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ABSTRACT

Background: Breast cancer is the most common cancer worldwide, and magnetic resonance imaging (MRI)
constitutes a very sensitive technique for invasive cancer detection. When reviewing breast MRI examination,
clinical radiologists rely on multimodal information, composed of imaging data but also information not present
in the images such as clinical information. Most machine learning (ML) approaches are not well suited for
multimodal data. However, attention-based architectures, such as Transformers, are flexible and therefore good
candidates for integrating multimodal data.

Purpose: The aim of this study was to develop and evaluate a novel multimodal deep learning (DL) model
combining ultrafast dynamic contrast-enhanced (UF-DCE) MRI images, lesion characteristics and clinical in-
formation for breast lesion classification.

Materials and methods: From 2019 to 2023, UF-DCE breast images and radiology reports of 240 patients were
retrospectively collected from a single clinical center and annotated. Imaging data were constituted of volumes of
interest (VOI) extracted around segmented lesions. Non-imaging data were constituted of both clinical (cate-
gorical) and geometrical (scalar) data. Clinical data were extracted from annotated reports and were associated
to their corresponding lesions. We compared the diagnostic performances of traditional ML methods for non-
imaging data, an image model based on the DL architecture, and a novel Transformer-based architecture, the
Multimodal Sieve Transformer with Vision Transformer encoder (MMST-V).

Results: The final dataset included 987 lesions (280 benign, 121 malignant lesions, and 586 benign lymph nodes)
and 1081 reports. For classification with non-imaging data, scalar data had a greater influence on performances
of lesion classification (Area under the receiver operating characteristic curve (AUROC) = 0.875 + 0.042) than
categorical data (AUROC = 0.680 + 0.060). MMST-V achieved better performances (AUROC = 0.928 + 0.027)
than classification based on non-imaging data (AUROC = 0.900 + 0.045), and imaging data only (AUROC =
0.863 + 0.025).

Conclusion: The proposed MMST-V is an adaptative approach that can consider redundant information provided
by multimodal information. It demonstrated better performances than unimodal methods. Results highlight that
the combination of clinical patient data and detailed lesion information as additional clinical knowledge en-
hances the diagnostic performances of UF-DCE breast MRI.
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Abbreviations
AB-MRI Abbreviated Breast Magnetic Resonance Imaging
ACC Accuracy
ACS American Cancer Society
ADC Apparent diffusion coefficient
AL Artificial intelligence
ALN Axillary lymph node
ANN Artificial neural network
AUROC Area under the receiver operating characteristic curve
BPE Background parenchymal enhancement
cC Craniocaudal
CCER Geneva Cantonal Ethics Committee
CENTRA Contrast ENhanced Timing Robust Angiography
CNN Convolutional neural networks
CT Computed tomography
DBT Digital Breast Tomosynthesis
DCE Dynamic contrast-enhanced
DCIS Ductal carcinoma in situ
DeiT Data-efficient image Transformer
DenseNet Dense Convolutional Network
DiT Dual-input Transformer
DL Deep learning
IDC Invasive ductal carcinoma
EER Equal Error Rate
ILC Invasive lobular carcinoma
IMLN Intramammary lymph node
LSTM Long short-term memory
MIP Maximum Intensity Projection
ML Machine learning
MLP Multilayer perceptron
MLO Mediolateral oblique
MMST-D Multimodal Sieve Transformer — DenseNet-121 encoder
MMST-V Multimodal Sieve Transformer — Vision Transformer encoder
MRI Magnetic resonance imaging
MV-Swin-T Multiview Swin Transformer
MVI Microvascular invasion
MVT Multi-view Vision Transformer
NLP Natural language processing
ROC Receiver operating characteristic
THRIVE T1-weighted High Resolution Isotropic Volume Excitation
UMD Unimodal DenseNet-121
UMV Unimodal Vision Transformer
UF Ultrafast
ViT Vision Transformer
VoI Volume of interest
XAI Explainable artificial intelligence

1. Introduction

Breast magnetic resonance imaging (MRI) is the most sensitive im-
aging modality for breast cancer detection [1]. Compared to
mammography, breast MRI allows complete examination of breast areas
hard to access like the retroareolar, medial, and axillary regions [2].
Breast MRI provides dynamic contrast-enhanced (DCE)-MRI sequences —
facilitating the examination of contrast media uptake kinetics. This
approach contributes to the detection of more invasive and high-grade
cancers compared to mammography [3-6]. Nevertheless, its use for
screening is limited due to its high costs and lower equipment avail-
ability compared to other imaging methods such as ultrasound or
mammography [7,8]. In order to reduce costs, new approaches aiming
at reducing acquisition and interpretation time such as abbreviated
(AB-MRI) and Ultrafast (UF)-DCE breast MRI have been increasingly
investigated [1,2,9-11]. In particular, UF-DCE MRI allows examination
of the whole breast in less than 2 min, while increasing specificity [2,12,
13].

Artificial intelligence (AI) has gained greater attention and research
focus in the field of breast imaging [14]. Among the diverse deep
learning (DL) architectures, Convolutional neural networks (CNN)
constitute the most dominant architecture applied to classification tasks
in computer vision [15-17], including breast cancer detection by MRI
[17]. The convolution operations allow extraction of high level features
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from images by compressing them to reduce their initial size with
pooling methods for efficient classification [15]. Several studies on
UF-DCE using AI have been conducted with varying patient sample
sizes, ranging from 137 [10,18] to 488 patients [19]. All these studies
demonstrated encouraging performances with area under the receiver
operating characteristic curve (AUROC) values greater than 0.81.
Among these, Dalmis et al. [20] used UF-DCE images along with addi-
tional patient information, resulting in a significant improvement of
performances.

More recently, Transformer network architectures, initially designed
for natural language processing (NLP) tasks, have gained in importance.
They rely on attention mechanisms that enable the capture of relation-
ships between the different parts of the input sequence, thus to trans-
form a sequence of words into another sequence of words, such as in
machine translation for example [21]. Derived from this new success,
Transformers have been investigated in many fields of imaging like
detection or classification [22], and the Vision Transformer (ViT) is the
first Transformer model that was successfully used for image classifi-
cation [22-24]. The VIiT consists in a standard Transformer encoder fed
with a sequence of fixed-size image patches, with position embeddings
[24].

In the medical imaging field, the number of ViT-based papers pub-
lished in 2021 exceeded the cumulative number of CNN-based papers
published in the years 2012-2015 [23]. And compared to CNN models,
the ViT architecture uses a global dependence between images patches
due to self-attention mechanisms that are not present in CNN models
[22]. Transformers also offer the advantage of being flexible in
designing a range of architectures, including hybrid models [25]. This
adaptability may address the challenge of managing multivariable data
[26], especially in the context of breast MRI multiparametric protocol,
where there are limited studies on the evaluation of various sequence
combinations or multimodality [27].

Majority of Al applications in healthcare predominantly rely on only
one data modality, however clinicians for their diagnostic decision-
making use a multitude of data sources, including multiple examina-
tions, patient information and past history [28]. Although breast lesion
classification primarily relies on image-based approaches, recent studies
suggest that non-image information, such as patient clinical data, can
further improve the classification [20,29]. Usually, radiological reports
contain such indications and can provide additional information that are
not contained in the images and thus may be useful for classification
improvement.

The combination of information with DL models is often referred to
as data fusion [30]. Early fusion merges modalities before model pro-
cessing, while intermediate fusion encodes modalities separately for a
final combined model. Late fusion processes each modality indepen-
dently, merging predictions at the end. Transformers open new possi-
bilities to deal with multimodal data fusion. A recent paper proposed a
Transformer-based Al model that integrates both chest radiographs and
clinical information to diagnose 25 pathologic conditions [31]. They
found that integration of both imaging and non-imaging data in this
multimodal model performed better than unimodal models.

Multimodal learning with Transformers faces challenges including
the collection of large curated multimodal datasets that is much harder
than for unimodal datasets, a lack of studies on the interpretability of
such multimodal models, an increased model complexity with high
computational demand, alignment and fusion of information from
different modalities [32,33]. Several fusion techniques exist, such as
merge attention, co-attention or cross-attention [32,33]. However, it
was noted that exploring and measuring the interaction between mo-
dalities would be interesting to further improve multimodal learning
[32].

The aim of this study was to evaluate and compare unimodal and
multimodal classification by combining patient clinical details (e.g., age,
menopausal status, BRCA gene mutation status), lesion attributes (e.g.,
size, volume, and position in the breast) and UF-DCE data for breast
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lesion classification. We propose a Transformer-based architecture
encompassing 3D imaging, scalar and categorical data, that are encoded
- or tokenized - and then injected into a “Sieve” Transformer encoder.
This sieve extracts both mutual and exclusive information from each
encoded modality. These information are then fused by a last aggregator
Transformer encoder for final classification. The main contributions of
this paper are summarized as follows.

