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Abstract

In this thesis, we investigate electronic transport in mesoscopic conductors. In these
systems, quantum effects play a major role and the electronic currents have to be de-
scribed in a quantum mechanical setting. Of particular interest are electron quantum
optics setups, a field of research which aims to take inspiration from experiments carried
out with photons in quantum optics and realise them using electrons in nanoscale con-
ductors. Edge channels in topological insulators, most notably two-dimensional electron
gases in strong magnetic fields exhibiting the quantum Hall effect, can play the role of
one-dimensional wave guides for electrons, and tunable constrictions, so-called quantum
point contacts (QPCs), can be used as beam splitters. Finally, dynamic coherent single-
electron sources have recently been realized, and new methods for the characterization
of their statistical properties are required.
In the first part of this thesis, current fluctuations in periodically driven phase-coherent

conductors are considered. As the electrical current is a fluctuating quantity, it is inter-
esting to consider the distribution of charges transferred across a conductor in a certain
time interval, known as full counting statistics (FCS). Alternatively, the distribution
function of waiting times between two successive charge transfer events, the waiting time
distribution (WTD), can be considered.
We introduce a framework to calculate electronic WTDs in periodically driven quantum

systems. To this end, we make use of the non-interacting Floquet scattering formalism.
A formula that relates the idle time probability (ITP) to the Floquet scattering matrix
is derived. From the ITP, the WTD and other statistical quantities can be obtained by
taking time derivatives. As an application, we calculate the WTD for a QPC driven by
periodic Lorentzian voltage pulses. The WTD shows a clear series of peaks corresponding
to the transfer of single-electron excitations across the QPC. We also modulate the trans-
mission of the QPC in time and find signatures of the modulation in the WTD. Then,
WTDs for a dynamically driven mesoscopic capacitor operated as a nonadiabatic single-
electron source are calculated and compared with WTDs based on a classical model.
Next, we go one step further and calculate generalized waiting time distributions for

waiting times between events in different channels and also joint WTDs for consecutive
waiting times. Electron waiting times in coherent conductors are found to be correlated.
Since the measurement procedure plays a prominent role in quantum mechanics, a

waiting time clock that can measure WTDs is theoretically investigated next. In an
appropriate parameter regime, the WTDs without a specific reference to a detector are
recovered.
To measure the extensive FCS in periodically driven conductors, a measurement pro-
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cedure based on an electronic Mach-Zehnder interferometer coupled to the system of
interest is proposed and its properties are analyzed.
The second part of the thesis investigates the on-demand generation and detection

of entanglement in mesoscopic conductors. A periodically modulated QPC can create
electronic excitations that are entangled in their electron-hole degree of freedom. To
circumvent the superselection rule for particle number, a nonlocal measurement is pro-
posed that relies on recombining the two channels that are entangled at a second QPC.
An entanglement witness based on current and noise measurements is derived, and the
entanglement is shown to be detectable in realistic experimental situations.
Next, the question of whether the state of a single electron split between two modes

is entangled is considered. Using a simple argument, we show that the answer is yes
and derive a measurement strategy to demonstrate single-electron entanglement and
nonlocality in an electronic Hanbury Brown-Twiss interferometer.
This thesis advances the field of electron quantum optics, where the arrival of dynamic

single-electron sources opens up new possibilities to coherently generate and manipu-
late few-particle states. Since these systems are periodically driven at high frequencies,
characterizations of current fluctuations such as the WTD or the FCS become impor-
tant. Furthermore, electronic interferometers allow for the investigation of nonclassical
behaviour and entanglement.
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Résumé

Dans cette thèse, nous analysons le transport électronique dans les conducteurs méso-
scopiques. Dans ces systèmes, les effets quantiques jouent un rôle majeur et les courants
électriques doivent être décrits par la théorie quantique. Les systèmes d’optique quan-
tique des électrons sont particulièrement intéressants: ce domaine s’inspire des expéri-
ences faites avec des photons dans le cadre de l’optique quantique et tente de les réaliser
avec des électrons dans les conducteurs à l’échelle nano.
Les canaux de bord dans les isolants topologiques, notamment des gaz d’électrons

en deux dimensions démontrant l’effet quantique Hall, peuvent jouer le rôle de guide
d’ondes unidimensionnel pour les électrons, et des constrictions réglables, nommés QPC
(quantum point contacts), peuvent être utilisées comme diviseurs de rayons. Finalement,
des sources cohérentes d’électrons uniques ont été réalisées récemment, et des nouvelles
méthodes de caractérisation de leurs propriétés statistiques sont nécessaires.
La première partie de cette thèse considère les fluctuations de courant dans les conduc-

teurs cohérents entraînés périodiquement. Comme le courant électrique est une quantité
fluctuante, il est intéressant de considérer la distribution de charges transférées à travers
le conducteur dans un certain intervalle temporel, ce qui est connu comme full count-
ing statistics (FCS). Alternativement, la distribution des temps d’attente entre deux
événements de transfert de charge (waiting time distribution, WTD) peut être analysée.
Nous introduisons un cadre pour calculer des WTD électroniques dans les systèmes

quantiques entraînés périodiquement. A cette fin, nous faisons usage du formalisme
de diffusion non-interactif de Floquet. Une formule qui relie la probabilité du temps de
ralentissement (idle time probability, ITP) à la matrice de diffusion de Floquet est dérivée.
De la ITP, la WTD et d’autres quantités statistiques peuvent être obtenues en prenant
des dérivées par rapport au temps. Pour des applications, nous calculons la WTD pour
un QPC entraîné par des pulses de voltage Lorentzien. La WTD montre une série de
pics qui correspondent au transfert des excitations d’électrons uniques à travers le QPC.
Nous modulons aussi la transmission temporale du QPC et nous trouvons des signatures
de la modulation dans la WTD. Puis, les WTD d’un condensateur mésoscopique entraîné
dynamiquement utilisé comme une source d’électrons uniques sont calculées et comparées
avec les WTD basées sur un modèle classique.
Ensuite de quoi nous allons un peu plus loin en calculant des distributions généralisées

pour des temps d’attente entre des transferts de charges dans des canaux différents, ainsi
que des distributions jointes pour des temps d’attente consécutifs. Nous trouvons que
les temps d’attente des électrons sont corrélés.
Comme la procédure de la mesure joue un rôle important en mécanique quantique,

une horloge de temps d’attente capable de mesurer les WTD est ensuite analysée. Dans
un régime approprié des paramètres, les WTD sans référence spécifique d’un détecteur
sont ré-obtenues.
Pour mesurer les FCS extensifs dans les conducteurs périodiquement entraînés, une

procédure de mesure basée sur un interféromètre électronique Mach-Zehnder couplé au
système étudié est proposée et ses propriétés sont analysées.
La deuxième partie de cette thèse étudie la création et la détection d’intrication à la
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demande dans les conducteurs mésoscopiques. Un QPC qui est modulé périodiquement
peut créer des excitations électroniques qui sont intriquées par leur degré de liberté
électron-trou. Pour contourner la règle de superselection pour le nombre de particules,
une mesure non-locale est proposée, mesure qui repose sur la recombinaison des deux
canaux intriqués par un deuxième QPC. Un témoin d’intrication basé sur la mesure du
courant et du bruit électronique est dérivé. Nous montrons que l’intrication est détectable
dans des situations réalistes expérimentalement.
Finalement, nous nous demandons si l’état d’un électron unique partagé entre deux

canaux est intriqué. Par un argument simple, nous montrons que la réponse est oui et
nous dérivons une stratégie de mesure pour montrer l’intrication et la non-localité d’un
électron unique dans un interféromètre électronique Hanbury Brown-Twiss.
Cette thèse avance le domaine de l’optique quantique des électrons, où l’arrivée des

source dynamiques d’électrons uniques ouvre des possibilités de créer et manipuler des
états de peu d’électrons d’une façon cohérente. Comme ces systèmes sont entraînés péri-
odiquement aux hautes fréquences, la caractérisation des fluctuations du courant comme
la WTD ou le FCS gagne en importance. En outre, les interféromètres électroniques
ouvrent la possibilité d’étudier les comportements non-classique ainsi que l’intrication.
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Introduction

Condensed matter physics is a vast branch of physics, comprising many distinct subfields
such as the investigation of metals and insulators; exotic quantum phases such as su-
perconductors, Bose-Einstein condensates, and other quantum liquids; semi-conductors,
topological materials, and hetero-structures. Additionally, in the study of all these phe-
nomena and materials, a wide variety of experimental and theoretical methods is used, in
accordance with the large range of different physical quantities one might be interested
in. Thus, all of the modern physical frameworks (quantum mechanics, electrodynamics,
thermodynamics, statistical mechanics and quantum field theory) have applications in
condensed matter physics [Altland and Simons, 2010]. Moreover, whenever devising new
theories and viewpoints, physicists often eventually turn to condensed matter systems
as a test bed for their predictions, due to the relative ease with which these systems
can be investigated in modern laboratories, and also due to their potential for techno-
logical applications. For example, the AdS/CFT correspondence originally discovered
in the context of string theory has provided new inputs in the study of strongly cor-
related systems [Čubrović et al., 2009], and the discovery of topological insulators and
superconductors [Hasan and Kane, 2010] has almost revolutionised the prevalent view of
thermodynamic and quantum phases and their transitions, reactivating earlier work on
topological field theories and providing even new experimental possibilities for cosmology
[Zurek, 1996; Rosenberg and Franz, 2010].
One way to investigate solid state materials is to apply external electric fields to them

via contacts and study their response, e. g. the currents flowing through them. If quantum
theory is important for the underlying physics such as typically for very low temperatures
and/or small samples, this field of study is called quantum transport. The field of
quantum transport has made a substantial leap forward when it became possible to
fabricate nanostructures in which electrons behave phase-coherently. More precisely, in
these systems, the electronic coherence length is of the same order of magnitude as the
sample size. This regime is referred to as mesoscopic. Therefore, in contrast to the term
“nanophysics” which explicitly refers to a length scale, mesoscopic physics is the study of
the set of phenomena taking place when the wave nature of electrons becomes important,
in between the microscopic and the macroscopic length scales [Datta, 1997].
Early experiments that clearly demonstrated the phase-coherence of electrons through-

out the transport process were on small conducting rings pierced by a magnetic flux
[Webb et al., 1985], where a periodic dependence of the conductance on the magnetic
flux with period h/e was observed, h being Planck’s constant and −e the electronic
charge. The dependence of the conductance on the flux is due to interference of the part
of the electronic wave function encircling the flux in one way with the part encircling
the flux in the other way, which is known as the Aharonov-Bohm effect [Aharonov and
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Introduction

Bohm, 1959]. However, if the ring is larger than the electronic phase coherence length,
a different periodicity is observed due to averaging effects.
In mesoscopic physics, systems of reduced dimensionality are of particular interest. If

the effective degrees of freedom of the electrons are reduced, for example due to strong
confinement or magnetic fields, new phenomena appear and quantum mechanics mani-
fests itself in different ways. For example, the electronic Aharonov-Bohm rings mentioned
above can in fact be described by one-dimensional models [Büttiker et al., 1984; Gefen
et al., 1984]. Moreover, two-dimensional electron gases (2DEGs) can be fabricated on
the surfaces of GaAs-based semiconductor heterostructures [Thornton et al., 1986]. A
different way to realize two-dimensional electron gases (albeit with strikingly different
properties) is to use graphene sheets [Das Sarma et al., 2011]. An advantage of the use
of semiconductor hetero structures however is that it allows for electrical gating using a
top layer of metal. In this way, the 2DEG can be depleted in certain regions, allowing
one to engineer effective geometries in which the electrons move.
In particular, defining a small opening between two gates that otherwise completely

block the transport allows for the construction of quantum point contacts (QPCs), small
tunable restrictions. They provide a tunable number of one-dimensional channels for
electrons to pass through. Electron motion perpendicular to the current direction through
the QPC is quantised due to the confinement. Because of the variable filling of these
states, one observes conductance quantisation: The conductance changes in steps if the
width of the constriction is varied [van Wees et al., 1988]. It is also possible to tune
the QPC such that a single channel is only partially transparent. Electrons incident
on the QPC may then either be transmitted or reflected. Quantum mechanically, the
situation can be described by a simple one-dimensional scattering problem. The solutions
are superpositions of left- and right-moving plain waves, and due to the phase-coherent
nature of the 2DEG, the transport physics of the QPC is well described by these scattering
states.
Another way to provide effective one-dimensional channels for phase-coherent electron

transport is to make use of the quantum Hall effect [von Klitzing et al., 1980]. If a
strong magnetic field is applied perpendicular to a 2DEG, electrons in the bulk will move
in cyclotron orbits, thus leading to localisation and effectively turning the bulk of the
sample into an insulator. However, at the edges of the sample, electrons move in skipping
orbits, being repeatedly reflected at the sample boundary [Büttiker, 1988]. This leads to
the emergence of dissipationless one-dimensional edge states [Halperin, 1982]. This semi-
classical picture can in fact be complemented by a full quantum-mechanical calculation
of the conductance in a multi-terminal setup, and the Hall conductance can be related
to a topological invariant, the Chern number [Thouless et al., 1982]. The Chern number
is the number of times the phase of the quantum mechanical electronic wave function
wraps around the unit circle in the complex plane as the wave number is varied across
the Brillouin zone, and it turns out that it equals the number of edge states due to an
intricate connection: The presence of the edge states is guaranteed by the topological
properties of the bulk bands, a theme that has been recurring in the more general field
of topological insulators as the bulk-boundary correspondence.
In contrast to other effectively one-dimensional electronic systems such as nanowires
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or gate-defined QPCs, the electrons in quantum Hall edge states turn out to behave
very robustly in response to local disorder and inelastic scattering [Laughlin, 1981]. An
explanation that does not invoke phase-rigidity of the wave functions across the sample
was provided by Büttiker [1988]: Carriers moving along the sample edge cannot be back
scattered by a distance longer than the circumference of a cyclotron orbit, and will
continue to move under the action of the confining potential.
The emergence of very clean effectively one-dimensional quantum mechanical systems

such as topological edge states and quantum point contacts has made possible all kinds
of novel experiments in electronic systems. Whereas the response to applied external
fields was previously mostly investigated to learn more about the materials and the
microscopic mechanisms governing their behaviour, the controlled injection of charge
carriers into very clean two-dimensional materials and effective one-dimensional wave-
guides also enables the study of the physics of the charge carriers themselves, and the
implementation of fundamental quantum mechanical experiments involving electrons in
the same way photons have traditionally been used in quantum optics. Consequently,
this particular field of study was termed electron quantum optics [Bocquillon et al., 2012,
2014].
High-mobility two-dimensional electron gases in strong magnetic fields made it possible

to experimentally implement electron interferometers in which fermionic anti-bunching
[Henny et al., 1999; Bocquillon et al., 2013a] and interference effects due to the quantum
mechanical wave nature of electrons [Ji et al., 2003; Roulleau et al., 2007] could be ob-
served. A missing ingredient from the quantum optical toolbox was provided with the
advent of dynamic on-demand single-electron emitters [Fève et al., 2007; Dubois et al.,
2013b]. Before this, electron sources were implemented as statically biased contacts at-
tached to the sample. In contrast to stationary bosonic particle sources (such as lasers),
the fact that electrons are fermions and therefore anti-bunch already provides a funda-
mental source of regularity to such a static electron stream, which in fact can be modelled
as a periodic succession of wave packets spaced by time intervals h/eV , where V is the
applied voltage [Martin and Landauer, 1992].
A single-electron source based on a dynamically driven mesoscopic capacitor [Büttiker

et al., 1993] instead injects electrons at well-defined instants in time and allows one to
tune the overlap of successive wave packets [Fève et al., 2007]. Combining two such
sources also permits tuning their relative time delay, making possible Hong-Ou-Mandel-
like electron collision experiments [Bocquillon et al., 2013a]. A different way to inject
single-electron wave packets on-demand was proposed by Levitov et al. [1996]: Applying
Lorentzian-shaped voltage pulses to a contact injects exactly n charges on top of the
otherwise undisturbed Fermi sea without any accompanying electron-hole pairs if the
time integral of the voltage V (t) is ne, e being the elementary charge. This technique
was experimentally implemented almost twenty years later by Dubois et al. [2013b] and
subsequently used to perform tomography of the reduced single-electron density matrix
[Jullien et al., 2014]. The particular single-electron excitation created in this way was
named leviton.
To characterise these systems, suitable observables have to be chosen. In electronic

quantum transport, mostly electric currents in response to applied fields are studied and
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Introduction

measured. The electric current is however a fluctuating quantity (there are thermal as
well as quantum fluctuations), and therefore it is meaningful to study also correlation
functions of currents [Blanter and Büttiker, 2000], also known as the noise spectrum.
As the current operator is time-dependent, in principle a second order current correlator
depends on two-time arguments. However, for a system that is invariant under time
translations, the noise will only depend on the difference of the two times. Most often, the
Fourier transform of such a stationary correlation function is considered. This is called the
noise spectral density. Experimentally, it is usually measured in a small frequency range
close to zero, and a lot of information about the charge transport can be inferred from
zero-frequency noise. For periodically driven systems, the current correlator depends on
two times separately and its Fourier transform can be investigated as a function of two
frequencies [Moskalets and Büttiker, 2007].
For a phase-coherent mesoscopic conductor, the scattering theory of quantum trans-

port can be used to calculate current and noise spectra [Büttiker, 1990b; Lesovik and
Sadovskyy, 2011]. In this approach, which is valid as long as electron interactions can be
neglected, the contacts are assumed to be sources of thermally distributed fermions and
their creation and annihilation operators are related to those of the electrons that have
traversed the sample by means of a scattering matrix. In this way, the non-equilibrium
distribution functions of the outgoing electrons can be found and in principle all cur-
rent correlation functions can be calculated at arbitrary temperatures. This approach
also works for periodically driven systems where electrons can change their energy by
scattering. In this case, the approach is called Floquet scattering theory.
The advent of single-electron sources made it necessary to devise new observables that

characterise transport processes and that are sensitive to the particular properties of the
sources, such as the shapes of the wave packets they emit and the accuracy of the emission
timing. Fermionic anti-bunching provides a natural regularisation also to a continuous
stream of electrons, and in fact the difference between a statically biased contact and
a dynamic single-electron source is not visible from a measurement of the current or a
zero-frequency current correlation function: For these observables, an average over many
emissions of electrons is implicitly performed. Instead, one particular intuitive way of
characterising the accuracy and properties of single-electron emitters is provided by the
waiting time distribution (WTD), which is one of the two major topics of this thesis. The
electron waiting time is defined as the time that passes between two successive emissions
(or detections) of electrons. For an ideal periodic single-particle emitter, it is just given
by the period of the driving, which is a constant. If there are cycle-missing events where
an electron fails to be emitted due to e. g. some back-scattering mechanism or if the
precise emission time fluctuates, the electron waiting time is a random quantity, and the
WTD is the corresponding probability distribution function.
The WTD contains more information about the transport process than just the average

current, which is (for obvious reasons) equal to the inverse mean waiting time, 〈τ〉 = e/I.
There are other quantities which describe fluctuations of the current around its mean
and often give complementary information. For example, moments and cumulants of the
current distribution are often studied. In the zero-frequency limit, they are encoded in
the full counting statistics (FCS) P (n) [Levitov et al., 1996], defined as the probability
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to observe n charge transfer events across a conductor in a long measurement time. Full
counting statistics has generated an enormous amount of research activity mainly on the
theoretical side. It has been evaluated for, among many other examples, voltage pulses
in mesoscopic conductors [Ivanov et al., 1997; Vanević et al., 2007], quantum pumps
[Makhlin and Mirlin, 2001; Muzykantskii and Adamov, 2003], charge transfer between
superconductors [Belzig and Nazarov, 2001], persistent currents [Komnik and Langhanke,
2014], Luttinger liquids [Gutman et al., 2010] and quantum impurity models [Komnik
and Saleur, 2006].
While it is possible to study also the time-dependent FCS P (n, t), i. e. the probability

distribution to observe n charge transfers in a finite measurement time t [Hassler et al.,
2008; Schönhammer, 2007], in many cases the WTD can provide a more intuitive view-
point. Finite-time FCS can sometimes be related to finite-frequency current cumulants,
which are measurable in modern experiments and have been used among others to char-
acterise the accuracy of single-electron emitters [Mahé et al., 2010; Parmentier et al.,
2012]. The WTD on the other hand provides a clear series of peaks when evaluated
for single-electron sources based on levitons [Dasenbrook et al., 2014] or the mesoscopic
capacitor [Hofer et al., 2015] that simply correspond to the possible delay times between
charge emissions, and features such as regularity or sharpness of the peaks can be related
to physical interpretations in a straightforward way.
The first part of this thesis is dedicated to waiting time distributions and counting

statistics for periodically driven quantum systems, especially focusing on single-electron
sources. In addition to presenting the Floquet scattering formalism for WTDs and results
for levitons and the mesoscopic capacitor (chapter 1), in chapter 2 we investigate WTDs
depending on multiple times and also generalisations to many channels. The WTDs
considered here are distributions of waiting times between electrons above the Fermi
level. To leave out the Fermi sea from the analysis is convenient since the interest is
in the additional electrons above the Fermi level produced by the sources, but it raises
fundamental questions about the measurability of such distributions, since in real systems
the Fermi sea is always present and it is not straightforward to separate it from the
electrons above it. This is especially true in the case of time-dependent measurements
[Gavish et al., 2001]. For this reason, in chapter 3 we present the theory of an electron
waiting time clock that is capable of measuring electron waiting times above the Fermi
sea and that reproduces the results of the calculations simply disregarding the Fermi sea
in an appropriate parameter regime.
While the FCS has been studied quite intensely on the theory side, experimental mea-

surements for phase-coherent mesoscopic conductors are still lacking. A detector that
can measure the FCS was proposed by Levitov et al. [1996]. It consists of a quantum
two-level system that is coupled to the magnetic field generated by the current in the
conductor. Experimentally, the coupling of a qubit to a quantum conductor in a con-
trolled and tunable way is challenging. In chapter 4, we propose a measurement scheme
for the FCS in mesoscopic conductors using an electronic Mach-Zehnder interferometer
coupled to the nearby conductor. To access the full probability distribution, the coupling
between the system and the detector must be tunable. In our proposal, the tunability
is achieved by varying the time-delay between electrons periodically injected into the
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interferometer and the system to be measured. Hence, the proposal explicitly relies on
the availability of coherent on-demand single-electron sources.
An important further step in the investigation of electron quantum optical systems is

the controlled generation and characterisation of entangled few-particle states, in analogy
to what is routinely achieved in quantum optics. Entanglement is perhaps one of the most
puzzling features of quantum mechanics and had been identified as one of its defining
concepts early on [Schrödinger, 1935]. Later, Bell famously showed that entanglement
can lead to peculiar statistical correlations between spatially separated subsystems that
cannot be explained by any locally realistic (or “hidden-variables”) model [Bell, 1964].
This was later termed “Bell nonlocality” and opened up a whole new field of ongoing
research [Brunner et al., 2014].
In the context of condensed matter physics, the concept of Bell nonlocality is less in-

teresting in itself due to the small size of the systems considered. However, Bell tests are
widely used to certify the presence of entanglement between spatially separate parts of
the system, which is a highly sought-after resource for many reasons [Bennett and DiVin-
cenzo, 2000]. For example, it is expected that quantum effects can provide exponential
speedups for classically intractable calculations, and schemes for fundamentally unbreak-
able information encryption have been proposed. Apart from that, entanglement plays
a major role in concepts such as dense coding (the transmission of more than one bit of
classical information using a quantum bit) or teleportation (the transfer of a quantum
state onto a distant particle using entanglement and classical communication).
In electron quantum optics, the challenge is to find strategies to generate and detect

entanglement between electrons or electronic modes, preferably in a controlled way. On-
demand single-electron sources might play an important role in this endeavour. However,
it is equally important to find ways to encode quantum information in electronic degrees of
freedom and to devise and implement observables that can read out this information and
ideally distinguish between entangled and separable states. One way to create entangled
electron pairs is to use the spin degree of freedom, as the electron spin is an ideal two-level
system and therefore provides a realisation of a quantum bit (qubit). A spin-entangled
electron pair may be considered a direct analogue of a polarisation-entangled photon pair
in quantum optics.
An s-wave superconductor provides a natural source of spin-singlets in the form of

Cooper pairs, and as proposed by Recher et al. [2001] and Lesovik et al. [2001], they
can in principle be split using a double quantum-dot setup connected to leads. Many
Cooper-pair splitting devices have since been realised in semiconductors [Hofstetter et al.,
2009], carbon nanotubes [Herrmann et al., 2010; Schindele et al., 2012] and graphene [Tan
et al., 2015], some approaching very high efficiencies such as those required for Bell tests
[Kawabata, 2001; Samuelsson et al., 2003] or entanglement witnesses [Burkard et al.,
2000; Giovannetti et al., 2006].
Apart from Cooper-pair splitting, Beenakker et al. [2003] noted that spin-entanglement

also naturally occurs when an electron tunnels through a barrier, leaving behind a hole
which is entangled with the electron through its spin. A teleportation effect results
from the same physical mechanism [Beenakker and Kindermann, 2004]. On the other
hand, in quantum Hall systems, electrons can be in different channels or modes, which
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can also be used to encode quantum information even using spin-less electrons. If two
electrons are entangled in their channel quantum number, they are said to be orbitally
entangled. A setup in which orbital entanglement can be created and detected has
been theoretically proposed by Samuelsson et al. [2004]. It consists of an electronic
analogue of the Hanbury-Brown Twiss interferometer, and a Bell inequality for the orbital
entanglement can be formulated in terms of experimentally measurable zero-frequency
current-current correlators. The proposal was subsequently realised experimentally by
Neder et al. [2007c], but the observed visibility in the noise oscillations was too low to
unambiguously demonstrate the presence of entanglement [Samuelsson et al., 2009b].
A conceptually different type of entanglement is entanglement using the fermionic oc-

cupation number of modes. In this case, one cannot strictly speak about entanglement
between two particles or excitations, since the information about the presence or absence
of a particle is directly used to encode the quantum information needed for an entangled
quantum state. Indeed, this case is called entanglement between modes, since now the
spatially separated modes (e. g. quantum Hall edge channels) are entangled.1 However, it
can be challenging to formulate Bell inequalities or derive entanglement witnesses based
on experimentally measurable quantities. The reason is that for a certification of entan-
glement, it is necessary to perform measurements along two vectors in the state space
which are not orthogonal [Horodecki et al., 2009]. In principle, to certify entanglement
using the occupation number, one must therefore locally prepare superpositions of states
with different particle numbers, which is forbidden by charge and parity superselection
rules [Bartlett et al., 2007]. In quantum optics, these issues are by now well-understood
and occupation-number entangled states are routinely generated and detected by provid-
ing a shared phase reference to bypass the superselection rules. For fermions however,
these procedures cannot be straightforwardly applied. Yet, there are different ways to
circumvent the superselection rules and certify the presence of mode-entanglement.
This is the topic of the second part of this thesis. In chapter 5, we investigate a

scheme to create and detect entangled leviton pairs using the electron-hole degree of
freedom. In this case, the quantum information is encoded in the charge of the electronic
excitation, namely whether the excitation is electron-like or hole-like. Since the many-
body state of an electron-like leviton differs from a hole-like leviton by two particles,
the entanglement uses the fermionic occupation number and the difficulties described
above appear. However, the entanglement can be detected using a nonlocal measurement
scheme. We derive an entanglement witness for the electron-hole entanglement. The
combined setup with the generation and detection of electron-hole entanglement then
looks like the electronic Mach-Zehnder interferometer.
In chapter 6, we go one step further and ask the question of whether the state of a single-

electronic excitation above the Fermi sea in a superposition between two spatial modes
is entangled. For photons, it is by now well-established that the answer is yes [van Enk,
2005], but for electrons, the situation is more subtle. However, we rigorously demonstrate
that the answer is positive also in this case, and that the entanglement can be revealed
using two independently generated copies of the single-electron state. We furthermore

1This is of course also true in the case of spin- or orbital entanglement.
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show that the demonstration of single-electron entanglement and nonlocality is possible
in an electronic Hanbury-Brown Twiss interferometer with two single-electron sources
using only zero-frequency current and noise measurements, also at finite temperatures.
The material presented in this thesis is compiled from a number of papers that the

author published during his PhD work. Large parts of the main text are taken verbatim
from these papers. The relevant references are [Dasenbrook et al., 2014; Hofer et al.,
2015] (chapter 1), [Dasenbrook et al., 2015] (chapter 2), [Dasenbrook and Flindt, 2016b]
(chapter 3), [Dasenbrook and Flindt, 2016a] (chapter 4), [Dasenbrook and Flindt, 2015]
(chapter 5) and [Dasenbrook et al., 2016] (chapter 6).
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Part I.

Electron waiting times and counting
statistics
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1. Floquet theory of electron waiting times

1.1. Introduction

In this chapter, we will introduce the concept of the waiting time distribution (WTD)
in electronic transport. It is defined as the distribution of times τ that pass between
successive electron detection events. We will review its definition and formulation for a
phase-coherent electronic conductor connected to two single-channel leads. In this case,
neglecting interactions between electrons, the scattering theory of electronic transport
provides a convenient framework and the WTD can be related to the scattering matrix
of the conductor. We then generalise the formalism to systems that are periodically
time-dependent. Examples of such systems are quantum pumps, single-electron sources
and periodically operated quantum switches. In this case, electrons can exchange energy
with the system during the scattering process. The appropriate generalisation of the
scattering matrix is then the Floquet scattering matrix, and again the WTD can be
calculated based on its knowledge. As applications for this formalism, we consider the
emission of single-charged voltage-pulses (levitons) onto a quantum point contact (QPC),
a statically-biased QPC with a time-dependent transmission, and a single-electron source
based on the mesoscopic capacitor.
The generalisations to multi-channel conductors and joint distributions of several wait-

ing times will be the subject of chapter 2. In chapter 3, we will present the theory of a
mesoscopic single-electron detector capable of measuring electron waiting time distribu-
tions.

