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Summary. The parareal algorithm is a method to solve time dependent problems
parallel in time: it approximates parts of the solution later in time simultaneously
to parts of the solution earlier in time. In this paper the relation of the parareal
algorithm to space-time multigrid and multiple shooting methods is first briefly
discussed. The focus of the paper is on some new convergence results that show
superlinear convergence of the algorithm when used on bounded time intervals, and
linear convergence for unbounded intervals.

1 Introduction

The parareal algorithm was first presented in [LMT01] to solve evolution prob-
lems in parallel. The name was chosen to indicate that the algorithm is well
suited for parallel real time computations of evolution problems whose solu-
tion can not be obtained in real time using one processor only. The method
approximates successfully the solution later in time before having fully accu-
rate approximations from earlier times. The algorithm has received a lot of
attention over the past few years; for extensive experiments and studies of con-
vergence and stability issues we refer to [MT02, FC03] and the contributions
in the 15th Domain Decomposition Conference Proceedings [KHP104].

Parareal is not the first algorithm to propose the solution of evolution
problems in a time-parallel fashion. Already in 1964, Nievergelt suggested a
parallel time integration algorithm [Nie64], which led to multiple shooting
methods. The idea is to decompose the time integration interval into subin-
tervals, to solve an initial value problem on each subinterval concurrently, and
to force continuity of the solution branches on successive intervals by means
of a Newton procedure. Since then, many variants of the method were devel-
oped and used for the time-parallel integration of evolution problems, see e.g.
[BZ89, CP93]. In [GVO05], we show that the parareal algorithm can be inter-
preted as a particular multiple shooting method, where the Jacobian matrix
is approximated in a finite difference way on the coarse mesh in time.
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In 1967, Miranker and Liniger [ML67] proposed a family of predictor-
corrector methods, in which the prediction and correction steps can be per-
formed in parallel over a number of time-steps. Their idea was to “widen the
computational front”, i.e., to allow processors to compute solution values on
several time-steps concurrently. A similar motivation led to the block time in-
tegration methods by Shampine and Watts [SW69]. More recently, [SN88] and
[Wom90] considered the time-parallel application of iterative methods to the
system of equations derived with implicit time-integration schemes. Instead of
iterating until convergence over each time step before moving on to the next,
they showed that it is possible to iterate over a number of time steps at once.
Thus a different processor can be assigned to each time step and they all iter-
ate simultaneously. The acceleration of such methods by means of a multigrid
technique led to the class of parabolic multigrid methods, as introduced in
[Hac84]. The multigrid waveform relaxation and space-time multigrid meth-
ods also belong to that class. In [VAV94], a time-parallel variant was shown
to achieve excellent speedups on a computer with 512 processors; while run
as sequential algorithm the method is comparable to the best classical time
marching schemes. Experiments with time-parallel methods on 2'* processors
are reported in [HVW95]. In [GV05], it is shown that the parareal algorithm
can also be cast into the parabolic multigrid framework. In particular, parareal
can be identified with a two level multigrid Full Approximation Scheme, with
a special Jacobi-type smoother, with strong semi-coarsening in time, and se-
lection and extension operators for restriction and interpolation.

2 A Review of the Parareal Algorithm

The parareal algorithm for the system of ordinary differential equations
u' = f(u), u(0)=wup, tel0,T], (1)

is defined using two propagation operators. Operator G(t2,t;,u;) provides
a rough approximation to wu(t2) of the solution of (1) with initial condition
u(t1) = w1, whereas operator F'(ta,t1,u1) provides a more accurate approx-
imation of w(tz). The algorithm starts with an initial approximation U¥,
k =0,1,...,k at the time points tg,t1,...,t; given for example by the se-
quential computation of Ugﬂ = G(tgt1,tk,Us), with Uy = ug, and then
performs for n =0,1,2, ... the correction iteration

Uit = Gltisr, e, Up™Y) + Ftigr, ti, UR) — Gltirr, te, UR). (2)

Note that, for n — oo, the method will upon convergence generate a series of
values Uy, that satisfy Ugy1 = F(tgs1,tr, Ug). That is, the approximation
at the time-points #;, will have achieved the accuracy of the F-propagator.
Alternatively, one can restrict the number of iterations of (2) to a finite value.
In that case, (2) defines a new time-integration scheme. The accuracy of the
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U} values is characterized by a theorem from [LMTO1]. The theorem applies
for a scalar linear problem of the form

u' = —au, u(0)=ug, te€lo0,T]. (3)

Theorem 1. Let AT = T/k, t;, = kAT fork =0,1,...,k. Let F(tj41,tx, UP)
be the exact solution at ty1 of (3) with u(ty) = U}}, and G(tgy1,tk, UJ) the
corresponding backward Euler approrimation with time step AT. Then,

max_|u(ty) — Up| < Cp AT, (4)
1<k<k

where the constant C,, is independent of AT.

