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Abstract: The genome hypothesis postulates that genes in a genome tend to conform to their species’
usage of the codon catalog and the GC content of the DNA. Thus, codon frequencies differ across
organisms, including the three termination codons in the standard genetic code. Here, we analyze
the frequencies of stop codons in a group of highly expressed genes from 196 prokaryotes under
strong translational selection. The occurrence of the three translation termination codons is highly
biased, with UAA (ochre) being the most prevalent in almost all bacteria. In contrast, UAG (amber) is
the least frequent termination codon, e.g., only 321 occurrences (7.4%) in E. coli K-12 substr. W3110.
Of the 253 highly expressed genes, only two end with an UAG codon. The strength of the selective
bias against UAG in highly expressed genes varies among bacterial genomes, but it is not affected
by the GC content of these genomes. In contrast, increased GC content results in a decrease in UAA
abundance with a concomitant increase in UGA abundance. We propose that readthrough efficiency
and context effects could explain the prevalence of UAA over UAG, particularly in highly expressed
genes. Findings from this communication can be utilized for the optimization of gene expression.

Keywords: gene; genome; codon usage; genome hypothesis; stop codons; bacterial genomes; highly
expressed genes; translational selection; non-sense; translation termination; codon prevalence

1. Introduction

The degeneracy of the standard genetic code was postulated by Crick et al. in 1961 [1].
In the standard genetic code, most amino acids are indeed encoded by two or more codons,
with only methionine and tryptophan having a single codon. Synonymous codons are not
used at the same frequency, and this frequency differs in different organisms [2]. Cases
of extreme codon usage biases can be found in prokaryotes from low to high guanine +
cytosine (GC) content, e.g., in Escherichia coli K-12 substr. W3110 (GC = 51.93%), the arginine
AGG codon is 20 times less frequent than the CGC one; in Pseudomonas aeruginosa PAO1
(GC = 67.14%), the arginine AGG codon is 100 times less frequent than the CGC one; in
Staphylococcus aureus subsp. aureus Mu50 (GC = 33.54%), the proline CCA codon is 15 times
less frequent than the CCC one [3]. The differences in codon usage are more evident in
ribosomal protein genes and other highly expressed genes (HEG) [4], especially in genomes
under strong translational selection [5,6].

The three termination codons, UAG (amber), UAA (ochre), and UGA (opal), were first
identified as nonsense codons that interrupt translation. The identification of UAG non-
sense mutations was greatly facilitated by the frequent occurrence of amber suppressors in
commonly used E. coli K-12 strains [7–10]. Furthermore, the amber suppressors are usually
highly efficient, so that up to 70% of the amount of the wild-type protein can be produced.
UAA (ochre) non-sense mutants and their suppressors were then rapidly identified [11]. In
contrast to amber suppressors, ochre suppressors are much less efficient, and ochre mutants
cannot be isolated in genes expressed in high amounts, such as phage structural genes.
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UGA (opal) non-sense mutants and their suppressors were identified later [12,13]. A few
years ago, non-sense suppressors were identified in Haloferax volcanii [14], thus this is a
common mechanism in all domains of life (archaea, bacteria, and eukaryotes). Readthrough
of stop codons, whether as an adaptive mechanism or not [15], has been largely described
in eukaryotes and bacteria [16].

Differential use of the codon repertoire in bacteria [2] is utilized in heterologous gene
expression experiments [5]. However, the frequency of stop codons and the following
downstream nucleotides has been largely neglected in such experiments. Here, we report
the first analysis of the frequency of stop codons and their context in a set of HEG from
196 prokaryotes. We show the three termination codons are also not used at the same
frequencies in HEG [17,18]. The UAG stop codon is universally suboptimal in bacteria [17],
even more so in HEG. In contrast, UAA is dominant in low and intermediate GC content
genomes, while UGA becomes prevalent in high GC content genomes. Moreover, noticeable
tendencies in the downstream context arise from the dataset.