1.2. Electron waiting times

Traditionally, the study of charge transport in mesoscopic conductors has focused on
finding the average current 〈I〉 through the sample and its fluctuations, i. e. the noise
∝ 〈I2〉 and higher-order cumulants. The latter are encoded in the full counting statistics
(FCS) P (n, τ), the probability for n charges to be transferred through the conductor in
a (typically long) measurement time τ .
An alternative characterisation on short-time scales is provided by the second-order

coherence g(2)(t, t + τ). It is defined as the joint probability of detecting an electron at
time t and one at a later time t + τ . Initially, it was proposed in quantum optics to
characterise anti-bunching of photons emitted by a coherently driven two-level system
[Carmichael and Walls, 1976; Kimble and Mandel, 1976].
Subsequently, as a more intuitive characterisation of the photo detection statistics, the

waiting time distribution (WTD)W(τ) was proposed in this context by Cohen-Tannoudji
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t
...

t
...

Figure 1.1.: Difference between FCS and WTD. Given a time series of detection events
(red vertical lines), the problem of obtaining the FCS involves specifying a
large measurement interval of length ∆T and finding the probability that
n events are within this interval. In contrast, the WTD is the statistical
distribution of the waiting times τi between two successive events. The
WTD is therefore better suited to investigating short-time physics.

and Dalibard [1986] and developed further by Zoller et al. [1987]; Carmichael et al.
[1989]. In contrast to the second-order coherence, the WTD is defined as the probability
distribution for the time τ that passes between two subsequent photo detection events. It
is therefore a conditional probability distribution. One of its appeals in quantum optics
is that anti-bunching can be conveniently detected as the WTD is then suppressed at
τ = 0 and typically peaked around the mean waiting time. In contrast, for coherent
light, the WTD is just exponentially decaying.
In electronic quantum conductors, the particles participating in transport are electrons

and they therefore naturally anti-bunch due to their fermionic nature. Thus, it seems
natural to also define the WTD for electronic transport and use it to investigate these
issues. However, mostly due to the difficulties associated with measuring time-resolved
quantities, proposals to consider the WTD also for electronic systems are fairly recent
[Brandes, 2008]. Before that, usually the full counting statistics (FCS) was investigated
instead [Levitov et al., 1996], the distribution function for the number of charges that
pass through the conductor in a certain time interval. This approach usually does not
capture effects on short time-scales. The difference between the FCS and the WTD is
summarized in Fig. 1.1.
For systems weakly coupled to leads or in the limit of a high voltage bias, transport

can often be described by a generalised master equation (GME). In this case, the ques-
tion of what exactly constitutes a “detection event” in the definition of the WTD is
straightforward since the process can be unravelled into a stochastic time-series series
of quantum jumps, which are essentially classical. The formalism to extract the WTD
from the GME was first given by Brandes [2008] and later generalised to non-markovian
GMEs by Thomas and Flindt [2013]. Furthermore, the waiting time distribution for a
dynamic single-electron emitter described by a classical stochastic model was obtained
by Albert et al. [2011].
In the phase-coherent transport regime where the Landauer-Büttiker scattering for-

malism applies, the situation is a priori less clear. In this case, electrons are described by
scattering states which are completely delocalised across the sample. Thus, the mathe-

14



1.3. Scattering theory of electron waiting times

matical description provides no indication of when an electron is detected. To remedy
this, either a quantum-mechanical model of a measurement device has to be included in
the description, or the WTD has to be related to other, more directly accessible quanti-
ties. Both possibilities will be subjects of this thesis. In the following, we will introduce
the concept of the idle time probability ITP, the probability that no electrons are de-
tected in a time-interval of length τ . If this quantity originates from a stochastic time
series of detection events, it has a simple relation to the WTD between these events.
Furthermore, in scattering theory, it can be evaluated by a suitable function of the single
electron density operator. The question of when this procedure is valid for a realistic
electronic conductor and what kind of detector is implicitly assumed will be treated in
chapter 3.

1.3. Scattering theory of electron waiting times

We consider a central scatterer connected to electronic leads. We are interested in the
distribution W(τ) of waiting times τ between electrons scattered from the left to the
right lead, passing a particular point x0 in the right lead. A fundamental building block
of our theory is the idle time probability (ITP) Π(τ, t0): The ITP is the probability that
no charges are observed at x0 in the time interval [t0, t0 + τ ]. For stationary systems, the
ITP is independent of t0 such that Π(τ, t0) = Π(τ). The WTD can then be expressed as

W(τ) = 〈τ〉∂2
τΠ(τ), (1.1)

where 〈τ〉 is the mean waiting time [Vyas and Singh, 1988; Albert et al., 2012]. In
contrast, for the periodically driven systems of interest here, the ITP is a two-time
quantity depending on both t0 and τ . In that case, the WTD can be evaluated by
averaging the ITP over a period of the driving T , using

Π(τ) =

∫ T
0

dt0Π(τ, t0)/T (1.2)

in Eq. (1.1).
We will now proceed to demonstrate both Eqs. (1.1) and (1.2). Π(τ, t0), denotes the

probability that there is no detection in the time interval [t0, t0 + τ ]. At the time t0,
there might or might not be a detection of an electron. We denote the last detection
time of an electron prior to t0 by te. Under the assumption of a detection at te, we define
the temporal probability density of a subsequent detection to be the two-time waiting
time distribution (WTD) W̃(te, τ). Therefore, the probability for no detection in the
interval [te, t0 + τ ] is given by 1 −

∫ t0+τ−te
0 W̃(te, t)dt. Since we do not know when the

last detection of an electron prior to t0 was, we integrate over all possible times to arrive
at the two-time ITP. This integration is done with a weighting function I(t) denoting
the temporal distribution of detection events:

Π(τ, t0) =

∫ t0

−∞
I(te)

(
1−

∫ t0+τ−te

0
W̃(te, t)dt

)
dte. (1.3)
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I(t) is the average current at time t.
If we differentiate Eq. (1.3) twice with respect to τ , we arrive at

∂2Π

∂τ2
(τ, t0) = −

∫ t0

−∞
I(te)

∂W̃
∂τ

(te, t0 + τ − te)dte. (1.4)

Similarly, taking a mixed derivative, we get

∂2Π

∂t0∂τ
(τ, t0) = −I(t0)W̃(t0, τ)−

∫ t0

−∞
I(te)

T

〈τ〉
∂W̃
∂t0

(te, t0 + τ − te)dte

= −I(t0)
〈τ〉
T
T
〈τ〉W̃(t0, τ) +

∂2Π

∂τ2
(τ, t0). (1.5)

In the second line, we have inserted a factor of unity. T /〈τ〉 is the average cur-
rent integrated over one period, so that I(t0)〈τ〉/T becomes a dimensionless probability
distribution that integrates to one. We now recognise I(t0)〈τ〉W̃(t0, τ)/T as the joint
probability of a detection at t0 and the next detection at t0 + τ . The waiting time dis-
tribution is now defined as the probability for the next detection at t0 + τ regardless of
the time t0. We therefore only have to integrate this quantity over all possible times,
arriving at the relation

W(τ) =
〈τ〉
T

∫ T
0

(
∂2Π

∂τ2
(τ, t0)− ∂2Π

∂t0∂τ
(τ, t0)

)
dt0, (1.6)

which is automatically normalised such that
∫∞

0 W(τ)dτ = 1. For a periodically driven
system, the ITP must itself be periodic in its second argument t0, so in this case the
second term in Eq. (1.6) drops out. Thus, Eq. (1.1) with Π(τ) defined as in Eq. (1.2)
follows.

1.3.1. Stationary conductors

Next, we evaluate the ITP for the outgoing many-body state of the scattering problem.
Since all relevant energies are close to the Fermi energy, we can linearise the dispersion
relation around the Fermi level, Ek = ~vFk, such that all electrons scattered into the
right lead propagate with the Fermi velocity vF towards x0. The probability of finding
no charges at x0 in the temporal interval [t0, t0 + τ ] is then equal to the probability of
finding no charges in the spatial interval [x0, x0 + vF τ ] at time t0 + τ . We thus define
the single-particle projection operator

Q̂τ =

∫ x0+vF τ

x0

dx |x〉〈x| (1.7)

which measures the probability of finding a given particle in the spatial interval [x0, x0 +
vF τ ] [Hassler et al., 2008; Albert et al., 2012]. The complementary projector 1 − Q̂τ
similarly measures the probability of not finding the particle. To evaluate the ITP for
the outgoing many-body state we proceed with a general second-quantized formulation
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by introducing the operators b̂(†)α (E) which annihilate (create) electrons in an outgoing
state of lead α = L,R at energy E. We may then write

Q̂τ =
∑
E,E′

∫ x0+vF τ

x0

dxϕ∗
R,E′

(x)ϕR,E(x)b̂†R(E)b̂R(E
′
), (1.8)

where ϕR,E(x) = 〈x| b̂†R(E) |0〉 and |0〉 is the vacuum.
The corresponding many-body operator that measures the probability of not finding

any particles in the spatial interval is the normal-ordered exponential of −Q̂τ , see e. g. the
presentations by Vyas and Singh [1988]; Levitov et al. [1996]; Saito et al. [1992]. The
ITP is then

Π(τ) =
〈

:e−Q̂τ :
〉
τ
, (1.9)

with : . . . : denoting normal-ordering of operators and the expectation value is taken with
respect to the outgoing many-body state evaluated at the time t0 + τ . Equation (1.9) is
a powerful formal result. It is also of practical use as it can be applied in a wide range of
problems. Below, we consider non-interacting electrons, but Eq. (1.9) may equally well
form the basis of a theory of WTDs in interacting systems. For stationary scattering
problems, Eq. (1.9) reduces to the first-quantized result

Π(τ) =

〈
N⊗
i=1

[1− Q̂τ ]

〉
t0+τ

(1.10)

by Albert et al. [2012] with the expectation value taken with respect to a time-evolved
Slater determinant describing N particles.

In Eq. (1.8), the creation and annihilation operators for the electrons in the outgoing
states appear. Using the scattering matrix approach [Blanter and Büttiker, 2000; Lesovik
and Sadovskyy, 2011], we can map these operators onto linear combinations of operators
of incoming electrons. These are assumed to be in thermal equilibrium, allowing us to
evaluate averages as in Eq. (1.9). The operators of the outgoing states are expressed in
terms of the operators of the incoming states as

b̂α(E) =
∑
β

Sαβ âβ(E) (1.11)

Inserting this relation into Eq. (1.9), the ITP can be written in terms of the operators
âβ(E) for the incoming states. The evaluation of the ITP then amounts to calculating
equilibrium averages of linear combinations of operators for the incoming states âβ(E).

We consider applying a constant voltage eV to the left lead, while the right lead remains
grounded. For now, we are only interested in the waiting times between particles above
the Fermi level and explicitly consider only the contribution of the states in the voltage
window [EF , EF + eV ]. (A discussion of the question if this corresponds to any physical
measurement is the subject of chapter 3.)
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Evaluating Eq. (1.9) with Eq. (1.11) and restricting to particles scattered from above
the Fermi level of the left reservoir to the right one, we arrive at (see Appendix B)

Π(τ) = det(1−Qτ ) (1.12)

where the single-particle matrix elements of Qτ,t0 are

Qτ,t0(E,E
′
) = S∗RL(E)SRL(E

′
)Kτ (Em, E

′
n)Θ(−E)Θ(−E′) (1.13)

having introduced the kernel

Kτ (E,E
′
) = 2e−iqvF τ/2 sin(qvF τ/2)/q (1.14)

with q = (E − E′)/~vF [Hassler et al., 2008; Albert et al., 2012].

1.3.2. Periodically driven conductors

Single-particle emitters such as mesoscopic capacitors or the QPC in the recent experi-
ment by Dubois et al. [2013b] demonstrating clean electron excitations by applying volt-
age pulses can be described as mesoscopic scatterers driven with frequency Ω = 2π/T .
Our next goal is to evaluate the ITP for these systems using Eq. (1.9).
To this end, Floquet scattering theory provides us with a convenient framework [Moskalets

and Büttiker, 2002; Moskalets, 2011]. The scatterer is described by the Floquet scatter-
ing matrix S whose matrix elements Sαβ(En, E) with En = E+n~Ω are the amplitudes
for an in-coming electron in lead β with energy E to scatter into lead α having absorbed
(n > 0) or emitted (n < 0) |n| energy quanta of size ~Ω. The generalisation of the formal-
ism presented in the previous subsection for the case of static conductors to periodically
time-dependent systems is now straightforward. The operators for the outgoing states
are now related to the incoming operators via the Floquet scattering matrix [Moskalets
and Büttiker, 2002; Moskalets, 2011],

b̂α(E) =
∑
β

∑
En

Sαβ(E,En)âβ(En). (1.15)

A constant or time-dependent voltage bias between leads can always be gauged away at
the expense of a time-dependent scattering phase, thus allowing us to treat the plethora
of different devices on the same footing.
Eq. (1.12) now becomes

Π(τ, t0) = det(1−Qτ,t0) (1.16)

with

Qτ,t0(E,E
′
) =

∞∑ ∞∑
m=−bE/~Ωc
n=−bE′/~Ωc

S∗RL(Em, E)SRL(E
′
n, E

′
)×Kτ,t0(Em, E

′
n)Θ(−E)Θ(−E′)

(1.17)
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EF+eV (t) EF

T (t)

V (t)

QPC
vF τ
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t

Figure 1.2.: Driven quantum point contact. Lorentzian-shaped voltage pulses V (t) with
period T generate a train of clean single-electron excitations (levitons) above
the Fermi level EF . The levitons propagate with the Fermi velocity vF
towards a quantum point contact (QPC) whose transmission T (t) can be
controlled. We are interested in the distribution of waiting times τ between
transmitted electrons. Reflected (missing) levitons are indicated by dashed
lines. ([Dasenbrook et al., 2014], (C) 2014 American Physical Society.)

and the kernel Kτ,t0(E,E
′
) = 2eiqvF (t0−τ/2) sin(qvF τ/2)/q with q = (E − E′)/~vF . In

deriving Eq. (1.17), we concentrated again on situations where all particles scattered
into the right lead originate from the left lead (see also Appendix C). The Heaviside-
Θ-functions are inserted into the equations by hand for now in order to filter out the
Fermi sea. In contrast to the determinant in Eq. (1.12), the determinant is now taken
over energies in the range [0, EF ] and any voltage can be included as a time-dependent
scattering phase in the Floquet S-matrix.

1.4. Examples

We now turn to the setup depicted in Fig. 1.2, consisting of a QPC connected to source
(left) and drain (right) electrodes. We first apply a periodic voltage V (t) to the left
electrode and later discuss a time-dependent transmission T (t).

1.4.1. Levitons

We consider the periodic application of Lorentzian voltage pulses of unit charge to the
contact. The derivation of the Floquet scattering matrix for this situation is briefly
reviewed in Appendix A. With the Floquet scattering matrix at hand we proceed by
calculating the matrix Qτ,t0 in Eq. (1.17) and the determinant in Eq. (1.16) to find the
WTD.
Figure 1.3a shows WTDs for different pulse widths with the QPC fully open. The

WTDs are all suppressed to zero at τ = 0, independently of the pulse width. This is due
to the fermionic statistics which prevents two electrons from being detected at the same
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Figure 1.3.: Waiting times between levitons. (a) WTDs for levitons with different relative
widths η and the QPC fully open (T = 1). For small widths, a clear peak in
theWTD is observed at the period of the voltage pulses, τ = T , together with
small side peaks. As the pulses start to overlap, the peaks are smeared out.
(b) WTD for levitons with the QPC tuned to half transmission (T = 0.5).
Cycle missing events may now occur as levitons reflect back on the QPC,
giving rise to clear peaks at multiples of the period. We compare exact
results to the approximation in Eq. (1.21) based on a renewal assumption.
([Dasenbrook et al., 2014], (C) 2014 American Physical Society.)

time [Albert et al., 2012]. With sharp pulses, most levitons are separated by one period
of the driving as reflected by the large peak at τ = T . However, although one excitation
is created in each period, the detection of an electron may happen in the (long) tails of
the leviton, such that a period is skipped. This gives rise to the small but visible side-
peaks at multiples of the period as well as the small peak just after τ = 0 and shows that
even a perfect single-electron source will suffer from cycle-missing events. In a quantum
circuit, this information is important to synchronise the arrival of single electrons. As
the pulse width is increased, the peak in the WTD broadens as the waiting time becomes
less regular. Finally, for strongly overlapping pulses, the voltage is essentially constant
and we recover the results for a dc-biased QPC (not shown) [Albert et al., 2012].
We now turn to the experimental situation realized by Dubois et al. [2013b], where the

electronic spin is important. For two independent electronic spin channels, the idle time
probability factorizes as Π(τ) = Π1(τ)2, where Π1(τ) is the ITP for a single electronic
channel. (For the case of correlated channels, see chapter 2.) In this case, the WTD
(dotted line) develops a large peak around τ = 0 corresponding to one electron in each
spin channel being emitted nearly simultaneously. A second peak appears for waiting
times slightly shorter than the period T . This peak corresponds to the waiting time
between the pairs of electrons that are emitted almost periodically with period T .
Figure 1.3b shows the WTD with the QPC tuned to half transmission. Levitons may

now reflect back on the QPC, and cycle-missing events, in which no levitons reach the
right electrode within several periods, are very likely. The cycle-missing events give rise
to clear peaks at multiples of the period.
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Renewal theory

The effect of the QPC can be understood in a simple picture by resolving the WTD with
respect to the number of reflections that have occurred as

W(τ) = TW in
1 (τ) + TRW in

2 (τ) + TR2W in
3 (τ) + . . . . (1.18)

The reflection probability is R = 1− T and the W in
n (τ)’s are the distributions of waiting

times between n + 1 incoming levitons. These are related to the joint probability dis-
tributions W in

n (τ1, . . . , τn) for n successive waiting times between incoming levitons, for
example

W in
2 (τ) =

∫ τ

0
dt1W in

2 (t1, τ − t1). (1.19)

Introducing the Laplace transform W̃(z) =
∫∞

0 dτW(τ)e−zτ , we have

W̃ in
n (z) = W̃ in

n (z, . . . , z). (1.20)

We now make the renewal assumption that successive waiting times are uncorrelated
[Cox, 1962] such that the joint WTDs factorise as W̃ in

n (z, . . . , z) ' [W̃ in
1 (z)]n. We can

then re-sum the geometric series W̃(z) ' TW̃ in
1 (z)

∑∞
n=0[RW̃ in

1 (z)]n as

W̃(z) ' TW̃ in
1 (z)

1−RW̃ in
1 (z)

. (1.21)

The WTD of the incoming levitons, W̃ in
1 (z), is the WTD at full transmission (T = 1)

shown in Fig. 1.3a.
Equation (1.21) provides us with a direct test of the renewal assumption of uncorrelated

waiting times. Reverting it to the time domain, we can compare Eq. (1.21) with the exact
results in Fig. 1.3b. The first peak around τ = T is governed by the term TW in

1 (τ), which
does not depend on the renewal assumption, and good agreement is found. In contrast,
the following peaks are increasingly smeared out under the renewal assumption. This
demonstrates that successive waiting times are correlated: The external driving produces
a quasi-periodic train of incoming levitons. Thus, a waiting time that is shorter (longer)
than the period T will likely be followed by a waiting time that is longer (shorter) than
the period. These correlations, which are responsible for the sharp peaks in Fig. 1.3b,
are omitted under the renewal assumption. We note that the full counting statistics
for this problem is always binomial with success probability T and therefore does not
distinguish between a static voltage and a series of Lorentzian pulses [Ivanov et al.,
1997]. In contrast, the WTD fully captures the influence of the width of the pulses and
of correlations between single-electron emissions, which is crucial information for the
synchronised operation of a quantum device.

1.4.2. Time-varying QPC

We now fix the voltage V (t) = V and instead modulate the transmission probability
periodically in time as T (t) = T0[1 − ε sin(Ωt)]2 [Klich and Levitov, 2009; Zhang et al.,
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Figure 1.4.: Periodically modulated QPC transmission. The WTDs are shifted vertically
for clarity. Oscillations with a period T are superimposed on the WTD for
a static QPC with Tav = 0.4 (black dashed lines). The dotted lines show
the WTDs for spin-1/2 particles, which show a lifting of the suppression at
τ = 0 as well as a damping of the oscillations compared to the spin-less
case (dashed lines). ([Dasenbrook et al., 2014], (C) 2014 American Physical
Society.)

2009]. The average transmission probability is Tav = T0(1 + ε2/2) and the maximal
transmission Tmax = T0(1 + ε)2 must be smaller than unity. The frozen transmission
amplitude from the left to the right lead reads SfRL(E, t) =

√
T (t)e−ieV t/~. For the

Floquet scattering matrix we find in the adiabatic limit

SRL(En, E) =
√
T0[δn,p + iε(δn,p−1 − δn,p+1)/2], (1.22)

assuming for the sake of simplicity that the applied voltage is a multiple of the modulation
quantum, eV = p~Ω, where p is an integer, so that the problem is T -periodic. (The case
qeV = p~Ω with p and q being integers can easily be treated, although the problem
becomes qT -periodic). Apart from the central energy band (the Kronecker delta δn,p)
due to the voltage bias, there are two side bands corresponding to electrons emitting
(δn,p−1) or absorbing (δn,p+1) a modulation quantum.
Figure 1.4 shows the WTD for different modulation frequencies. As we treat the exper-

imentally most relevant case of two independent spin channels, the WTDs do not vanish
for τ = 0, contrary to what happens for spin-less electrons. Compared to the static case,
the external driving introduces new oscillations in the WTD. They are most dominant
for a large oscillation amplitude (blue curve) and show that the modulation regulates the
stream of incoming electrons: Since transmission at the peak of the modulation is more
likely, electrons are most likely spaced by multiples of the period. For small oscillations
however, the presence of the second spin-channel renders these oscillations almost invis-
ible, since the WTD is now dominated by electrons that are transmitted close after each
other, within the same period of the oscillation.
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For weak modulations (ε � 1) and low transmissions (T0 < 1), the determinant in
Eq. (1.16) can be expanded to lowest order in ε and T0. A detailed calculation then
yields

W(τ) ' T0

(
g

(2)
τ̄ (τ)

τ̄
+ε2

[
g

(2)
τ̄Ω (τ)

τ̄Ω
+
g

(2)
τ̄−Ω

(τ)

τ̄−Ω

])
, (1.23)

where g(2)
x (τ) = 1− sin2(πτ/x)/(πτ/x)2 is the two-point correlation function for a static

voltage-biased conductor. The expansion is expected to be valid at short times [Al-
bert et al., 2012]. In Eq. (1.23), time-scales related to the driving τ̄±Ω = h/(eV ± ~Ω)
appear in addition to the time-scale associated with the static voltage, τ̄ = h/eV . Equa-
tion (1.23) is simply a superposition of correlation functions for a static voltage-biased
QPCs with voltages eV and eV ± ~Ω, respectively, reflecting the three energy bands in
Eq. (1.22). Interferences between the bands show up at longer waiting times, leading to
the oscillations with period T in Fig. 1.4.

1.4.3. Mesoscopic capacitor

A different approach to create on-demand single-electron excitations above the Fermi
level is provided by the mesoscopic capacitor. It consists of a small electronic cavity in
the quantum Hall regime with quantized energy levels tunnel-coupled to an edge state.
By varying a top gate potential periodically in time, the energy levels in the dot can
be moved above and below the Fermi level in the edge state. The mesoscopic capacitor
then periodically emits electrons and holes into the nearby channel. This has been
experimentally realized by Fève et al. [2007]; Bocquillon et al. [2013a]. In this section,
we will consider the WTD of a mesoscopic capacitor operated using a non-adiabtic driving
protocol.

Scattering matrix

We now describe the mesoscopic capacitor using non-interacting scattering theory [Moskalets,
2011]. This approach can account for many experimental observations.
The capacitor is shown schematically in Fig. 1.5. Electrons propagate along chiral edge

states that form when a two-dimensional electron gas is subject to a strong magnetic field.
A small loop is tunnel coupled to an edge state via a QPC. The loop constitutes one
plate of the capacitor. The other plate is a top-gate with potential V (t). An electron
travelling along the edge state can either be reflected on the capacitor and continue its
motion along the edge, or it can be transmitted into the capacitor and make several
turns inside the loop before eventually escaping. Since there is only a single incoming
and outgoing channel, the scattering matrix of the capacitor is just a complex number of
unit length which can be obtained by summing up the quantum mechanical amplitudes
for all possible scattering paths.
We first consider the capacitor with a constant top-gate potential V (t) = V0. The
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1. Floquet theory of electron waiting times

Figure 1.5.: The driven mesoscopic capacitor. A small cavity is tunnel coupled to an edge
state (in red) via a quantum point contact with transmission probability T .
By applying a time-dependent voltage V (t) to the top gate of the capacitor
(in grey) the levels of the capacitor are shifted up and down. If a filled level
is moved above the Fermi energy of the external reservoir, the capacitor
can emit an electron into the edge state. The empty level is then refilled
by an electron as the level is moved below the Fermi energy. This leads to
exponential current pulses (in blue) with alternating signs in the outgoing
edge state. ([Hofer et al., 2015], (C) 2015 Elsevier.)

reflection amplitude is then

S(ε) = r − T
∞∑
n=1

rn−1ein(ε−eV0)τ0/~

=
r − ei(ε−eV0)τ0/~

1− rei(ε−eV0)τ0/~
, (1.24)

where r is the reflection amplitude of the QPC (here chosen to be real), T = 1− r2, and
τ0 = `/vF is the time it takes an electron with Fermi velocity vF to complete one turn
in the loop of circumference `. In this case, no (additional) current is generated in the
outgoing edge state.
To generate an AC current, the top-gate potential must be time-dependent. To see

this, it is instructive to consider the density of states of the capacitor without driving

ρ(ε) =
1

2πi
S∗(ε)dS(ε)

dε

=
1

π

∞∑
j=−∞

1
2γ

(ε− eV0 − j∆)2 +
(

1
2γ
)2 . (1.25)

The density of states consists of a series of Lorentzian peaks with spacing ∆ = h/τ0 and
widths

γ = −∆

π
ln
(√

1− T
)
' ∆T

2π
, T � 1. (1.26)
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A time-dependent potential V (t) will shift the positions of the levels. If a filled level is
moved above the Fermi energy, an electron can escape the capacitor and when an empty
level is moved below the Fermi energy, an electron can be absorbed, or equivalently, a
hole be emitted from the capacitor. Moving an energy level periodically above and below
the Fermi energy will thus result in the periodic emission of a single electron followed by a
single hole. If this is done adiabatically, the Lorentzian width of the level determines the
wave-function of the emitted particles and the current consists of a series of Lorentzian
pulses with alternating signs [Keeling et al., 2008]. Experimentally, a square-shaped
potential has been applied to a capacitor with period T and peak-to-peak amplitude
equal to the level spacing ∆ [Fève et al., 2007]. Within one period, the potential has the
form

eV (t) =

{
∆/2 0 < t ≤ T /2
−∆/2 T /2 < t ≤ T

. (1.27)

The current pulses then have the shape of decaying exponentials with alternating signs.
We focus throughout this work on this square-shaped potential.
To describe a periodic potential we use Floquet scattering theory [Moskalets, 2011].

We start by noting that an electron that completes n turns in the capacitor picks up the
phase [Parmentier et al., 2012]

φn(t) =
e

~

∫ t

t−nτ0
V (τ)dτ, (1.28)

upon leaving the capacitor at time t. By substituting this expression for the static phase
(e/~)V0nτ0 in the first line of Eq. (1.24), we obtain the mixed energy-time representation
of the scattering amplitude S(t, ε) for electrons that enter the capacitor with energy ε to
leave it at time t. Since the potential is periodic, V (t) = V (t + T ), we can expand the
scattering phase in a Fourier series as

e−i
e
~
∫ t
0 V (τ)dτ =

∞∑
m=−∞

cme
−imΩt, (1.29)

where Ω = 2π/T is the frequency of the driving. In addition, by Fourier transforming
S(t, ε) as

SF (εn, ε) =
1

T

∫ T
0
einΩtS(t, ε)dt, (1.30)

we obtain the Floquet scattering matrix

SF (εn, ε) =

∞∑
m=−∞

cm+nc
∗
mS(ε−m), (1.31)

where we have defined the energies

εn = ε+ n~Ω. (1.32)
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Equation (1.31) is valid for an arbitrary periodic top-gate potential V (t) expressed in
terms of its Fourier components cm. With this expression one may calculate the time-
dependent current or the finite-frequency noise of the capacitor [Moskalets, 2011], or the
ITP using Eq. (1.16).
The mesoscopic capacitor works best as a single-electron source if the density of states

is symmetric around the Fermi energy. In this case, an analytic expression for the Floquet
scattering matrix has been derived by Moskalets et al. [2013]. In addition, the charge
relaxation resistance

Rq =
h

e2

(
1

T
− 1

2

)
' h

e2T
, T � 1 (1.33)

equals the resistance of the QPC for small transmissions [Parmentier et al., 2012]. By
contrast, the capacitance becomes independent of the transmission

Cq =
e2

∆
. (1.34)

The dwell (or relaxation) time of the capacitor reads

τD = RqCq '
h

T∆
=
τ0

T
. (1.35)

The capacitor is expected to operate as a nearly perfect single-electron emitter if the
dwell time is (much) shorter than the period, τD � T . In this case, a single electron and
a single hole should be emitted in almost every cycle. However, even under these optimal
conditions, there can be noise at finite frequencies associated with the uncertainty of the
emission time within a period and the shape of the wave packets. This type of noise has
been investigated theoretically and experimentally by Mahé et al. [2010]; Albert et al.
[2010]; Parmentier et al. [2012].
If the QPC transmission is too low, the dwell time can become comparable to the

period. In this case, cycle-missing events may occur, where the capacitor fails to emit an
electron within a period or an empty level is not refilled. An electron and a hole will then
be missing from the otherwise periodic stream of particles. Several methods have been
employed to assess the accuracy of the mesoscopic capacitor as a single-electron source.
These include analysing the finite-frequency noise [Moskalets et al., 2008; Parmentier
et al., 2012; Moskalets, 2013] or the full counting statistics of emitted charge [Albert
et al., 2010]. Instead, we here analyse the WTD.