1. We developed a novel Multimodal Sieve Transformer (MMST) ar-
chitecture to extract mutual and exclusive features among modalities
for an efficient and flexible adaptive classification that proved su-
perior to unimodal approaches.

2. We collected and annotated the largest dataset to-date with multi-
modal data including UF-DCE images for validation of our model.

2. Related works
2.1. Deep learning for breast DCE-MRI

According to the American Cancer Society (ACS), MRI screening is
recommended for women with a lifetime breast cancer risk of 20-25 %
or higher, determined by factors such as family history or genetic pre-
disposition [34,35]. MRI is favored due to its high sensitivity in
detecting breast tumors, which are rapidly visible on imaging because of
angiogenesis, especially within the first 2 min following contrast media
injection in DCE-MRI sequences [36]. Recent advancements in Al,
particularly DL, have shown significant potential in enhancing breast
cancer detection. Al models have the potential to assist in decision
support, use as a triaging tool, and as a second reader in breast cancer
diagnosis workflows [37]. A comprehensive review of DL applications in
breast MRI between 2015 and 2022 analyzed 18 papers focused on
breast cancer detection and screening. This review revealed that most
studies utilized private datasets and primarily focused on DCE-MRI
images, often using CNN architecture [17].

In the literature, only a limited number of papers on DL approaches
explored the use of UF-DCE sequences. Jing et al. [19] utilized a
ResNet-34 model to classify maximum intensity projection (MIP)
UF-DCE images from both the left and right breasts of 837 examinations.
Prior to classification, a 3D U-Net architecture was applied to segment
the breast region, generating masks for more precise localization. Their
findings indicated that the model allowed exclusion of normal breasts
from analysis, potentially reducing the radiologist’s workload by
focusing attention on suspicious cases. Dalmis et al. [20] employed a
custom 3D DenseNet architecture with two dense blocks, each con-
taining three convolutional layers. They trained separate CNNs on cubic
bounding boxes derived from MIP UF-DCE images and T2-weighted
(T2w) images of lesions. To enhance diagnostic performance, they in-
tegrated the CNN-generated likelihood values with apparent diffusion
coefficient (ADC) values and patient-specific information, such as age
and BRCA gene status, within a random forest classifier. The study
demonstrated that combining all imaging and patient data resulted in
superior performance compared to using individual data sources.

2.2. Transformer-based deep learning in medical imaging

Transformers, introduced by Vaswani et al. [21], were initially
developed for NLP tasks but have now gained impact in computer vision,
including medical imaging. The Transformer architecture consists of
two main components: the encoder and the decoder, each composed of
several layers. The encoder processes input data through multiple layers
of self-attention and feed-forward networks. The decoder generates
output sequences using similar layers but incorporates an additional
cross-attention mechanism that focuses on the encoder’s output,
enhancing the model’s ability to generate accurate predictions. Both
components use positional encoding to maintain the order of input data
[21,23,38].
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In the context of medical imaging, ViT, introduced by Dosovitskiy
et al. [24], was the first Transformer model that was successfully used
for image classification [22-24]. It consists of a standard Transformer
encoder fed with a sequence of fixed-size image patches, with position
embeddings. Unlike CNNs, which focus on small, localized, regions of an
image, Transformers capture global context and model long-range de-
pendencies through their self-attention mechanism. This characteristic
enables Transformers to effectively capture fine-grained patterns and
spatial relationships across an entire image for tasks like segmentation
or classification [23].

Matsoukas et al. [39] conducted a study comparing ViT and CNN for
medical image classification. Their findings reveal that ViTs pre-trained
on large datasets like ImageNet performed comparably to CNNs for
medical image classification tasks. They also highlighted that, with
small datasets, CNN tends to outperform ViT when models are trained
from scratch. When self-supervised pre-training combined with
fine-tuning is used, ViT slightly performs better over comparable CNNs
as the number of training samples increases. The difference of superi-
ority for ViT is expected to grow as more training data becomes available
[39], therefore pretraining on large datasets is essential for ViT. More-
over, ViT lack the inductive biases of CNNs by design, but at the expense
of being more computationally expensive [25,38].

In the literature, various configurations of Transformer architectures
have been explored, primarily categorized into pure Transformer ap-
proaches and hybrid CNN-Transformer approaches. Some studies pro-
vided a comprehensive overview of pure Transformer models, such as
ViT and its variants, while also discussing hybrid models that integrate
CNNs with Transformers to leverage the strengths of both architectures
[25,38,40]. A more in-depth exploration of multi-Transformer ap-
proaches, including detailed analyses of ViT architectures and
CNN-Transformer hybrid variants, is presented in the detailed survey by
Khan et al. [41] for computer vision.

Both approaches were used in medical imaging research. Cao et al.
[42] used a Transformer-based model (MVI-TR) consisting of an encoder
module, whose job is to extract features from region of interest of
Computed Tomography (CT) 2D slice with the maximum tumor area,
and a final classifier module for prediction of preoperative microvas-
cular invasion (MVI) in hepatocellular carcinomas. Their model ach-
ieved superior performances compared to a contrastive learning model
and a ResNet architecture. Fan et al. [43] developed a parallel bi-branch
model (Trans-CNN Net) based on Transformer module and CNN module.
The features were extracted from the two branches and fused in a feature
fusion module for chest CT 2D image classification. Their approach
performed better than the compared CNN (ResNet-152) and pure
Transformer (Deit-B) architectures.

In the breast imaging field, several papers compared ViT and CNN
models for ultrasound images classification and showed that ViT could
achieve comparable performances, with even superior results when self-
supervised pretrained ViT were used [44,45]. Lee et al. [46] also used a
combination of 2D CNN architecture based on a ResNet-34 model to
extract features of digital breast tomosynthesis (DBT) from individual
slices that were fed into a TimeSformer architecture aiming to capture
context from neighboring sections, before the prediction took place. The
study demonstrated improved performances for breast cancer classifi-
cation in DBT images compared to per-section baseline approach.

2.3. Transformers and multimodal data

In clinical practice, clinicians integrate multiple data sources for
diagnostic decision-making process. As a result, there is growing interest
in developing AI approaches that integrate multimodal data, such as
combining various medical imaging modalities and/or patient infor-
mation derived from textual data from radiology reports. Different
fusion strategies exist for merging multimodal data, classified as early,
intermediate and late fusion strategies by Huang et al. [30], the early
fusion approach being the most common. Early fusion, or feature-level
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fusion, involves combination of multiple data modalities into a single
feature vector before input to the machine learning (ML) model, using
techniques like concatenation or pooling. In joint or intermediate fusion,
learned feature representations from the intermediate layers of neural
networks are merged with features from other modalities, before input
to a final model, thus this approach involves loss propagation back to the
feature extracting model. And in late fusion, each modality is processed
in a model independently and then predictions are merged at the end
[30].

Several works exploited the use of early fusion. Chen et al. [47]
implemented a multi-view Vision Transformer (MVT) architecture
designed to capture information from both craniocaudal (CC) and
mediolateral oblique (MLO) views of breasts. The MVT architecture
consisted of a local transformer to individually process image informa-
tion using patch and positional embeddings. These extracted features
were subsequently concatenated and fed into a global transformer block,
where inter-mammogram dependencies were learned before the case
was classified via a final multilayer perceptron (MLP). Similarly, Sarker
et al. [48] employed multiview mammogram data using a Multiview
Swin Transformer (MV-Swin-T), achieving superior performance over a
baseline Swin-T model that relied on a single-view mammogram. Tong
et al. [22] used a dual-input Transformer (DiT) for predicting preoper-
ative pathological complete response to neoadjuvant chemotherapy.
Their model integrated ultrasound images of the lesion obtained both
before and after chemotherapy treatment. The DiT architecture included
four main modules: each image was encoded via a tokens-to-token patch
embedding module, followed by shared positional and temporal em-
beddings that enhanced the encoding of patch vectors before they were
input to a Transformer encoder. The combination of before-and-after
image data led to improved performance in prediction. In case of late
fusion, Hussain et al. [49] investigated multimodal data fusion by
integrating textual radiology reports with mammogram images across
four views for breast cancer classification. Here, a ViT extracted image
features, while a long short-term memory (LSTM) model or an artificial
neural network (ANN) extracted features from text data. These features
were then fused in a final linear classification layer. They compared this
approach to CNN-based feature extraction methods, with the highest
performance achieved using a VGG19 + ANN combination, surpassing
Transformer-based feature extraction architectures. The use of joint
fusion was reported by Cai et al. [50] who demonstrated the superiority
of ViT over CNN for feature extraction in a multimodal model for skin
disease classification. Similarly, Khader et al. [31] used a Transformer
encoder to extract features from chest X-ray images, which were then
combined with clinical parameters in a final Transformer encoder. This
approach highlighted the advantages of integrating imaging and
non-imaging data for disease diagnosis.