2. Materials and Methods
2.1. Data

A list of predicted highly expressed genes in 196 prokaryotes was gathered from the
HEG-DB [6]. This database contains predictions of highly expressed genes in genomes
under strong translational selection [5,6]. The E. coli genes information was obtained from
Ecocyc: https://ecocyc.org/ [19], last accessed on 1 March 2022.

2.2. Frequency of Stop Codons

The frequency of stop codons in the list of prokaryotes under translation selection was
calculated from the dataset (Table S1). In the genetic code 11 (the bacterial, archaeal, and
plant plastid code), the stop codons are UAA, UAG, and UGA. Frequency of stop codons
in E. coli strain K-12 substr. W3110 was obtained from the codon usage database [3].

2.3. Statistics

A Pearson correlation coefficient between frequencies of stop codons and GC content
has been calculated using the statistical software package R (https://www.r-project.org/),
last accessed on 1 March 2022. Differences in the frequency of +4 nucleotides have been
analyzed with a Student’s t-test (p < 0.01).

3. Results and Discussion

In the group of highly expressed genes, an increase in GC content is strongly associated
with a parallel increase in UGA and a decrease in UAA content, whereas UAG abundance
remains low and largely unchanged (Figure 1), in agreement with previous studies [17,18].
The GC content is a major driver of UGA and UAA stop codons, but its contribution
differs between bacteria [20] and archaea [18], and this trend is even stronger in HEG from
genomes under strong translational selection. The HEG of 196 prokaryotic species analyzed
here includes 192 bacteria (9 actinobacteria, 6 bacteroidetes, 1 deinococcus, 69 firmicutes,
and 107 proteobacteria) and 4 archaea (4 euryarchaeota). Among this set, only 18 have
more than 15% HEG that terminates with UAG, while this value is less than 5% for more
than 100 species. The underrepresentation of the UAG stop codon in HEG is widespread
across diverse taxonomic groups (with a few exceptions such as 8/107 proteobacteria, 3/69
firmicutes, and 6/9 actinobacteria) and is independent of the GC content of the organisms.
It will be interesting to determine how the force(s) that contribute to counterselection of
UAG termination codons in E. coli are less effective in these organisms.

https://ecocyc.org/
https://www.r-project.org/
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Figure 1. Correlation of the frequency of the three termination codons and the guanine + cytosine 
(GC) content in the highly expressed genes of 196 prokaryotes under strong translational selection. 

It was proposed that the high suppression efficiency of UAG amber mutations is 
somehow related to the rare occurrence of this codon at the end of E. coli genes. However, 
this correlation is unlikely to reflect a causal link for two reasons. First, the standard ge-
netic code cannot have evolved in the presence of classical nonsense suppressors that only 
appear through selective pressure. Such a selective pressure was provided by an rpoS am-
ber mutation in the original K-12 strain [10]. In the related B strain, also extensively used 
in laboratory conditions, most isolates are devoid of suppressor mutations. Second, 29% 
of the E. coli genes and 12% of the HEGs terminate with a UGA codon, even though sup-
pression of UGA opal mutations occurs with a >50% efficiency.  

In E. coli, the three termination codons, UAG, UAA, and UGA, are not used at the 
same frequencies, with only 321 genes ending with UAG (7.4%), while 2765 (64%) end 
with UAA and 1249 (29%) end with UGA. With the identification of HEG, this difference 
becomes even more striking. Out of 253 HEG in E. coli, 223 (87%) end with UAA, 30 (12%) 
with UGA and only 2 (0.8%) with UAG. The two HEG that end with UAG are atpE and 
sucB. The atpE gene, which is essential in both rich and minimal media, encodes a mem-
brane-embedded subunit of the Fo complex. Its UAG termination codon is immediately 
followed by a UAA codon. Thus, suppression or read through of the atpE UAG would 
only add one residue at the C-terminus, which faces the cytoplasm. The sucB gene, which 
is only essential in some rich media, encodes a cytoplasmic enzyme involved in lysine 
degradation that is a component of the 2-oxoglutarate dehydrogenase complex. The UAG 
termination codon is immediately followed by a second UAG codon, and the next termi-
nation codon (UGA) is 21 codons away. In this case, readthrough of both UAG could affect 
the activity or stability of SucB. Readthrough of nonsense codons refers to continued 
translation elongation in the absence of a suppressor tRNA. Gln is inserted at both UAG 
and UAA codons, although termination is much more efficient with UAA (about 0.2%) 
[21]. In the case of UGA, readthrough occurs with an efficiency of about 2% and results 
from the incorporation of Trp [13].  