Results

The numerical calculations are demanding. We discretize the kernel in the energy win-
dows [−n~Ω,−(n + 1)~Ω] with n ∈ N using a five-point Gauss-Legendre quadrature
rule following a recently developed method by Bornemann [2010] (see Appendix D) to
evaluate Fredholm determinants. To calculate the matrix Qts,te , we have to sum over all
Floquet scattering amplitudes. We find that we can cut off the summation with about
nmax ≈ 2∆/(~Ω) amplitudes. This is the maximum number of energy quanta that a scat-
tered particle can absorb or emit. The determinant is then taken over all the energies
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Figure 1.6.: Floquet calculations of the WTD. Results are shown for different values of
the dwell time τD. The QPC transmission is T = 0.2. The results agree very
well with those obtained from a wave packet approach. ([Hofer et al., 2015],
(C) 2015 Elsevier.)

in the nmax compartments. Finally, we integrate numerically the ITP over one period of
the driving and evaluate the WTD according to Eq. (1.1).
Figure 1.6 shows WTDs for the mesoscopic capacitor obtained using Floquet scattering

theory. For τD � T , the central peak at the period of the driving is clearly reproduced
with small but visible satellite peaks at multiples of the period. As the dwell time is
increased by lowering the level spacing ∆, the peaks become smoother and less sharp
compared to the wave packet approach. This happens as the broadened energy levels
start to overlap.
The results can be compared to those based on a wave packet approach [Hofer et al.,

2015; Albert et al., 2011], where the WTD depends only on the ratio of the dwell time
over the period. The dwell time is given by the product of the level spacing and the
QPC transmission according to Eq. (1.35). By contrast, in the full scattering problem
the level spacing and the transmission are independent parameters which thus provide
an additional time scale in the problem. Indeed, a calculation of the finite-frequency
noise of the driven capacitor Parmentier et al. [2012] has shown that the noise vanishes
at measurement frequencies that are higher than the level spacing, unlike what is found
based on the rate equation description.
With this in mind, we show in Fig. 1.7 distributions of waiting times for a fixed dwell

time, but with different transmissions of the QPC. As the transmission is increased, the
energy levels of the capacitor are broadened and the peaks in the WTD get smeared out.
In addition, the peaks at multiples of the period are reduced, as it is increasingly likely
that the capacitor will emit an electron in each period. Even with a large transmission,
the mesoscopic capacitor seems to function well as a single-electron emitter. In the
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Figure 1.7.: Floquet calculations of the WTD for different QPC transmission. The dwell
time is τD = 0.4T . The different curves have been shifted vertically for the
sake of better visibility. ([Hofer et al., 2015], (C) 2015 Elsevier.)

extreme case of full transmission, the capacitor consists merely of an elongation of the
edge state and the level quantization is completely lost. It may then happen that more
than one electron is lifted above the Fermi level within one period, giving rise to the
satellite peak at τ ≈ T /4, similarly to what has been found for Lorentzian-shaped voltage
pulses (Fig. 1.3a) [Dasenbrook et al., 2014; Albert and Devillard, 2014].

1.5. Conclusions

In this chapter, we have presented a Floquet scattering formalism to calculate waiting
time distributions (WTDs) for mesoscopic conductors with an external periodic time-
dependence. The WTD is related to the idle time probability, the probability for no
charge transfers in a certain time interval τ . The idle time probability for electrons
above the Fermi level can be expressed as a compact determinant formula involving the
Floquet scattering matrix of the system. We have applied our formalism to a quantum
point contact driven by Lorentzian voltage pulses, a statically biased quantum point
contact whose transmission is periodically modulated in time, and a driven mesoscopic
capacitor acting as a single-electron source. In all cases, the external driving period
provides a new time scale that appears in the WTDs.
The shape of the WTDs provides information about the shape of the electron wave

packets and the properties of the scatterer. If we neglect correlations between subsequent
waiting times, the effect of a finite transmission of the QPC can be understood by resolv-
ing the WTD with respect to the number of reflections that have occurred, and the WTD
at finite transmission can be obtained by a Laplace transform technique from the WTD
at unit transmission. In the following section, we will further investigate correlations
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between electron waiting times.
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2. Correlations between electron waiting
times

2.1. Introduction

So far, we have focused on the distribution of individual electron waiting times. Such
distributions, however, do not address the question of correlations between subsequent
waiting times. One may ask if the observation of one waiting time will affect the following
waiting time. Some results have already indicated that subsequent electron waiting times
indeed are correlated, see e. g. the discussion of renewal theory in Sec. 1.4.1. However, to
fully answer this question, a theory of joint WTDs is needed. Such a theory is provided
in this chapter.
Figure 2.1 shows an example of a joint WTD. Using a method that we develop in this

chapter, we have calculated the joint distribution of waiting times W(τ1, τ2) between
electrons transmitted through a fully open conduction channel. Albert et al. [2012];
Haack et al. [2014] showed that the distribution of individual electron waiting times in
this case is well-approximated by the Wigner-Dyson distribution

WWD(τ) =
32τ2

π2τ̄3
e−4τ2/πτ̄2

, (2.1)

with the mean waiting time

τ̄ =
h

eV
, (2.2)

determined by the applied voltage V . If subsequent waiting times are uncorrelated,
the joint WTD in Fig. 2.1 should factorise as W(τ1, τ2) = WWD(τ1)WWD(τ2). Such a
factorisation is referred to as a renewal property [Cox, 1962]. However, as we find, the
joint WTD in Fig. 2.1 cannot be written in this simple form. This demonstrates that
subsequent electron waiting times are correlated. In fact, based on the analogy between
WTDs and level spacing statistics exploited by Albert et al. [2012]; Haack et al. [2014],
the joint WTD is expected to take the form [Herman et al., 2007]

WWD(τ1, τ2) =
4b4

π
√

3τ̄6
τ2

1 τ
2
2 (τ1 + τ2)2e−

2b
3τ̄2 (τ2

1 +τ2
2 +τ1τ2), (2.3)

with b = 729/(128π). Figure 2.1 shows that our results are well-approximated by this
generalised Wigner-Dyson distribution, which cannot be factorised into products of the
WTD in Eq. (2.1).
Our method for calculating joint WTDs further exploits the relation between WTDs

and the idle time probability (ITP) [Albert et al., 2012; Thomas and Flindt, 2013; Dasen-
brook et al., 2014]. We saw that for stationary processes, the WTD can be expressed as
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Figure 2.1.: Joint WTD for a fully open conduction channel. The two side panels show the
joint WTD along the cuts indicated with coloured dashed lines in the main
panel. The joint WTD is well-captured by the generalised Wigner-Dyson
distribution (dashed lines) in Eq. (2.3). The dotted lines in the side panels
show the waiting time distributions if there were no correlations between
subsequent waiting times. Exact results have been obtained using Eq. (2.29).
([Dasenbrook et al., 2015], (C) 2015 American Physical Society.)

the second derivative of the ITP with respect to τ . Each derivative corresponds to the
detection of an electron. Building on this principle, we obtain WTDs for detections in
different channels and joint distributions of successive electron waiting times.
To illustrate our formalism, we consider a chiral setup where two incoming conduction

channels are partitioned on a quantum point contact (QPC), Fig. 2.2. One or both inputs
may be voltage biased, either by a static voltage or with a series of Lorentzian-shaped
voltage pulses [Levitov et al., 1996; Ivanov et al., 1997; Keeling et al., 2006] as recently
realised experimentally [Dubois et al., 2013b; Jullien et al., 2014]. We calculate the joint
WTD and discuss correlations between electron waiting times together with WTDs for
detections in different channels. Our findings generalise the results presented in chapter 1
and provide insights into the correlations between subsequent electron waiting times in
phase-coherent conductors.

2.1.1. Two-time ITP

For the purpose of this chapter, it is useful to adopt a slightly different notion of the idle
time probability, in that it depends on the starting and ending time of the measurement
interval (instead of the starting time and the duration as in chapter 1). Thus, Π(ts, te) is
the probability of observing no transmitted electrons in the time interval [ts, te] at a point
x0 after the scatterer. The operator that counts the number of particles, Eq. (B.13), now
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2.1. Introduction

Figure 2.2.: Chiral setup with electrons in two incoming channels being partitioned on
a QPC. A (time-dependent) voltage can be applied to the contacts of the
incoming channels. The QPC has transmission T and reflection R. The
transmitted and reflected electrons are detected in the outgoing channels at
different positions x = t

s/e
A/B with vF = 1. ([Dasenbrook et al., 2015], (C)

2015 American Physical Society.)

becomes

Q̂ =

∫ vF t
e

vF ts
b̂†(x)b̂(x)dx, (2.4)

where b̂†(x) and b̂(x) are the creation and annihilation operators of electrons at position
x. To keep the notation simple, we have omitted the explicit time arguments of Q̂. We
will later on make use of the relations

∂tsQ̂ = −b̂†(ts)b̂(ts),
∂teQ̂ = b̂†(te)b̂(te),

(2.5)

setting vF = 1 throughout the rest of this chapter.
As before, the ITP can be expressed as the expectation value of the normal-ordered

exponential of −Q̂,

Π(ts, te) =
〈

: e−Q̂ :
〉
, (2.6)

where the expectation value is taken with respect to the many-body state at t = 0.
To obtain a unidirectional process, we once again limit our analysis to particles in the
transport window above the Fermi energy. We note that any time evolution of the many-
body state from t = 0 to t = to can be absorbed into a shift of the spatial interval (vF = 1)
from [ts, te] to [ts + to, te + to]. With this in mind, we always evaluate the expectation
value at t = 0 and treat time-dependent systems by shifting the integration interval in
the definition of Q̂ in Eq. (2.4).

In general, the ITP is a two-time quantity depending both on ts and te. However, for
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2. Correlations between electron waiting times

stationary processes it depends only on the time difference τ = te − ts such that

Π(ts, te) = Π(te − ts) = Π(τ), (2.7)

just as for the WTD.

2.1.2. First passage time distribution

To illustrate the correspondence between derivatives of the ITP and detection events, we
first show how one can obtain the first passage time distribution F(ts, te) from the ITP.
The first passage time distribution is the probability density for the first detection of a
particle to occur at the time te, given that observations were started at the earlier time ts.
Such a distribution has recently been evaluated for electron transport through a quantum
dot, with ts being the time at which the external electronic reservoirs are connected to
the quantum dot [Tang et al., 2014]. To obtain the first passage time distribution from
the ITP, we notice that the ITP may be expressed as

Π(ts, te) = 1−
∫ te

ts
F(ts, t)dt. (2.8)

Here, the integral equals the probability that at least one electron is observed in the
interval [ts, te]. Now, by differentiating the ITP with respect to te, we obtain

F(ts, te) = −∂teΠ(ts, te). (2.9)

Furthermore, using Eqs. (2.5) and (2.6) we find

F(ts, te) =
〈
b̂†(te) : e−Q̂ : b̂(te)

〉
. (2.10)

Equation (2.10) is very similar to Eq. (2.6), however, the expectation value of the normal-
ordered exponential is taken with respect to the many-body state with a particle removed
at time te. This removal constitutes the detection event in the definition of the first
passage time distribution.
A related quantity is the probability density F(ts, te) for detecting a particle at ts with

no subsequent detections until the time te. Following the line of arguments above, we
readily find

F(ts, te) = ∂tsΠ(ts, te) (2.11)

and
F(ts, te) =

〈
b̂†(ts) : e−Q̂ : b̂(ts)

〉
. (2.12)

We see that the expectation value of the normal-ordered exponential is now taken with
respect to the many-body state with a particle removed at the initial time ts. For
stationary problems, the first passage time only depends on the time difference τ ≡ te−ts
and we have

F(τ) = F(τ) = −∂τΠ(τ), (2.13)
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as a direct consequence of Eq. (2.7).
The derivations of Eqs. (2.9,2.10,2.11,2.12) illustrate an important principle that we

will use in the following: By differentiating the ITP with respect to its time arguments,
pairs of operators are pulled down from the exponential function corresponding to de-
tection events at the beginning or at the end of the interval [ts, te].

2.1.3. Two-time WTD

We next apply our redefinition of the two-time ITP to the WTD. We define the WTD to
be the conditional probability density of detecting a particle at a time te given that the
last detection occurred at the earlier time ts. The joint probability density of detecting
a particle both at ts and te with no detection events in between is equal to the WTD
multiplied by the probability density of a detection at ts. The joint probability density
can be obtained by differentiating the ITP with respect to both the initial time ts and
the final time te. Moreover, for uni-directional charge transport, the probability density
of a detection at ts is simply the average particle current I(ts) at time ts. We then find

I(ts)W(ts, te) = −∂te∂tsΠ(ts, te), (2.14)

where the minus sign comes together with the partial derivative with respect to te,
c.f. Eq. (2.9). Using Eq. (2.6) we now arrive at the second quantized expression

I(ts)W(ts, te) =
〈
b̂†(te)b̂†(ts) : e−Q̂ : b̂(ts)b̂(te)

〉
. (2.15)

For stationary processes, the average particle current equals the inverse mean waiting
time, I(ts) = 1/〈τ〉. Combining Eqs. (2.7) and (2.14), we then arrive at Eq. (1.1). For
conductors driven with period T , we define a one-time ITP by averaging over all possible
starting times ts, keeping the interval τ ≡ te − ts fixed, as in Eq. (1.2). This yields the
relevant ITP if the observation starts at a random time. Employing Eqs. (2.13), (1.1),
we obtain one-time distributions which are independent of the detection time of the first
electron. For the first passage time distribution, we find

F(τ) =
1

T

∫ T
0
F(ts, ts + τ)dts

=
1

T

∫ T
0
F(ts, ts + τ)dts,

(2.16)

and for the WTD

W(τ) =
〈τ〉
T

∫ T
0
I(ts)W(ts, ts + τ)dts. (2.17)

Figure 2.3 shows the ITP, the first passage time distribution, and the WTD for a
static voltage as well as for a train of voltage pulses. Interestingly, the two ITPs are
nearly indistinguishable despite the very different voltages applied to contact 1. In both
cases, the ITP decays monotonously with time from Π(0) = 1 at τ = 0. Turning next
to the first passage time distribution, some structure starts to be visible and the two
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2. Correlations between electron waiting times

Figure 2.3.: Idle time probability (ITP), first passage time distribution, and waiting time
distribution (WTD). (a) Results for a static voltage applied to contact 1,
V1(t) = V , and no voltage applied to contact 2, V2(t) = 0. The QPC is tuned
to T = 0.3. We consider the electrons that are transmitted into outgoing
channel B. The time is given in units of τ̄ = h/(eV ). (b) Results for a series
of Lorentzian-shaped voltage pulses of unit charge applied to contact 1, see
Eq. (A.1). The width of the pulses is Γ = 0.02T . The time is given in units
of the period of the pulses T . ([Dasenbrook et al., 2015], (C) 2015 American
Physical Society.)

voltage cases can now be distinguished. Finally, considering the WTDs, we see how they
clearly differentiate between the two voltages. For the static voltage, the electronic wave
packets are strongly overlapping and the WTD is rather structureless. By contrast, the
application of Lorentzian-shaped voltage pulses leads to the emission of well-localised
electron wave packets with a small overlap, giving raise to clear peaks at multiples of the
period of the driving T . For a fully transmitting QPC (T = 1), the WTD essentially
consists of a single peak around τ ' T (see the results of chapter 1). For a QPC with a
finite transmission, as in Fig. 2.3, levitons may reflect back on the QPC, giving rise to the
series of peaks in the WTD. We note that the period and the width of the Lorentzian-
shaped pulses, which determine the overall structure of the WTD, are easily tunable in
an experiment.

2.2. Generalized idle time probability

We now generalise the concepts from the last section to an arbitrary number of channels
and to an arbitrary number of successive waiting times. To this end, we introduce a
generalised ITP from which we obtain the joint WTDs as well as other distributions. In
the following section we illustrate our formalism with specific examples.
We consider a scatterer which is connected to Ni incoming and No outgoing channels.

The generalised ITP is the probability that no particles are detected in any of the outgoing
channels during the channel-dependent time-intervals [tsα, t

e
α] (Fig. 2.2). The generalised
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ITP reads
Π(ts1, t

e
1; . . . ; tsNo , t

e
No) =

〈
: e−

∑No
α=1 Q̂α :

〉
, (2.18)

having defined projectors for each channel

Q̂α =

∫ teα

tsα

b̂†α(x)b̂α(x)dx. (2.19)

The evaluation of the generalised ITP is analogous to the evaluation of the single-channel
ITP, and discussed in Appendix C. The introduction of individual starting and ending
times for each channel allows us to compute a variety of WTDs. In each channel, the
idle time interval [tsα, t

e
α] can be modified and detection events can be inserted by dif-

ferentiation with respect to the time arguments. The single-channel ITP can always be
recovered by letting the length of the intervals in all other channels go to zero

Π(tsα, t
e
α) = Π(tsα, t

e
α; {tsi 6=α = tei 6=α}), (2.20)

where the curly brackets imply ∀ i. The operators Q̂α in Eq. (2.19) count the num-
ber of particles in the spatial intervals [tsα, t

e
α]. For this reason, the generalised ITP is

closely related to the joint particle number statistics in spatial sub-regions [Shelankov
and Rammer, 2003; Rammer and Shelankov, 2012].

2.2.1. Multiple channels

For the sake of simplicity, we consider only two outgoing channels labelled as A and B.
The generalisation to more channels is straightforward. With two outgoing channels, the
ITP has four time arguments Π(tsA, t

e
A; tsB, t

e
B). We consider two different types of WTDs:

The two-channel WTD is the distribution of waiting times between detections in either
of the two channels. The cross-channel WTD is the distribution of waiting times between
a detection in one channel and the next detection in the other channel. These WTDs
generally have two time arguments but become one-time quantities for driven systems
by averaging over a period following Eq. (2.17).
We first discuss the two-channel WTD. This is the conditional probability density of

detecting an electron at time te in either channel, given that the last prior detection
happened at the earlier time ts in any of the two channels. This WTD follows from the
generalised ITP by differentiation with respect to the time arguments

I(ts)WAB(ts, te) = −∂ts∂teΠ(ts, te; ts, te), (2.21)

where we have set ts = tsA = tsB and te = teA = teB, since we do not differentiate between
the two channels, and I = IA + IB is the sum of the particle currents in each channel. If
the two channels are uncorrelated, the ITP factorises as [Haack et al., 2014]

Πuc(tsA, t
e
A; tsB, t

e
B) = ΠA(tsA, t

e
A)ΠB(tsB, t

e
B), (2.22)
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2. Correlations between electron waiting times

where Πα is the ITP in channel α and the superscript uc stands for uncorrelated. In this
case, the two-channel WTD takes on a particularly illuminating form

I(ts)Wuc
AB(ts, te) = IA(ts)WA(ts, te)ΠB(ts, te)

+ FB(ts, te)F̄A(ts, te) +A↔ B.
(2.23)

The first term represents contributions where both detections happen in channel A, while
no detections occur in channel B. The second term corresponds to contributions where
the first detection happens in channel A at time ts and the next detection occurs in
channel B at time te. Finally, the term A ↔ B indicates that the roles of the two
channels can be interchanged.
In contrast to the single-channel WTD, the Pauli principle does not force the two-

channel WTD to vanish at short times (detections in the two channels can occur simul-
taneously). Evaluating Eq. (2.21) at ts = te, we find

WAB(ts, ts) = 2
〈ÎA(ts)ÎB(ts)〉

I(ts)
, (2.24)

showing that the two-channel WTD at ts = te is (twice) the coincidence rate in the two
channels divided by the total particle current at ts. The factor of two accounts for the
fact that either of the two detections can be interpreted as being the first one. For two
uncorrelated channels, the expectation value factorises and we find

Wuc
AB(ts, ts) = 2

IA(ts)IB(ts)

I(ts)
, (2.25)

where Iα is the average particle current in channel α.
Next we discuss the cross-channel WTD. This is the conditional probability density

of waiting until te for the first detection in channel B to happen after a detection has
occurred in channel A at the earlier time ts. We note that additional detections may
occur in channel A after the time ts. The cross-channel WTD follows from the ITP as

IA(ts)WA→B(ts, te) = − ∂tsA∂teΠ(tsA, t
s; ts, te)

∣∣
tsA=ts

=
〈
b̂†A(ts)b̂†B(te) : e−Q̂B : b̂B(te)b̂A(ts)

〉
.

(2.26)

We set tsA = teA = ts after taking the derivatives since additional detections in channel
A may occur following the first detection. For two uncorrelated channels, we recover the
first passage time distribution in channel B since the detection in channel A only defines
ts without influencing channel B

Wuc
A→B(ts, te) = FB(ts, te). (2.27)

For ts = te, we again obtain the coincidence rate in the two channels. However, this
time without the factor of two since the event in channel A by definition is the first one

WA→B(ts, ts) =
〈ÎA(ts)ÎB(ts)〉

IA(ts)
. (2.28)

For uncorrelated channels this expression reduces to IB(ts) in accordance with Eq. (2.27).
In the following section, we evaluate the two WTDs and show how waiting times may

be correlated.
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2.2. Generalized idle time probability

2.2.2. Multiple times

We are now in position to formulate our theory of joint WTDs. The joint distribution of
n waiting times is the conditional probability to find a given sequence of n waiting times.
As we will see, the joint WTD can be obtained from the multi-channel ITP defined in
Eq. (2.18) by introducing auxiliary channels. For the sake of brevity, we consider the
case of just two successive waiting times in a single channel. The extension to several
channels or waiting times is straightforward.
To find the joint WTD, we consider the two-channel ITP Π(tsα, t

e
α; tsβ, t

e
β), where β

denotes an auxiliary channel. Eventually, we set tsβ = teβ = tm and α = β and skip the
channel index. Specifically, we express the joint WTD as

I(ts)W(ts, tm, te) = ∂tsα∂teα∂teβ Π(tsα, t
e
α; tsβ, t

e
β)
∣∣
tsβ=teβ=tm

=
〈
b̂†(ts)b̂†(tm)b̂†(te) : e−Q̂ : b̂(te)b̂(tm)b̂(ts)

〉
,

(2.29)

where the operator Q̂ is given in Eq. (2.4). Using the auxiliary channel a detection event
is inserted at time tm between the starting ts and the end time te of the interval [ts, te]. In
a similar way, additional detection events within the interval can be introduced. Equation
(2.29) is a central result for the joint distribution of two successive electron waiting times
in a single conduction channel. Based on this expression we calculated the joint WTD
in Fig. 2.1 and we will make further use of it in the following section, where we illustrate
our method with specific examples.
For a driven conductor, a two-time WTD is obtained by integrating over the period
T , cf. Eq. (2.17),

W(τ1, τ2) =
〈τ〉
T

∫ T
0
I(ts)W(ts, ts + τ1, t

s + τ1 + τ2)dts.

In addition, we recover the standard WTD by integrating over the time at which the last
detection event occurred

W(ts, tm) =

∞∫
tm

dteW(ts, tm, te). (2.30)

As discussed in Sec. 1.4.1, the joint WTD appears in the expansion of the WTD for a
QPC. Returning to the results in Fig. 2.1, the ITP reads

Π(ts, te) =
〈

: e−TQ̂1 :
〉

=
〈

: e(R−1)Q̂1 :
〉
, (2.31)

where Q̂1 acts on the incoming channel 1. We can formally expand this expression in
either T or R [Albert et al., 2012; Dasenbrook et al., 2014]. To zeroth order in T , the
ITP is unity as no electrons are transmitted through the QPC. The n’th order term in
the expansion yields the reduction of the ITP due to the probability that n particles were
transmitted through the QPC. To zeroth order in R, the ITP equals the ITP for a fully
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transmitting QPC. The n’th order term in the expansion in R equals the increase in the
ITP due to the probability that n particles were reflected.
Here we perform an expansion in R, and by differentiating the ITP with respect to ts

and te we obtain

W(ts, te) = T

∞∑
n=0

RnW(n)(ts, te) (2.32)

where

W(n)(ts, te) =
1

n!

te∫
ts

dt1 · · · dtnWin(ts, t1, · · · , tn, te) (2.33)

is the WTD given than n reflections on the QPC have occurred andWin(ts, t1, · · · , tn, te)
is the joint WTD for n + 2 detection events in the incoming channel 1. Each term in
the expansion is the probability density for n particles to be reflected (corresponding
to the prefactor Rn) followed by a transmission (corresponding to the prefactor T ).
We integrate over all possible times that the reflections can occur and the factor 1/n!
corrects for multiple counting of reflections. We see that joint WTDs occur already
in the expansion of the WTD for a QPC. By averaging over ts and making a renewal
assumption, we can recover the results from Sec. 1.4.1.
We now illustrate our formalism for joint WTDs using the setup in Fig. 2.2. First we

consider the partitioning of electrons emitted from one source. In the second example we
discuss an electronic analogue of the Hong-Ou-Mandel interferometer, where electrons
from different input channels interfere on the QPC [Burkard et al., 2000; Ol’khovskaya
et al., 2008; Giovannetti et al., 2006; Jonckheere et al., 2012; Bocquillon et al., 2013a].

2.3. Correlated waiting times

2.3.1. Single-source partitioning

We consider the setup in Fig. 2.2 with contact 2 grounded and contact 1 biased with a
constant voltage or a train of Lorentzian-shaped voltage pulses. Figures 2.3 and 1.3 show
single-channel WTDs for this setup. We now go on to calculate two-channel and joint
WTDs.
The two-channel WTD is the distribution of waiting times between successive electrons

irrespective of the channel in which they are detected. As the QPC merely distributes
the incoming electrons into the two outgoing channels, we expect simply to recover the
WTD of the incoming electrons from channel 1. Indeed, using our formalism we find
from Eq. (2.21) that

I(ts)WAB(ts, te) = −∂ts∂te
〈

: e−Q̂A−Q̂B :
〉

= −∂ts∂te
〈

: e−Q̂1 :
〉
,

(2.34)

where the integrations in the Q̂ operators run from ts to te and I(ts) is the average
current in channel 1. In addition, we have used the scattering matrix to relate Q̂α to
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Figure 2.4.: Joint waiting time distributions for a static voltage. (a) Results for the
voltage V1(t) = V applied to contact 1 and no voltage applied to contact 2,
V2(t) = 0. The QPC is fully transmitting T = 1 and we consider the electrons
that are transmitted into outgoing channel B. The time is given in units of
〈τ〉 = h/(TeV ). (b) Difference ∆W(τ1, τ2) = W(τ1, τ2) −W(τ1)W(τ2) be-
tween exact results and results for uncorrelated waiting times. Positive cor-
relations are indicated with red, while areas of negative correlations are blue.
(c,d) Similar results for a half-transmitting QPC, T = 1/2. ([Dasenbrook
et al., 2015], (C) 2015 American Physical Society.)
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Figure 2.5.: Joint waiting time distribution for levitons. (a) Results for a series of
Lorentzian-shaped voltage pulses of unit charge applied to contact 1. The
width of the pulses is Γ = 0.05T and the QPC is tuned to T = 1/2.
The time is given in units of the period of the pulses T . (b) Difference
∆W(τ1, τ2) = W(τ1, τ2) − W(τ1)W(τ2) between exact results and results
for uncorrelated waiting times. Positive correlations are indicated with red,
while areas of negative correlations are blue. ([Dasenbrook et al., 2015], (C)
2015 American Physical Society.)