Recent literature highlights the promising potential of Transformer
architectures to enhance performance, particularly in multimodal ap-
plications where diverse data sources are integrated. Despite these ad-
vances, their application in 3D data and breast MRI remains relatively
unexplored.

3. Materials and methods

This study is part of the Smart and Ultrafast Breast MRI (SUBREAM)
project funded by the Swiss Cancer Research (KFS-5460-08-2021-R)
and approved by the Geneva Cantonal Ethics Committee (CCER) (Proj-
ect-ID: 2019-00716). Informed consent was obtained from each patient
for the re-use of anonymized breast imaging reports and MRI
examinations.

3.1. Study population
A total of 301 breast MRI examinations and 1081 breast radiology

reports from 240 patients were collected and processed retrospectively
between 2019 and 2023 at a clinical center (Hirslanden - Clinique des

Computers in Biology and Medicine 188 (2025) 109721

Grangettes, Geneva, Switzerland) without initial exclusion criteria. The
reports included the radiological reports of the breast MRI examinations
written in French, but also up to four previous breast imaging reports
(MRI, ultrasound or mammography when available), as they often
provide additional clinical information. Subsequent exclusion criteria
were applied to this dataset to avoid error due to incomplete data such as
missing slices or interrupted acquisition (n = 4), presence of metal clip
artefacts reducing lesion visualization (n = 6), and presence of false
nodule image artifact (n = 1). As a result, a total of 290 MRI scans were
pre-annotated by B.L and verified by the breast radiologists D-A.D. and
K.K. for final lesion detection and characterization. This classification
was performed by the two expert radiologists, with more than 12 years’
(D.A.D.) and 20 years’ (K.K.) experience in breast MRI, using histopa-
thology reports following biopsy or surgery, and one-year follow-up
examination.

3.2. Breast imaging technique

Breast MRI examinations were performed with a 3T MRI scanner
(Ingenia, Philips) using a 16-channel breast coil. Standard full breast
MRI protocol was acquired including a bilateral axial UF-DCE MRI
sequence (a research sequence not used for the diagnosis in the MRI
reports); four-dimensional T1-weighted High Resolution Isotropic Vol-
ume Excitation MR sequence (4D-THRIVE) acquired just before intra-
venous gadolinium contrast injection within 1 min (TR/TE = 3.4/1.72
ms, slice thickness = 2.5 mm, matrix = 480x480 pixels, temporal res-
olution = 3.3sec, number of temporal phases = 14). This sequence is
based on combination of fast imaging techniques, CENTRA (Contrast
ENhanced Timing Robust Angiography) and keyhole, meaning that only
center of k-space is sampled at each temporal step and peripheral k-
space is copied from the reference scan, i.e. the first phase [51]. This
allows excellent temporal resolution, particularly interesting for lesion
enhancement investigation. Patients were scanned in prone position,
and intravenous contrast injection was performed (contrast bolus at a
rate of 2.5 mL/s followed by 20 mL NaCl flush with the same rate)
immediately after the beginning of UF-DCE sequence acquisition.

3.3. Data preprocessing

Fig. 1 illustrates the data utilized in this study, comprising both im-
aging and non-imaging data rigorously collected and extracted.

Imaging lesion data: Segmentation of all lesions was performed with
Philips IntelliSpace Portal 8.0 using semi-automatic 3D segmentation
tool based on pixel intensity thresholding on the images of the last phase
of the UF-DCE images presenting the maximum visible enhancement.
This yielded a final dataset consisting of 987 segmented lesions divided
into 3 lesion categories: 280 benign (B cat.), 121 malignant lesions (M
cat.) and 586 benign lymph nodes (L cat.). Isotropic bounding boxes of
50 mm x 50 mm x 50 mm were generated from the 3D segmentations
surrounding the center of the lesion and were used to extract 3D image
volume of interest (VOI) from the last subtracted UF-DCE phase. It has
been shown that bounding boxes including a small proportion of breast
tissue around the lesion contribute to better accuracy compared to
segmentation alone or to large bounding boxes [52]. The 50 mm size
was therefore chosen as proposed by Dalmis et al. [20]. For lesions
bigger than 50 mm (n = 4), multiple overlapping 50 mm? boxes were
generated over the lesion, yielding multiple boxes for a single lesion.

Non-imaging data: Lesion characteristics, including lesion volume,
center and size of the bounding box, and gravity center and diameters of
the lesion, as well as elongation and flatness were calculated from the
segmentations. Elongation and flatness definitions can be found in a
study [53], where authors also investigated these shape descriptors in a
ML model applied to diagnose bladder cancer in MRI. These descriptors
were also used by Militello et al. [54] in a ML model combining shape
and radiomics descriptors to characterize breast lesions in DCE-MRI.
According to risk factors of breast cancer [55], and factors with
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Fig. 1. Visual explanation of data used in this research.

potential influence on contrast enhancement of breast tissue, clinical
information was annotated and extracted from the breast imaging re-
ports using brat rapid annotation tool [56,57]. These clinical data in-
formation were contained in the “indications” part of the report, and
were not correlated with the diagnosis, as they included menopausal
status, contraception, personal and family history of breast cancer,
BRCA mutation, and chemotherapy treatment status. For each clinical
parameter, specific attributes were chosen, and when reports showed no
corresponding information related to the clinical data it was categorized
as “No info”. Detailed attributes for each clinical parameter are provided
in the Supplementary material S1. Finally for practical reasons,
non-imaging data were categorized as two types: categorical data
(extracted clinical parameters), and scalar data (lesion characteristics
and patient age), see Fig. 1.

3.4. Machine learning and deep learning architectures

To discriminate lesions, different classification approaches were
used. First, a traditional ML algorithm, relying on scalar and categorical
data (non-imaging data), was employed. Then a DenseNet121 [58] DL
model was trained and tested only on images acquired with UF-DCE
only. Lastly, we developed a multimodal model combining imaging
and non-imaging data. The proposed DL architectures were imple-
mented using the PyTorch framework and the MONAI library [59]. ML
classifier relied on Random Forests and was implemented with
scikit-learn. The training and testing of the models were run on a
computing unit consisting of 384 GB of CPU RAM and of an NVIDIA
Tesla V100 SXM2 with 32 GB of GPU RAM.

We defined different classification scenarios involving the lesion
categories B, L and M: two-class scenarios, benign lesions with lymph
nodes versus malignant lesions (BL_M classification) and benign versus
malignant lesions (B_M classification), as well as the three classes case,
benign lesions versus lymph nodes and versus malignant lesions (B_L_M
classification). Dataset was randomly split into train (60 %), validation
(20 %), and test (20 %) sets. Balanced sampling and stratified five-fold
cross-validation were performed respecting class prevalence, percent-
age of lesion type in the dataset (ensuring representative data), and
patient-wise separation. Thus, all lesions from the same patient were
kept in the same partition when building the folds for cross-validation.
The same cross-validation folds were used for all experiments. Before
being fed to models, images were processed as follows: 50 mm® VOIs
were extracted from 3D images based on lesion mask bounding box
centers. Then, the intensity of voxels of the resulting images was
normalized between 0 and 1. Finally, images were resampled to
64x64x64 voxels volumes. Scalar data were also standardized (mean =
0; standard deviation = 1), and categorical data were converted to one-
hot vectors.

3.4.1. Non-imaging data model

Random Forest classifier: Among the various ML approaches that we
tested, the Random Forest classifier [60] performed better using both
scalar (SCA) and categorical (CAT) data (detailed parameters are pro-
vided in Supplementary material S2). Multiple experiments were per-
formed with all SCA and/or all CAT features data as input, and also some
individual SCA or CAT feature data.
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3.4.2. Unimodal image models

For image-only classifications, we explored a CNN-based architec-
ture and a Transformer-based one. In a previous work [61], we per-
formed a comparative analysis between the two most commonly used
models, ResNet-50 and DenseNet-121, utilizing two distinct input data
types: subtracted images from the final phase of UF-DCE MRI and MIP
images. The results of that study demonstrated that DenseNet-121
consistently outperformed ResNet-50, regardless of the data type
input. We therefore chose DenseNet-121 for the CNN-based framework.

