k0) (\p\co oos&-iek°)
— oo

in f d3k
4 jt3 se' " " co"

ß' cos &' ß cos & ] 1

1-ß'2 cos2#' l-/92cos2*J ,9'cos#'-/Scos#'

As in the evaluation of b, we can choose the reference frame defined
by p 0, so that p'-p —me.

+i
a f dco c. f dx

Ql~~T7xJJ Ao~Z7lJ l-ß'2X2
-1

__
a 1 -i 1 + ß' f dco

_ a tanh-1/?' /* dco
~~ ~~ IFF~Y 1-ß' J ~FF ~

ox f J ~aT '

From Eq. (9) follows

ris2j1 X^_ /__. (13)* ^ 71 ß J CO

Comparing this value with (7), we see that it exactly cancels the first
term of Eq. (7)16).

For the cancellation of the remaining term we must examine the
diagrams (b) to (e) in fig. 3. Their contribution to the i. r. divergence

will be denoted by q2. Its value need not be calculated by
integration of the respective matrix elements, but can be obtained from
the general properties of the divergent diagrams. In order to show
this we need some of the results contained in the papers of references
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15 and 1. We summarize here briefly the pertinent properties but
refer to these papers for details.

The self-energy part E (ip) and the vertex part A^p' p) are both
free of i. r. divergences. However, when the (ultraviolet) divergent
parts are separated we introduce an i. r. divergence in the (otherwise)

finite part of these expressions. Consequently, the ultraviolet
divergent part will also contain an i. r. divergence.

These separations have the form

S(p) A-(ip + m)-lB + (ip + m)-2 Sf{p) (14)
and

\(P'> V) Eyp + AtfW, p). (15)

The constants A, B, and L are ultraviolet divergent. The charge
renormalization constants B and L are also i. r.-divergent. The
theorem of Ward (see ref. 1) says that

B L. (16)

The functions free of ultra-violet divergences are denoted by Ef(p)
and Auf (p', p).

From the preceding remarks follows that we have the following
relations with respect to the i.r. divergences

— Bi + (ip + m)-1Zif 0 y^U + A^^O Bi Li. (17)

The superscript i means "infrared divergence of". Therefore,

y,(ip + m)-^S) + Aiß1 0. (18)

This statement can be interpreted to mean that Ai, cancels half of

Z/j from either side of the electron path. Therefore, the sum of the
diagrams (b), (c), (d), and (e) would exactly cancel in their infrared
contributions, were it not for the fact that the terms Ef(p') and
Uf(p) in the external lines (diagrams (c)) vanish because of

(ip + m) u(p) 0

u(p) (ip + m) 0.

The corresponding parts of the divergences in (c) are therefore not
compensated. The missing parts are

-\ E[(p') (ip' + m) —\ Z)(p) (ip + m) B\ (19)
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The part B* has been obtained explicitly17). In our notation,

a f dm
B*

n l co

i.e.

2o2 ^-[^. (20)

These diagrams are seen to yield an infrared divergence which
exactly compensates the second term in b, Eq. (7). We can combine
Eqs. (13) and (20),

2a/ tanh~

1T\ W '1)fdÌF-~b- W
This completes the proof of the statement (10).

We may add the remark that according to this proof, closed loops
can never contribute to the i. r. divergences, because in the case of
a closed loop the cancellation of the i. r. divergences between the
self-energy and vertex parts is complete. This is in accord with the
fact that the contribution of closed loops to soft photon emission
vanishes in the limit of vanishing energy18). Thus, closed loops
contribute neither to b nor to r.

C. Generalization.

We shall now briefly indicate how the result thus far obtained can
be generalized so as to include all types of processes to any order
in a. Let us first consider the basic process of fig. 1 with more than
one additional soft photon emission.

For instance, in order to prove that the cancellation occurs for n
soft photons, we proceed by induction. We assume that the cancellation

is true for the process involving n — 1 real soft photon
emissions. We then consider the diagram corresponding to this process
as a new basic diagram. We note that the number of real photons
emitted does not enter into the explicit proofs of subsections A and
B. Thus, the reasoning of these sections can now be applied to this
new basic diagram; it follows that the i. r. divergence from the
emission of n real soft photon cancels the i. r. divergence of the
radiative correction of corresponding order. Since we have proven
this cancellation explicitly for the one photon process, we have
established that in the process of fig. 1 no i. r. divergence exists.