Q̂1 combined with the probability conservation condition T + R = 1. For a constant
voltage, the WTD was found to be well-approximated by a Wigner-Dyson distribution
reflecting Fermi correlations between the incoming electrons. For a train of Lorentzian-
shaped voltage pulses, the WTD was found to be peaked around the period of the driving
with small satellite peaks due to the finite overlap of the voltage pulses. As we see here,
the QPC has no effect on the WTD if we consider detections irrespective of the channel
where they happen. This argument only applies if the QPC partitions electrons emitted
by a single source. In that case, detections in the outgoing channels are not statistically
independent, and the suppression of the WTD at τ = 0 remains.
Next, we consider the cross-channel WTD. This is the distribution of waiting times

between a detection in one outgoing channel and the next detection in the other chan-
nel. Since the QPC just randomly partitions the incoming electrons into the outgoing
channels, we expect the cross-channel WTD to equal the single-channel WTD. The cross-
channel WTD is conditioned on the first detection happening in channel A, whereas the
single-channel WTD is conditioned on the first detection happening in channel B. In
either case, the reflection or transmission of the first particle does not influence the par-
ticles that traverse the QPC at a later time. Indeed, within our formalism we readily
find, cf. Eq. (2.26),

WA→B(ts, te) =WB(ts, te)

=
RT

IA(ts)

〈
â†1(ts)â†1(te) : e−TQ̂1 : â1(te)â1(ts)

〉
, (2.35)

having used IA(ts)/R = IB(ts)/T = I(ts).
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For the partitioning of electrons emitted from a single source, we see that the two-
channel WTD and the cross-channel WTD do not provide additional information com-
pared with the WTD itself. This is a direct consequence of the operator proportionality
Q̂A ∝ Q̂B and it does not hold when both contacts emit electrons above the Fermi sea
as we will see in the following example.
We now consider just one of the outgoing channels and calculate the joint probability

distribution of finding two successive waiting times τ1 and τ2 using Eq. (2.29). For
a constant voltage V , the joint WTD at full transmission is shown in Fig. 2.1. As
mentioned in the introduction, the joint WTD is well-approximated by the generalised
Wigner-Dyson distribution in Eq. (2.3). We find that the joint WTD is symmetric with
respect to an exchange of the waiting times, τ1 ↔ τ2. This symmetry implies that
the WTD does not change if we invert the spatial arguments of all the b̂ operators in
Eq. (2.29). The symmetry in the WTD is thus a consequence of the spatial inversion
symmetry of the many-body wave function.
In Fig. 2.4, we show joint WTDs both for full transmission and at half transmission.

To highlight possible correlations, we also show the difference

∆W(τ1, τ2) =W(τ1, τ2)−W(τ1)W(τ2), (2.36)

between the joint WTD and a factorised WTD corresponding to uncorrelated waiting
times [Cox, 1962]. The figure clearly demonstrates that electron waiting times are corre-
lated. The probability to observe a waiting time which is shorter (longer) than the mean
waiting time 〈τ〉 is reduced if the previous waiting time was already shorter (longer)
than the mean waiting time. On the other hand, a short waiting time will likely be
followed by a long waiting time and vice versa. This conclusion holds for both values of
the transmission.
A similar analysis can be carried out for levitons emitted by a train of Lorentzian-

shaped voltage pulses. In Fig. 2.5 we show W(τ1, τ2) and ∆W(τ1, τ2) for levitons inci-
dent on a QPC tuned to half transmission. Again, we observe a symmetry under the
interchange of waiting times due to the spatial inversion symmetry of the fermionic many-
body state. The joint WTD displays a lattice-like structure in contrast to the results
for the dc-biased source in Fig. 2.4. This reflects the regular on-demand nature of the
leviton source. Also here, the probability to observe two short or two long waiting times
after each other is suppressed, while a short (long) waiting time is likely followed by a
long (short) waiting time.
Due to the external driving, the sum of two subsequent waiting times is likely to equal

a multiple of the period. If a particular waiting time is shorter than the average waiting
time, this will not affect the absolute emission time of the next electron. Consequently,
the next waiting time will most likely be longer. Thus, a strong regularity in the absolute
electron emission times leads to strong dependencies of the waiting times on each other.
For the case that the voltage pulses overlap more and more until the limit of a constant
voltage is reached, the regularity in the emission times is provided by the Pauli principle.
Moreover, this effect is independent of the QPC transmission. In the low transmission
regime however (not shown), electron emission becomes increasingly rare and transport
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resembles a Poisson process [Albert et al., 2012]. Correlations between waiting times will
then eventually be negligible.

2.3.2. Hong-Ou-Mandel interferometry

As a second application, we consider the electronic analogue of the Hong-Ou-Mandel
experiment developed in quantum optics [Burkard et al., 2000; Ol’khovskaya et al., 2008;
Giovannetti et al., 2006; Jonckheere et al., 2012; Bocquillon et al., 2013a]. In this case, a
driven on-demand source in each incoming channel emits single electrons onto the QPC
in Fig. 2.2 with a possible time delay ∆τ between the emissions from the two sources.
Such experiments have recently been realised with two mesoscopic capacitors [Bocquillon
et al., 2013a] and two leviton sources [Dubois et al., 2013a]. Here we treat the periodic
emission of levitons onto the QPC.
Figure 2.6a shows the distribution of waiting times between detection events in either

of the two outgoing channels. With zero time delay, incoming levitons anti-bunch on
the QPC and there is a large probability of detecting the two outgoing levitons nearly
simultaneously. The peak in the WTD around the period T corresponds to the waiting
time between the last leviton in one cycle and the first one in the next cycle. Since the
probability of measuring the waiting time between two levitons within one cycle is equal
to the probability of measuring the waiting time between levitons in different cycles, the
areas underneath the two peaks are the same.
In general, for a given time delay ∆τ , we find peaks in the WTD at ∆τ and at T −∆τ ,

corresponding to the waiting times between levitons within the same cycle and the waiting
between levitons in different cycles. In the special case ∆τ = T /2, the two peaks merge
into one, except for a small remaining feature at τ = T . This feature is related to the
satellite peak seen in the WTD for levitons in a single channel with perfect transmission.
The WTD decays strongly for waiting times beyond the period, since all levitons will
be detected independently of the QPC. This reflects the high reliability of the leviton
sources which emit exactly one electron per cycle. This example demonstrates how the
two-channel WTD provides information about the synchronisation of the two sources.
Importantly, this detailed characterisation does not depend on the transmission of the
QPC.
In Fig. 2.6b we turn to the distribution of waiting times between detections in different

channels. This distribution is rather similar to the WTD for a single channel, shown in
the left inset for comparison. Unlike the single-channel WTD, the cross-channel WTD
is not suppressed to zero at τ = 0, since detections can occur simultaneously in the two
channels. For finite delay times between the two sources, the particles can go into the
same outgoing channel, and both WTDs show a peaked structure even for waiting times
larger than the period.
Due to the Pauli principle, two levitons arriving simultaneously at the QPC will go

into different outgoing channels with unit probability, independently of the transmission.
Thus, for zero time delay all results are independent of the QPC transmission T and
reduce to the results for full transmission. As the time delay between the two sources is
increased, the overlap between levitons arriving at the QPC decreases, and simultaneous
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2.3. Correlated waiting times

Figure 2.6.: Distributions of waiting times for a Hong-Ou-Mandel experiment with levi-
tons. Two sources emit levitons of pulse width Γ = 0.05T toward a QPC
with transmission T = 1/2. The tunable time delay between the sources
is denoted as ∆τ . (a) WTD for waiting times between events occurring in
either of the two outgoing channels for different values of the time delay. (b)
WTD for waiting times between detection events in different channels. The
left inset shows the WTD for just a single channel. The right inset shows
the WTD at τ = 0 as a function of the time delay ∆τ between the sources.
([Dasenbrook et al., 2015], (C) 2015 American Physical Society.)

detections in the outgoing channels become increasingly rare. For ∆τ = T /4, the cross-
channel WTD essentially shows four peaks within the first period. The peak at τ = 0 is
a relic of the fermionic anti-bunching due to the finite overlap of the pulses. The peaks
at ∆τ and at T −∆τ are caused by two successive particles entering opposite arms of the
interferometer, while the peak at T corresponds to two successive particles entering the
same arm and the next particle entering the opposite arm. For the maximal detuning
∆τ = T /2, the WTD resembles that of just a single channel.

Due to the Pauli principle the cross-channel WTD of a single source is suppressed for
zero waiting times. By contrast, with two sources we observe a local maximum due to
the anti-bunching of electrons that arrive simultaneously at the QPC. The right inset
of Fig. 2.6b shows the cross-channel WTD at τ = 0 as a function of the time delay,
with a maximum for zero time delay in analogy with the Hong-Ou-Mandel peak found in
the zero-frequency current cross-correlations [Jonckheere et al., 2012; Bocquillon et al.,
2013a].

We see that the two-channel and cross-channel WTDs contain different information
about the emission processes. The two-channel WTD mostly contains information about
the sources alone, in particular their synchronisation. The cross-channel WTD contains
additional information about the QPC and shows more prominent signatures of fermionic
anti-bunching.
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2. Correlations between electron waiting times

2.4. Conclusions

In this chapter, we have developed a general framework for calculating joint WTDs in
electronic multi-channel conductors. The central building block of our formalism is the
generalised idle time probability, i. e. the joint probability for no detections to occur in
the outgoing channels. By calculating the joint WTD for a single conduction channel,
we have explicitly demonstrated that the electron waiting times in coherent conductors
are correlated due to the fermionic statistics encoded in the many-body state.
Drawing on the analogy between random matrices and free fermions, we have shown

that the joint WTD for a fully transmitting conduction channel is well-approximated by
a generalised Wigner-Dyson distribution. In contrast to a renewal process with uncor-
related waiting times, we find that the probability of observing a long (short) waiting
time following a short (long) waiting time is increased, while finding two long or two
short waiting times in succession is less likely. This holds both for electrons coming
from a dc-biased contact and for levitons emitted on top of the Fermi sea by applying
Lorentzian-shaped voltage pulses to the contact.
Correlations between electrons in different outgoing channels also show up in the dis-

tributions of waiting times between detections in different channels. We have defined
multi-channel and cross-channel WTDs and illustrated these concepts for a QPC in a
chiral setup where electrons are injected in either one or both incoming channels. In a
fermionic Hong-Ou-Mandel experiment, where electrons interfere on the QPC, the two-
channel WTD provides information about the synchronisation of the sources, while the
cross-channel WTD shows signatures of the scatterer and the fermionic anti-bunching.
Our formalism as well as the results presented in chapter 1 rely on the ability to detect

single electrons above the Fermi level. In the next chapter, we develop a quantum theory
of a detector capable of measuring the idle time probability.
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3. Electron waiting time clock

3.1. Introduction

In the preceding chapters of this thesis, we have seen how the distribution of electron
waiting times can be a powerful tool to analyse short-time characteristics of quantum
transport processes. Especially for dynamically driven single-electron emitters, the WTD
turns out to be useful to characterise the uncertainty in the emission time and cycle-
missing events. We have also presented a useful framework to calculate WTDs in nonin-
teracting systems using the scattering approach to quantum transport.
While certainly useful, one might have doubts about some aspects of the formalism

presented so far. The relation between the WTD and the ITP given in Eq. (1.1) assumes
that the underlying statistical process can be described as a time series of discrete events.
This assumption might not be justified in a mesoscopic conductor. Furthermore, the
Fermi sea electrons should play a profound role in contributing to short-time and finite-
frequency observables, and the WTD would certainly necessitate measurements on short
time scales. The Fermi sea has so far simply been disregarded, and the focus was on a
theory for an empty band consisting of just a beam of electrons without an underlying
Fermi sea. It is interesting to investigate whether the theory is still applicable in the case
of a “normal” conductor where a Fermi sea is present.
In some Coulomb-blockade structures, the tunneling of individual electrons can be

monitored in real-time [Fujisawa et al., 2006; Gustavsson et al., 2006, 2009; Flindt et al.,
2009; Ubbelohde et al., 2012; Maisi et al., 2014], and the electron waiting time is clearly
defined as the time that passes between two subsequent detections of a tunneling event.
By contrast, in mesoscopic conductors, where the electronic transport is phase-coherent,
the concept of electron waiting times is more subtle. In particular, it is not immediately
obvious what physical process constitutes a detection event. As such, a proper definition
of the electron waiting time relies on a careful description of a specific detector. In the
context of full counting statistics, a quantum theory of a detector was developed by
Levitov et al. [1996].
The theory of electron waiting times in mesoscopic conductors presented above con-

siders the electrons above the Fermi sea. For typical voltages in the micro-volt regime,
the mean waiting time is on the order of nano-seconds. This is a feasible time-scale from
an experimental point of view. By contrast, if electrons in the Fermi sea are included,
the mean waiting time would be given by the inverse Fermi energy, implying that a
measurement of the electron waiting time essentially would be out of reach. Moreover,
for dynamic single-electron sources, one is interested in the waiting time between the
emission of electrons above the Fermi surface rather than in the intrinsic fluctuations in
the Fermi sea. For these reasons, theories of waiting times between electrons above the
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3. Electron waiting time clock

Figure 3.1.: Electron waiting time clock. The clock consists of a mesoscopic capacitor
coupled via a quantum point contact to a chiral edge state. Due to the
energy-dependent transmission T (E), only electrons above the Fermi level
of the external reservoir can enter and leave the capacitor. Electrons inside
the capacitor interact with a two-level system via the controllable coupling
λ(t). The top-gate potential Vg(t) is used to empty the capacitor and leads
to the time-dependent scattering phase φg(t). By monitoring the two-level
system, the distribution of electron waiting times can be measured. This
detector can be placed after the scatterer whose WTD is to be measured.
([Dasenbrook and Flindt, 2016b], (C) 2016 American Physical Society.)

Fermi sea are attractive.
It is well-known that measurements of zero-frequency quantities like the average current

and the shot noise only concern the electrons above the Fermi level [Büttiker, 1990c;
Blanter and Büttiker, 2000]. On the other hand, measurements of the finite-frequency
noise (and other short-time measurements) with standard current detectors are generally
also sensitive to the underlying Fermi sea [Gavish et al., 2001]. Bearing this in mind, it
is clear that a theory of electron waiting times in mesoscopic conductors should include a
description of a detector. This is the central goal of this chapter. Specifically, we devise
a quantum theory of a waiting time clock that is capable of measuring the distribution of
waiting times between electrons above the Fermi sea in a mesoscopic conductor. When
operated under ideal conditions, our waiting time clock recovers the results of earlier
theories without a detector. Within our theoretical description, we can also investigate
possible deviations due to imperfect operating conditions.
The rest of this chapter is organized as follows. In Sec. 3.2 we discuss the scattering

theory of full counting statistics (FCS) in mesoscopic conductors with a specific emphasis
on the detector. In Sec. 3.3 we relate the idle time probability to the finite time FCS. In
Sec. 3.4 we describe our electron waiting time clock and its building blocks as indicated
in Fig. 3.1. In Sec. 3.5 we illustrate the use of the waiting time clock with two specific
applications. A possible implementation of the measurement scheme is described in
Sec. 3.6. Finally, in Sec. 3.8, we present our conclusions and give an outlook on future
work.
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3.2. Time-resolved counting statistics

3.2. Time-resolved counting statistics

We start by recapitulating the scattering theory of time-dependent FCS with a special
emphasis on the detector. An absorptive electron detector has been investigated theoret-
ically by Saito et al. [1992]. As an alternative, Levitov et al. [1996] later on considered a
detector which conserves the number of electrons. In this approach, the detector consists
of a quantum two-level system, such as a spin-1/2 particle, which rotates coherently in
the magnetic field induced by the electrical current in the conductor. The moment gen-
erating function of the FCS can then be measured directly as a function of the coupling
strength between the spin and the conductor.
To see this, we consider the combined system, including the detector, described by the

Hamiltonian

Ĥ(t) = Ĥel(t) + Ĥint(t) = Ĥel(t)− λ(t)
~
2e
σ̂z Î . (3.1)

The Hamiltonian of the conductor is denoted as Ĥel(t), σ̂z is the Pauli matrix for the
z-component of the spin, and Î is the operator for the electrical current through a given
cross-section of the conductor. The particular form of the coupling between the spin and
the conductor makes the spin rotate in the x-y plane of the Bloch sphere due to the
magnetic field induced by the electrical current. The coupling strength λ(t) is assumed
to be controllable and generally time-dependent. We evolve the combined system from
t = −∞ to t =∞ and describe the finite duration of a measurement by having a coupling
which is only non-zero during the measurement. (In a different approach [Muzykantskii
and Adamov, 2003; Schönhammer, 2007], one detects the total charge in one of the leads
at the beginning and at the end of the measurement and then defines the number of
transferred charges as the difference between the two measurement outcomes.) After
the complete time evolution, the electronic conductor is integrated out and the density
matrix of the spin is obtained.
By evaluating the off-diagonal element of this reduced density matrix, one arrives at

the function [Belzig and Nazarov, 2001; Nazarov and Kindermann, 2003; Beaud et al.,
2013]

χ(λ) =
〈
T
{
ei

∫∞
−∞ dtĤ−λ(t)/~

}
T̃
{
e−i

∫∞
−∞ dtĤλ(t)/~

}〉
, (3.2)

where T and T̃ denote time and anti-time ordering, respectively. The Hamiltonian Ĥλ(t)
is obtained from Eq. (3.1) by replacing σ̂z by unity so that it only acts on the electronic
degrees of freedom. The electronic conductor consists of a central scatterer connected
to electronic leads and is described by Ĥel(t). The electrons are non-interacting so that
a scattering problem can be formulated in terms of a scattering matrix that we denote
by S. To include the coupling to the spin, we solve the scattering problem of the electrons
interacting with the spin via the time-dependent coupling λ(t) and denote the resulting
scattering matrix by Uλ. Since both λ(t) and Ĥel(t) can be time-dependent, neither Uλ
nor S are necessarily diagonal in the energy representation. The combined scattering
matrix is denoted as Sλ and will be specified in more detail in the following sections.
Eq. (3.2) can be evaluated by means of the Keldysh technique [Kamenev, 2011]. Specif-
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3. Electron waiting time clock

ically, it can be written as

χ(λ) = det
(

1− nF
[
1− S†−λSλ

])
, (3.3)

which is known as the Levitov-Lesovik determinant formula. Here, nF is the occupation
matrix of the leads and the involved matrices have indices both in the channel and energy
spaces.
For the special case of a single-channel chiral system, e. g. a quantum Hall edge state,

there is no channel index. However, due to the general time-dependence of the problem,
Sλ is not diagonal in the energy representation. At zero temperature, nF is just a
projector onto the filled states in the lead from which electrons enter the conductor. We
can then write Eq. (3.3) as

χ(λ) = det
(
S†−λSλ

)
, (3.4)

where the matrix elements of S†−λSλ have been restricted to the initially filled states.
We now specify the interaction between the electrons and the spin. Due to the spin,

electrons pick up the additional scattering phase exp(iλ(t)/2). The scattering matrix Uλ
therefore has the matrix elements

[Uλ]t,t′ = eiλ(t)/2δ(t− t′) (3.5)

in the time representation. We take an abrupt switching,

λ(t) = λΘ(t− t0)Θ(τ − t+ t0), (3.6)

where Θ(t) is the Heaviside step function, t0 is the starting point of the measurement, τ
is the duration, and λ is the coupling strength. In the energy representation, the matrix
elements of Uλ then become

[Uλ]E,E′ = δ(E − E′) +Kλ
τ (E − E′), (3.7)

having defined
Kλ
τ (E) =

(
eiλ/2 − 1

)
Kτ (E) (3.8)

in terms of the sine kernel given in Eq. (1.14).
If the reservoirs at t = t0 are not in a superposition of different number eigenstates,

Eq. (3.3) can be interpreted as the moment generating function of the FCS [Shelankov
and Rammer, 2003]. Specifically, from the inverse Fourier transformation

P (n) =
1

2π

∫ 2π

0
χ(λ)einλdλ, (3.9)

we obtain the probability P (n) that n charges have passed through the conductor while
the detector was on. We note that backaction effects due to the measurement device are
fully included in this formalism.
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It is instructive to consider the limit of long measurement times. In this case, we can
take λ(t) ≡ λ to be constant in Eq. (3.6), such that Uλ becomes diagonal in the energy
representation. If, furthermore, the Hamiltonian Ĥel(t) = Ĥel is not time-dependent, the
determinant over energies in Eq. (3.3) reduces to a product,

χ(λ) =
∏
E>0

det
(

1− [nF ]E,E

{
1− [S†−λSλ]E,E

})
, (3.10)

where the determinant is now taken only over the channel indices of the matrices. For
a single-channel two-terminal conductor with the energy-dependent transmission prob-
ability T (E), contributions from left and right moving electrons below the Fermi level
cancel each other at zero temperature and only electrons above the Fermi level need to
be included,

χ(λ) =
∏

EF<E<EF+eV

[
(eiλ − 1)T (E) + 1

]
. (3.11)

This type of FCS is known as generalized binomial statistics [Hassler et al., 2008; Abanov
and Ivanov, 2008, 2009]. The result shows us that observables measured over a long time,
for instance the mean current or any zero-frequency current correlator, are only affected
by the electrons in the voltage window [EF , EF + eV ] above the Fermi level. In the
following we will see that finite-time measurements are more involved as they may also
be influenced by electrons below the Fermi level.

3.3. Waiting time distributions

Building on the previous section, we are now ready to develop a quantum theory of an
electron waiting time clock. We begin by establishing the general relationship of WTDs
to short time electron counting statistics, before moving on to a detailed description of
our detector.
Given a series of detection events, the waiting time is the time that elapses between

two successive detections. The distribution of waiting times is denoted as W(τ). For a
stationary process, it can be related to the idle time probability Π(τ) as in Eq. (1.1). By
contrast, for periodically driven systems, the idle time probability is a two-time quantity
Π(t0, τ) which explicitly depends on t0. The idle time probability entering Eq. (1.1) is
then obtained as an average over the period of the driving T as in Eq. (1.2).
The idle time probability can be expressed in terms of the time-dependent FCS as

Π(τ) = P (n = 0, τ) (3.12)

which is the n = 0 component of the probability P (n, τ) to observe n detections during
a time interval of length τ . Alternatively, the idle time probability can be expressed in
terms of the moment generating function of the FCS

χ(λ, τ) =
∞∑
n=0

P (n, τ)einλ. (3.13)
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Specifically, we get P (n = 0, τ) by an inverse Fourier transformation as

P (n = 0, τ) =
1

2π

∫ 2π

0
χ(λ, τ)dλ, (3.14)

or, since the number of detector clicks is non-negative, by formally taking the limit
λ→ i∞,

P (n = 0, τ) = χ(λ→ i∞, τ). (3.15)

Experimentally, one may measure the moment generating function χ(λ, τ) for different
values of the coupling strength λ and from those measurements evaluate the idle time
probability using the Fourier transformation in Eq. (3.14). On the theory side, it will be
useful rather to take the limit λ→ i∞ according to Eq. (3.15). This also holds at finite
temperatures, if the detector can only produce a non-negative number of clicks.
The considerations above rely on a detector that produces a series of clicks. Since

single-electron detection remains challenging in mesoscopic conductors, we proceed here
along a different route and instead develop a detector than can measure the idle time
probability of electrons above the Fermi sea in a mesoscopic conductor. As we will see,
this leads to a well-defined distribution of waiting times between subsequent electron
transfers.

3.4. Electron waiting time clock

The electron waiting time clock is depicted in Fig. 3.1. It consists of a mesoscopic
capacitor [Büttiker et al., 1993; Prêtre et al., 1996] coupled to a two-level quantum
system, such as a spin-1/2 particle, in a similar spirit to the proposal to measure FCS by
Levitov et al. [1996]. The coupling λ(t) between the spin and the capacitor is controllable
and time-dependent. We assume that the capacitor is initially depleted of electrons. As
we will see, this setup makes it possible to measure the idle time probability and thus
the WTD of electrons above the Fermi level in the incoming channel.
We start by constructing the scattering matrix of the electron waiting time clock. The

capacitor is implemented with chiral edge states in the quantum Hall regime [Fève et al.,
2007]. Incoming electrons in the edge state on the left may be transmitted into the
capacitor via a QPC and make one or several round trips inside the capacitor before
leaving via the outgoing edge state to the right. While being inside the capacitor, the
electrons interact with the spin that we monitor. Importantly, as we discuss below, we
use a QPC with a cut-off in the transmission close the the Fermi level.
The scattering matrix of the waiting time clock is obtained by summing up the ampli-

tudes of all possible scattering processes. Formally, we can express it as

Sλ = PR − PT
[
S(l)
λ

∞∑
n=0

(
PRS(l)

λ

)n]
PT , (3.16)

where the first term describes processes where electrons are reflected on the QPC and
never enter the capacitor. The second term describes processes where electrons enter the
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3.4. Electron waiting time clock

capacitor and complete n + 1 round trips (or loops) inside the capacitor before leaving
via the outgoing edge state. We now specify each matrix in this expression.
We consider a QPC with an energy-dependent transmission T (E). In a strong magnetic

field, the transmission takes the form [Büttiker, 1990a]

T (E) =
1

eB(EF−E) + 1
, (3.17)

where the parameter B can be controlled by the magnetic field. The QPC is tuned such
that the transmission is cut off at the Fermi energy EF . For a sharp cuf-off, only electrons
above the Fermi level are allowed to enter and leave the capacitor. For a smooth cut-off,
the measurement may be affected by electrons in the Fermi sea as we discuss in Sec. 3.5.3.
The corresponding transmission and reflection matrices in Eq. (3.16) read

[PT ]E,E′ =
√
T (E)δ(E − E′),

[PR]E,E′ =
√

1− T (E)δ(E − E′).
(3.18)

Next, we define the scattering matrix S(l)
λ describing one round trip inside the capacitor.

An electron inside the capacitor can make one or several round trips. For each completed
loop, it picks up the scattering phase

[S(l)
λ ]t,t′ = ei(φg(t)+λ(t)/2)δ(t− t′ − τ0), (3.19)

where τ0 = `/vF is the time it takes to complete one loop with ` being the circumference
of the capacitor and vF the Fermi velocity. The specific times when the electron enters
and leaves the capacitor are denoted as t′ and t, respectively. The phase φg(t) picked up
during one loop due to the time-dependent gate-voltage Vg(t) reads

φg(t) =
e

~

∫ t

t−τ0
Vg(t

′)dt′. (3.20)

As we will see below, it is convenient to apply a linearly rising gate voltage of the form

Vg(t) = δVg(t/τ0 + 1/2), (3.21)

where δVg is the increase of the voltage during one loop. In this case, the phase takes
the simple form

φg(t) =
eδVg
~

t. (3.22)

Finally, the coupling to the spin λ(t) is given by Eq. (3.6).
In the energy representation, the scattering matrix is non-diagonal with matrix ele-

ments reading

[S(l)
λ ]E,E′ =

[
δ(E′ − E′ − eδVg) +Kλ

τ (E − E′ − eδVg)
]

× ei(E′+eδVg)τ0/~.
(3.23)
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This is the probability amplitude for a particle with incoming energy E′ to change its
energy to E due to the interaction with the spin and the time-dependent voltage.
Having specified the various scattering matrices, we can construct the scattering matrix

of the electron waiting time clock according to Eq. (3.16). Moreover, if an additional
scatterer (whose WTD we wish to measure) with scattering matrix Ssys is placed before
the waiting time clock, the full scattering matrix becomes

S(tot)
λ = SλSsys. (3.24)

In the following section, where we apply our method, we specify Ssys for two particular
scatterers.
We start by considering the limit of a sharp cut-off in Eq. (3.17), where B � 1/E for

all relevant energies. In this case, only electrons above the Fermi level are allowed to
enter and leave the capacitor. Mathematically, the transmission and reflection matrices
in Eq. (3.18) become projectors onto energies above and below the Fermi level which
we denote as PT and PR, respectively. We can then evaluate the geometric series in
Eq. (3.16) and write the scattering matrix as

Sλ = PR − PTS(l)
λ PT

− PTS(l)
λ PR(1− PRS(l)

λ PR)−1PRS(l)
λ PT ,

(3.25)

having used properties of the projectors. This expression has a clear physical interpre-
tation as we now discuss.
The first term corresponds to electrons below the Fermi level which are reflected on the

QPC and never enter the capacitor. The second term describes electrons above the Fermi
level that enter the capacitor, interact with the spin and the time-dependent voltage, but
stay above the Fermi level, so that they leave the capacitor after having completed just
one loop. The third term describes electrons that complete more than one loop. Read
from right to left, this term corresponds to processes, where an electron above the Fermi
level enters the capacitor and is scattered below the Fermi level during the first loop as
described by the matrix product PRS(l)

λ PT . The electron then completes a number of
loops (possibly none) below the Fermi level. This is described by the matrix inversion
(1 − PRS(l)

λ PR)−1, which can be re-expanded as a geometric series. Finally, in one last
loop, the electron is scattered back above the Fermi level and leaves the capacitor as
described by the matrix product PTS(l)

λ PR.
Ideally, the electron waiting time clock would be described by only the two first terms

of the scattering matrix in Eq. (3.25). Electrons above the Fermi level then interact
only once with the spin, while electrons below the Fermi level are filtered out. However,
due to the time-dependence of the measurement procedure, the third term is generally
present. To suppress processes where electrons complete several loops and interact with
the spin more than once, we apply the top-gate voltage. With a sufficiently large voltage
increase, we can ensure that essentially all electrons end up with an energy above the
Fermi level after having completed the first loop, even if they may have lost energy by
interacting with the spin. They will then leave the capacitor via the QPC after having
interacted with the spin only once.
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Figure 3.2.: WTDs for a voltage-biased QPC. (a) Distribution of waiting times for a
fully transmitting QPC (T = 1) with an applied voltage V . The mean
waiting time is τ̄ = h/(eV ). We show results for different values of the gate
voltage increase δVg. With δVg = 30V , we essentially recover the prediction
(δVg =∞) of earlier theories without a detector [Albert et al., 2012; Haack
et al., 2014]. The curves have been shifted vertically by multiples of 0.2
and we have applied a low pass filter to remove high-frequency oscillations.
The inset shows the WTD for δVg = 30V without the low pass filter. (b)
Distribution of waiting times for different values of the QPC transmission T .
([Dasenbrook and Flindt, 2016b], (C) 2016 American Physical Society.)