&

3

64 x 64 x 64
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Unimodal DenseNet-121 (UMD): The CNN-based model consisted in a
DenseNet-121 composed with 121 densely connected convolutional
layers [58], was trained and tested on VOIs. It is extensively used in
medical imaging tasks due to its ability to effectively extract features
from images while reducing the vanishing gradient problem [62].
Although DenseNet121 is commonly pretrained on 2D image datasets
such as ImageNet, there is no equivalent for their 3D counterpart.
Therefore, the model was trained from scratch on our 3D dataset.
Training was made with the Adam optimizer [63], and used a learning
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Fig. 2. MMST-V general architecture

Class probabilities

Input Modalities: Use 2D scalar, 2D categorical, and VOI imaging data. First Stage: Process each modality separately using a 3D ViT encoder (or DenseNet-121 for
MMST-D) for VOI images and an MLP for non-imaging data. Second Stage: Use a Sieve Transformer encoder to separate mutual and exclusive information from each
modality, reducing feature redundancy. Third Stage: Fuse the representations using another Transformer encoder to create a joint representation. Output: Feed the

joint representation to an MLP classifier to yield class probabilities.

MLP: Multi-Layer Perceptron, ViT: Vision Transformer, SCA: Scalar, CAT: Categorical, IMA: Images, MUT: Mutual, cls: class token, Exl: Exclusive.
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rate of 10™*, 200 epochs with a batch size of 64. During the training,
several data augmentations were applied, details are provided in Sup-
plementary material S2.

Unimodal Vision Transformer (UMV): The Transformer-based model
consisted in a custom MONAI’s 3D ViT [59] based on Dosovitskiy et al.
work [24], that was not pretrained. We trained UMV only for the 3-class
classification task (B_L_M), to compare with UMD.

3.4.3. Multimodal Sieve Transformer models

Multimodal Sieve Transformer with ViT (MMST-V): The proposed DL
architecture uses multiple modalities including non-imaging (scalar and
categorical data) and imaging (VOIs) data in input and is based on a
multi-stage Transformer encoder architecture. For the first stage, each
modality is processed separately, VOI images by a small 3D ViT encoder
[24] and non-imaging data by a MLP. In the second stage, representation
features of all modalities are fed into a “Sieve” Transformer encoder
trained to separate mutual and exclusive information from each mo-
dality, thus reducing redundancy of features. This involves training the
Sieve Transformer encoder to maximize mutual information between
the initial representation and a mutual token, while minimizing
redundancy between the mutual token and the exclusive tokens, by
calculating cross-correlation matrices between them [64,65]. This pro-
cedure results in one representation per modality carrying exclusive
information along with an additional representation containing infor-
mation shared between modalities. In the last stage, an additional
Transformer encoder was used for fusing exclusive and mutual repre-
sentations into a joint representation. This joint representation is then
fed to a MLP classifier, yielding class probabilities.

The overall total loss function is the combination of sieve loss com-
ponents, mutual [, and exclusive [, loss terms, with the traditional bi-
nary cross-entropy 1oss lpc,:

;Z/‘TOT = /lmlm + lele + lbcelbce (1)

where parameters A are weighting factors of the different components of
the loss function, whose computation details are given in the provided
pseudocode in Algorithm 1 - Supplementary material S3. The pipeline of
the proposed MMST-V is illustrated in Fig. 2, and the main training
hyperparameters for the model are presented in Supplementary material
S3, along with the various data augmentations applied to the input data.

Multimodal Sieve Transformer with DenseNet-121 (MMST-D): For
comparison, we also trained and tested an MMST-D model, which is
based on MMST but uses a DenseNet-121 encoder to process the images
(the same as used in UMD model). The MMST-D model was specifically
trained for the 3-class classification task (B_L_M) for comparison with
MMST-V.

3.5. Statistical analysis

Statistical analyses were conducted using Stata Statistical Software
16.1 (StataCorp LLC) and Torchmetrics [66]. ROC analysis was used for
performance evaluation, as well as the metrics of AUROC, accuracy,
sensitivity, and specificity. The threshold for sensitivity, specificity and
accuracy was set at the Equal Error Rate (EER), meaning that both false
positives and false negatives rates are equivalent. Thresholds at
respectively 90 % and 95 % sensitivity were also calculated, as achieving
these levels of sensitivity is clinically important and consistent with
thresholds used in other studies [18,19]. The results are presented as
mean + standard deviation. A Wilcoxon-Mann-Whitney test was used to
assess statistical differences between folds of models with a significance
threshold « set at 0.05.
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4. Results
4.1. Study population and breast lesion characteristics

In this study, from 240 patients we used 290 breast MRI examina-
tions and 1081 radiology reports (MRI, ultrasound or mammography).
The extraction of clinical information was made for each report, all
clinical information was made for each patient using combination of all
available radiology reports. The information combination followed
several rules detailed in Supplementary material S1. Table 1 shows the
population characteristics extracted from the radiology reports. Patient
were divided according to the indication of breast MRI separating pa-
tient with known cancer and those without cancer at the time of MRI
examination. Most patients did not have known cancer (78.2 %),
compared to patient with known cancer (21.7 %). There was a high
prevalence of missing information denoted as "No info", indicating in-
stances where the information was not mentioned within the reports.
Unknown BRCA mutation status (90.3 %) and chemotherapy (96.9 %)
were among the most often criteria missing. No difference in age was
observed (mean age = 54.8 + 12.7, p = 0.7156) for patients with or
without known cancer, and there was no significant difference of
menopausal status, contraception, or in family history of breast cancer
(p > 0.05). Almost half of women were on menopause (n = 145) and
therefore did not take any contraception (n = 148), and one-third had
family history of breast cancer (n = 104).

Our VOI lesion dataset exhibited predominant proportion of lymph
nodes (59.4 %), followed by benign lesions (28.4 %) and malignant le-
sions (12.3 %). Further lesion characterization used the precise pathol-
ogy results from biopsy or surgery, and Table 2 shows the main subtypes
present in the lesion dataset. Lesion subtypes were usually similarly
distributed in train, validation and test sets across the five folds
(Supplementary material S5). Since there were multiple sub-lesion VOI
generated for malignant lesions as they tend to be larger (>50 mm) and
we carefully applied a patient-wise separation, ductal carcinoma in situ
(DCIS) and invasive ductal carcinoma (IDC) presented a non-
harmonious distribution between the folds as depicted in Fig. 3.

A significant difference of volume was found between benign and
malignant lesions (p < 0.05), malignant lesions tending to have larger
volume than benign lesions. IDC and DCIS were among the largest.
There was also a significant difference in the position of the lesions
depicted either with bounding box or gravity centers of the lesion along
z axis and y axis. Lymph nodes used to be located towards axillary region
(Fig. 4). Majority of lymph nodes were axillary lymph nodes in com-
parison to intramammary lymph nodes, thus explaining this difference.
The main statistics of lesion characteristics by type of lesion are reported
in Supplementary material S4. Certain lesion information exhibit
redundancy, showing expected correlations among them. For instance,
bounding box size, ellipsoid diameters, and lesion volume appeared to
be correlated, displaying similar variations across different lesions. This
is also true for position, bounding box center and lesion gravity center
(Supplementary material S4).

4.2. Classification experiments

Non-imaging data model: Multiple combinations of scalar (SCA) and/
or categorical (CAT) features as input were tested with Support Vector
Machines (SVM), Random Forests and Logistic Regression classifiers.
Initial findings revealed superior performances from Random Forests,
that were therefore chosen for the experiments. Best performances were
achieved when all data features were considered for all classification
tasks (AUROC ranged in [0.891-0.903]).
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Table 1

Study population characteristics and clinical information.