Next, we need also a generalization with respect to the direction
and number of electron paths. It is clear that the direction of the
electron path can be reversed without affecting in any way the
result of sections A and B.
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The result of these sections can also be extended to the case of
more than one electron path. Indeed, it follows that for every open
electron path separately, the required cancellations occur. Therefore,

the result is general.
We have thus established that the i. r. divergence is entirely due

to the unphysical description of certain processes by the iteration
solution. The processes of soft photon emission and radiative
corrections due to soft virtual photons are evaluated as two quite
different processes in the iteration solution, and originate in S-matrix
elements of different order in e. Physically, these processes should
not be separated. Their separation causes the appearance of i. r.
divergences which are thus introduced in an artificial way due to
the particular mathematical treatment adopted.

The recombination of soft photon emission and soft photon corrections
eliminates the infrared divergences in all processes and in all orders of
the approximation.

III. The closed form of the soft photon emission.

In the preceding section we have come to the important conclusion

that the model for the mechanism of radiative processes which
follows so naturally from the iteration solution in the form of the
Feynman diagrams, is actually a very poor model. It breaks down
completely for the description of soft photon processes, as we have
just seen.

In order to arrive at a better description of this case we evidently
must obtain closed expressions which contain the effect of photons
of various low energies, and which are independent of the number
of the participating photons. This number is not observable, since
the "free"' and the virtual photons apparently become indistinguishable

in the soft photon limit. In fact, there seems to exist no very
sharp separation between photons which are observable individually,

and photons which are observable only collectively. The latter
appear as an energy loss, Ae, whose details cannot be differentiated.

To study these conjectures we ask for the modification of a given
process due to this collective soft photon effect. We thereby expect
to obtain a dependence on Ae, so that the whole collective effect
vanishes for A e 0. This calculation will be free of infrared
divergences, as follows from the above proof. It was first carried out in
the fundamental paper by Bloch and Nordsieck3).

We shall go beyond the result of these authors as well as that of
Pauli and Fierz5) by demonstrating that there is no other diver-
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gence in this theory. This is in contradiction to the results contained
in reference 5 and the resolution of this contradiction is one of the
main problems to be solved. In addition, we have made use of the
covariant formalism, which allows us to remove several of the
restrictions which had to be made in previous work on this subject.
Specifically, we do not need to assume that the electrons move with
nonrelativistic velocities, nor do we have to restrict ourselves to the
first order Born approximation of the scattering problem under
discussion. All these restrictions are recognized as irrelevant to the
problem on hand and their removal is necessary for a satisfactory
treatment of the question.

In fact, our treatment is so general that it applies to any type of
process involving any number of open electron paths. As in the
preceding section, we shall discuss in detail only the case of electron
scattering, but this restriction is merely made for the convenience
of presentation. The necessary modifications in the general case will
be obvious once the method is clearly understood for the simple
special case discussed here.

The method to be used is an adaptation of the transformation of
Bloch and Nordsieck. It consists of two steps. In the first step
we show that the calculation of the soft photon emission is equivalent

to the calculation of the S-matrix associated with a certain
classical current distribution. In the second step we give the rigorous

expression for the S-matrix associated with such a classical
current.

Consider the basic process of fig. 1. The single photon emission
probability ß(k) was calculated in Eq. (4). This same value for the
photon emission probability amplitude can also be obtained from
a classical current distribution

s.Ax) =¦ s/il(k)eikxdik, (22)^ ' (2 7I)5'2,

provided we choose

Indeed, the first order S-matrix element for the emission of a photon
of momentum fc and polarization e by a classical current is given by

ß(k)=-AL-sß(k)eu (24)

which agrees with Eq. (4) and with the choice (23). We see therefore
that for soft photon emission the matrix element of the basic process
M behaves just like a classical current. This is correct not only for
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the first order process of single photon emission, but remains true
for processes of any order.

Therefore, we can calculate the correction factor ß for the emission
of any number of soft photons in the process M by calculating the
probability amplitude for any number of soft photons created by the
classical current density (22) and (23). This problem can be solved
rigourously.