In this case, we can write the scattering matrix as

Sλ = PR − PTS(l)
λ PT , (3.26)

without processes involving several loops. In the following section, we discuss the values of
δVg in Eq. (3.21) needed for this to be a good approximation. To evaluate the determinant
formula in Eq. (3.3), we first note that

(S(tot)
−λ )†S(tot)

λ = S†sys

(
PR + PT (S(l)

−λ)†S(l)
λ PT

)
Ssys, (3.27)

having used [PT ,S(l)
λ ] = 0, since electrons that enter the capacitor remain above the

Fermi level. This holds for large values of δVg. A simple calculation now shows that

(S(l)
−λ)†S(l)

λ = 1 + (eiλ − 1)Kτ , (3.28)

with the matrix elements
[Kτ ]E,E′ = Kτ (E − E′) (3.29)

given by the sine kernel in Eq. (1.14). Inserting these expressions into Eq. (3.4) we find
at zero temperature

χ(λ) = det
(

1 +
(
eiλ − 1

)
S†sysPTKτPTSsys

)
, (3.30)
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having used that the scattering matrix Ssys is unitary and PT+PR = 1. In this expression,
the increase of the gate voltage δVg has dropped out. Moreover, by introducing the matrix

Qτ = S†sysPTKτPTSsys, (3.31)

we may express the moment generating function as

χ(λ) = det
(

1 +
(
eiλ − 1

)
Qτ
)
. (3.32)

Finally, by taking the limit λ → i∞, we recover the determinant formula for the idle
time probability above the Fermi level

Π(τ) = det (1−Qτ ) (3.33)

previously derived by Albert et al. [2012] without specifying a detector. For a static
scatterer with an applied voltage V , the matrix Qτ only has non-zero elements in the
transport window [EF , EF + eV ].
Next, we consider the non-ideal situation where electrons may complete several loops

inside the capacitor and interact with the spin more than once. This is described by the
scattering matrix in Eq. (3.25). We then evaluate the idle time probability by insert-
ing this scattering matrix into Eq. (3.4). In contrast to Eq. (3.30), the function χ(λ)
now contains terms that are proportional to exp(iλ/2) as shown in Appendix E. Conse-
quently, the function is not 2π-periodic in λ as required for a moment generating function
according to Eq. (3.13), and the transport process cannot be described by a time series
of discrete detection events. This is not a consequence of measurement back action in
particular, but may possibly be related to the occurrence of negative probabilities in FCS
due to interference effects [Hofer and Clerk, 2016]. Still, we can take the limit λ → i∞
and calculate the resulting WTD using Eq. (1.1). However, as we will see, the WTD may
then become negative for certain waiting times. This is due to processes where an elec-
tron interacts more than once with the spin and thereby tampers with the measurement
of the idle time probability.

3.5. Applications

We are now ready to illustrate the electron waiting time clock with two specific appli-
cations: A voltage-biased QPC and lorentzian voltage pulses. We also investigate the
influence of a smooth transmission profile. In Sec. 3.7 we consider a smooth coupling
to the spin instead of the abrupt switching given by Eq. (3.6). Technically, it is worth
mentioning that the Fredholm determinants that appear for example in Eq. (3.4) can be
evaluated efficiently using the algorithm described in Appendix D [Bornemann, 2010].

3.5.1. Voltage-biased QPC

We start by considering a QPC with transmission probability T and applied voltage V .
In this case, we have Ssys =

√
T . Earlier works [Albert et al., 2012; Haack et al., 2014]

56



3.5. Applications

0.0 0.5 1.0 1.5 2.0 2.5

τ/T
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

W
(τ

)T Γ = 0. 05T

eδVg = 5 Ω

eδVg = 10 Ω

eδVg =∞

(a)

0 1 2 3 4 5 6 7

τ/T
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

W
(τ

)T

Γ = 0. 05T
eδVg = 10 Ω

T= 0. 1

T= 0. 5

(b)

Figure 3.3.: WTDs for levitons transmitted through a QPC. (a) Results for full transmis-
sion (T = 1) with different values of the gate voltage increase δVg. Already
with eδVg = 10~Ω, the waiting time clock reproduces results (δVg = ∞) of
earlier theories without a detector [Dasenbrook et al., 2014; Albert and Dev-
illard, 2014]. The curves have been shifted vertically for the sake of a better
visibility. (b) Results for a QPC with a finite transmission T . In this case,
levitons may reflect back on the QPC, and the WTD has peaks at multiplies
of the period. ([Dasenbrook and Flindt, 2016b], (C) 2016 American Physical
Society.)

without a detector have shown that the WTD should display a cross-over from Wigner-
Dyson statistics at full transmission (T = 1) to a Poisson distribution close to pinch-off
(T ' 0) with the mean waiting time given as

〈τ〉 =
τ̄

T
, (3.34)

where
τ̄ =

h

eV
, (3.35)

is the meaning waiting time at full transmission.
Figure 3.2 shows WTDs obtained with the waiting time clock. We calculate the idle

probability using Eqs. (3.4, 3.25), see also App. E, and differentiate it twice with respect
to τ according to Eq. (1.1). In panel (a) we show the WTD for a fully open QPC with
different increments of the gate voltage δVg. To measure the WTD, the coupling to the
spin is only non-zero during a period of time on the order of τ̄ . Such short detector pulses
can change the energy of an electron by an amount on the order of h/τ̄ = eV . Thus, to
ensure that no electrons are scattered below the Fermi level during the measurement, the
increase of the gate voltage must be much larger than this energy scale, i. e. δVg � V .
This physical picture is confirmed by panel (a). As we increase δVg, we approach the
results of an ideal clock obtained from Eq. (3.33).
The time resolution of the waiting time clock depends on δVg. A finite value of δVg

introduces fluctuations in the WTD on the time scale h/(eδVg). The fluctuations es-
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sentially disappear for waiting times that are longer than the mean waiting time, where
the measurement-induced disturbances are almost negligible. By contrast, for very short
waiting times, the WTD may become negative as seen in the inset. To remove any spu-
rious fluctuations, we apply a low pass filter that suppresses frequencies on the order of
eδVg/h. The inset of panel (a) shows the WTD without the low pass filter.
In panel (b) we consider the WTD for different values of the QPC transmission T .

The figure illustrates how our electron waiting time clock allows a observation of the
cross-over from Wigner-Dyson distribution at full transmission to Poisson statistics close
to pinch-off as previously predicted by theories without a detector.

3.5.2. Lorentzian voltage pulses

Next, we consider lorentzian voltage pulses applied to the input lead [Dubois et al., 2013a;
Jullien et al., 2014; Levitov et al., 1996; Keeling et al., 2006; Ivanov et al., 1997; Lebedev
et al., 2005]. The applied voltage has the form

V (t) =

∞∑
j=−∞

2~Γ

(t− jT )2 + Γ2
, (3.36)

where Γ denotes the pulse width and T is the period. The voltage can be encoded in a
time-dependent scattering phase picked up by electrons as they leave the lead,

eiφ(t) = e−i
e
~
∫ t
−∞ V (t′)dt′ (3.37)

By Fourier transforming this scattering phase, we obtain a Floquet scattering matrix
with elements given by Eq. (A.5). Each pulse excites just a single electron-hole pair out
of the Fermi sea without creating any additional disturbances, known as levitons. The
corresponding scattering matrix reads [Moskalets, 2011]

[Ssys]E,E′ =
√
T
∑
n

δ(E′ − En)SF (E,E′), (3.38)

having included a QPC that reflects a fraction R = 1 − T of the levitons before they
reach the waiting time clock.
Figure 3.3 shows the distribution of waiting times between levitons measured with

the waiting time clock. For a fully transmitting QPC, the WTD is peaked around the
period of the driving T , panel (a). Unlike the results for the voltage-biased QPC, there
is no need to apply a low pass filter. We still observe small oscillations with a period
of h/eδVg, but they essentially disappear already for δVg = 10~Ω/e. Physically, the
levitons are well-localized in time and space, and one would expect that they are easier
to distinguish from the underlying Fermi sea than electrons emitted from a constant
voltage source. This is indeed confirmed by our results.
In panel (b) we consider the WTD of levitons transmitted through a partially reflecting

QPC. In this case, levitons may reflect back on the QPC. As a consequence, the WTD
develops peaks at multiples of the period, with each peak corresponding to the number
of subsequent reflections that have occurred. Again, we find good agreement with earlier
theories without a detector [Dasenbrook et al., 2014; Albert and Devillard, 2014].
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Figure 3.4.: WTDs obtained with a smooth transmission profile. The sharpness of the
transmission in Eq. (3.17) is determined by the parameter B. We consider
here the WTD for a single edge channel with an applied voltage V and
have used δVg = 30V . ([Dasenbrook and Flindt, 2016b], (C) 2016 American
Physical Society.)

3.5.3. Smooth QPC transmission

So far, we have considered a waiting time clock with a sharp cut-off in the transmission.
In reality, however, the cut-off might be smooth, corresponding to having a finite value
of B in Eq. (3.17). In this case, electrons below the Fermi level can enter and leave the
capacitor, and electrons above the Fermi level may reflect back on the QPC and never
enter the capacitor. Figure 3.4 shows the WTD for a constant voltage V with different
values of the cut-off parameter B. For values of B that are much larger than the inverse
voltage, the influence on the WTD is small compared to the ideal case with a sharp
cut-off. For smaller values of B, the shape of the distribution gets somewhat distorted.
Still, a measurement of the WTD is clearly possible with a smooth QPC transmission.

3.6. Measurement scheme

The electron waiting time clock relies on measuring the moment generating function
χ(λ, τ) for different values of the counting field λ to obtain the idle time probability via
the Fourier transformation in Eq. (3.14). To this end, it should be possible not only to
turn the coupling on and off, but also to accurately change the strength of the coupling
as well as measure the off-diagonal element of the spin density matrix. In principle, this
is possible. However, as we will show now, a better strategy might be to couple several
spins to the mesoscopic capacitor.
We start by considering just a single spin coupled to the capacitor during the time τ .

The coupling strength is denoted as λ1. The spin is initialized in the pure state

|Ψ〉 =
1√
2

(| ↑〉+ | ↓〉) (3.39)
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with the corresponding density matrix

ρ̂
(1)
0 = |Ψ〉〈Ψ| = 1

2

(
1 1
1 1

)
. (3.40)

After the coupling is turned off, the density matrix reads

ρ̂(1) =
1

2

(
1 χ∗(λ1, τ)

χ(λ1, τ) 1

)
. (3.41)

Since the coupling is fixed we cannot extract the moment generating function. However,
we can calculate the probabilities of the individual precession angles of the spin. In
particular, the probability that the spin is in its initial state after the coupling has been
switched off reads

Π(1)(τ) = tr[ρ̂
(1)
0 ρ̂(1)] =

1

2
[1 + Reχ(λ1, τ)] . (3.42)

For λ1 = π, this is a crude approximation of the integral in Eq. (3.14). To improve the
approximation, we couple a second spin to the capacitor. The coupling strength of this
spin is denoted as λ2. Both spins are initially in the state given by Eq. (3.39). If the
couplings have been switched on during a time interval of length τ , the elements of the
density matrix of the spins become

[ρ̂(2)]ij,kl =
1

4
χ(2) ((i− j)λ1, (k − l)λ2, τ) . (3.43)

Here, the indices i, j = 0, 1 (k, l) refer to the first (second) spin and χ(2)(λ1, λ2, τ) is a
joint moment generating function obtained from Eq. (3.3) by including the additional
scattering phases due to the second spin. If the two spins are directly attached to the
capacitor one after another, we find that the joint moment generating function can be
expressed as

χ(2)(λ1, λ2, τ) = χ(λ1 + λ2, τ) (3.44)

in terms of the moment generating function χ(λ, τ) corresponding to a single spin. Cal-
culating the probability that the spins are in their initial states after the couplings have
been switched off, we find

Π(2)(τ) =
1

4
[1 + Re {χ(π/2, τ) + χ(π, τ) + χ(3π/2, τ)}] , (3.45)

taking λ1 = π/2 and λ2 = π. This is now a four-point approximation of the integral
in Eq. (3.14). Following this line of thoughts, one can extend the idea to three or more
spins, and thereby further improve the approximation of the idle time probability. For
example with 3 spins with couplings λ1 = π/3, λ2 = 2π/3, and λ1 = π, one obtains a
six-point approximation of the integral.
In Fig. 3.5 we show WTDs based on idle time probabilities Π(n)(τ) measured with

n (= 1, 2, 3) spins. With just one spin, the WTD is only qualitatively correct for very
short waiting times compared with the mean waiting time. At longer times, the WTD
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Figure 3.5.: WTDs obtained with n spins coupled to the capacitor. We consider here
the WTD for a single edge channel with an applied voltage V and have used
δVg � V . The WTD obtained with a perfect detector is shown with a dashed
line. ([Dasenbrook and Flindt, 2016b], (C) 2016 American Physical Society.)

turns negative which is clearly not correct. However, already with two spins coupled to
the capacitor, the results are much closer to the WTD obtained with a perfect detector.
Only for long waiting times, deviations become visible. With three spins coupled to the
capacitor, we find essentially perfect agreement with the expected WTD for the range of
waiting times shown in Fig. 3.5.

3.7. Lorentzian switching

As an interesting aside, we consider a smooth coupling to the spin. Specifically, we take
λ(t) to be the integral of a lorentzian,

λ(t) =

∫ t

−∞

−2τ

t′2 + τ2/4
dt′ = −2π − 4 arctan(2t/τ), (3.46)

such that
[U lor
τ ]t,t′ = eiλ(t)/2δ(t− t′) =

t+ iτ/2

t− iτ/2δ(t− t
′). (3.47)

It should be noted that λ(t) ' 0 for t < −τ/2 and λ(t) ' −4π for t > τ/2. However, due
to the 4π-periodicity in Eq. (3.47), the value λ = −4π is equivalent to λ = 0. Thus, one
may think of the coupling in Eq. (3.46) as being non-zero only during the time interval
[−τ/2, τ/2].
In the energy representation, the elements of U lor

τ are

[U lor
τ ]E,E′ = δ(E − E′)−K lor

τ (E − E′), (3.48)

where we have defined the exponential kernel

K lor
τ (E) = τe−τE/2Θ(E). (3.49)
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Figure 3.6.: WTDs with a lorentzian switching of the coupling. We show results for
a QPC with different transmission probabilities T . The dashed curves are
based on Eqs. (3.53, 3.54). ([Dasenbrook and Flindt, 2016b], (C) 2016 Amer-
ican Physical Society.)

Unlike the sine kernel in Eq. (1.14), this kernel is only non-zero for positive energies.
Thus, electrons can only absorb energy by interacting with the spin and are thus not
scattered into the Fermi sea.
Next, we evaluate Eq. (3.4) and find

χ(λ) = det
(
1−Qlor

τ

)
(3.50)

with
Qlor
τ = S†sysPTKlor

τ PTSsys (3.51)

and
[Klor

τ ]E,E′ = τe−|E−E
′|τ/2. (3.52)

Surprisingly, by comparing these expressions with Eqs. (3.31,3.33), we see that Eq. (3.50)
takes the form of an idle time probability, however, with the kernel given by Eq. (3.52).
Thus, without further justification, we consider in the following χ(λ) as the idle time
probability and evaluate the corresponding WTD by differentiating it twice with respect
to τ .
In Fig. 3.6 we show WTDs for a QPC with transmission T obtained in this way. The

mean waiting time is still given by Eq. (3.34), however, the WTDs are different from those
in Fig. 3.2b. The WTD appears to depend linearly on τ at short times and eventually
decays exponentially at long times. This resembles the WTD for a resonant level in the
high-bias limit [Brandes, 2008]

W(τ) =
ΓLΓR

ΓR − ΓL
(e−ΓLτ − e−ΓRτ ), (3.53)
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where ΓL and ΓR are the rates at which electrons enter and leave the level. The mean
waiting time reads

〈τ〉 =
ΓL + ΓR

ΓLΓR
. (3.54)

Based on the similarity, we surmise that Eq. (3.53) also describes the WTDs in Fig. 3.6.
The rate ΓR can be determined from the mean waiting time. We then use ΓL to fit
our results for full transmission and find excellent agreement. For the results with finite
transmission, we keep ΓL fixed and extract ΓR from the mean waiting time which depends
on the transmission. With this approach, we can fully account for all results in Fig. 3.6.
It would be interesting to investigate these findings further. For example, the reason

for the correspondence between the WTD obtained by a Lorentzian switching protocol
and the resonant tunneling WTD Eq. (3.53) is currently not known.

3.8. Conclusions

We have presented a quantum theory of a waiting time clock which can measure the
distribution of waiting times between electrons above the Fermi sea in a mesoscopic
conductor. This is an important element which so far has been missing in theories
of electron waiting times. Our waiting time clock consists of a mesoscopic capacitor
coupled to a quantum two-level system whose coherent precession is measured. We have
demonstrated explicitly that the waiting time clock under ideal operating conditions
recovers the predictions of earlier theories without a detector. We have also investigated
the influence of imperfect operating conditions with two specific applications. With these
advances, theories of electron waiting times can now be discussed based on a specific
detector.
Our work leaves a number of questions for future investigations. The waiting time

clock presented here may not be the only one that can measure the distribution of
waiting times between electrons above the Fermi sea. It would be interesting to devise
alternative implementations of such waiting time clocks. It might also be interesting to
investigate waiting time clocks that are sensitive to correlations between waiting times,
or to the electrons below the Fermi level. The distribution of electron waiting times
between electrons in the Fermi sea constitutes a line of research which has not yet been
addressed. Finally, the ideas presented here may form the basis for future investigations
of the influence of interactions on the distribution of electron waiting times.
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4. Interferometric measurements of full
counting statistics

4.1. Introduction

Full counting statistics (FCS) is a central concept in mesoscopic physics [Levitov et al.,
1996; Blanter and Büttiker, 2000; Nazarov and Kindermann, 2003]. The distribution of
charge transfers contains information about the elementary conduction processes [Vanević
et al., 2007, 2008; Hassler et al., 2008; Abanov and Ivanov, 2008, 2009]. Full counting
statistics has found widespread use in theories of quantum electronic circuits, for instance
in proposals for detecting entanglement [Beenakker and Kindermann, 2004; Di Lorenzo
and Nazarov, 2005], revealing interactions [Kambly et al., 2011; Stegmann et al., 2015],
understanding quasi-probabilities [Belzig and Nazarov, 2001; Bednorz and Belzig, 2010;
Clerk, 2011; Hofer and Clerk, 2016], or observing Majorana modes [Soller and Komnik,
2014; Li et al., 2015; Gnezdilov et al., 2015; Liu et al., 2015; Strübi et al., 2015]. Intimate
connections to fluctuation relations at the nano-scale [Tobiska and Nazarov, 2005; Förster
and Büttiker, 2008; Esposito et al., 2009; Utsumi and Saito, 2009; Nagaev et al., 2010;
Utsumi et al., 2010; Küng et al., 2012; Saira et al., 2012] and to entanglement entropy in
fermionic many-body systems [Klich and Levitov, 2009; Song et al., 2011, 2012; Petrescu
et al., 2014; Thomas and Flindt, 2015] have also been discovered.
Despite these promising applications, experiments remain scarce. Measurements of

FCS are demanding as they require accurate detection of rare events in the tails of the
distributions. For quantum-dot systems, progress has been made using real-time charge
detectors [Fujisawa et al., 2006; Gustavsson et al., 2006; Flindt et al., 2009; Gustavsson
et al., 2009; Ubbelohde et al., 2012; Maisi et al., 2014]. By contrast, for phase-coherent
transport in mesoscopic conductors, only the first few cumulants of the current have
been measured [Reulet et al., 2003; Bomze et al., 2005; Timofeev et al., 2007; Gershon
et al., 2008; Gabelli and Reulet, 2009]. To measure the FCS, it has been suggested to
use a spin to sense the magnetic field generated by the electrical current in a mesoscopic
conductor [Levitov et al., 1996; Lesovik et al., 2006; Lebedev et al., 2016]. However,
being experimentally challenging, this proposal has not yet come to fruition.
Now, progress in giga-hertz quantum electronics is changing these perspectives [Boc-

quillon et al., 2014]. Coherent electrons can be emitted on demand from quantum ca-
pacitors [Gabelli et al., 2006; Fève et al., 2007] and clean single-particle excitations can
be generated using Lorentzian voltage pulses [Dubois et al., 2013a; Jullien et al., 2014].
In parallel with these developments, electronic interferometers have emerged as powerful
detectors of weak signals [Henny et al., 1999; Oliver et al., 1999]. Mach-Zehnder inter-
ferometers can be realized using quantum Hall edge states with quantum point contacts
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Figure 4.1.: Interferometric measurements of FCS. Single electrons are injected into a
Mach-Zehnder interferometer enclosing the reduced magnetic flux φ. The
average current measured at the outputs is sensitive to a phase shift caused by
the capacitive coupling to a nearby conductor. The length of the interaction
region is denoted as a. The phase shift is proportional to the number of
transferred electrons in the conductor. By varying the magnetic flux and the
time delay between two separate voltage signals applied to the conductor and
the interferometer, the FCS of the conductor can be obtained from average
current measurements only. [Dasenbrook and Flindt, 2016a].

(QPCs) acting as electronic beam splitters [Ji et al., 2003; Neder et al., 2007c,b,a; Roul-
leau et al., 2008; Litvin et al., 2010; Helzel et al., 2015]. When combined, these building
blocks may form the basis for the next generation of quantum electronic circuits, includ-
ing future measurements of FCS.
Motivated by these experimental advances we develop in this chapter a dynamical

scheme for measuring the FCS in mesoscopic conductors. The detector consists of an elec-
tronic Mach-Zehnder interferometer driven by periodic voltage pulses [Hofer and Flindt,
2014; Gaury and Waintal, 2014]. One arm of the interferometer is capacitively coupled
to a nearby conductor that causes a phase shift which is proportional to the number of
transferred charges, Fig. 4.1. As we will see, the FCS of the conductor can be inferred
from current measurements at the outputs of the interferometer. Setups of this type,
with static voltages, have been considered both in experiment [Neder et al., 2007b] and
theory [Neder and Marquardt, 2007; Levkivskyi and Sukhorukov, 2009]. However, so far
the conductor has been operated as a which-path detector for the interferometer [Neder
et al., 2007a; Dressel et al., 2012; Weisz et al., 2014]. Here, by contrast, we exchange the
roles and instead use the interferometer as a detector of the FCS in the conductor.

4.2. Mach-Zehnder interferometer

4.2.1. Basic principle

The interferometer is implemented with edge states of a two-dimensional electron gas in
the integer quantum Hall regime [Ji et al., 2003; Neder et al., 2007c,b,a; Roulleau et al.,
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2008; Litvin et al., 2010; Helzel et al., 2015]. Incoming electrons are coherently split
at the first QPC and recombined at the second. Single electrons are emitted into the
interferometer by applying periodic voltage pulses to one of the inputs [Hofer and Flindt,
2014; Gaury and Waintal, 2014; Lebedev et al., 2005; Hassler et al., 2007; Keeling et al.,
2006]. The pulses are sufficiently separated so that only one electron at a time traverses
the interferometer. (In an alternative implementation, one may consider the injection of
charges from a mesoscopic capacitor.) The electronic state inside the interferometer is a
coherent superposition of the electron being in the upper (|u〉) or lower (|l〉) arm,

|Ψ〉 = t1 |l〉+ eiφr1 |u〉 . (4.1)

Here, t1 and r1 are the transmission and reflection amplitudes of the first QPC and
φ = 2πΦ/Φ0 is the ratio of the magnetic flux Φ enclosed by the arms over the flux
quantum Φ0. This state resembles the spin in the proposal of Levitov et al. [1996]. For
electrons injected into the interferometer with period T , the current in the upper output
reads

〈Î〉 = (e/T )|t1t2 + r1r2e
iφ|2, (4.2)

where t2 and r2 are the transmission and reflection amplitudes of the second QPC.
Eq. (4.1) describes a pure state. More generally, for instance due to a finite temperature
or external noise causing fluctuations of φ, the electron must be described by a density
matrix ρ̂. Importantly, a measurement of the average current yields an ensemble average
over the phase φ [Samuelsson and Büttiker, 2006].

4.2.2. FCS measurement

The Mach-Zehnder interferometer is coupled to a nearby conductor whose current fluc-
tuations we wish to measure. The electrical fluctuations are described by the moment
generating function (MGF)

χ(λ) =
∑
n

P (n)einλ = 〈einλ〉. (4.3)

The average is defined with respect to the probability P (n) of n charges being transmitted
through the conductor and λ is the counting field. The conductor is driven by periodic
pulses such that the MGF after many periods (N � 1) factorizes as χ(λ) = [χext(λ)]N ,
where χext(λ) characterizes the extensive FCS per period [Ivanov et al., 1997]. We focus
on the measurement of χext(λ) and omit the subscript “ext” in the following.
The conductor is coupled to the upper arm of the interferometer. Such a setup has been

experimentally realized [Neder et al., 2007c,a; Roulleau et al., 2008], albeit with statically
biased contacts. By contrast, here we drive both the conductor and the interferometer
with periodic voltage pulses. The frequency of the two pulse sequences is the same, but
we allow for a time delay τ between them. With this setup, an electron in the upper arm
picks up the additional phase δφ = nλ due to n electrons passing by in the conductor
per period. This is substantiated in our analysis in Sec. 4.3, where we also show that
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the dimensionless coupling λ indeed can be identified with the counting field. At zero
temperature, the density matrix of the interferometer reads

ρ̂ =

(
|t1|2 t1r

∗
1e
iφχ(λ)

t∗1r1e
−iφ[χ(λ)]∗ |r1|2

)
, (4.4)

having used
〈eiδφ〉 = 〈einλ〉 = χ(λ). (4.5)

The off-diagonal element of ρ̂ is thus determined by the MGF of the conductor. Eq. (4.4)
generalizes Eq. (4.1) to mixed states.
The MGF can now be extracted from the current in the upper output. The current
〈Î〉 = tr[ρ̂Î] reads

〈Î〉 = (e/T )(T1T2 +R1R2 + 2 Re{t∗1t∗2r1r2e
iφχ(λ)}), (4.6)

where Tj = |tj |2 and Rj = |rj |2 are the transmissions and reflections of the two QPCs
(j = 1, 2). At half transmission, we get

〈Î〉 = (e/T )(1 + Re{eiφχ(λ)})/2. (4.7)

Moreover, by changing the magnetic flux, we find

〈Î〉φ=0 = (e/T )(1 + Re{χ(λ)})/2,
〈Î1〉φ=3π/2 = (e/T )(1 + Im{χ(λ)})/2. (4.8)

These expressions lead us to the MGF

χ(λ) =
2T
e

[(
〈Î〉φ=0 −

e

2T
)

+ i
(
〈Î〉φ=3π/2 −

e

2T
)]
. (4.9)

Remarkably, the MGF can be obtained from average current measurements. This is the
first central result of our work. As we go on to show, the counting field λ can be controlled
by varying the time delay τ between the pulse sequences. We can then perform a full
tomography of χ(λ) and thereby evaluate the FCS of charge transfer.