Total patient No cancer Cancer p-value
n=290 n=227 (78.2%) n=63 (21.7%)

AGE (years)

mean (* std) 54.8 (£12.7) 54.5 (£11.9) 56.1 (£13) 0.7156
[min, max] [22, 92] [22, 81] [36, 92]

MENOPAUSAL STATUS (n, %)

Absent 53 (18,3%) 43 (18.9%) 10 (15.8%)

Present 145 (50%) 119 (52.4%) 26 (41.2%) 0.191
With substitute 26 (8.9%) 19 (8.4%) 7 (11.1%)

No info 66 (22.75%) 46 (20.2%) 20 (31.7%)
CONTRACEPTION (n, %)

With 8 (2.7%) 6 (2.6%) 2 (3.2%)

Without 148 (51%) 121 (53.3%) 27 (42.8%) 0.133
Other 1(0.3%) . 1(1.6%)

No info 131 (45.2%) 98 (43.2%) 33 (52.4%)

FAMILY HISTORY OF BC (n, %)

No 76 (26.2%) 56 (24.7 %) 20 (31.7%)

Yes 104 (35.8%) 86 (37.9) 18 (28.5%) 0.532
No info 110 (37.9%) 85 (37.4%) 25 (39.7%)

PERSONAL HISTORY OF BC (n, %)

No 4 (1.4%) 4 (1.7%) -

Yes 186 (64.1%) 131 (57.7%) 55 (87.3%) 0.000
Other 19 (6.5%) 18 (7.9%) 1(1.6%)

No info 81 (27.9%) 74 (32.6%) 7 (11.1%)

BRCA MUTATION (n, %)

Negative 9 (3.1%) 9 (3.9%) -

Positive 19 (6.5%) 19 (8.4%) - 0.014
No info 262 (90.3%) 199 (87.6%) 63 (100%)
CHEMOTHERAPY (n, %)

No 281 (96.9%) 225 (99.1%) 56 (88.8%) 0.000
Yes 9 (3.1%) 2 (0.8%) 7 (11.1%)

BC = Breast cancer.
Bold style = Category with higher proportion.

Further analysis indicated that Random Forests demonstrated
enhanced performance with SCA data, specifically concerning the vol-
ume and position of lesions in comparison with categorical data. Lesion
position had a greater influence for the classification tasks including
lymph nodes. In contrast, when comparing only benign and malignant
cases (less lesions to consider), the impact of volume was more sub-
stantial due to significant volume variations among the two different
lesion types (benign and malignant). A comprehensive overview of the
experimental results, including the impact of different data input types,
is presented in Table 3, for the main categories with different classifi-
cation scenarios. Performances of the other CAT features (such as
menopausal status, family history of breast cancer or BRCA) taken alone
were systematically lower than those shown in Table 3 (AUROC
<0.590), except for patient history of breast cancer that was the best
feature for CAT data (AUROC = [0.634, 0.648, 0.656]).

Unimodal image models comparison: For the 3-class classification task
(B_L_M), a notable performance difference was observed between the
UMD and UMV models, with UMD achieving an AUROC = 0.863 +
0.025 compared to UMV’s AUROC = 0.731 + 0.056 (Table 4). The UMV
model demonstrated the lowest performance across all experiments,
with an AUROC below 0.800 and an average accuracy of 66.5 + 9.9 %.

Multimodal models comparison: A comparison between the MMST-D
and MMST-V models for the 3-class classification task (B_L_M)
revealed a performance difference, with MMST-V outperforming MMST-
D. Specifically, MMST-V achieved an AUROC of 0.928 + 0.027, while
MMST-D obtained an AUROC of 0.890 + 0.030 (Table 4).

For all classification tasks (B_L_M, BL_M, and B_M), and considering
only non-imaging, UMD and MMST-V, classification with solely non-
imaging data (AUROC = [0.900, 0.891, 0.903]) achieved better per-
formances than the UMD model using imaging data only (AUROC =
[0.863, 0.863, 0.814]) for all classification scenarios. Performances of
classification MMST-V performed systematically better than both non-
imaging and UMD model for each classification task as depicted in
Table 4 and Fig. 5. There were no overall significative differences be-
tween each classifier AUROC values across the five folds. The only
significative difference was found between UMD and MMST-V AUROC
values for B_L_M classification task (p-value = 0.0159).

Best performances were obtained with a 3-class classification and
MMST-V (AUROC = 0.928, ACC,y; = 88.2 %). Highest specificity was
obtained with MMST-V at 90 % (Sp = 70.8 %) and 95 % (Sp = 47.0 %)
sensitivity thresholds for both B.L_M and B_M classification tasks. For
BL M classification, the highest specificity was obtained with non-
imaging data only (Sp = 36.7 %, 66.7 %) as depicted in Table 5.

5. Discussion

This study presents a comprehensive analysis of a large dataset
comprising 987 breast lesions, including benign and malignant lesions,
as well as lymph nodes commonly encountered in clinical settings. We
completed this dataset with clinical information extracted from radi-
ology reports, as they are essential for accurate diagnosis. Despite the
inherent imbalance in the dataset, our approach enabled us to develop
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Table 2
Lesion type.

B - BENIGN (28.4%) 280
Fibrocystic breast changes 175
Fibroadenoma 34
Benign (type not specified) 25
Fat necrosis 12
Papilloma 10
Fibrosis 8
Post therapeutic scar remodeling 5
Galactophoric ducts inflammation 3
Nevus 2
Other benign lesions 6

L - LYMPH NODES (59.4%) 586
Benign lymph nodes 586

M - MALIGNANT (12.3%) 121
Invasive ductal carcinoma (IDC) 60
Cancer (no histopathology) 21
Ductal carcinoma in situ (DCIS) 14
Invasive lobular carcinoma 11
Lymphadenopathy (M-LN) 10
Atypical lobular hyperplasia 2
Atypical papilloma — B3 2
Papillary carcinoma in situ 1

and evaluate various classification tasks

architectures.

using different DL

5.1. Influence of multimodal data on model performance

The classification performance of unimodal imaging models was the
lowest compared to non-imaging and multimodal (MMST) models.
Although ViT have demonstrated high potential in previous studies [23,
44], our unimodal ViT (UMV) model showed suboptimal performance
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Invasive ductal carcinoma (n=60)
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relative to the unimodal DenseNet-121 (UMD) architecture. This lower
performance could be attributed to several factors, including the rela-
tively small size of our dataset and the lack of pretrained ViT models
optimized for our specific medical imaging domain as highlighted in the
literature [25,38,39].

We also explored addition of scalar data composed of lesion shape
features, as proposed and investigated in the literature [54,67], and
patient clinical information that provide a richer context to the image
data [29,68,69]. The MMST-V emerged as the best performing model for
three-class classification (B_L_M) when compared to non-imaging and
unimodal approaches. When comparing MMST-D and MMST-V models,
we observed that, contrary to the unimodal results, the MMST model
with a ViT encoder outperformed MMST-D. Cai et al. [50] similarly
reported that ViT used as a backbone generally performed better than
CNNs for feature extraction in multimodal frameworks, showing an
advantage over DenseNet encoders when pretrained. In our study, the
multimodal approach and the Sieve encoder likely compensated for the
lack of pretraining, contributing potentially to the improved perfor-
mance of the MMST-V model.

The addition of lesion characteristics and clinical information
notably enhanced classification performance, with SCA data, particu-
larly lesion position and volume, showing significant influence. In our
dataset, malignant lesions tended to exhibit larger volumes compared to
benign lesions. This significant difference was also observed by Militello
et al. in their balanced dataset composed of 57 benign and 54 malignant
lesions [54] and also in the study of Abe et al. [70]. Lymph nodes were
predominantly located in axillary regions, facilitating their discrimina-
tion based on solely position information or volume lesion. This obser-
vation can surely be attributed to the prevalence of axillary lymph nodes
(ALN) versus intramammary lymph nodes (IMLN) in the breasts, that are
positioned deeper and more externally in the breasts (Fig. 4). However,
further granularity in categorizing lymph nodes, distinguishing between
intramammary and axillary types, would provide better analysis for
diagnosis, particularly regarding IMLN [71,72]. It should be noticed that
some ALN could be positive (malignant) with cancer spreads towards
lymph nodes. This was observed in our dataset and illustrated in Fig. 4,
where ten red points denote axillary regions with such lymphadenopa-
thy (M-LN) (see Table 2). Three classification tasks (B_L_M, BL_M, B_M)
were chosen to evaluate and analyze clinical typical scenarios, as
sometimes in clinical settings lymph nodes are easy to distinguish from
breast lesions and sometimes they are not.

While the impact of lesion position was significant in classification
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Ductal carcinoma in situ (n=26)

Fig. 3. IDC and DCIS distribution (train, validation, test sets) across the five folds.
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Fig. 4. Superposition of a T1w breast image with a standard breast morphology and the 3D positions of the 987 lesions (red dots: malignant lesions, green dots:
benign lesions, white dots: lymph nodes). This visualization illustrates the high concentration of lymph node positions in the axillary regions. But it does not take into

account differences in breasts and lesions size.

Table 3

Random forests 3-class and 2 class classification performances for different combination of scalar and cat-
egorical data (non-imaging data).