We note here in passing that the classical current with the Fourier components
Sp (k) as given in Eg. (23) has a simple physical interpretation which can be seen
most easily when it is transformed into z-space. The identities

0

/ ò (x-vr) dr -j=-=- / -; eikx
J (2n)i J k-v

— OO

OO

ï ki w -* fdih ikx/ ò(x-vt) dr ——— / -= ellcx

0

allow us to express the current in x-space in the form
o

sfi(x) — — e / vu ô(x-vt) dr-e / » ' ô(x-v'r) dx (25)

with
1 1

vu Pu ' vu Pu ¦f m ß f m f
This is the current of a classical point-charge — e moving for x° < 0 with the
constant four-velocity v„ and for x° > 0 with the velocity v'^.

Before we proceed with the calculation, we consider a lemma which
is of importance for the S-matrix of a classical current distribution.

Let H(r) be an interaction operator which satisfies the condition

[H(r),H(r')] iC(r,r') (26)

where C(r, r') is a c-number. The S-matrix for this system differs
from the matrix

S' e-iS (27)

+ 00

E=fH(r)dr (28)
— oo

only by a phase factor.
The significance of this lemma lies in the fact that the phase factor

can be ignored and that the S-matrix can be calculated according

to Eq. (27).
An alternative way of expressing this lemma is to state that the

time-ordering operation in the iteration solution contributes only
a phase factor.
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In order to prove it we carry out the r-dependent canonical
transformation

co'(r) eiS{T) co(r). (29)

The new state vector satisfies a transformed Schrödinger equation

ico'(r) H'(r) co'(r)
with H'(r) given by

H'(r) eiz™ (H(t) - i~) 6-ir(r>.

This expression can be written in terms of iterated commutators

H'(T)=H(r)+i[E(r),H(r)]-È(r)+j}[Ê(r), E(r)] + ---. (30)

If we choose E(r) such that it satisfies

È(r)=H(r) 1

and E(-oo)=I, (dl)

then the omitted commutators in Eq. (30) are all zero and the terms
in (30) which are explicitly written out constitute the rigorous
expression for H'(r). In this case, the transformed interaction operator
is given by

H'(r)=-±-fc(r',r)dr' (32)
— CO

and is a c-number.
We now finish the proof of the lemma by expressing the S-oper-

ator of the original problem in terms of the transformation matrix
Vir, t0) of the transformed problem. This transformation matrix is
defined by the relation

co' (r) V(r, r0) co' (r0)

and is given explicitly by
T

-ijB\r')àT'
V(r,r0) e *•

Using the transformation law Eq. (29) we find for the S-operator

S e-^<°°>7(oo, -oo) eir(-°°>.
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With Eqs. (31) and the definition
+00

E E(oo) l~H(r)dr
—00

we may write
S eiB e-iS (33)

where
+ CO T

e= 1 [dr fc(r', r)dr'. (34)
—00 —00

This proves the lemma.

Returning now to the problem of soft photon emission, we see

that the interaction operator

H(r) — / sß(x) aß(x) do
O(t)

with the classical current density (22) and (23) satisfies the condition
of our lemma. We therefore write for the S-operator (omitting the
irrelevant phase factor) according to Eq. (27)

(-ify-I — %)— ym^ m\
with m-°

E - dixs^(x) a/l(x)
(35)

In order to calculate explicitly a specific matrix element we divide
the fc-space into finite but small cells Ar (r 1, and denote by
kr a representative value of the fc-vector in Ar. We evaluate the
matrix element M which connects the photon vacuum state with
a state representing precisely nx photons in Ax, n2 photons in A2, etc.

The matrix element in question is obtained from those terms in
the expansion (35) of S for which m <2.nr. For, the operator E
contains a sum of one creation and one annihilation operator for
the photons. The power Em must contain at least Enr creation
operators. Hence m ~A>Enr. For a particular value of m which satisfies

r
this condition the contribution of Em to the matrix element can be

obtained by the use of the ordering theorem of Wick19). According
to this theorem one selects from Em all possible factor pairings and
replaces each pairing by the value of the contraction symbol. These
contraction factors describe the effect of the virtual photon
processes.