4.3. Detailed analysis

We now embark on a detailed analysis of the coupling between the interferometer and the
conductor. The interaction between the two edge states is described by the Hamiltonian
[Vyshnevyy et al., 2013]

Ĥλ0 = λ0
~vF
2a

N̂CN̂I . (4.10)

Here, λ0 is a dimensionless coupling, vF is the Fermi velocity, and a is a characteristic
length scale over which electrons in the two edge states interact. The operators N̂C =∫

dxκC(x): Ψ̂†C(x)Ψ̂C(x) : and N̂I =
∫

dyκI(y): Ψ̂†I(y)Ψ̂I(y) : count the number of excess
electrons in the interacting regions of the conductor and the interferometer, weighted
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Figure 4.2.: Interferometric measurement of the full counting statistics in a QPC. (a)
Cumulants of the current as functions of the QPC transmission T . We show
results for different pulse widths Γ in terms of the length a of the interaction
region. The exact results for a binomial process are 〈〈I2〉〉 = T (1 − T ),
〈〈I3〉〉 = T (1−T )(1−2T ), 〈〈I4〉〉 = T (1−T )(1−6T+6T 2), having set e = 1 and
T = 1 here and in the figure. (b) Full distribution of the current I = en/N
with T = 0.4 and N = 40. For a large number of periods, N � 1, the
distribution takes on the large-deviation form ln[P (I)]/N = G(I) with the
rate function G(I) being independent of N . For a binomial process we find
ln[P (I)]/N = ln[(1−T )/(1−I)]+I(ln[T/(1−T )]− ln[I/(1−I)])+O(N−1).
[Dasenbrook and Flindt, 2016a].

by the coordinate kernels κC(x) and κI(y). Normal-ordering with respect to the Fermi
sea is denoted as : · · · :, and Ψ̂C(x) and Ψ̂I(y) are field operators for electrons in the
conductor and in the interferometer.
The MGF in the off-diagonal element of the density matrix in Eq. (4.4) can now be

expressed as [Levitov et al., 1996; Belzig and Nazarov, 2001]

χ(λ0) =
〈

tr
(
T̃
{
e
−i

∫ t
t0

dt′Ĥλ0
(t′)
}
T
{
e
i
∫ t
t0

dt′Ĥ−λ0
(t′)
}
ρ̂
)〉

, (4.11)

having set ~ = 1 and Ĥλ0(t) is in the Heisenberg representation governed by the full
Hamiltonian Ĥ = Ĥ0 + Ĥλ0 with Ĥ0 describing the uncoupled systems. The initial
density matrix of the electron in the interferometer is denoted as ρ̂ = ρ̂(t0) and the trace
is taken over the spatial coordinates. The average is defined with respect to the electrons
in the conductor. Time and anti-time ordering are denoted as T and T̃ , respectively.
The considerations above are general. To make further progress, we take for the kernels

the specific form [Vyshnevyy et al., 2013]

κC(x) = κI(x) = e−|x|/a. (4.12)

If a is much smaller than the length of the interferometer, the current measured at
the output is determined by the limit t → ∞ in Eq. (4.11). With a linear dispersion
relation for electrons close to the Fermi level and a pure initial state of the electron in
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the interferometer, we find

χ(λ0) =

〈∫
dyeiλ0

∫
dx:Ψ̂†C(x)Ψ̂C(x):Φ(x,y)|f(y)|2

〉
, (4.13)

where f(y) is the wave function of the electron injected into the interferometer and the
function

Φ(x, y) = e−
|x−y|
a

(
1 +
|x− y|
a

)
(4.14)

follows from the definition of the coordinate kernels.
We now derive Eq. (4.13). The interferometer electron possesses both a pseudo-spin

degree of freedom, corresponding to the path that it takes, and a spatial degree of free-
dom, corresponding to its position within the arms. In Eq. (4.11), the average is taken
over the spatial degrees of freedom of the interferometer electron as well as over the
conductor. The density matrix of the interferometer electron factorizes as ρ = ρ̂S ⊗ ρ̂L
at all times, where ρ̂S describes the pseudo-spin and ρ̂L describes the spatial degrees of
freedom. This is due to the fact that propagation along the arms is independent of the
arm index.
The particle density operators in Eq. (4.10) commute at different times. We therefore

obtain
χ(λ0) =

〈
tr e2iĤλ0

tρ̂L

〉
, (4.15)

where the factor 2 accounts for the forward- and backward propagation on the Keldysh
contour (with opposite coupling constants), the average 〈. . . 〉 is taken over the degrees
of freedom of the conductor and the trace is taken over the internal degrees of freedom
of the electron in the interferometer, i. e. its coordinate.
To evaluate the trace in Eq. (4.15), we first write the density matrix of the electron in

real-space as

ρ̂L =

∫∫
dxdyf(x)f∗(y) |y〉〈x| , (4.16)

where f(x) is the electronic wave function.
Next, we consider the action of the exponential of a general operator Â that commutes

with the interferometer electron density : Ψ̂†I(x)Ψ̂I(x) : on this density matrix. The
Hamiltonian Ĥλ0 is such an operator. We therefore expand the exponential

eÂ
∫

duκ(u):Ψ̂†I(u)Ψ̂I(u): |x〉〈y| = |x〉〈y|+ Âκ(x) |x〉〈y|+ 1

2
Â2κ2(x) |x〉〈y|+ . . . (4.17)

We recall that |x〉 is a single-particle state such that

Ψ̂†I(u)Ψ̂I(u) |x〉 = δ(x− u) |x〉 . (4.18)

We can then conclude that

eÂ
∫

duκ(u):Ψ̂†I(u)Ψ̂I(u): |x〉〈y| = eÂκ(x) |x〉〈y| . (4.19)
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Using this result we can evaluate the trace in Eq. (4.15) as

χ(λ) =

〈∫
dyeitλ0

∫
dxκ(x):Ψ̂†C(x)Ψ̂C(x):κ(y)|f(y)|2

〉
. (4.20)

Close to the Fermi level the dispersion relation is linear. The time-dependence of
the field operators is then Ψ̂(x, t) = Ψ̂(xt), having introduced the shorthand notation
xt = x− vF t, where vF is the Fermi velocity. The operator now has to be averaged over
the initial state in Eq. (4.16). This procedure yields

χ(λ, t) =

〈∫
dyeiλ0

∫ t
0 dt′

∫
dx:Ψ̂†1(x)Ψ̂1(x):κ(x−t′ )κ(y−t′ )|f(y)|2

〉
. (4.21)

Using the specific kernel κ(x) given by Eq. (4.12), we then obtain Eqs. (4.13) and (4.14).
We first consider the injection of electron wave packets with small widths compared

to a, so that we can approximate |f(y)|2 ' δ(y) and : Ψ†C(x)ΨC(x) : ' δ(x+ vF τ)n̂(x),
where n̂(x) is the number operator for excess electrons in the conductor at position x
and τ is the time delay between the injection of electrons into the conductor and the
interferometer. Equation (4.13) then yields

χ(λ) =
〈
ein̂λ(τ)

〉
, (4.22)

with
λ(τ) = λ0e

−vF τ/a
(

1 +
vF τ

a

)
. (4.23)

Equation (4.23) is the second important result of this chapter. It shows that the effective
counting field λ can be controlled by changing the time delay τ . Negative values of the
counting field can be realized by injecting hole-like excitations into the interferometer.
The specific functional form of Eq. (4.23) is determined by the coordinate kernels in
Eq. (4.12) and, in reality, the dependence on τ may be different. Experimentally, one
may then obtain λ(τ) using a conductor with a known FCS, e. g. a fully open QPC, for
calibration.
In general, the wave functions have a finite width. Evaluating Eq. (4.13) with the same

wave functions f(x) in the conductor and the interferometer, we find

χmeas(λ) =

∫
dy|f(y)|2χ(λ̃(y, λ)) (4.24)

with
λ̃(y, λ) = λ

∫
dxΦ(x, y)|f(x)|2 (4.25)

and λ given by Eq. (4.23). Thus, for finite widths a measurement yields an average of
MGFs for different effective couplings. However, if the pulses applied to the interferometer
are sharper than the length of the interaction regions, we can incorporate the finite width
of the electrons in the conductor into a rescaling of the effective counting field λ, which
again can be obtained by proper calibration.
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4.4. Applications

4.4.1. Driven quantum point contact

To illustrate our measurement scheme, we consider a QPC driven by Lorentzian voltage
pulses of unit charge as realized in recent experiments [Dubois et al., 2013a; Jullien et al.,
2014]. The QPC transmits electrons with probability T , and the exact MGF reads

χ(λ) = 1 + T (eiλ − 1). (4.26)

The measured MGF is given by Eq. (4.24) with a Lorentzian wave packet

|f(y)|2 =
2Γ

y2 + Γ2
(4.27)

of width Γ. We now obtain the cumulants of the current as

〈〈Im〉〉 =
em

T ∂miλ ln{χmeas(λ)}|λ→0, (4.28)

where λ is the rescaled counting field. In Fig. 4.2a we show results for the cumulants as
functions of the QPC transmission. For narrow wave packets, we find good agreement
with analytic results for a binomial process.
Next, we turn to the full distribution of transferred charge after N periods, given by

the inversion formula

P (n) =
1

2π

∫ π

−π
dλeN [ln{χmeas(λ)}−iλn/N ]. (4.29)

For a large number of periods, N � 1, the distribution of the current I = en/(NT ) takes
on the large-deviation form P (I) ' eG(I)N following from a saddle-point approximation
of the integral in Eq. (4.29). Here, the rate function G(I) describes the exponentially rare
current fluctuations, beyond what is captured by the central-limit theorem. In Fig. 4.2b,
we again find good agreement with the analytic result for a binomial distribution.

4.4.2. Entanglement entropy

Finally, as a further application of our scheme, we consider measuring the entanglement
entropy generated by partitioning electrons on a QPC. Recently, it has been realized
that the entanglement entropy between two electronic reservoirs connected by a QPC
is closely linked to the FCS [Klich and Levitov, 2009; Song et al., 2011, 2012; Petrescu
et al., 2014; Thomas and Flindt, 2015]. Specifically, the entanglement entropy generated
per period can be approximated from the first four current cumulants as [Song et al.,
2011, 2012]

S ' α2〈〈I2〉〉+ α4〈〈I4〉〉, (4.30)

where the coefficients

αm = 2

4∑
k=m−1

S1(k,m− 1)

emk!k
(4.31)
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Figure 4.3.: The entanglement entropy generated per period obtained from Eq. (4.30).
The exact result for the entanglement entropy reads S = (T − 1) ln(1−T )−
T lnT . The maximum value S = ln 2 is obtained for T = 1/2. [Dasenbrook
and Flindt, 2016a].

are given by the unsigned Stirling numbers of the first kind S1(k,m). Figure 4.3 shows
that the entanglement entropy obtained from the cumulants in Fig. 4.2a is in good
agreement with the exact result. This demonstrates that the entanglement entropy in a
fermionic quantum many-body system may be within experimental reach.

4.5. Dephasing

We now breifly comment on the effects of unwanted environmental dephasing on our
measurement scheme. Our scheme is based on the reduced visibility of the current oscil-
lations in the Mach-Zehnder interferometer due to the dephasing induced by electrons in
the conductor. In realistic systems, however, the visibility will already be reduced due to
other dephasing mechanisms such as finite temperatures, the coupling to bulk electrons,
co-propagating edge states, or electrons in the Fermi sea [Levkivskyi and Sukhorukov,
2008]. These effects are encoded in an additional fluctuating phase δθ [Ji et al., 2003;
Roulleau et al., 2009; Bieri et al., 2009]. For a Gaussian distribution of width σ, the
measured MGF simply gets rescaled as χmeas(λ)→ e−σ

2
χmeas(λ), and the width can be

determined from a visibility measurement without electrons injected into the conductor.
For non-Gaussian fluctuations [Neder and Marquardt, 2007; Helzel et al., 2015], the total
measured MGF takes the form χmeas(λ) → χmeas(λ)χenv(λ0) for some fixed coupling
λ0 to the environment, such that the environmental contribution χenv(λ0) again can be
factored out. Here we assume that the noise sources are uncorrelated.
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4.6. Conclusions

Electronic Mach-Zehnder interferometers can function as detectors of current fluctua-
tions in mesoscopic conductors. Equation (4.9) expresses the full counting statistics
exclusively in terms of average currents measured at the outputs of the interferometer.
Equation (4.23) shows that the counting field can be controlled by varying the time delay
between separate voltage signals. These findings make it possible to measure the current
cumulants as well as the full distribution of current fluctuations as illustrated in Fig. 4.2.
Our scheme is robust against moderate dephasing and finite temperature effects. As an
application we have shown that our scheme enables measurements of the entanglement
entropy in fermionic many-body systems. Extensions of our work may facilitate the de-
tection of short-time quantities such as the electronic waiting time distribution discussed
in the previous chapters.
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Entanglement in mesoscopic
conductors
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5. Dynamical entanglement of neutral
leviton pairs

5.1. Introduction

Entanglement is one of the most fascinating phenomena in quantum physics, and it can
lead to many useful effects such as nonlocality (the observation of correlations that are
inexplicable in a locally realistic model of the world, such as classical physics) [Brunner
et al., 2014], teleportation [Beenakker and Kindermann, 2004] or dense coding (the ability
to transmit two bits of classical information using a quantum two-level system and some
pre-shared entanglement), among others [Horodecki et al., 2009].
A pure quantum state is considered entangled across a given bipartition of the Hilbert

space,
H = HA ⊗HB, (5.1)

if it cannot be written as a direct product of states from HA and HB:

|Ψ〉 6= |φ〉A |φ〉B , (5.2)

where |φ〉A ∈ HA and |φ〉B ∈ HB. A mixed state is entangled if it cannot be written as
a convex decomposition into pure separable (non-entangled) states:

ρ 6=
∑
n

pn |φn〉 〈φn| , (5.3)

with all |φn〉 separable. In general, to determine whether a given mixed state is entan-
gled can be a hard problem, even mathematically. Furthermore, when implementing an
experiment that generates entangled states, it is desirable to use a measurement strategy
that clearly discriminates entangled states (possibly showing non-classical correlations)
from non-entangled states. This can be difficult if the kinds of measurement one can
perform are restricted by some fundamental principle or just some practical concerns, or
if external noise causes dephasing and loss of coherence.
In quantum optics, entangled states of few photons are now routinely generated and

used to test the foundations of quantum mechanics. Similarly, entanglement has been
successfully realized and detected in systems of cold atoms [Bloch, 2008] and NV-centres
in diamond, such as in the recent loophole-free demonstration of nonlocality [Hensen
et al., 2015]. Given the level of control down to the single-electron level that has been
achieved in mesoscopic conductors, it would of course be desirable to generate and detect
entangled states of electrons in these systems. To this end, several strategies have been
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proposed, using the spin- and orbital degree of freedom of the electrons. By contrast, an
experimental verification of controlled electronic entanglement is still missing.
In this and the following chapter, our focus will be on a conceptually somewhat different

type of entanglement, called occupation number entanglement. In this case, the different
basis states may differ in their particle number. The detection of entanglement using this
number degree of freedom is not as obvious as for other types of entanglement, and for
this reason, occupation number entanglement has so far received only limited attention.
However, as we will show, even the experimental prospects for demonstrating this kind
of entanglement may look promising, if the setups and observables are chosen in a careful
way.

5.2. Electron-hole entanglement

Entangled modes with different photon numbers can be generated by sending single pho-
tons onto a beam splitter [Björk et al., 2001; van Enk, 2005]. Due to particle number
superselection rules this type of entanglement has often been considered inaccessible
[Wiseman and Vaccaro, 2003]. Further investigations have however clarified that entan-
gled states of different photon numbers provide a resource that is as useful as polarisation-
entangled photons [Lombardi et al., 2002; Bartlett et al., 2007; Salart et al., 2010; Takeda
et al., 2015]. Advancing similar techniques to entangle states of different electron numbers
is clearly desirable, however, the task is challenging. For example, a suitable witness to
detect the electronic entanglement must be identified. As such, earlier proposals have in-
stead focused on the orbital entanglement of several electron-hole pairs [Beenakker et al.,
2003; Samuelsson et al., 2004; Samuelsson and Büttiker, 2005; Sherkunov et al., 2012] or
pairs of electrons [Samuelsson et al., 2003; Sim and Sukhorukov, 2006; Samuelsson et al.,
2009b].
Electron-hole pairs naturally occur in mesoscopic conductors as a result of time-

dependent perturbations [Vanević et al., 2007]. These pairs can be split at electronic
beam splitters, resulting in an electron-hole state delocalized over two different modes:

|Ψ〉 =
1

2
(|0〉A |2〉B + |2〉A |0〉B + |+〉A |−〉B + |−〉A |+〉B) , (5.4)

where the |0/2/+ /−〉α denote 0 or 2 particles, or the hole (+) or the electron (−) in
mode α = A,B. In this notation, one might naturally consider treating the the electron-
hole degree of freedom (+ or −) as a pseudo-spin: The hole could be identified with a
spin-up particle, and the electron with a spin-down particle. Then, post-selecting the
last two terms out of the state in Eq. (5.4), one obtains the analogue of a maximally
entangled spin-singlet.
We call the entanglement using the electron-hole “pseudo-spin” degree of freedom

electron-hole entanglement, and it is one example of entanglement using the electron
occupation number: The two pseudo-spin states that encode the quantum information
differ by a particle number of two. To detect the entanglement and see any non-classical
correlations, we have to be able to partially rotate one of the basis states on the Bloch
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sphere, which is made difficult by the charge superselection rule [Bartlett et al., 2007].
Note that in this case, this superselection rule might be lifted by providing a common
phase reference between modes A and B in the form of a superconductor [Beenakker,
2014]. A different way to detect the entanglement is to perform a nonlocal measurement.
In this chapter we present an experimental recipe for the detection of electron-hole en-

tanglement in an electronic conductor. Specifically, we demonstrate that noise measure-
ments at the outputs of an electronic Mach-Zehnder interferometer, despite the fermionic
superselection rules, can provide a robust witness of electron-hole entanglement. This is
an example of a non-local measurement, since the split state is recombined at a beam
splitter before the measurement.
For the generation of electron-hole entanglement, a state with one positively-charged

leviton and one negatively-charged leviton is produced at a quantum point contact (QPC)
and is delocalised across the two arms of the interferometer. Due to particle number
conservation the electron-hole entanglement in the state cannot easily be used to violate
a Bell inequality [Brunner et al., 2014]. We circumvent this problem by recombining
the state at a second QPC. As we show, an entanglement witness can be constructed
from cross-correlation measurements at the output arms. We evaluate the entanglement
witness using Floquet theory and find that the electron-hole entanglement can be detected
for realistic system parameters, including finite electronic temperatures and dephasing
corresponding to recent experiments [Ji et al., 2003; Neder et al., 2007c; Roulleau et al.,
2007; Litvin et al., 2008; Huynh et al., 2012].
In chapter 6, we go one step further and show that even the state of just a single

electron split between two electronic modes is entangled. This case is conceptually even
more interesting, since in this case the parity superselection rule has to be circumvented,
which is considered to be more fundamental than charge superselection [Friis, 2016].

5.3. Setup

5.3.1. Mach-Zehnder interferometer

The interferometer consists of a Corbino disk in the quantum Hall regime with electronic
motion along edge states from left to right as in Fig. 5.1. The upper and lower arms of
the interferometer form a loop that encloses the magnetic flux φ. In addition, electrons
above the Fermi level in the upper arm can enter a small cavity which encloses the
flux φc. Two QPCs act as electronic beam splitters. Contrary to recent experiments,
all contacts are grounded. Instead, we modulate the transmission probability of the first
QPC periodically in time in such a way that clean electron-hole excitations are generated
out of the otherwise undisturbed Fermi sea at the location of the QPC. Each electron-
hole pair delocalises across the arms of the interferometer, leading to a superposition of a
negatively-charged leviton being in the upper arm and a positively-charged leviton in the
lower arm and vice versa. As we go on to show, the resulting electron-hole entanglement
can be detected by measuring the cross-correlations of the currents in the output arms
after the second QPC.
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Figure 5.1.: Dynamic Mach-Zehnder interferometer. Entangled states of neutral leviton
pairs are generated by modulating the transmission D(t) = |d(t)|2 of the first
QPC periodically in time. The levitons travel along edge states to the second
QPC with transmission T and the entanglement is detected by measuring the
current cross-correlations at the output arms. The interferometer encloses
the magnetic flux φ. Negatively-charged levitons in the upper part can en-
ter a small cavity with magnetic flux φc and pick up an additional phase.
([Dasenbrook and Flindt, 2015], (C) 2015 American Physical Society.)

5.3.2. Dynamical entanglement generation

We start with the generation of clean electron-hole pairs at a QPC. This problem is
closely related to the creation of levitons by applying Lorentzian-shaped voltage pulses
to a contact [Ivanov et al., 1997; Levitov et al., 1996; Keeling et al., 2006; Dubois et al.,
2013a]. As predicted by Levitov and co-workers and recently realised experimentally
[Dubois et al., 2013b; Jullien et al., 2014], pulses of the form

V (t) = −~
e

∞∑
n=−∞

2η

(t+ nT )2 + η2
, (5.5)

lead to the emission of levitons from the contact on top of the otherwise undisturbed
Fermi sea (with a hole-like leviton going into the contact). The width of the pulses is η
and T the period of the driving. Levitons are created as each electron leaving the contact
picks up the phase factor eiϕ(t) with the phase given as

ϕ(t) = − e
~

∫ t

0
dt′V (t′). (5.6)

See also Appendix A for a discussion of the Floquet scattering matrix for the creation of
levitons. The phase changes sign ϕ(t)→ −ϕ(t) upon inverting the voltage V (t)→ −V (t),
leading to the emission of a hole-like leviton from the contact.
Remarkably, a similar strategy can be used to generate superpositions of electron-like

and hole-like levitons by modulating the transmission of a QPC periodically in time
[Sherkunov et al., 2009; Zhang et al., 2009]. To see this, we consider the time-dependent

80



5.4. Entanglement witness

scattering matrix of the first QPC in Fig. 5.1,

S(t) =

[
r(t) d(t)
−d(t) r(t)

]
, (5.7)

where the reflection and transmission amplitudes, chosen to be real below, fulfil |r(t)|2 +
|d(t)|2 = 1. Switching to the eigenbasis of S(t), particles in the two incoming eigenchan-
nels will be completely reflected with the reflection amplitudes r(t)± id(t) given by the
eigenvalues of S(t). We now choose the transmission and reflection as

d(t) = sinϕ(t),

r(t) = cosϕ(t)
(5.8)

with ϕ(t) given by Eq. (5.6). The reflection amplitudes in the eigenbasis then become
r(t)±id(t) = e±iϕ(t), implying that an electron-like leviton is reflected in one eigenchannel
and a hole-like leviton in the other. Returning to the physical channels of the QPC, the
outgoing state after the small cavity in Fig. 5.1 becomes

|Ψ〉 =
1

2

(
eiϑb̂†u−b̂

†
u+ − b̂†l−b̂

†
l+ + i

{
eiϑb̂†u−b̂

†
l+ + b̂†u+b̂

†
l−

})
|0〉 , (5.9)

where |0〉 is the filled Fermi sea at zero temperature and the Fermi energy is zero. The
operators b̂†i− =

∑
E>0 e

−ηE b̂†i (E) and b̂†i+ =
∑

E<0 e
ηE b̂i(E) create electron-like and

hole-like levitons in the upper (i = u) or lower (i = l) arms of the interferometer, and
b̂†i (E) creates electrons at energy E in either of the two arms. We assume for now that
the effect of the small cavity can be encoded in a tunable phase ϑ = ϑ(φc) picked up by
electron-like levitons in the upper arm. Below, we return to a more detailed description
of the cavity [see Eq. (5.26)]. As Eq. (5.9) cannot be written as a product of b†u and
b†l operators, the state is entangled. Furthermore, the projection of the state on the
subspace with one particle per arm (in curly brackets) is maximally entangled in the
electron-hole degree of freedom. This is the entanglement we wish to detect. We note
that the state in Eq. (5.9) can also be generated by emitting levitons from different inputs
onto the QPC tuned to half transmission using quantum capacitors with a linear drive
[Büttiker et al., 1993; Keeling et al., 2008].

5.4. Entanglement witness

It is difficult to formulate a Bell inequality for the entanglement between modes of differ-
ent particle numbers. (It would require measurements in a basis of non-definite particle
number and for electrons a superconductor, for instance, would be needed [Beenakker,
2014]). Furthermore, the violation of Bell inequalities often relies on very high visibil-
ities and is therefore currently out of reach for mesoscopic conductors. To circumvent
these problems, we instead construct an entanglement witness based on current cross-
correlation measurements at the output arms after the second QPC, similar to what has
been considered in the context of spin entanglement [Burkard and Loss, 2003; Giovannetti
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et al., 2006]. To develop our witness, we consider a general two-leviton state incident on
the second QPC

|Υ〉 =
∑
α,β=±
i,j=u,l

Υij
αβ b̂
†
iαb̂
†
jβ |0〉 (5.10)

with the normalisation condition
∑

αβij |Υ
ij
αβ|2 = 1. Equation (5.9) is a particular exam-

ple of such a state.
If the projection on the single-particle sector is separable, the matrix Υul has rank one

[Amico et al., 2008]. Calculating the cross-correlator

S34(φ) = 〈Î3Î4〉 (5.11)

measured after the second QPC, we can then show that the function

f(φ) ≡ S34(φ)− S0(1− 2TR) (5.12)

is always zero or negative. Here,

S0 =
∑
αβ

αβ|Υul
αβ|2 (5.13)

is the noise at zero transmission and φ = 2πΦ/Φ0 is the Aharonov-Bohm phase with Φ
being the magnetic flux enclosed by the interferometer and Φ0 = h/e the magnetic flux
quantum.
We now derive this entanglement witness. The general input state is given by Eq. (5.10).

The cross-correlator S34(φ) measured after the second QPC, with transmission probabil-
ity T and reflection R, can be written as S34(φ) = S

(1)
34 (φ) + S

(2)
34 (φ), where

S
(1)
34 (φ) = S0(1− 2TR)− 2TR

∑
αβ

Υul∗
αβΥul

βαe
i(β−α)φ (5.14)

is the contribution from the single-particle subspace [terms with i 6= j in Eq. (5.10)] and

S
(2)
34 (φ) = −2TR

∣∣∣Υuu
+− −Υll

−+

∣∣∣2 (5.15)

is the two-particle contribution. The single-particle term contains the Aharonov-Bohm
phase φ = 2πΦ/Φ0, where Φ is the magnetic flux enclosed by the interferometer and
Φ0 = h/e is the magnetic flux quantum.
Now, we consider the function

f(φ) ≡ S34(φ)− S0(1− 2TR)

= −2TR

∑
αβ

Υul∗
αβΥul

βαe
i(β−α)φ +

∣∣∣Υuu
+− −Υll

−+

∣∣∣2
 . (5.16)
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5.4. Entanglement witness

If the projection of the state Eq. (5.10) onto the subspace with one particle per arm is
separable, Υul is a matrix of rank one, so it can be factorised as Υul

αβ = υ
(1)
α υ

(2)
β . Then,

f(φ) can be written as

f(φ) = −2TR

∣∣∣∣∣∑
α

υ(1)∗
α υ(2)

α e−iαφ

∣∣∣∣∣
2

+
∣∣∣Υuu

+− −Υll
−+

∣∣∣2
 . (5.17)

Clearly, in this case f(φ) ≤ 0, proving that the condition

f(φ) > 0 (5.18)

acts as a witness for entanglement on the single-particle subsector.
Moreover, for a general separable density matrix [Horodecki et al., 2009]

ρ̂ =
∑
n

pn |Υn〉〈Υn| (5.19)

with each |Υn〉 of the form (5.10) and separable, the noise is the average noise of each
separable state weighted by the probabilities pn. Therefore, the condition f(φ) > 0
provides a witness of electron-hole entanglement also at finite temperatures. The witness
is not optimal, since negative two-particle contributions to the noise [terms with i = j = u
or i = j = l in Eq. (5.10)] can make it harder to detect the entanglement, even if it is
maximal [Horodecki et al., 2009]. Importantly, our witness relies on reconnecting the two
arms at the second QPC, making the measurement nonlocal. This is the key ingredient
that allows us to circumvent the superselection rules for particle number.
Evaluating the witness for the state in Eq. (5.9), we first find a pure interference current

determined by the enclosed fluxes,

〈Î3〉 = −〈Î4〉 = e(Ω/π)
√
TR cos[ϑ(φc)/2] sin[φ+ ϑ(φc)/2], (5.20)

where Ω = 2π/T is the frequency of the driving. For the current cross-correlator, we find

S34 = −e
2Ω

4π
[1− 2TR{1− cos(2φ)}] + 〈Î3〉〈Î4〉. (5.21)

Both the current and the noise are independent of the pulse width η, which determines
the spatial extent of the levitons. Now, tuning the phase ϑ(φc) to π and choosing
T = R = 1/2, the average currents vanish and the witness becomes

f(φ) = −e2Ω/(8π) cos(2φ), (5.22)

which clearly can be positive, signalling electron-hole entanglement.
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5. Dynamical entanglement of neutral leviton pairs

5.5. Floquet scattering theory

The noise in Eq. (5.21) corresponds to the ideal case of the entangled state in Eq. (5.9).
We now proceed with a full Floquet calculation [Moskalets and Büttiker, 2002; Moskalets,
2011] of the entanglement witness for the interferometer in Fig. 5.1, including finite
electronic temperatures and a detailed description of the small cavity. In this case,
the outgoing state is not known and we need to evaluate the witness to detect the
entanglement. As we will see, electron-hole entanglement is detectable under realistic
experimental conditions.

5.5.1. Realistic description

The current operator in contact i can be written as

Îi =
e

h

∫ ∞
−∞

dE
(
ĉ†i (E)ĉi(E)− â†i (E)âi(E)

)
(5.23)

in terms of the operators for particles at energy E incoming from and outgoing to reservoir
i, respectively. As usual, the operators for outgoing particles can be expressed as

ĉi(E) =
∑
j

∞∑
n=−∞

Sij(E,En)âj(En), (5.24)

where S is the Floquet scattering matrix and âj(E) are operators for incoming particles
from reservoir j.
The Floquet amplitudes for incoming particles at energy E to scatter into the outgoing

reservoirs with energy En = E + n~Ω, having absorbed (n > 0) or emitted (n < 0) |n|
energy quanta of size ~Ω, read

S31(En, E) = −
√
TSdF (n) +

√
ReiφSc(En)SrF (n),

S32(En, E) =
√
TSrF (n)−

√
ReiφSc(En)SdF (n),

S41(En, E) =
√
RSdF (n) +

√
TeiφSc(En)SrF (n),

S42(En, E) = −
√
RSrF (n)−

√
TeiφSc(En)SdF (n).