Data AUROC [%] ACCmax [%]* ACCay [%]*  Se [%]* Sp [%]*
3-class classification (B_L_M)

all CAT + SCA 90.0 (+ 4.5) 92.0 (x1.3) 84.3 (£ 1.4) 83.1 (£ 6.0) 83.4 (£ 5.9)
all SCA 87.5(+4.2) 91.9 (£1.2) 84.7 (£1.3) 77.3(£5.2) 77.8 (£5.4)
all CAT 68.0 (+ 6.0) 87.2 (£ 1.0) 77.5(£3.2) 63.7 (£ 6.1) 63.8 (£ 6.7)
Patient age 47.6 (£8.9) 51.1 (£ 8.7) 51.1 (£ 8.7) 429 (+19.6) 524 (x11.2)
Lesion volume 66.3 ( 8.5) 87.0 (£2.4) 87.0 (£2.4) 38.1(£20.0) 94.5(+4.2)
VOI center (xyz) 70.1 (£ 4.0) 86.3 (£ 1.5) 77.7 (£1.8) 65.9 (£ 2.9) 65.6 (+ 2.8)
2-class classification (BL_M)

all CAT + SCA 89.1 (+ 2.5) 91.6 (£ 1.1) 83.4 (£ 1.3) 80.6 (* 2.6) 81.1 (£ 2.7)
all SCA 87.0 (£2.0) 91.4 (£1.5) 84.4 (+£0.8) 79.5 (+2.8) 79.4 (£3.7)
all CAT 67.1(x5.4) 87.1(x1.3) 773 (£24) 62.7 (£ 5.6) 62.2 (+ 3.8)
Patient age 47.7 (+ 8.6) 48.5 (+6.9) 48.5 (£ 6.9) 46.8 (+21.3) 48.7 (£9.7)
Lesion volume 66.1 (+ 6.8) 87.2(+24) 87.2(+24) 36.9 (£ 14.8) 95.3(+3.3)
VOI center (xyz) 71.3(x2.1) 86.4 (+ 1.0) 78.2 (£ 1.8) 65.3 (+ 5.6) 64.0 (+ 3.5)
2-class classification (B_M)

all CAT + SCA 90.3 (£ 6.0) 87.2 (£ 3.9) 75.5 (+ 4.0) 83.4 (£ 5.5) 83.0 (* 5.0)
all SCA 85.9 (+5.0) 84.1(+4.2) 73.5 (£ 3.5) 76.8 (+4.7) 76.9 (+4.8)
all CAT 71.4(£103) 73.8(+5.3) 62.6 (+ 5.6) 64.9 (£10.3) 64.9(+9.9)
Patient age 450 (£6.9) 451 (£7.2) 451 (£7.2) 447 (£ 13.9) 453 (x11.4)
Lesion volume 62.1 (+6.3) 74.0 (£3.9) 74.0 (£ 3.9) 27.0 (£ 13.4) 97.2(x2.1)
VOI center (xyz) 53.6 (£7.6) 67.7 (£ 2.2) 56.2 (£ 1.9) 53.6 (+ 5.4) 54.2 (+5.4)

AUROC = Area under ROC curve, ACC,,z = Average accuracy, SCA = Scalar data, CAT = Categorical data.
*ACC, sensitivity and specificity were calculated at Equal Error Rate. Bold style = best performance.

involving lymph nodes lesions, performances diminished when dis-
tinguishing between benign and malignant cases only (B_M). As shown
in Table 3, performance when using SCA data of VOI center (xyz) po-
sition in the breast goes from AUROC of 0.701 (B_L_M) and 0.713 (BL_M)
to only 0.536 for B_M classification task.

10

Analysis of patient age revealed no significant difference between
patients with and without cancer, and no changes across classification
tasks. However, patients undergoing chemotherapy (p < 0.05) or with a
personal history of breast cancer (p < 0.05) tended to have breast cancer
in the dataset, introducing a slight bias towards cases with known breast
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Table 4

Performances of the different classification tasks with the different models.
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AUROC [%] ACCavg [%]* Se [%]* Sp [%]*
3-class classification (B_L_M)
Non-imaging 90.0 (+ 4.5) 84.3 (+1.4) 83.1 (£ 6.0) 83.4 (£5.9)
UMD 86.3 (+ 2.5) 86.9 (+ 1.6) 76.1 (£ 6.8) 78.3 (£4.1)
umv 73.1 (£ 5.6) 66.5 (+ 9.9) 67.9 (£ 4.8) 68.4 (+.4.9)
MMST-D 89.0 (+ 3.0) 79.9 (£ 3.5) 80.2 (+ 3.5) 79.8 (£ 3.5)
MMST-V 92.8 (£ 2.7) 88.2 (£ 0.9) 86.7 (* 2.8) 86.3 (+ 3.0)
2-class classification (BL_M)
Non-imaging 89.1 (+ 2.5) 83.4 (+1.3) 80.6 (+ 2.6) 81.1(x2.7)
UMD 86.3 (+ 4.6) 80.2 (+2.8) 77.7 (£ 3.5) 77.7 (£ 3.5)
MMST-V 90.5 (+ 2.4) 86.4 (£ 2.1) 82.7 (£ 3.7) 82.8 (£ 3.7)
2-class classification (B_M)
Non-imaging 90.3 (£ 6.0) 75.5 (£ 4.0) 83.4 (£ 5.5) 83.0 (£ 5.0)
UMD 81.4 (+ 10.0) 68.7 (£ 4.9) 75.5 (£ 9.4) 75.6 (£9.3)
MMST-V 91.6 (* 2.9) 83.3 (£ 4.6) 84.1 (£ 5.3) 83.4 (£ 5.4)

AUROC = Area under ROC curve, ACC,,, = Average accuracy, Se = Sensitivity, Sp = Specificity.

*ACC, sensitivity and specificity were calculated at Equal Error Rate. Bold style = best performance.

UMD = Unimodal DenseNet-121, UMV = Unimodal ViT; MMST-D = Multimodal Sieve Transformer with
DenseNet-121 backbone, MMST-V = Multimodal Sieve Transformer with ViT backbone.

(b)
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Fig. 5. Receiver operating characteristic (ROC) curves of Random Forest classifier, UMD and MMST-V for B_L_M classification (a), BL_M classification (b), and B.M

classification (c).

cancer at the time of examination (Table 1), meaning that maybe a
difference should have been made between past history of breast cancer,
and cancer known at the time of examination for staging MRI indication

11

(assess extent of the disease). However, analysis of misclassified cases
did not reveal any noticeable influence on the classification, as there
were both false positives and true negatives with the same personal risk
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Table 5
Specificity at different sensitivity thresholds.
B_L_M BL_M B_M
Specificity at 95% Sensitivity [%]
Non-Imaging 45.1 (+ 23.3) 36.7 (+ 20.2) 40.1 (x21.4)
UMD 34.3 (£ 16.7) 32.8 (£21.9) 24.2 (£22.7)
MMST-V 47.0 (x 24.4) 34.6 (£ 17.0) 43.4 (£ 18.5)
Specificity at 90% Sensitivity [%]
Non-Imaging 65.4 (+ 22.1) 66.8 (+ 13.6) 58.3 (+ 27.8)
UMD 53.1 (£ 14.6) 51.9 (+ 22.2) 44.6 (+ 27.4)
MMST-V 70.8 (£ 14.4) 64.4 (+ 14.0) 70.1 (£ 7.7)

Bold = best performance.

of breast cancer. Among the CAT data for non-imaging classification,
patient history of breast cancer had greater importance than other
clinical categorical data information. Mostly, this included the assess-
ment of the extent of the disease, indicating that the patient has a known
cancer at the time of the MRI examination. Similarly, the study of Holste
et al. [73] found that the MRI indication, which included the assessment
of the extent of the disease, was the most important feature.