In the present case there is a considerable simplification as
compared to the general case treated by Wick due to the fact that the
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current is a c-number and the time ordering process is not needed.
One verifies by inspection that as a result the matrix element M can
be written as a product

oo

M [jMr (36)
r 1

such that each Mr contains only the contributions from photon
operators referring to the cell A,.. Furthermore, each contraction of
a pair of photon operators aß (kr), a* (kr) produces a factor

frS6(»r)=-^*;(*r)^)- '
(3?)

If I is the number of contractions from photon operators referring
to A,, and m nr + 2 I, we obtain from Em a factor plr and also a

combinational factor --=- —Ar, which is the number of times I
2l nAU

ordered pairs can be selected from m distinct objects. When this
is summed over /, we obtain the total contribution to M.r in the form

1 °° i^XfyX^XX'-1''*' <38)

The total transition probability for the emission process is thus

oo

P £]JnA\Mr\2Anrr. (39)
POI 7 - 1

The factors __"r are the densities of final states and the factors nr\
take account of the different possible sequences in which nr distinct
photons can be emitted. In this expression we have also summed
over the unobserved polarization states of the emitted photons
which can be evaluated as follows:

27 KX) XX2 |s(fc)i2-X-[s{fe).fe|2 s"(k)si(k). (40)
poi

The last equation is a simple consequence of the conservation law
for the current in the form sß(k) fc" 0.

The transition probabilitv (39) becomes, with Eqs. (40), (37), and
(36),

P n^'rfr- (41)
r-l r'

This result shows that the final photons are emitted according to
the Poisson distribution law into each volume element in fc-space,
and that therefore the average number of photons emitted into
Ar is just exactly gr (Eq. (36)).
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We also see that the average total number of emitted photons is

N ESr E^cFS*^Sß^- ^2)

When this expression is transformed into an integral by letting
Ar -> 0 and the current (23) is substituted, we obtain precisely the
integral for b in Eq. (5), which was shown to be logarithmically
divergent. It follows that the average number of photons emitted
into all phase space is infinite. This divergence is now no longer a

difficulty since it appears as an infinity for the total number of
photons emitted rather than as an infinite transition probability20).

The result up to this point is in complete agreement with the
conclusions of Bloch and Nordsieck, except for the fact that the
validity of this result is now secured for much more general cases.

We turn to the question of the effect of soft photon emission on
the scattering cross section of the basic process (fig. 1). From the
preceding conclusion, it is evident that the cross section a' which
includes the emission of soft photons is related to the cross section
a without such photons by a multiplicative numerical factor. The
value of this factor depends on the energy resolution A e which can
be detected in the observation of the scattering process. In fact, we
find from (41)

a' b(A e) o (43)
where

oo _

M/iX-27'I_X'-''f^ (44)
(nr) r-X

The summation sign is written with a prime. This symbol
indicates a restriction on the summation to such values of cor, that the
total energy lost to the soft photons is less than A e*),

oo

2Jnrcor< Ae. (45)

*) In general, there should also be a restriction on the momenta
oo

E nr kr < A pr-i
corresponding to an experimental inaccuracy Ap in the measurement of momentum
balance. However, the error in the energy measurement, A s/e, implies an error of
momentum \Ap/p\ of at least the order A s/e. Therefore, only when the error in
momentum is much smaller than the error in energy need Ap be taken into account.
In this case the equations become more complicated, but little is gained in the
understanding of the basic problem. Furthermore, the presence of external fields
always precludes a measurement of the momentum balance. We shall therefore
ignore the momentum restriction in the following.
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This is an essential point in the following discussion. Bloch and
Nordsieck3) had omitted this restriction and obtained the desirable
value 6 1. Pauli and Fierz did include this restriction5) and
obtained the physically incomprehensible result 6 0. We shall
include this restriction and show that the latter result is incorrect and
that in fact 6 1 to a high degree of approximation.