(5.25)

Here, the Floquet amplitudes of the first QPC, SsF (n) =
∫ T

0 dts(t)einΩt/T , with s = d, r

given in Eq. (5.8), are SdF (n 6= 0) = − sinh(2πη)e−2π|n|η, SdF (n = 0) = e−2πη and
SrF (n) = sgn(n) sinh(2πη)e−2π|n|η. In addition, the scattering matrix of the small cavity
reads

Sc(E) = rc(E) + t2c(E)
ei(φc+Eτ/~+π)

1 + rc(E)ei(φc+Eτ/~+π)
, (5.26)

where τ is the time it takes to complete one loop inside the cavity and

tc(E) =
1

e−BE + 1
(5.27)
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Figure 5.2.: Entanglement witness. (a) The witness f(φ) as a function of the Aharonov-
Bohm phase φ with different values of the flux φc enclosed by the small cavity.
The electronic temperature is zero. Positive values of f (above the dashed
line) signal electron-hole entanglement. With φc = 0, the Floquet calculation
is close to the analytic result -cos(2φ)/4 (black line) corresponding to the
maximally entangled state in Eq. (5.9). The parameters of the cavity are
τ = T /50 and B = 5T /~. (b) The witness f(φ) as a function of φ with
φc = 0 and different electronic temperatures Te. An increased temperature
merely decreases the amplitude of the oscillations, so that the entanglement
is still detectable at finite temperatures. ([Dasenbrook and Flindt, 2015],
(C) 2015 American Physical Society.)

is the transmission amplitude into the cavity with the cut-off B being tunable by a
magnetic field [Fertig and Halperin, 1987; Büttiker, 1990a]. The reflection amplitude is
rc(E) =

√
1− t2c(E). With a sharp cut-off B � T /h and a short loop-time τ � T , we

recover the state in Eq. (5.9) with ϑ(φc) ' φc + π.
Figure 5.2 shows the entanglement witness calculated using Floquet scattering theory

[Moskalets and Büttiker, 2002; Moskalets, 2011]. We vary the Aharonov-Bohm phase φ
and show in panel (a) results for different values of the flux φc enclosed by the cavity. The
electronic temperature is zero. The entanglement cannot be detected in all situations.
However, by tuning φc we come close to the analytic result (black line) corresponding
to the maximally entangled state in Eq. (5.9). The system then maximally violates the
inequality f(φ) ≤ 0 in the sense that the witness has the same weight above and below
the f = 0 line as a function of φ. Under this condition, the witness is thus expected to
be very robust against a decreased visibility, in contrast to entanglement detection based
on Bell inequalities [Samuelsson et al., 2009b].
In panel (b) we fix the optimal value of φc = 0 and consider the effect of a finite

electronic temperature. With increasing temperature, the amplitude of the oscillations
decreases and the entanglement gets harder to detect. Still, even with temperatures that
are higher than the driving frequency, the witness can become positive and entangle-
ment can be detected. Since there is no direct scattering path between the two output
reservoirs, thermal noise is not visible in the witness [Hofer and Flindt, 2014]. The re-
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Figure 5.3.: Influence of dephasing. The maximum value of the entanglement witness
f(φ) as a function of the decoherence parameter k and the variance of the
phase σ2. The contour line separates the region of detectable electron-hole
entanglement, where the witness is positive, from the region where the en-
tanglement cannot be detected. The black dots mark the experimental pa-
rameters from Ji et al. [2003] (A) and Neder et al. [2007c] (B), which lie in
the region of detectable entanglement. ([Dasenbrook and Flindt, 2015], (C)
2015 American Physical Society.)

sults in Fig. 5.2 are promising for the detection of electron-hole entanglement in driven
mesoscopic conductors.

5.5.2. Dephasing

Finally, to estimate the influence of dephasing and phase averaging, we return to the
analytic result for the noise in Eq. (5.21). Focusing on the optimal value ϑ = π, the noise
can be written as

S34 = −e2Ω/(4π)[1− 2kTR{1− exp(−2σ2) cos(2φ)}] (5.28)

in terms of the phenomenological parameters k [Ji et al., 2003] and σ2 [Roulleau et al.,
2007] which describe the coherence of the wave function across the interferometer (k = 1
meaning full coherence and k = 0 no coherence, e. g. as a result of a finite electronic
temperature or interactions) and the variance of the total Aharonov-Bohm phase leading
to phase-averaging. In Fig. 5.3 we show the maximal value of the witness f(φ) as a
function of k and σ2. We find that the witness is robust against moderate dephasing
mechanisms and that entanglement is detectable for parameters corresponding to the
experiments reported by Ji et al. [2003]; Neder et al. [2007c]. This is in contrast to the
detection of orbital entanglement based on a Bell inequality [Samuelsson et al., 2009b].

86



5.6. Conclusions

5.6. Conclusions

We have proposed and analysed a dynamical scheme to generate and detect entanglement
in the electron-hole degree of freedom of leviton pairs. Measuring the cross-correlations at
the output arms of a mesoscopic Mach-Zehnder interferometer, entanglement can be de-
tected despite superselection rules. The entanglement witness is robust against moderate
dephasing mechanisms and entanglement can be detected using current technologies.
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6. Single-electron entanglement and
nonlocality

6.1. Introduction

It is a question that has been much debated whether a state of a single particle in a
superposition of two spatially separate modes should be considered entangled [Tan et al.,
1991; Hardy, 1994; Greenberger et al., 1995; Vaidman, 1995; Hardy, 1995; Wiseman and
Vaccaro, 2003; Bartlett et al., 2007]. For photons (and other bosons) it is by now well
established that the answer is yes, and that the entanglement is in fact useful in quantum
communication applications [van Enk, 2005; Sangouard and Zbinden, 2012]. For electrons
(and other fermions), the situation is different because of the charge superselection rule,
and the question still causes controversy [Lebedev et al., 2004; Wiseman et al., 2004;
Samuelsson et al., 2005; Giovannetti et al., 2007; Sherkunov et al., 2009].
Here, we revisit this question motivated by the recent development of dynamic single-

particle sources in electron quantum optics. We demonstrate rigorously that the answer
for electrons is affirmative based on the situation sketched in Fig. 6.1(a): Two indepen-
dent sources each produce a single electron which is delocalised with one part transmitted
to location A and the other to B. Using only local operations (LOs) and measurements at
each location, a Bell inequality between A and B is violated deterministically, i. e. with-
out post-selection. This necessarily implies that there is entanglement between A and
B. Since the sources are independent this in turn implies that the state emitted by a
single source is entangled between regions A and B. Specifically, we show that such a
situation can be realised in an electronic Hanbury Brown-Twiss interferometer driven by
Lorentzian voltage pulses as illustrated in Fig. 6.1(b). Notably, the single-electron en-
tanglement can be observed from current cross-correlation measurements at the outputs
of the interferometer.

6.2. Single-particle entanglement

We start with a brief introduction to single-particle entanglement. A single particle in a
superposition of two different locations can be described by the state

|Ψ〉 =
1√
2

(|0〉A |1〉B + |1〉A |0〉B) , (6.1)

where the numbers in the kets indicate the particle numbers in the spatially separated
modes. The basic question is whether such a state is entangled. One can ask the question
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A B

(a)

(b)

Figure 6.1.: Schematic setup. (a) Two independent single-electron sources emit delo-
calised electrons towards the locations A and B. A Bell test is performed
using local operations and measurements at A and B. If the resulting data
p(ab|xy) violates a Bell inequality, A and B necessarily share entanglement.
Hence, the sources must emit entangled states. (b) Electronic Hanbury
Brown-Twiss interferometer realising the idea in (a) for an experimental
demonstration of single-electron entanglement. [Dasenbrook et al., 2016].
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both for bosons and for fermions, in particular for photons and electrons. To answer
affirmatively, the entanglement must be experimentally detectable.
Entanglement should be verified directly from measurements on each spatial mode in

Eq. (6.1), e. g. by testing the observations against a Bell inequality [Bell, 1964; Brunner
et al., 2014]. If arbitrary measurements were possible, Eq. (6.1) should indeed be con-
sidered entangled since it for example violates the Clauser-Horne-Shimony-Holt (CHSH)
Bell inequality [Clauser et al., 1969]. However, the possible measurements may be limited
because the state (6.1) is a single-particle state. Violating the CHSH inequality requires
measurements which are not diagonal in the occupation number basis, i. e. they should
contain projections onto superpositions of states with different particle numbers such
as (|0〉 + |1〉)/

√
2. One may therefore expect a fundamental difference between photons

and electrons because global charge conservation forbids such superpositions for electrons
[Schuch et al., 2004; Bartlett et al., 2007].
For photons it is by now established that the state (6.1) is entangled and in fact

useful for applications in quantum communication [Sangouard et al., 2011; Sangouard and
Zbinden, 2012]. Experimental demonstrations of single-photon entanglement have been
reported using homodyne [Babichev et al., 2004; Fuwa et al., 2015] and weak displacement
measurements [Hessmo et al., 2004; Monteiro et al., 2015]. These measurements require
the use of coherent states of light (laser light), which introduces additional particles.
These particles provide a reference frame between the observers [Bartlett et al., 2007;
Bohr Brask et al., 2013]. Alternatively, single-photon entanglement can be converted
into entanglement between two atoms [van Enk, 2005]. In Eq. (6.1), the numbers 0, 1
then represent internal atomic states and entanglement can be verified straightforwardly.
Importantly, since the conversion process involves only LOs, one concludes that the
original single-photon state (6.1) must have been entangled. These procedures, however,
cannot be straightforwardly applied to fermions (for example, there is no equivalent of
coherent states for fermions). Hence, a more careful analysis is necessary as we show in
the following.

6.3. Setup for the demonstration of single-electron
entanglement

We consider the experiment pictured in Fig. 6.1(b) and now argue that single-electron
entanglement is observable. To keep the analysis simple, we work at zero temperature and
assume that the sources create single electronic excitations above the Fermi sea which
can be detected one by one. These assumptions do not contradict any fundamental
principle such as charge conservation. We consider the possibility of an experimental
implementation with current technology later on.
Single electrons are excited above the Fermi sea at the sources S1 and S2, and are

coherently split and interfered on electronic beamsplitters – quantum point contacts
(QPCs) tuned to half transmission. Tunable phases ϕA and ϕB can be applied in one
arm on either side of the interferometer. The phases can be tuned using side gates
or by changing the magnetic flux Φ through the device. In the latter case, we have
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2πΦ/Φ0 = ϕA + ϕB, where Φ0 = h/e is the magnetic flux quantum.
Labelling the modes as indicated in the figure, in second quantized notation the top

beam splitter implements the transformation

a†S1
→ (a†A1

+ a†B1
)/
√

2,

a†G1
→ (a†A1

− a†B1
)/
√

2 (6.2)

and similarly for the others. Here, we have introduced the fermionic creation and anni-
hilation operators a†α and aα for electrons above the Fermi sea in mode α. Considering
just the top source (S1), the state created after the beam splitter is thus

1√
2

(a†A1
+ a†B1

) |0〉 , (6.3)

where the state |0〉 represents the undisturbed Fermi sea. This is the electronic version of
Eq. (6.1), and we use the interferometer to demonstrate that the state indeed is entangled
between the regions A and B.
The joint initial state of the two sources is a†S1

a†S2
|0〉, and the state evolution up to

the output of the interferometer is then

a†S1
a†S2
|0〉 → 1

2
(a†A1

eiϕA + a†B1
)(a†A2

+ a†B2
eiϕB ) |0〉

→ 1

4

[
a†A+

a†B+
(eiϕ − 1) + a†A+

a†B−(eiϕ + 1)

+ a†A−a
†
B+

(eiϕ + 1) + a†A−a
†
B−

(eiϕ − 1)

− 2eiϕAa†A+
a†A− + 2eiϕBa†B+

a†B−

]
|0〉 , (6.4)

where ϕ = ϕA+ϕB and we have used the fermionic anti-commutation relations {a†A1
, a†B1
} =

0, etc. We omit terms where two electrons go to the same output since these are ruled
out by the Pauli exclusion principle and vanish due to the fermionic anti-commutation
relations, e. g. 2(a†A1

)2 = {a†A1
, a†A1
} = 0.

Assuming that single-electron detection is possible, the state (6.4) can be seen to
violate the CHSH inequality using the following strategy: The phases ϕxA and ϕyB are
determined by the inputs x, y = 0, 1, and the binary outputs a, b = ±1 are determined
by outputting ±1 when one click is observed in detector A± (similarly for B). In cases
where both or none of the detectors click, the outputs are defined to be +1 and −1
respectively. We denote the probability for outputs a, b given inputs x, y by P (ab|xy).
The correlator defined as

Exy =
∑
a,b

abP (ab|xy) (6.5)

is then given by

Exy = −1 + cos(ϕxA + ϕyB)

2
. (6.6)
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If the experiment can be explained by a local hidden variable model, then the CHSH
inequality holds [Clauser et al., 1969]

S = |E00 + E01 + E10 − E11| ≤ 2. (6.7)

Now, with the choice ϕ0
A = 0, ϕ1

A = π/2, ϕ0
B = −3π/4, and ϕ1

B = 3π/4, we find

S = 1 +
√

2 > 2. (6.8)

Thus, the CHSH inequality is clearly violated. Since the state (6.4) violates a Bell
inequality between A and B, it must necessarily be entangled. Furthermore, it was
created by LOs on two copies of the state (6.3) coming from two independent sources.
Since any product of separable states is separable, it follows that the state (6.3) must
itself be entangled. We thus conclude that the state of a single electron split between
two modes is entangled.
It should be pointed out that the setup in Fig. 6.1(b) is similar to the Hanbury Brown-

Twiss interferometer for electrons, as theoretically proposed by Samuelsson et al. [2004]
and experimentally realised by Neder et al. [2007c] using edge states of a two-dimensional
electron gas in the integer quantum hall regime. However, in these works maximal
CHSH inequality violation (S = 2

√
2) is achieved by post-selection on the subspace of

one electron on each side of the interferometer (effectively post-selecting a maximally
entangled state), which is interpreted as two-electron orbital entanglement. Here, by
contrast, our scheme involves no post-selection and we do not achieve maximal CHSH
violation, but in turn we can demonstrate single-electron entanglement.
It should also be noted that the possibility of using two copies of a single electron

entangled state in order to distil one entangled two-electron state has been discussed by
Wiseman and Vaccaro [2003]; Vaccaro et al. [2003]. There, the idea is that each observer
performs a non-demolition measurement of the local electron number and then post-
selects on the cases where a single electron is detected on each side. Alternatively, the
distilled entanglement can be transferred to a pair of additional target particles [Ashhab
et al., 2007], in which case however single-electron nonlocality cannot be unambiguously
concluded. Again, as argued above, our setup involves no post-selection and is thus con-
ceptually different. Moreover, the setup does not require non-demolition measurements.
The scheme described so far is a thought experiment, demonstrating that single-

electron entanglement in theory is observable. In principle, nothing prevents its real-
isation. Single-electron sources [Fève et al., 2007; Dubois et al., 2013b; Jullien et al.,
2014] and electronic beam splitters have been experimentally realised and the first steps
towards single-electron detectors [Thalineau et al., 2014; Fletcher et al., 2013] have re-
cently been taken. Still, realising our thought experiment is at present challenging,
mainly because of the requirement to detect single electrons. To relax this constraint,
we discuss in the next section an experiment which only relies on measurements of the
average current and the zero-frequency current-correlators. These are standard measure-
ments which would also demonstrate single-electron entanglement, albeit under slightly
stronger assumptions about the experimental implementation.
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6.4. Floquet scattering description

We consider again the setup in Fig. 6.1(b), but now discuss a detection scheme which
is feasible using existing technology. Specifically, we consider measurements of zero-
frequency currents and current correlators as an alternative to single-electron detection.
We give a detailed description of the single-electron sources and the interferometer based
on Floquet scattering theory [Pedersen and Büttiker, 1998; Moskalets and Büttiker, 2002;
Moskalets, 2011; Dubois et al., 2013a]. This allows us to investigate realistic operating
conditions such as finite electronic temperatures and dephasing. As we will see, it is
possible to demonstrate single-electron entanglement under one additional assumption,
namely that the measurement of the mean current and the zero-frequency current corre-
lators amounts to taking ensemble averages over the state in each period of the driving.
This is a reasonable assumption if the period of the driving is so long that only one
electron from each source is traversing the interferometer at any given time.
For the single-electron sources, we consider the application of Lorentzian-shaped volt-

age pulses to the contacts [Levitov et al., 1996; Keeling et al., 2006; Dubois et al., 2013b;
Jullien et al., 2014]. A driven mesoscopic capacitor [Fève et al., 2007] can be used in-
stead. Electrons leaving a contact pick up a time-dependent phase given by Eq. (3.37).
At zero temperature, this results in the excitation of exactly one electron out of the Fermi
sea (and one hole going into the contact) without any additional electron-hole pairs, as
explained before. In Eq. (3.37), the temporal width of the pulse is denoted as Γ and T
is the period of the driving.

6.4.1. Scattering matrix

Floquet scattering theory provides us with a convenient theoretical framework to describe
the periodically driven interferometer [Pedersen and Büttiker, 1998; Moskalets and Büt-
tiker, 2002; Moskalets, 2011; Dubois et al., 2013a]. By Fourier transforming Eq. (3.37), we
obtain the Floquet scattering matrix of the driven contacts as in Eq. (A.5) in Appendix
A.
The scattering matrix of the interferometer can be found as follows. Since there are

eight terminals in total (four inputs and four outputs), the scattering matrix of the
interferometer is an 8 × 8 matrix. However, due to the chirality of the edge states,
electrons leaving an input contact can only travel to an output. This allows us to work
with an effective 4×4 scattering matrix connecting every possible input to every possible
output. Including the phases ϕA and ϕB, that the particles pick up when travelling from
input 1 to location A or from input 2 to B, the scattering matrix reads

S =


r1rAe

iϕA r1tAe
iϕA t1tB t1rB

t1rAe
iϕA t1tAe

iϕA −r1tB −r1rB
t2tA −t2rA −r2rBe

iϕB r2tBe
iϕB

−r2tA r2rA −t2rBeiϕB t2tBe
iϕB

 .

Here, t1(2) refers to the transmission amplitude of the QPCs after source 1(2) and tA(B)

is the amplitude for the QPC located at A(B). The r’s are the corresponding reflection
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amplitudes. The rows number the possible inputs S1, G1, S2 and G2 (in this order) and
the columns the possible outputs A+, A−, B+ and B−. We have chosen all amplitudes
to be real and inserted factors of −1 for half of the reflection amplitudes to ensure
the unitarity of the scattering matrix. Below, we consider only half-transparent beam
splitters and thus set all amplitudes to ±1/

√
2.

To obtain the combined Floquet scattering matrix of the interferometer and the single-
electron sources, we multiply every matrix element of the stationary S-matrix correspond-
ing to a voltage-biased input (i. e. the first and third rows) by SRL(n) from Eq. (A.5) and
every element corresponding to a grounded input (i. e. the second and fourth rows) by
δn0. In doing so, we assume that the two electron sources are perfectly synchronised and
all arms of the interferometer have the same length. The resulting Floquet scattering
matrix SF (En, E) ≡ SF (n) is the basis of all calculations below.
The current operator in output α is given by [Blanter and Büttiker, 2000]

Iα =
e

h

∫ ∞
−∞

{
c†α(E)cα(E)− b†α(E)bα(E)

}
dE, (6.9)

where the operators cα(E) (bα(E)) annihilate an incoming (outgoing) electron in lead α
at energy E. Outgoing electrons from the leads are distributed according to the Fermi-
Dirac distribution function

〈b†α(E)bβ(E′)〉 = δαβδ(E − E′)
1

eE/(kBT ) + 1
, (6.10)

where T is the electronic temperature and we have set the Fermi level in all reservoirs
to EF = 0. The scattered electrons are not in thermal equilibrium. We find their
distribution by relating the incoming electrons to the outgoing ones via the Floquet
scattering matrix as [Moskalets, 2011]

cα(E) =

∞∑
n=−∞

∑
β

[SF (E,En)]αβbβ(En). (6.11)

6.4.2. Zero temperature

At zero temperature, the average currents and the zero-frequency current correlators can
be calculated analytically using Eqs. (6.9) and (6.11). For example, the average current
at output A+ reads

〈IA+〉 =
e

T (T2TA + T1RA) , (6.12)

where Ti = |ti|2 and Ri = |ri|2 (i = 1, 2, A,B). The zero-frequency current cross-
correlator is defined as

Pαβ = 〈IαIβ〉 − 〈Iα〉 〈Iβ〉 . (6.13)

For the cross-correlator between the A+ and B+ outputs we obtain

PA+B+ = −e
2

T
∣∣t2tAr2tBe

iϕB + t1rAr1rBe
−iϕA

∣∣2 . (6.14)
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6. Single-electron entanglement and nonlocality

Note that the average currents are insensitive to the phases ϕA and ϕB, whereas the
current cross-correlators depend on their sum ϕA+ϕB. This is known as the two-particle
Aharonov-Bohm effect [Samuelsson et al., 2004].
We now formulate the CHSH inequality [Clauser et al., 1969] for our system. The

leviton annihilation operator is [Keeling et al., 2006]

aα =
√

2Γ
∑
E>0

e−ΓE/~bα(E). (6.15)

At zero temperature, we can express the operator of the number of levitons emitted from
lead α per period in terms of the current operator as

a†αaα =
T
e
Iα. (6.16)

This allows us to relate the current operator for a given detector at A or B to an
operator on the modes on side A or B before the final beam splitter and the phase shift,
cf. Fig. 6.1(b). Taking for instance the detector A+ and transforming Eq. (6.16) through
the beam splitter and the phase shift, we get

a†A+
aA+ →

1

2
(e−iϕAa†A1

+ a†A2
)(eiϕAaA1 + aA2)

=
1

2
(a†A1

aA1 + a†A2
aA2) +

1

2
(e−iϕAa†A1

aA2 + eiϕAa†A2
aA1).

(6.17)

To gain an intuitive understanding of this operator, we consider its restriction to the
single-electron subspace, i. e. the case where there is exactly one electron on side A of
the interferometer. In this case, the first term in (6.17) is just 1/2. The Hilbert space is
two-dimensional and the states a†A1

|0〉, a†A2
|0〉 form a basis. In this basis, the second term

in (6.17) is (cos(ϕA)σx + sin(ϕA)σy)/2, with σx, σy, σz being the usual Pauli matrices.
Thus, in the single-electron subspace we have

IA+ =
e

2T
(
1 + σAϕA

)
, (6.18)

where σAϕA = cos(ϕA)σAx + sin(ϕA)σAy is the rotated Pauli matrix in the x-y plane, acting
on side A. From this we see that, in the single-electron subspace, measuring IA+ is
equivalent to measuring σAϕA . Similar expressions can be obtained for the currents at the
other detectors, and thus, by measuring the currents at the four outputs, we can measure
any combination of Pauli operators in the two-qubit subspace with a single electron on
each side of the interferometer.
With this in mind, we define the observables

XϕA
A =

2T
e
IϕAA+
− 1, XϕB

B =
2T
e
IϕBB+
− 1, (6.19)

where the current for a given phase setting ϕ is denoted as Iϕα . In the subspace with
one electron on each side of the interferometer, these correspond to measuring (rotated)
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6.4. Floquet scattering description

Pauli operators. Events where two or no electrons arrive on the same side will give
contributions of +1 or −1 respectively, cf. Eq. (6.16), independent of the phase settings,
analogously to the output strategy in the previous section. At zero temperature the
correlator becomes

〈XϕA
A XϕB

B 〉 = −1 + cos(ϕA + ϕB)

2
, (6.20)

showing that the joint statistics is the same as in Sec. 6.2, where single-electron detection
was assumed. Here, however, we interpret the current expectation values entering in
the correlator, such as 〈IϕAA+

〉, as the result of time-integrated measurements. We thus
assume that a measurement of the time-integrated current and the zero-frequency current
correlators amounts to taking ensemble averages over the state in each period of the
driving. The statistics obtained from the time-integrated current measurement is then
the same as what one would obtain by averaging over several periods of the driving
with single-electron detection. Under this assumption, we can again consider the CHSH
inequality

S =
∣∣∣〈Xϕ0

A
A X

ϕ0
B

B +X
ϕ0
A

A X
ϕ1
B

B +X
ϕ1
A

A X
ϕ0
B

B −Xϕ1
A

A X
ϕ1
B

B

〉∣∣∣ ≤ 2, (6.21)

It is easy to see that the choice ϕ0
A = 0, ϕ1

A = π/2, ϕ0
B = −3π/4, ϕ1

B = 3π/4 leads to a
violation, giving

S = 1 +
√

2 > 2. (6.22)

This finally shows us that this scheme makes it possible to observe single-electron entan-
glement using zero-frequency measurements only.
We note that our results for the current and the zero-frequency noise do not depend

on the pulse width Γ. As such, our measurement strategy based on Eq. (6.19) would
also work with constant voltages as realised in the experiment by Neder et al. [2007c]
and the CHSH violation of Eq. (6.22) would be obtained. However, to unambiguously
demonstrate single-electron entanglement, in line with the thought experiment described
in Sec. 6.2, it is important that only one electron from each source is traversing the
interferometer at any given time. We therefore need to work with a long period and
well-separated pulses, as opposed to constant voltages.
It is instructive to compare our proposal to the previous work of Samuelsson et al.

[2004]. Although the two setups are similar, the detection scheme discussed here is
different. This significantly changes the interpretation of the observations. The measure-
ment scheme suggested by Samuelsson et al. [2004] is formulated in terms of coincidence
rates [Samuelsson et al., 2009a]. The corresponding observable is then sensitive only to
the part of the state with a single electron on each side of the interferometer. Thus, the
measurement effectively corresponds to performing post-selection, discarding the part of
the state where two electrons are on the same side. In this case, the CHSH inequality
is maximally violated (S = 2

√
2), as the post-selected state is a maximally entangled

two-qubit state. The Bell inequality is then violated because of the two-electron orbital
entanglement. By contrast, our measurement strategy is sensitive to the entire state
(including terms with two electrons on the same side) and does not imply any effective
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Figure 6.2.: Maximal value of the CHSH parameter as a function of temperature. The
Bell angles are ϕA = 0, ϕ′A = π/2, ϕB = −π/4 and ϕ′B = 5π/4. The
dephasing parameter σ2 is the variance of the distribution of the sum of the
phases ϕA + ϕB. The dashed line indicates the CHSH bound. [Dasenbrook
et al., 2016].

post-selection. For this reason we reach a lower CHSH violation, S = 1 +
√

2. However,
we observe in turn single-electron entanglement.

6.4.3. Finite temperature and dephasing

At finite temperatures, additional excitations in terms of electron-hole pairs are expected.
Consequently, Eq. (6.16) does not hold any longer. The operators in Eq. (6.19) are thus
not strictly bounded between -1 and +1, although values outside this range should be rare
at low temperatures. Since the CHSH parameter S is a monotonically decreasing function
of temperature, a violation of the CHSH inequality at finite temperatures indicates that
the corresponding zero temperature state is unambiguously entangled. We will thus
continue to use Eq. (6.21) to detect single-particle entanglement and come back to this
issue in Sec. 6.5.
At finite temperatures, the average current and the zero-frequency current correlators

can be calculated numerically. Fig. 6.2 shows the maximal value of the CHSH parameter
(using the same phase settings as above) as a function of the electronic temperature. In
the absence of any additional dephasing mechanisms (blue curve), the CHSH inequality
can be violated up to a temperature of kBT ≈ 0.5~Ω. For a typical driving frequency of
5 GHz [Dubois et al., 2013b; Jullien et al., 2014], this corresponds to a temperature of
about 120 mK, which is well within experimental reach.
Due to interactions with the electrons in the underlying Fermi sea as well as with

nearby conductors, the injected single-electron states may experience decoherence and
dephasing. Here we do not give a microscopic model for theses interactions, but instead
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6.5. Single-electron entanglement at finite temperature

we introduce a phenomenological dephasing parameter σ2 which denotes the variance of
the total phase ϕA + ϕB in a model that leads to Gaussian phase averaging. Previous
experiments have shown that this is the dominant effect of the interaction of electronic
interferometers with their environments [Ji et al., 2003; Roulleau et al., 2007]. At zero
temperature, the correlator in Eq. (6.20) then becomes

〈XϕA
A XϕB

B 〉 = −1 + e−σ
2

cos(ϕA + ϕB)

2
, (6.23)

making a Bell violation possible up to σ2 . 0.35. At finite temperatures, an analogous
expression can be found [Samuelsson et al., 2009a] and the dephasing has a similar qual-
itative effect. Fig. 6.2 shows that for small values of the dephasing parameter, a CHSH
violation is still possible at low enough temperatures, while for σ2 & 0.35, the entangle-
ment cannot be detected any longer. We note that the visibility of the current correlators
observed in the experiment by Neder et al. [2007c] is too low to violate Eq. (6.21) in this
setup. It corresponds to a dephasing parameter of σ2 ≈ 1.39 (light blue line in Fig. 6.2).
Nevertheless, by a careful design of the interferometer the dephasing may be further
reduced, bringing the measurement described here within experimental reach.

6.5. Single-electron entanglement at finite temperature

At zero temperature, it is clear that violating the CHSH inequality constructed out of
current and noise measurements demonstrates entanglement, since the measured corre-
lators are clearly ensemble averages over individual runs with either qubits on both sides
or two particles on one side. For these particular states, the considered operators output
the values ±1. However, at finite temperature, the situation is less clear, since in indi-
vidual driving periods, sometimes more than one particle might be found in the same
arm due to thermal excitations, such that the total charge transferred is more than one
or less than minus one. The aim is to show that even in this case, the experiment can
be interpreted as being composed of individual runs, in each of which only a dichotomic
variable with outcomes ±1 is measured.
To this end, we first note that we only ever measure two-particle observables, i. e. ob-

servables that are at most quadratic in the creation and annihilation operators. All
outcomes of these observables are given in terms of some reduced two-particle density
matrix (2PDM), and so we can always interpret measurements as ensemble averages over
single runs of measurements on only two electrons. If we detect any entanglement, it is
entanglement of this 2PDM.
Note that there are many ways to define reduced 2PDMs in mesoscopic conductors

connected to leads [Samuelsson et al., 2009a], some of which can be reconstructed to-
mographically by current and noise measurements [Samuelsson and Büttiker, 2006]. We
here consider the two-leviton reduced density matrix defined by

[ρr]
kl
ij =

〈
A†iA

†
kAjAl

〉
, (6.24)
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where the leviton creation operator is defined as [Keeling et al., 2006]

Ai =
√

2τ
∑
E>0

e−τ/~Ebi(E). (6.25)

In Eq. (6.25), τ is the width of the injected pulses, and in Eq. (6.24), the average is over
the full electronic state of the interferometer at arbitrary temperature.
At zero temperature and for the case that only single-charge levitons are periodically

injected at a frequency f , the current operator can be written as

Iα = efA†αAα. (6.26)

Then, currents and current correlators are completely determined by the reduced 2PDM
in Eq. (6.24). For average currents, this is even true at arbitrary temperatures. For the
current cross-correlators, however, the situation at finite temperatures is less clear. In
general, for a measurement of correlations between two different terminals, temperature
provides a factor ≤ 1 to the zero-temperature result [Dubois et al., 2013a].
However, we will now show that the correlations measured at finite temperatures are

bounded from above by those resulting from the reduced 2PDM Eq. (6.24) if the overlap
between successive levitons is negligible. Therefore, even though we are strictly measur-
ing correlations between incoming and outgoing electrons at all energies, we can infer
statements about entanglement of the reduced 2PDM.
To this end, we directly calculate leviton densities and density correlators at finite

temperatures and compare them with average currents and zero-frequency current cor-
relations functions. We first evaluate the expectation value1〈

A†iAi

〉
= 2τ

∫∫ ∞
0

e−τ(E+E′)
〈
c†i (E)ci(E

′)
〉

dEdE′ (6.27)

in a state with one leviton added to the finite temperature Fermi sea, i. e. directly after
the contact. By this we mean that we assume exactly one Lorentzian voltage pulse
has been applied. Using the Floquet scattering matrix,2 we map the c operators to the
outgoing a operators, which are in thermal equilibrium:〈

A†iAi

〉
= 2τ

∫∫ ∞
0

dEdE′e−τ(E+E′)

∫∫ ∞
−∞

dωdω′S∗F (−ω)SF (−ω′)
〈
a†i (Eω)ai(E

′
ω′)
〉
.