Despite achieving an overall excellent classification performance,
the MMST-V model exhibited some limitations. When evaluated at equal
error rate (EER), 15 false negative cases were identified and much more
false positive cases (n = 155). Missed cancers (n = 15) were mostly M-LN
(n = 6), DCIS (n = 3) and IDC (n = 4) respectively. Two sensitivity
thresholds of 95 % and 90 % were chosen. When sensitivity threshold
was highest at 95 %, there were less false negatives, but a strong
augmentation of false positive lesions (lower specificity of 47 %). Thus,
while a 90 % sensitivity may not be clinically sufficient even more for
screening perspectives, the model still maintains a high specificity (70.8
%) in comparison with literature (Table 6), implying a possible reduc-
tion of unnecessary biopsies. Reducing false negatives is essential in
clinical practice to improve diagnostic accuracy and patient outcomes.
However, setting sensitivity thresholds at 100 % is not ideal, as it leads
to a significant increase in the false positive rate, which can impact
patients with unnecessary follow-up procedures and heightened anxiety.
Addressing residual false negatives will require a more comprehensive
dataset, especially as cases of DCIS, IDC, and M-LN are currently un-
derrepresented despite our data sampling techniques. Expanding these
cases would enhance the generalizability of our findings across diverse
patient presentations. Further insights could be gained by differentiating
between patient groups, such as those undergoing routine screening and
those receiving staging evaluations. For M-LN, which is typically asso-
ciated with a known cancer diagnosis, this may improve detection of
suspicious lymphadenopathy. Additionally, it is well-documented that
MRI is less sensitive to DCIS, especially low-grade lesions, than
mammography [74-76]. This is partially due to the generally lower
contrast enhancement in low-grade DCIS, making these lesions more
challenging to detect on MRI alone. Given the current diagnostic
pathway, where mammography is standard in initial screenings, inte-
grating mammographic findings with MRI data could refine lesion
characterization and improve detection accuracy.

In order to reduce false positive lesions, one solution could be the
addition of T2-weighted images. They have higher spatial resolution
than UF-DCE images, thus allowing better morphological analysis of the
lesion, and a better distinction between lesions that are easier to detect
such as lymph nodes and some benign lesions. The addition of all phases
of the UF-DCE images, and not only the last phase, could also provide
useful information such as kinetic early enhancement parameters.
Indeed, this could potentially allow correct classification of lesions with
high background parenchymal enhancement (BPE) in the breast. In fact,
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it is known that the cycle period of the patient can induce high BPE that
makes lesion visualization and detection more difficult [77,78]. An
other possibility could be to propose in some cases an additional ultra-
sound on a case-by-case basis, similar to the approach commonly used in
clinical practice for evaluating suspicious lesions (second-look ultra-
sound), which is a very accessible technique [79].

5.2. Comparison with previous works

In the literature, there are very few authors using Al and UF-DCE MRI
sequence [12,80]. With a total of 987 breast lesions and patient infor-
mation collected from 1081 breast radiology reports, as compared to the
studies listed in Table 6, our dataset represents the largest single center
dataset including UF-DCE MRI and clinical patient data (age, meno-
pausal status, contraception, family and patient history of breast cancer,
BRCA mutation carrier, and chemotherapy treatment).

Table 6 also highlights the performance of some of them addressing
lesion classification. Among these works, the best performance was
achieved with the analysis of 210 features (textural and dynamic) with a
random forest classifier (AUROC = 0.8997), but still lower than our
approach. Moreover, other studies with Al included traditional DCE-MRI
imaging and non-imaging data. Lo Gullo et al. [68] combined radiomics
features of all dynamic phases and clinical factors (menopausal status,
age, lesion location) — achieving a sensitivity of 63.2 % (46.0-78.2) and
a specificity of 91.4 % (82.3-96.8) for lesion classification. Holster et al.
[73], combined MIP single-breast images and 18 clinical non-imaging
features for breast image classification (not at lesion level), including
clinical indication, mammographic breast density, age, and BPE. The
best model was achieved with the combination of image and
non-imaging data (AUROC = 0.903). Also, for prediction of pathologic
complete response to neoadjuvant chemotherapy treatment, studies
showed that combining DCE-MRI data and clinical data information
improved the prediction performances [29,69], demonstrating the
importance of integrating relevant clinical information for breast lesion
classification.

Dalmis et al. [20] is the only study that combines UF-DCE MRI im-
aging and non-imaging data (BRCA and age). However, their approach
used MIP images as input data. In contrast, our study used only the last
phase of UF-DCE at approximately 53 s, resulting in both cases in the use
of 3D image data and thus the fourth temporal dimension inherent in
UF-DCE sequence was not fully exploited. Future research should inte-
grate the complete UF-DCE MRI sequence information including tem-
poral as well as spatial information to fully exploit the potential of the
sequence. UF-DCE is now recognized as a stand-alone clinical technique
based on a recent meta-analysis from Ref. [81].

5.3. The added value of MMST-V model

There is no consensus on the best fusion strategy [82], however in-
termediate fusion (or joint) fusion, as defined by Huang et al. [83], and
as used in our MMST-V model, provided in our case a better approach for
lesion classification with multimodal data through interaction between
features of multimodal data. To verify this, we tested in additional ex-
periments only for 3-class classification the late fusion of UDM and
Random Forest (non-imaging) predictions. Results revealed a slightly
lower performance (AUROC = 0.912) compared to MMST-V. This
finding is consistent with the study of Holste et al. [73], who tested
Probability Fusion (equivalent to late fusion) and two types of joint
fusion (type I = Learned Feature Fusion and type II Feature Fusion) for
classification of MIP single-breast images from DCE-MRI with
non-imaging features (age, clinical indication, breast density, etc.). They
also demonstrated that Learned Feature Fusion (equivalent to the joint
fusion we used) was the best approach achieving an AUROC of 0.903.

A review of Cui et al. [82] highlighted that the addition of more
modalities for fusion may perform worse that with fewer modalities. In
fact, the addition of information can introduce redundant information or
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Table 6
Performance comparison of studies using Al and UF-DCE MRIL
Data Approach AUROC Se [%] Sp [%]
Combination of lesion kinetic and 90 5o+
Platel et Patients (n=137) morphological features (VIBE + TWIST)
?1"052014) Benign (n=71) TWIST MRI sequence 0.87
Malignant (n=83) 95 39+
SVM classifier
210 features analysis (35 textural
Milenkovic | Patients (n=137) features for each 6 dynamic features) 90 68.48
etal, o 0.8997
(2017) Benign (n=71) TWIST MRI sequence
[18] Malignant (n=83) 95 40.43
Random Forest classifier
Combination of MIP images, T2w
images, ADC values and patient % 60°
Breast lesions information (age and BRCA)
Dalmis et | (n=576)
al. (2019) TWIST MRI sequence 0.811
20] I\B/IiTilgr?a(nT(igg)GSB) Random Forest final classifier (images
9 were first fed into a 3D CNN, then 95 41*
combined with patient information in a
final Random Forest classifier)
Patients (n=488) MIP images of left and right breast with
Jing et al 3D segmentation mask 91 52
(20922) ’ Normal breast 0.81
[19] (n=1501) TWIST MRI sequence ’
Abnormal breast 95 35
(n=173) ResNet-34
Present 90 70.1
study 0.916
I\BIIMMST-V 95 43.4
= Patients (n=240) Combination of imaging and non-
MMST-V imaging (patient information and lesion 90 64.4
BL M Benign (n=280) characteristics) data 0.905
— Malignant (n=121) 95 34.6
Lymph nodes (n=586) | 4D-THRIVE MRI Sequence
MMST-V 0,928 90 70.8
B LM :
- - 95 47.0

AUROC = Area under the ROC curve, Se = sensitivity, Sp = specificity.
*Specificity extrapolated and estimated at 90% and 95% sensitivity values based on ROC curves.

noise, negatively impacting model performance [82]. Therefore, we also
tested a Multimodal Transformer without Sieve encoder (MMT), that
achieved an AUROC of 0.909, not surpassing MMST-V (Table 7). These
results underscore the importance of the Sieve encoder, and particu-
larity of our MMST-V that addresses redundant information between
modalities. In our dataset, some scalar features were known to be
redundant as showed in the correlation matrix in Supplementary ma-
terial S8, such as bounding box and lesion gravity center positions. We
therefore tested the MMST-V with a hand-picked subset of 7 scalar
features (age, volume, bounding box center position x, y, z, elongation
and flatness). The MMST-V with reduced scalar features did not improve
performance, highlighting that MMST-V addresses better the redun-
dancy than a manual features preselection (Table 7).

5.4. Explainability

Model transparency constitutes a major barrier in the
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implementation of Al systems in clinical practice [26]. Therefore many
explainability approaches were investigated in medical imaging [84,
85], such as saliency maps — commonly used for explainable AI (XAI)
[86,87]. In this study, saliency maps were generated from probability
class at image level and non-imaging data level for best performing
MMST-V model. Analysis of correct and non-correct predictions, and
also distribution of the center of mass along the X, y, z axes of each sa-
liency map intensities, revealed that model mostly focused on the lesion
(center of VOI (32,32,32)), and sometimes its focus was outside the
lesion (Supplementary material S9). The focus could be on another
enhanced lesion present within the bounding box, or only on
non-enhanced tissue. In the latter case, one possible explanation may be
that the model, due to the multimodal context, may prioritize
non-imaging features over imaging features. These observations are
illustrated with some examples of saliency maps for various image le-
sions and their corresponding scalar saliency maps, that are provided in
Supplementary material S6. The generation of scalar saliency maps
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Table 7

Comparison of additional experiments and initial MMST for B_L_M classification.