The termination efficiency of nonsense mutations varies at different sites; this phe-
nomenon is called the context effect. This was first observed with phoA UAG mutants in 
a strain carrying an amber suppressor [8]. Termination could be as high as 97% at one site 
and as low as <1% at another [8]. Starting with an UAA mutant that was poorly 

Figure 1. Correlation of the frequency of the three termination codons and the guanine + cytosine
(GC) content in the highly expressed genes of 196 prokaryotes under strong translational selection.

It was proposed that the high suppression efficiency of UAG amber mutations is
somehow related to the rare occurrence of this codon at the end of E. coli genes. However,
this correlation is unlikely to reflect a causal link for two reasons. First, the standard
genetic code cannot have evolved in the presence of classical nonsense suppressors that
only appear through selective pressure. Such a selective pressure was provided by an rpoS
amber mutation in the original K-12 strain [10]. In the related B strain, also extensively
used in laboratory conditions, most isolates are devoid of suppressor mutations. Second,
29% of the E. coli genes and 12% of the HEGs terminate with a UGA codon, even though
suppression of UGA opal mutations occurs with a >50% efficiency.

In E. coli, the three termination codons, UAG, UAA, and UGA, are not used at the same
frequencies, with only 321 genes ending with UAG (7.4%), while 2765 (64%) end with UAA
and 1249 (29%) end with UGA. With the identification of HEG, this difference becomes even
more striking. Out of 253 HEG in E. coli, 223 (87%) end with UAA, 30 (12%) with UGA and
only 2 (0.8%) with UAG. The two HEG that end with UAG are atpE and sucB. The atpE gene,
which is essential in both rich and minimal media, encodes a membrane-embedded subunit
of the Fo complex. Its UAG termination codon is immediately followed by a UAA codon.
Thus, suppression or read through of the atpE UAG would only add one residue at the
C-terminus, which faces the cytoplasm. The sucB gene, which is only essential in some rich
media, encodes a cytoplasmic enzyme involved in lysine degradation that is a component
of the 2-oxoglutarate dehydrogenase complex. The UAG termination codon is immediately
followed by a second UAG codon, and the next termination codon (UGA) is 21 codons
away. In this case, readthrough of both UAG could affect the activity or stability of SucB.
Readthrough of nonsense codons refers to continued translation elongation in the absence
of a suppressor tRNA. Gln is inserted at both UAG and UAA codons, although termination
is much more efficient with UAA (about 0.2%) [21]. In the case of UGA, readthrough occurs
with an efficiency of about 2% and results from the incorporation of Trp [13].