(6.28)
In Eq. (6.28), Eω = E + ω. In the limit of a single pulse, i. e. an infinite period, the
scattering matrix for the creation of a leviton is [Keeling et al., 2006]

SF (ω) = δ(ω)− 2τe−τωΘ(ω). (6.29)

1In this calculation, ~ = 1.
2Strictly speaking, this is not a Floquet scattering matrix since we are not dealing with a periodic
process. We model this by a periodic process where the period goes to infinity, therefore the energy
absorbed / emitted due to scattering is continuous and not discrete as in the case of a periodically
time-dependent scatterer.
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6.5. Single-electron entanglement at finite temperature

Using 〈a†i (Eω)ai(E
′
ω′)〉 = δ(Eω−E′ω′)f(Eω), where f(E) is the Fermi-Dirac distribution

function, we can simplify this to〈
A†iAi

〉
= (2τ)2

∫ ∞
0

dE

∫ −E
−∞

dωe2τωf(Eω) = 2τ

∫ ∞
0

dEe−2τEf(−E). (6.30)

Similarly, we can also evaluate〈
AiA

†
i

〉
= 2τ

∫ ∞
0

dEe−2τE(1− f(−E)). (6.31)

If no leviton is created and the contact i is instead grounded, these averages become〈
A†iAi

〉
= 2τ

∫ ∞
0

dEe−2τEf(E)〈
AiA

†
i

〉
= 2τ

∫ ∞
0

dEe−2τE(1− f(E)). (6.32)

Using the relation f(−E) = 1 − f(E), we immediately see that the two correlators are
just exchanged for a grounded reservoir. Furthermore, we have〈

A†iAi

〉
= 1−

〈
AiA

†
i

〉
. (6.33)

At zero temperature, Eqs. (6.30) and (6.31) evaluate to one and zero, respectively. At
finite temperatures, the integral can be performed numerically. Alternatively, we can
expand the integrand in powers of T in an analogous way to the Sommerfeld expansion.
For example, in Eq. (6.31), we can make a change of variables xkBT = E:〈

AiA
†
i

〉
= 2τkBT

∫ ∞
0

e−2τxkBT

ex + 1
dx. (6.34)

Expanding the numerator to linear order in T , we thus immediately obtain〈
AiA

†
i

〉
= 2τkBT

(∫ ∞
0

dx

ex + 1
−
∫ ∞

0

2τkBTx

ex + 1
dx

)
+O(T 3)

= 2τkBT log 2− (2τkBT )2π
2

12
+O(T 3). (6.35)

The low-T expansion for the other correlator can then be obtained by Eq. (6.33).
Equations (6.30)-(6.32) now allow us to calculate average leviton densities and density

correlation functions at the outputs of our full scattering setup. Relating incoming leviton
operators to outgoing ones using the S-matrix of the static interferometer and using
Wick’s theorem, we obtain〈

B†iBi

〉
=
∑
j

|Sij |2
〈
A†jAj

〉
(6.36)〈

B†iBiB
†
jBj

〉
=
∑
kl

|Sik|2|Sjl|2
〈
A†kAk

〉〈
A†lAl

〉
+
∑
kl

S∗ikSjkSilS
∗
jk

〈
A†kAk

〉〈
AlA

†
l

〉
. (6.37)
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Figure 6.3.: Correlators of the X-observables in the Hanbury Brown-Twiss setup using
levitons of different temporal widths, and the result based on zero-frequency
current and noise for comparison. Below a certain width, the measurement
based on currents gives a lower bound for the correlations based on the
reduced two-leviton DM. In this case, entanglement of the 2PDM can be
detected.

At zero temperature, these expressions coincide with the average current and the re-
ducible zero-frequency current correlation functions due to Eq. (6.26).
In formulating a CHSH inequality without post-selection using current and noise mea-

surements, we considered the observables

XϕA
A = 2B†A+BA+ − 1, (6.38)

and similarly for the operator on side B. Instead of the leviton densities B†A+BA+, what
is measured instead is the average current at output A+. Therefore, we have to make
sure that we do not overestimate the entanglement in the reduced two-leviton DM by
measuring correlators based on currents instead of the operators in Eq. (6.38) at finite
temperatures.
Fig. 6.3 shows the behaviour of the correlator

〈
XϕA
A XϕB

B

〉
obtained using the leviton

correlators at different pulse widths as well as using the zero-frequency currents (which
are independent of the pulse width). The angles ϕA = 0, ϕB = −π/2 have been chosen.
We see that if the pulse width is smaller than about τ ≈ 0.06, the correlations based
on the current operator are always a lower bound for the real leviton correlations. In
this case, entanglement of the 2PDM in Eq. (6.24) can be faithfully detected. If levitons
are injected periodically, the relevant quantity is η = τ/T , where T is the period of
the driving. This has to be compared to the injection of a single leviton with width τ .
Therefore, the value of τ in these results should be seen as the necessary ratio of the
width over the period in such a system. Thus, our requirement for small τ translates to

102



6.5. Single-electron entanglement at finite temperature

having vanishing overlap between successive pulses. This is not an experimental difficulty
[Dubois et al., 2013b] and ties in well with the conceptual argument for single-electron
entanglement.
We note that in the case that the CHSH inequality is constructed only out of reducible

current-current correlators, and not currents, as in the proposal by Samuelsson et al.
[2004], the requirement on the pulse width is the opposite: wide pulses should be used
for the current correlator to be a lower bound for the excess particle number correlator.
This is in agreement with the findings by Samuelsson et al. [2009a].
Next, we show that entanglement of the reduced two-leviton DM ρr implies entangle-

ment of the full density matrix ρ (the one that the average is taken over on the right
hand side of Eq. (6.24)). To this end, we assume that ρ is separable,

ρ =
∑
n

pnρ
(A)
n ⊗ ρ(B)

n (6.39)

and show that separability of ρr follows. In Eq. (6.39), ρ(A/B)
n are states fully localised

on side A/B (they can be assumed pure for simplicity), and pn are probabilities fulfilling∑
n pn = 1. Plugging this into Eq. (6.24), we can write its right hand side as〈

A†iA
†
kAjAl

〉
=
∑
n

pn

〈
A†iA

†
kAjAl

〉
n
, (6.40)

where the index n denotes taking the average over the state ρ(A)
n ⊗ ρ(B)

n .
Then, we use Wick’s theorem to expand this as〈

A†iA
†
kAjAl

〉
n

=
〈
A†iAj

〉
A,n

〈
A†kAl

〉
A,n

+
〈
A†iAj

〉
A,n

〈
A†kAl

〉
B,n

+〈
A†iAj

〉
B,n

〈
A†kAl

〉
A,n

+
〈
A†iAj

〉
B,n

〈
A†kAl

〉
B,n

+〈
A†iAl

〉
A,n

〈
A†kAj

〉
A,n

+
〈
A†iAl

〉
A,n

〈
A†kAj

〉
B,n

+〈
A†iAl

〉
B,n

〈
A†kAj

〉
A,n

+
〈
A†iAl

〉
B,n

〈
A†kAj

〉
B,n

. (6.41)

Separability of ρ implies that 〈A†iAj〉n = 0 unless i, j ∈ A or i, j ∈ B. All the terms in
Eq. (6.41) describe separable density matrices: The resulting matrices are outer products
of single-particle density matrices that are either fully localised on side A or side B.
For example, the second term might be written as the outer product of two matrices,
M (A)⊗M (B), with elements [M (A)]ij = 〈A†iAj〉A,n and [M (B)]kl = 〈A†kAl〉B,n. Therefore,
we have written the two-leviton DM as a convex combination of outer products of density
matrices localised on side A or side B. It is therefore separable.

Reversing this argument, if we detect entanglement of ρr (e. g. by a measurement of
leviton density operators or current operators), it follows that the full state ρ of our
system must be entangled.
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6.6. Conclusion

We have provided a simple argument that shows that the single-electron split-mode state
is entangled, and furthermore, nonlocal. To this end, we have considered a Hanbury-
Brown Twiss interferometer where a Bell inequality can be violated using two independent
copies of this state. Using an argument from entanglement theory, we conclude that
each copy of this state must have been entangled. We also presented a way to relate
the electron detection statistics required for the formulation of the CHSH inequality
to experimentally measurable zero-frequency currents and current-correlators. We have
shown that the CHSH inequality can be violated and thus single-electron be demonstrated
using current experimental technologies if the dephasing is not too strong.
We have calculated the required current correlators at finite temperatures using Flo-

quet theory. Furthermore, we have shown that the argument remains valid in the pres-
ence of thermal electron-hole excitations if the injected single-electron wave-functions
have negligible overlap.
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Conclusions

In this thesis, current fluctuations and entanglement in quantum-coherent conductors
have been investigated. In the first part, the focus was on the electronic waiting time
distribution and the extensive full counting statistics in periodically driven quantum
conductors. We have derived the Floquet scattering formalism for WTDs and calculated
them for a quantum point contact driven by voltage pulses, as well as for a driven
mesoscopic capacitor. We then generalized the theory to account for many channels and
correlations between subsequent waiting times and presented a theory for an electron
waiting time clock capable of measuring waiting time distributions for electrons above
the Fermi level. Finally, we presented a proposal for measuring the extensive full counting
statistics (the FCS per period) using a periodically driven Mach-Zehnder interferometer
coupled to a nearby conductor.
The second part was dedicated to occupation number entanglement in mesoscopic con-

ductors. We introduced a setup for creating and detecting on-demand entanglement in
the electron-hole degree of freedom of electronic excitations. We then presented a simple
argument showing that even the state of a single-electronic excitation in a superposition
of two electronic modes must be considered entangled, and investigated a setup based on
an electronic Hanbury Brown-Twiss interferometer demonstrating single-electron entan-
glement.
The work presented here ties in with the general field of electron quantum optics.

Using edge channels in topological insulators such as two-dimensional electron gases in
the quantum Hall regime, electronic excitations can be guided between beam splitters.
Additional tunable phases can be applied using gates and magnetic fields, and interfer-
ence experiments can be carried out. Combined with dynamic single-electron emitters,
analogues of many experiments from the quantum optical toolbox can now be realized in
electronic conductors. The characterization of these dynamically driven systems requires
new observables such as the electronic waiting time distribution, and the controlled cre-
ation and detection of entanglement benefits from an adaptation of Bell inequalities and
entanglement witnesses into the electronic domain. Furthermore, conceptual questions
such as the possibility of single-particle entanglement require different treatments in the
electronic and optical settings.
Evidently, this work can only scratch the surface of what there is to investigate on

these topics. For example, it would be interesting to find stronger connections between
the different chapters of this thesis. While some connections between current fluctuations
and entanglement are well-known (for example, the CHSH inequality in chapter 6 and the
witness in chapter 5 have both been formulated in terms of current correlation functions),
it would be desirable to find more general and deeper relationships between properties
of fluctuating currents and non-classical correlations.
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Conclusions

The WTD carries complementary information to the full counting statistics and char-
acterizes transport processes on short time scales. As it constitutes the probability distri-
bution for time durations between classical detection events, every properly normalized
and positive waiting time distribution can always be simulated by a classical stochas-
tic process. However, taking into account correlations between waiting times such as in
chapter 2, the situation becomes less clear. It would be interesting to find out if there are
some correlated waiting time distributions which can never correspond to a classical pro-
cess. To this end, possible connections to Leggett-Garg inequalities could be investigated
[Emary, 2012; Emary et al., 2013].
Also on the side of the entanglement detection, many things remain to be investi-

gated and improved. The violation of Bell inequalities in electronic conductors remains
experimentally challenging due to the strong effects of environmental dephasing and in-
teractions between or within edge channels. While we have investigated an entanglement
witness for the particular case of electron-hole entanglement as a promising alterna-
tive, this witness relies on recombining the parts of the system that are entangled, and
therefore constitutes a nonlocal measurement. To formulate more general entanglement
witnesses requires a detailed analysis of the relevant subspaces of the total Hilbert space,
which is complicated by the fact that in electronic systems, there are always spurious
excitations, e. g. due to finite temperatures or interactions, that enlarge the relevant
Hilbert space even though the entanglement that we want to consider can be formulated
mathematically as the entanglement between two qubits. Therefore, it is desirable to
investigate further what observables can be used to certify the presence of entanglement
unambiguously, but with a tolerance to noise that is as high as possible.
To this end, short-time observables such as the finite frequency noise or the electron

waiting time distribution might play a role. Another route would be to derive bounds for
the noise correlators in terms of two-particle correlation functions such as the two-leviton
density matrix, as done in section 6.5, but for more general input states that allow for
the discrimination of entangled states from separable states.
The differences between photons and electrons are not just superficial. Therefore, a

straightforward extension of ideas from quantum optics to the domain of electron quan-
tum optics is often not possible. Most importantly, electrons are charged particles that
interact strongly via the Coulomb interaction, whereas interactions between photons do
not play a role at the energy scales typically considered. Here, we have often neglected
electron-electron interactions or only included them on a phenomenological level, such
as by introducing the dephasing parameters in chapters 5 and 6. This approach works
well for some purposes, but to make further experimental and theoretical progress, a
more detailed microscopic understanding of the interaction is necessary. It is desirable
to extend the simple models considered in this thesis to include some explicit model for
electron-electron interactions. In quantum Hall edge channels, a bosonization approach
is often successful [Sukhorukov and Cheianov, 2007; Levkivskyi and Sukhorukov, 2009].
Most devices to date operate at a filling factor of 2, where interactions between coprop-
agating edge channels lead to profound effects. The separation of injected wave packets
into charge and neutral modes is theoretically predicted and experimentally validated
[Levkivskyi and Sukhorukov, 2008; Bocquillon et al., 2013b].
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For these reasons, it is to be expected that the realization of electron quantum optical
experiments faces many challenges that are different from their photonic counterparts.
The importance of interactions and the fact that electrons are fermions certainly com-
plicate things, and the demonstrations of entanglement and effects useful for quantum
information processing or quantum communication are somewhat less advanced com-
pared to what has been achieved in optical setups. On the plus side however, the richer
physics might also turn out to be advantageous, and lead to fundamentally different ideas
for technological applications. A promising perspective is provided by the small size of
these systems, which make them amenable to integration into micro- and nano-circuits.
Thus, the possibilities for scaling up and combining many small devices into technolog-
ical innovations seem more obvious when compared to macroscopic optical setups. For
these reasons, it is definitely worth exploring the physics of electron quantum optical sys-
tems further and broaden our understanding of quantum transport, dephasing, electron
interactions, statistics and entanglement in periodically driven mesoscopic conductors.
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A. Levitons

Here we briefly discuss the Floquet scattering theory for the periodic creation of levitons
[Ivanov et al., 1997; Levitov et al., 1996; Keeling et al., 2006; Dubois et al., 2013a].
Applying a series of periodic Lorentzian voltage pulses of unit charge to one of the
reservoirs leads to the creation of one clean electron excitation per period — a leviton
— without accompanying electron-hole pairs.
The voltage consists of a series of Lorentzian-shaped pulses

V (t) =
~
e

∞∑
n=−∞

2τp
(t− nT )2 + Γ2

(A.1)

as illustrated in Fig. 1.2. The width of the pulses is Γ and the period is T . The same
outgoing state can also be created by a mesoscopic capacitor with a slow linear driving
protocol [Keeling et al., 2008; Hofer and Büttiker, 2013; Inhofer and Bercioux, 2013;
Battista and Samuelsson, 2012; Ol’khovskaya et al., 2008; Haack et al., 2013].
Importantly, a time-dependent voltage has the effect of adding a phase to the single-

particle states in the contact [Pedersen and Büttiker, 1998]. We can treat this additional
phase as a scattering phase which is picked up after the particles leave the contact but
before they arrive at the scatterer, i. e.

SVi(t) = e
−i e~

∫ t
t0
dt′Vi(t′). (A.2)

Here t0 is the time when the voltage is switched on. In this way, the contacts can be
treated as equilibrium reservoirs at the same chemical potential and all the effects due
to the time-dependent driving are captured by the phase Eq. (A.2).
We treat the adiabatic regime, where the time scale over which the voltage is modulated

is much longer than the time it takes an electron to pass through the scattering region.
The Floquet scattering matrix S can then be related to the “frozen” scattering matrix
Sf (t) at time t as [Moskalets and Büttiker, 2002; Moskalets, 2011]

Sαβ(En, E) =

∫ T
0

dteinΩtSfαβ(E, t)/T . (A.3)

The frozen transmission amplitude is energy-independent and reads

SfRL(E, t) =
√
T

sin[π(t/T + iη)]

sin[π(t/T − iη)]
(A.4)

with η = Γ/T , see e. g. Dubois et al. [2013a]. Here, we have introduced an additional
QPC with transmission probability T placed after the voltage-biased contact. For the
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A. Levitons

Floquet scattering amplitude, we find

SRL(En, E) =
√
T


−2e−nΩΓ sinh(ΩΓ) n > 0

e−ΩΓ n = 0

0 n < 0

. (A.5)

For well-separated pulses, η � 1, the scattering amplitude reduces to [Dubois et al.,
2013a]

SRL(En, E) ' 4π
√
Tηe−2πηnΘ(n). (A.6)

For pulses with a large overlap, η � 1, the scattering amplitude SRL(En, E) '
√
Tδn,1

is that of a QPC with transmission T and static voltage Vdc = ~Ω/e, see also Eq. (1.22).
This Floquet scattering matrix relates particles incident on the scatterer to equilibrium

particles through Eq. (1.15). Together with the scattering matrix of the scatterer itself, it
yields the Floquet scattering matrix used for the calculation of the idle time probability
in Eqs. (1.17) and (C.4). For the Hong-Ou-Mandel calculations, the time delay between
the sources can be tuned by changing the parameter t0 in one of the matrix elements in
the channel space.
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B. Determinant formula for the ITP

In this appendix, we show how to derive the determinant formula for the idle time
probability

Π(τ, t0) = det(1−Qτ,t0) (B.1)

with the matrix elements

Qτ,t0(E,E
′
) =

∞∑ ∞∑
m=−bE/~Ωc
n=−bE′/~Ωc

S∗RL(Em, E)SRL(E
′
n, E

′
)

×Kτ,t0(Em, E
′
n)Θ(−E)Θ(−E′)

(B.2)

from the expression
Π(τ, t0) =

〈
:e−Q̂τ :

〉
t0+τ

. (B.3)

We first show that for a general single-particle operator

Q̂ =
∑
m,n

qmnâ
†
mân, (B.4)

where the â†m, ân are operators creating / annihilating particles in given basis states
labelled by m, n, and a Slater determinant of the form

|Ψ〉 =
N∏
n=1

â†n |0〉 , (B.5)

the average of the normal-ordered exponential can be expressed as〈
Ψ
∣∣∣ : exp

(
− Q̂

)
:
∣∣∣Ψ〉 = det(1−Q). (B.6)

Here, Q is the matrix with elements [Q]mn = qmn.
To this end, we first make a change of basis such that the matrix Q̃ corresponding

to the operator Q̂ in this basis is diagonal. The determinant in Eq. (B.6) can then be
written as a simple product and expanded in orders k:

det(1− Q̃) =
N∏
n=1

(1− q̃n) =
N∑
k=0

(−1)k
∑

σ∈Pk(NN )

∏
i∈σ

q̃i. (B.7)

In this notation, we define Pk(NN ) to be the set of all subsets with k elements of the
set of the first N natural numbers, NN . In other words, at order k, we pick k different
elements out of the N q̃i’s and multiply them with each other.
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B. Determinant formula for the ITP

Likewise, the l.h.s. of Eq. (B.6) can be expanded:

〈
: exp

(
−Q̂
)

:
〉

=

N∑
k=0

(−1)k

k!

〈
:

(
N∑
i=1

q̃iĉ
†
i ĉi

)k
:

〉
, (B.8)

where the operators ĉ†i , ĉi follow from the operators â†i , âi by going over to the diagonal
basis.
The equality of Eqs. (B.7) and (B.8) can now be established order by order using

mathematical induction. We immediately see that for k = 0, both terms are simply 1.
We now assume the equality of the terms for a given k. Defining the k-th order term in
Eq. (B.8) to be 〈Êk〉 for brevity, the term of order k + 1 then reads

〈Êk+1〉 = −
N∑
l=1

q̃l
k + 1

〈
ĉ†l Êk ĉl

〉
, (B.9)

where we used that the operator Êk is already normal-ordered by definition. By the
induction hypothesis, the expectation value of Êk in a Slater determinant is given by
the k-th order term in Eq. (B.7). Seeing that the operator ĉl just removes the particle
labelled l from the Slater determinant, we have

〈Êk+1〉 =
N∑
l=1

q̃l
k + 1

(−1)k+1
∑

σ∈Pk(NN\{l})

∏
i∈σ

q̃i. (B.10)

Instead of summing over all σ ∈ Pk(NN\{l}) and multiplying by q̃l, we can instead sum
directly over all σ ∈ Pk+1(NN ). The summation over l then just provides an additional
factor k + 1, allowing us to arrive at

〈Êk+1〉 = (−1)k+1
∑

σ∈Pk+1(NN )

∏
i∈σ

q̃i, (B.11)

which is just the k + 1-st order term of Eq. (B.7). Thus, this completes the proof of
Eq. (B.6).
We now use this general result to derive Eq. (B.1). The role of the labels m, n

indexing the single-particle states is now played by the energy indices E, E′ (after a
suitable regularisation, see e. g. Hassler et al. [2008]; Bornemann [2010]) and the lead
indices α, β. The incoming state is a Slater determinant of all single-particle states filled
up to the Fermi energy:

|Ψin(t)〉 =
∏

α=L,R

∏
E<0

e−itE â†α(E) |0〉 . (B.12)

We now consider the operator

Qτ =
∑
E,E′

qE,E′ (τ)b̂†R(E)b̂R(E
′
) (B.13)
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counting particles in the right-lead, with its matrix elements in the basis of outgoing
right-moving states

qE,E′ (τ) = Θ(E)Θ(E
′
)

∫ x0+vF τ

x0

φ∗
R,E′

(x)φR,E(x)dx. (B.14)

We write it in terms of the incoming operators â†α(E), âβ(E
′
) using the Floquet S-matrix:

b̂α(E) =
∑
β

∑
En

Sαβ(E,En)âβ(En). (B.15)

The Θ-functions in Eq. (B.14) make sure that only particles above the Fermi level are
counted. This can be achieved e. g. using an appropriate energy filter (see the discussion
of the electron waiting time clock in chapter 3), or by emitting the particles into an
energy window with some separation to the Fermi sea [Fletcher et al., 2013]. Absorbing
the time-dependence of the Slater determinant Eq. (B.12) into the operator Qτ and
taking the average at a time t0 + τ as in Eq. (B.3), the matrix elements in terms of
the incoming states are then given by Eq. (B.2). We focus here on situations where
all particles scattered into the right lead originate from the left lead, as is the case for
the directed processes at zero temperature involving a voltage bias or a single-electron
emitter.
Using the result Eq. (B.6), we thus see that the ITP is given by Eq. (B.1).
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C. Evaluation of the generalised ITP

To compute the generalised ITP in Eq. (2.18), we map the outgoing operators onto
the incoming ones using the Floquet scattering matrix [Moskalets and Büttiker, 2002;
Moskalets, 2011]

b̂α(E) =

∞∑
n=−∞

Ni∑
β=1

SF,αβ(E,En)âβ(En), (C.1)

where Ω is the frequency of the external driving and we have defined the energies

En = E + n~Ω, (C.2)

for integer n. Since the incoming equilibrium particles are described by a Slater deter-
minant, we may evaluate the quantum statistical average in Eq. (2.18) and we thereby
obtain a determinant formula of the form

Π(ts1, t
e
1; . . . ; tsNo , t

e
No) = det(I−Q(ts1, t

e
1; . . . ; tsNo , t

e
No)).

Here I is the identity matrix and Q contains the single-particle matrix elements of the
operator

∑
α Q̂α.

The matrix Q has a block form with elements in the (incoming) channel space

[Q(ts1, t
e
1, . . . , t

s
No , t

e
No)]αβ = Kαβ (C.3)

with the Kαβ being matrices in energy space. In the general case of a time-dependent
scatterer with many channels described by the Floquet scattering matrix in Eq. (C.1),
these matrices have the elements

[Kαβ]E,E′ =

No∑
γ=1

∞∑ ∞∑
m=−bE/~Ωc
n=−bE′/~Ωc

S†F,γα(Em, E)SF,γβ(E
′
n, E

′
)

×Θ(−E)Θ(−E′)[K(tsγ , t
e
γ)]Em−E′n

,

(C.4)

where we have defined

[K(tsγ , t
e
γ)]E =

κ

π
e−iE(tsγ+teγ)/2

sin(E(teγ − tsγ)/2)

E
. (C.5)

In addition, the floor function is denoted as b·c and we have discretized [Hassler et al.,
2008; Albert et al., 2012; Haack et al., 2014] the transport window [EF , EF + eV ] into
compartments of width κ = eV/N , where N is the number of particles. We always
consider the limit N → ∞. The matrix has a block form with respect to the incoming
channels, while we sum over the indices of the outgoing channels. The result in Eq. (C.4)
generalises the expressions Eqs. (B.1)-(B.2) to many channels.
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D. Numerical evaluation of Fredholm
determinants

We here briefly sketch the numerical method used to evaluate Fredholm determinants,
such as the ones appearing in Eqs. (1.12), (1.16), (B.1). We use the efficient and simple
method recently proposed by Bornemann [2010].
A compact operator Q on a Hilbert space H is said to be trace class if its trace can

be defined [Reed and Simon, 1980]. More precisely, given any orthonormal basis {ek}k
of H, the series

trQ =
∑
k

〈ek|Q |ek〉 (D.1)

should converge. For a trace class operator, one can define the determinant

f(z) := det(1 + zQ) (D.2)

for z ∈ C. Eq. (1.12) is an example of such a Fredholm determinant for z = −1.
We now specify to the concrete case of operators that can be written as integral

transforms on L2(R),

(Qf)(x) =

∫ b

a
Q(y, x)f(y)dy. (D.3)

The operator Qτ in Eq. (1.12) falls into this category with a = 0, b = eV and the kernel
Q(y, x) given by Eq. (1.14).
Now, given a quadrature rule for integrations on the interval [a, b],∫ b

a
f(x)dx ≈

m∑
j=1

wjf(xj) (D.4)

with weights wj and a set of samples {xj}j , the determinant Eq. (D.2) is approximated
as

f(z) = det(M(z)), (D.5)

where the matrix M(z) has elements

[M(z)]ij = δij + zwjQ(xi, xj). (D.6)

For analytic kernels Q(xi, xj), Bornemann [2010] has proven exponential convergence
rates for this method. In practice, for our waiting time calculations, we have indeed found
very fast convergence, with a fourth order Gaussian quadrature rule already sufficient for
a static QPC. For driven systems, this number should be multiplied by the number of
relevant Floquet scattering amplitudes. In this case, we apply the discretization Eq. (D.6)
in every matrix block m,n corresponding to a certain choice of Floquet energies Em, En.
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E. Full scattering matrix of the electron
waiting time clock

In this appendix, we give the full scattering matrix of the electron waiting time clock,
including all scattering amplitudes corresponding to electrons taking more than one turn
in the capacitor.
If electrons can complete several loops inside the capacitor, the moment generating

function reads

χ(λ, τ) = det
(
S†sys

(
PR + PTS(l)†

−λ PT + PTM†−λPT
)

×
(
PR + PTS(l)

λ PT + PTMλPT

)
Ssys

)
, (E.1)

having introduced the matrix

Mλ = S(l)
λ PR

(
1− PRS(l)

λ PR

)−1
PRS(l)

λ (E.2)

which describes processes where electrons complete more than one loop. By further
manipulations, the moment generating function can be brought on the form

χ(λ, τ) = det
(

1 + S†sysPT

[ (
K†τ +Kτ

)(
eiλ/2 − 1

)
+K†τPTKτ

(
eiλ/2 − 1

)2
+Rλτ

]
PTSsys

)
(E.3)

with

Rλτ =M†−λPTMλ +
(
L†Mλ +M†−λL

)
+L†K−λ†τ PTMλ +M†−λPTKλτL, (E.4)

where the matrix elements of L read

[L]E,E′ = ei(E
′+eδVg)τDδ(E − E′ − eδVg). (E.5)

In this case, the function in Eq. (E.3) contains terms that are proportional to exp(iλ/2).
This is due to the commutator [PT ,Kτ ] being non-zero.
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