We can restore the unrestricted summation by introducing the
discontinuous function I(nr) with the property

I(n,)

1 for 2? nrcorA A e

r

0 for 27 nra>/> Ae.
(46)

A useful analytical expression for this function is

Ac. _1 e GO / _, \
1 i(Znrm,.-]-y

I(nr) ô {JFnrcor — x\dx =— dx doe "

O Ô 'oo

The restriction in the summation (44) can now be dropped and
we obtain

.1 £ OO

b(A e) j—fdx f'daéi(a)~ixa (47)
0 *oo

with

^-EIl^^iVF1-- (48)
(Prel"'ra)»>-

e i"r

(nr) r i

Fixe summation is now unrestricted and therefore the product and
the sum can be interchanged. Each individual sum for any r is of
the form

v-,(o6io,T QÀ""a
A ——:— e¦^ n\
n

Therefore, we obtain for G(o)

G(o)=ZQr(ei""-°-l). (49)
r

This function can be reduced to an integral in the limit Ar -> 0

G^ =fÇ^sl(k)s"(k)(ei-"-l). (50)

It is now easy to see how the i. r. divergence has disappeared. For,
when we substitute the expression (23) in Eq. (50), we obtain

G(a) - a fd3Jc X i
p'2 2p'p' \(A«"' V (51Ìw (2n)2 J co \(p'-k)2^ (p-k)2 (p'-k)(p-k))K A V }
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The factor e'""7 — 1 approaches icoo for co -> 0 and eliminates the
singularity at the origin. One can trace the term eima to the real
processes and the term — 1 to the virtual processes, so that the
cancellation between these two types of processes is here exhibited
explicitly, and is complete in the limit co -> 0. After the angular
integration the expression (51) becomes

G(o) a. C fdF- (eiwa-l) (52)
o

where C is a positive numerical factor of order one which depends
on p and p'. In the coordinate system in which the initial electron
is at rest (p 0), C was evaluated to be

C A(XXXXi). (53)

We have purposely avoided writing an uper limit in (52) because
this limit needs careful discussion. If we integrate in (52) simply to
+ oo, we obtain the result of Pauli and Fierz :

G(o) - oo, 6 0.

At this point we must recall the restriction for the validity of the
expression for 6. The derivation of 6 in the form (47) is based on the
formula (3) which allowed us to replace the matrix element Mx
(Eq. (2)) by the matrix element of the classical current density (23).
The validity for (3) is only assured for commas was stated explicitly

in connection with this equation.
For values of co which do not satisfy m <^ m, we would have to

work with the rigorous formula (2) for the real emission processes
and the complete expressions corresponding to the diagrams of
fig. 3 for the virtual processes. In this case it is of course impossible
to sum the contributions from virtual photon processes to all orders
of a. as we did in the case co <^ m.

Fortunately, the complete expression of the rigorous solution is
not needed for the clarification of the problem caused by the
Pauli-Fierz divergence. We need only recall that the divergences
in the high frequency limits of virtual processes are all of the type
which can be removed by the renormalization of mass and charge1).
The remaining finite terms are small corrections of order oc.

While it is thus assured that the contribution of the radiative
corrections from each order of <x is finite we do not know whether the
sum of the contributions from all orders is finite. This involves the
difficult and as yet unsolved question whether the infinite series of
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the renormalized radiative corrections converges. We shall return
to this problem at a later point.

If we wish to obtain quantitative results for the correction factor
b(Ae), we must take account of the limitation involved in the
derivation of (44) and restrict the expression to values of co, such that
co <^m. We can do this in a crude way by introducing a cut-off at
an energy value e s_ m throughout the calculation. The integral in
(52) is then to be extended only up to the value co e.

We emphasize here that the need for a cut-off in the evaluation
of s is not a principle difficulty. It is merely caused by the limitation
of the approximation, co <A^m. With this crude method we cannot
expect to obtain a result which can be trusted in detail. However,
there are certain features of the result which are essentially
independent of the cut-off and which will be very likely characteristic
for the correct result also.

In order to illustrate this point we shall study the expression for
b(Ae) for two different cut-offs. We write for (52)

oo

G(o)=ctC f^F (e"""-ì)g(oA (54)
ù

where g(co) is some form factor.
We discuss the following two cases21)

[ 1 for co < e | ,„gM nf _
(65a)

0 for co > e

g(io) =«-»/«. (55b)

Case (a) corresponds to a sharp cut-off at co s. In this case,

/I e +00

b(Ae) ^^j fdx fdo exrji-ixo + cxC f^- (eim,,-l)\. (56)
0 —oo a

It then follows that, independently of e,

6(0) 0. (57)

The probability for elastic scattering is strictly zero. This result
is in complete agreement with Bloch and Nordsieck.