Computers in Biology and Medicine 188 (2025) 109721

Experiments AUROC [%] ACCayqg [%]* Se [%]* Sp [%]*
DenseNet121 + Random Forest

(Late fusion) 88.5 (+ 4.4) 79.6 (£ 0.9) 78.4 (x4.7) 78.3 (+4.8)
MMT-V 90.9 (£ 3.7) 86.0 (+ 3.4) 82.9 (+4.8) 83.1(x4.7)
MMST-V_7scalar 88.8 (+4.2) 86.3 (+ 1.4) 81.6 (+4.7) 81.8 (+4.8)
MMST-V 92.8 (+2.7) 88.2 (£ 0.9) 86.7 (+ 2.8) 86.3 (+ 3.0)

AUROC = Area under ROC curve, ACC,,; = Average accuracy, Se = Sensitivity, Sp = Specificity, MM = MMST-V
without Sieve, MMST-V = Multimodal Sieve Transformer with ViT encoder, MMST-V_7scalar = MMST-V with reduced
scalar features (only age, volume, bounding box position x,y,z, elongation, flatness).

*ACC, sensitivity and specificity were calculated at Equal Error Rate.

Bold style = best performance.

enabled us to evaluate the model attention across scalar data for each
lesion. Indeed, the scalar saliency maps generated for the main types of
lesions (benign, malignant and lymph nodes) showed that attention for
lymph node was essentially attributed to position in the breast (mainly
bounding box center and lesion gravity center). For malignant lesion,
the importance of the size was also predominant (mainly lesion ellipsoid
diameter and volume) (Supplementary material S7). Thus, these ob-
servations are in line with the same discriminatory tendencies of
descriptive statistics presented in section 4.1.

In general, when the model failed to focus on a lesion, the focus was
on enhanced lesions or vessels that were close to the targeted lesion
within the bounding box, indicating possible influence of lesion sur-
rounding on classification. This suggests that bounding box sizes should
be adjusted to tightly encapsulate the lesion or consider capturing only
the lesion VOI with a minimal margin of surrounding tissue, as many
lesions have not the same dimensions and can be very small compared to
the 50 mm® dimension of the VOL

Analysis of all predictions also revealed incorrect prediction for two
DCIS lesions localized close to each other in a patient with a marked
diffuse glandular enhancement, reducing capability of correct predic-
tion. Indeed, these same lesions were correctly predicted as cancer by
the model in the follow-up images at another period of the menstrual
cycle of the patient. Moreover, as shown in the saliency maps in Fig. 6

the focus of the MMST-V model was localized outside the lesion for the
incorrect prediction, and on the lesion in the follow-up that was
correctly predicted. It is also worth mentioning that clinicians also failed
to diagnose the lesions initially due to the wrong cycle period of the
patient, inducing a higher BPE and making lesion visualization and
detection more difficult.

Finally, there are numerous cases where the approach failed, indi-
cating that pixel attribution of saliency maps is potentially not reliable.
There remains uncertainty when the model focuses on specific modal-
ities (image, scalar or categorical data). In the context of a clinical
setting, it is crucial to have a robust and reliable method of interpret-
ability. As highlighted in literature, three other authors mentioned that
saliency maps often lacks repeatability and reproducibility, and poten-
tially sensitive to other elements that do not contribute to prediction
[86,88,89]. It is important therefore to further investigate and assess
carefully the sensitivity and robustness of the used explainability
methods [86]. The analysis of the center of mass of saliency maps, while
providing a quick and useful overview of the results, may not be optimal
as it does not account for the lesion volume within the VOI. For a more
comprehensive evaluation, further analysis should be conducted,
including comparisons with other XAI methods such as occlusion maps
and attention maps.

INCORRECT PREDICTION
2021

Ductal carcinoma in situ (DCIS)

Ductal carcinoma in situ (DCIS)

CORRECT PREDICTION
2022 Follow-u

Ductal carcinoma in situ (DCIS)

Ductal carcinoma in situ (DCIS)

Fig. 6. Example of saliency maps for predictions of two DCIS lesions from the same patient but at different examination dates (MMST-V, B_L_M classification, the
lesion is in the center of the image. The first DCIS outlined in light blue, and second DCIS outlined in light pink).
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5.5. Limitations and perspectives

Our study has some limitations. First, the imaging data were
imbalanced regarding the main lesion types, characterized by a higher
proportion of lymph nodes compared to benign and malignant lesions.
However, there are very few studies that included lymph nodes in their
dataset, and we chose to keep them as their clinical prevalence is high
and it may be difficult in some cases to differentiate them, particularly
IMLNs [71,72]. Also in this study, it appeared that the differentiation
between ALN and IMLN would have provided a more accurate analysis
of IMLN diagnosis. Second, non-imaging data, more precisely the cate-
gorical data, were not always complete among patients and presented
imbalance. There was a lot of missing data because not all clinical in-
formation were reported in the unstructured breast imaging reports.
However, missing information were attributed to the category of “no
information” to reflect clinical conditions. Merging some categories for
each class in the categorical data could be a solution that can be explored
to deal with the imbalance and missing data. Also, this limitation
highlights the importance and effort required to collect and annotate
multimodal data. But unfortunately, incomplete multimodal data are
often found in real-world clinical practice, as such data are more difficult
to obtain in general, and constitute an important limitation for multi-
modal frameworks [82]. Further investigations are needed to address
the problem of incomplete data and their influence on MMST-V per-
formances. Furthermore, no external validation was made and thus the
generalizability of our model could not be tested, due to the lack of
similar multimodal data not collected yet. External validation may help
the investigation on data variability and incomplete data. Our models
were not pretrained due to the unavailability of large multimodal data
set and particularly for 3D imaging data [90]. Multimodal models
inherently contribute to complex networks with an increased number of
trainable parameters, leading to potential risk of overfitting, especially
when dataset size is limited [91]. Thus, even if our UF-image dataset size
is comparable to those literature (Table 7), a larger dataset would likely
be more beneficial, enhancing the confidence in our results. This is
particularly important for determining whether changes in number of
features significantly impact the model performance. The MMST-V
model had the highest number of trainable parameters (26.5M) and
required the most training time (Supplementary material S10), reflect-
ing its complexity and computational demands, due to
Transformer-based approach. However, there is increasing interest in
enhancing computational and memory efficiency of Transformers.
Numerous techniques have been developed to make Transformers faster
and more lightweight, as reviewed comprehensively by Fournier et al.
[92]. Exploration and application of those methods may help improve
the efficiency of multimodal framework approaches. Also, effective and
efficient unimodal feature extraction is a crucial step prior to the fusion
process, particularly when dealing with heterogeneous multimodal data
(e.g., textual, imaging data) as noted by Cui et al. [82]. Therefore, the
choice of encoder type (e.g., ViT, CNN) for feature extraction is impor-
tant and must be tested, as it can significantly impact fusion quality and
overall model performance.

With multimodal architectures, explainability efforts aim not only to
clarify each modality’s individual contribution but also to illustrate the
interactions between different data types. Achieving explainability is
complex, as it requires assessing the interpretability of each modality as
well as their combined impact. In our study, we attempted to separate
and analyze each modality’s explainability independently; however, the
explainability of the combined multimodal interactions remains an area
for future investigation.

This study highlights the potential clinical applications of UF-DCE
aided by Al, where we purposely reduced the number of acquisition
sequences required for breast MRI examination, or optimized the se-
quences used for breast cancer diagnosis. By incorporating a T2-
weighted sequences and the temporal dimension of the UF-DCE, we
can potentially increase specificity, while keeping short examination
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time and patient comfort. Additionally, we note that the segmentation
step is crucial as it provides valuable information about shape and po-
sition descriptors of lesions, which was useful and essential for lesion
classification and is already reported in the BI-RADS system [93]. Thus,
it is important to develop in future work an automatic segmentation
method to avoid laborious manual processing, such as proposed in the
literature with UF-DCE [94].

6. Conclusion

Our Transformer-based model trained on combined clinical imaging
and non-imaging data showed superior classification performances
compared to previous works and to models solely trained on unimodal
data for classification of breast lesion with UF-DCE MRI. Despite the
persistence of false negatives and false positives, our approach leverages
diverse data sources and automatically addresses the issue of redun-
dancy inherent of using information from multiple sources, thus
fostering future multimodal studies that are needed to enforce our
findings and ensure the robustness of our approach.
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