The termination efficiency of nonsense mutations varies at different sites; this phe-
nomenon is called the context effect. This was first observed with phoA UAG mutants in a
strain carrying an amber suppressor [8]. Termination could be as high as 97% at one site
and as low as <1% at another [8]. Starting with an UAA mutant that was poorly suppressed
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by an ochre suppressor and thus efficiently terminated, mutations in the immediate vicinity
of the UAA codon decreased termination by at least 10-fold [22]. Similar results have
been observed with the base (also known as +4 nucleotide) following UGA codons [23].
Termination efficiency was also shown to vary extensively at many sites within the lacI
gene [24,25]. In general, between one (+4) and six (+9) nucleotides after the stop codon
are critical for termination efficiency [16,26,27]. A role for context effects is illustrated by
the higher prevalence of the U residues at the 3′ side of UAA and UGA in HEGs when
compared to low expressed genes (LEG) [28]. Our results show the prevalence of U nu-
cleotides after the stop codon is dominant independently of the GC content of the genome,
especially in the HEG (Figure 2). Although, in some genomic contexts, U residues share
dominance with another nucleotide, e.g., in AT-rich genomes, U and A residues are equally
frequent after the stop codon. The dominance of U residues after the stop codon is almost
universal in HEG, with the exception of UAA-ending genes in GC-rich genomes, where
U residues share dominance with G residues. Overall, results indicate a set of rules that
largely determine the context effect that drives the efficiency of gene expression (Figure 2).
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Figure 2. Frequency of nucleotides after the stop codons. (a) All genes from genomes with a %GC
lower than 40% (b) HEG from genomes with a %GC lower than 40% (c) All genes from genomes with
a %GC between 40% and 60% (d) HEG from genomes with a %GC between 40% and 60% (e) All
genes from genomes with a %GC higher than 60% (f) HEG from genomes with a %GC higher than
60. Groups within stop codons are determined based on a Student’s t-test (p < 0.01).

Some authors have debated whether a second stop codon may be present after the
termination one to increase termination efficiency [29–32], as in the two E. coli K-12 HEG
that end with UAG (atpE and sucB). However, neither HEG nor LEG have a higher frequency
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of additional stop codons after the termination one, although there is a dominance of UNN
(N = any nucleotide) triplets and a detectable prevalence of UUU (Figure 3). Moreover, it is
interesting to notice that 17/18 genomes with more than 15% UAG in their HEG have an
extended preference for certain residues for at least 10 residues on the 3′ side of the UAG
codon.
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Figure 3. Frequency of nucleotides after the stop codons (+456) in the HEG. (a) Most frequent
codons downstream of the stop codon. The red line indicates chance expectations (1/64 = 2%). Only
codons occurring with or above the chance expectation are indicated. (b) Frequency of tandem
stop codons.

Thus, we hypothesize that low readthrough efficiency and context effects may provide
a better explanation for the prevalence of UAA termination codons over UAG, particularly
in highly expressed genes. Moreover, the wide suppression across taxonomic groups of the
UAG stop codon in bacteria is an indication that this is an ancient mechanism. However, a
few taxonomically diverse species have higher %UAG than expected, thus we speculate
that they may have developed alternative strategies to efficiently overcome readthroughs.

4. Conclusions

Our data indicate that UAG codon is universally suboptimal in the HEG from prokary-
otes under translational selection. UAA is likely to be the preferred stop codon for low
or intermediate GC content, whereas UGA is the preferred stop codon for high GC con-
tent. Readthrough efficiency and additional context effects may explain the dominance of
UAA and UGA stop codons in HEG. Although the UAA stop codon is usually the choice
in genome engineering and to optimize gene expression, the differential use of the stop
codons in the HEG and the downstream context described in this article should be taken
into consideration.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/life12030431/s1, Table S1: Frequency of stop codons and other
genomic parameters in 196 prokaryotic genomes under strong translational selection. Abbrev:
abbreviation in the HEG-DB, Name: Species name, bp: total number of base pairs, n_genes: number
of genes; n_tRNA: number of tRNA; n_RPG: number of ribosomal protein genes; GC: guanine +
cytosine content; GC1: guanine + cytosine content at the first codon position; GC2: guanine + cytosine
content at the second codon position; GC3: guanine + cytosine content at the third codon position;
Stop_Codons: number of stop codons; UAA: number of UAA stop codons, UAG: number of UAG
stop codons, UGA: number of UGA stop codons, %UAA: percentage of UAA stop codons; %UAG:
percentage of UAG stop codons and %UGA: percentage of UGA stop codons.
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