We did not succeed in evaluating the integrals (56) in closed form.
The first few coefficients of the power series development in a can
be evaluated analytically with the result :

b(Ae)=l-«ClnA7-\(AL^(ln^yC2+.... (58)
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This series shows that for all but the smallest values of A e this
correction factor is nearly equal to one. In fact the first order term
aCln e/Ae is of the same order of magnitude as the correction factor
due to the emission of one photon with total energy loss/J e combined
with the radiative correction of first order. In the limit A e -> 0 this
series expansion diverges. We find, therefore, that the correction
factor b(Ae) departs appreciably from unity only for

_i
Ac Fee «r (59)

The cut-off function (55b) yields, when inserted into Eq. (54),
At 400 I 00 / / n ___i\|

6( I e) X- fax fdoex\z,\-ixo + oiC f-F (eX X"_ e
~ j (60)

CO

0 -00 I 0

This integral can be evaluated in closed form. Since the method of
evaluation is discussed in detail in reference 5, we shall give here
onlv the result

Ae,e

K'lX 'c,/« X*c "Alz. (61)
0

The integral is the incomplete Gamma function
v

F(x, y) fe zzx ' dz F(x, 00) F(x),
ù

which has the development

r(x, y) y*_ I-, __j/ x+1 y2 x+1 \ ,„„,
r(x) r(x+l)\ 1! .r + 2 + 2! x + 3 ^ /' [ '

For lee <^ 1 it is sufficient to retain the first order term only,

For j e 0 we find again
6(0) =0.

The factor I- -j reduces to -= for

(64)

This condition differs very little from the condition (59) which
was found for the case (a). For A e substantially larger than e 2_1/3cC

the expression for 6 can be written as a power series in a.

6(/J£)__,l-aCln^tr+0(a2) (65)
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where y is Euler's constant :

In y 0,5772...

In this case we find again the result that b(Ae) differs from 1 only
by a term of order oc.

In order to investigate this point further, we compare the expansions

(58) and (65) with the result of the iteration solution. In this
solution the successive terms in oc correspond each to a combination
of radiative corrections and the emission of a finite number of soft
photons. As was shown in the previous section, each term in oc is free
of the infrared divergence. The successive terms in the expansions
(58) and (65) approximate the exact results of the iteration solution.
In fact, it is always possible to choose the cut-off e in such a way
that the expansion (58), say, coincides exactly with the iteration
solution, e must then be a function of n, the power of oc, and also

depends on the particular process under consideration.

The series (58) can then be written

n-X

It seems reasonable to assume that the upper bound of e„ is within
the radius of convergence of the infinite sum (58), which would imply
the convergence of the renormalizod iteration solution*).

The two methods of calculation discussed in the preceding and
the present section, respectively, are, in a certain sense, equivalent.
The cross section for any process, as calculated for the 6are electron,
can be corrected to represent the physical electron in one of two
different ways. Either the radiative corrections and the associated
soft photon emission can be calculated to arbitrarily high order in
a by the iteration solution, or the cross section can be multiplied by
the factor b(Ae). The two methods of calculation are complementary,

in that the first method is exact in each power of oc, but necessarily

restricted to a finite number of terms, whereas the second
method includes all powers of oc, i. e. an infinite number of soft
photons, but is only approximate in its account of the intermediate
states of high energy.

The two procedures show the disappearance of the infrared divergence

from two different aspects, of which the method discussed in

*) Certain cases, e. g. those in which the system has bound states, are of course
excluded a priori, since then the iteration solution is known to diverge.
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the present section is of particular interest. We refer to the properties
of b(A e) which are independent of the cut-off:

(1) 6(0) 0.

(2) For all finite values of A e b differs from 1 by terms of order a
only, in contradistinction to the result of Pauli and Fierz.

We conclude further that the result of Bloch and Nordsieck which
is obtained by disregarding the energy conservation in the soft
photon emission process is very nearly correct, radiative corrections
being negligible in most cases.
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