Hence, for a fixed iteration step n, the algorithm behaves in AT like a method
O(AT™"1). Note that the convergence of the algorithm for a fixed AT and
increasing number of iterations n is not covered by the above theorem, because
the constant C,, is growing in n in the estimate of the proof in [LMTO01].

3 Convergence analysis for a scalar ODE

We show two new convergence result for fixed AT when n becomes large.
The first result is valid on bounded time intervals, T' < oo, whereas the
second one also holds for unbounded time intervals. The results apply for
an arbitrary explicit or implicit one step method applied to (3) with a € C,
i.e., Ury1 = BUy, in the region of absolute stability of the method, i.e., |3] < 1.

In our analysis an important role will be played by a strictly upper trian-
gular Toeplitz matrix M of size k. Its elements are defined as follows,

B e
Mi; = {0 otherwise. (5)

A key property of M, whose proof we omit here, is that
n E—1
Bl<t = (IMle< (71 (6)

Theorem 2 (Superlinear convergence on bounded intervals). Let T <
00, AT = T/k, and t, = kAT for k =0,1,...,k. Let F(tyi1,tr, UR) be the
exact solution at ty+1 of (3) with u(ty) = UY, and let G(tg+1,t,US) = BUR
be a one step method in its region of absolute stability, i.e., |5| < 1. Then,

|e—aAT _ B|n n

max_|u(ty) — U] < H(IE —j) max_|u(ty) —UP|. (7)

1<k<k n! 1 1<k<k
j=1
If the local truncation error of G is bounded by C ATP+!, then
cT™
max_|u(ty) — Up| < (1) ATP™ max_|u(ty) — Up)|. (8)

1<k<k n! 1<k<k
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Proof. We denote by e the error at iteration step n of the parareal algorithm

at time ty, e} := u(ty) — Ujr. With (2) and an induction argument on k, it is
easy to see that this error satisfies

k—1
et = Bepti 4 (et = Blef = (e = 5) DBl
Jj=1
This relation can be written in matrix form by collecting e} in the vector
e" = (ef,ef_,...,e!)T, which leads to
e = (AT - p)Me, )
where matrix M is given in (5). By induction on (9), we obtain
lle™lloo < 1(e=*2T = B)"|IM"||oo |l€°] oo, (10)

which together with (6) implies (7). The bound (8) follows from the bound
on the local truncation error together with a simple estimate of the product,

—aAT _ pn ™ n (p+1)n _ n

n! n! n!

j=1
Remark 1. The product term in (7) shows that the parareal algorithm con-
verges for any AT on any bounded time interval in at most k — 1 steps.
Furthermore the algorithm converges superlinearly, as the division by n! in
(7) shows. Finally, if instead of an exact solution on the subintervals a fine grid
approximation is used, the proof remains valid with some minor modifications.

Theorem 3 (Linear convergence on long time intervals). Let AT be
given, and t, = kAT fork =0,1,.... Let F(ty41,tr, UY) be the exact solution
at tpr1 of (3) with u(ty) = UP, and let G(tpqq,te, US) = BUS be a one step
method in its region of absolute stability, with || < 1. Then,

|e—aAT_B| n
sup |u(ty) — U < <7
k>0|(k) ¢l 1 -]

If the local truncation error of G is bounded by C ATP+!, then

(roatrs ) sl =Vl (2)

sup |u(ty) — UD|. (11)
k>0

sup |u(ty) — Ug| <
k>0

Proof. In the present case M, as defined in (5), is an infinite dimensional
Toeplitz operator. Its infinity norm is given by

M||oo = I= .
Il = 2180 = 5
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Using (9), we obtain for the error vectors e™ of infinite length the relation

n —a n n |(67EATW__B)| "
lle"]loo < (e = )| M| % ||e°] o = <1—7|B| le%]l0,  (13)
which proves the first result. For the second result, the bound on the local
truncation error, |e=*AT — g| < CATP*! implies for p > 0 that 3 = 1 —
aAT + O(AT?), and hence 1 — |3] = R(a) AT + O(AT?), which implies (12).

4 Convergence analysis for partial differential equations

We now use the results derived in Section 3 to investigate the performance
of the parareal algorithm on partial differential equations. We consider two
model problems, a diffusion problem and an advection problem. For the dif-
fusion case, we consider the heat equation, without loss of generality in one
dimension,

Up = Upy, in2=R, u(0,z)€ L*(12). (14)

Using a Fourier transform in space, this equation becomes a system of decou-
pled ordinary differential equations for each Fourier mode w,

iy = —w?a, (15)

and hence the convergence results of Theorems 2 and 3 can be directly applied.
If we discretize the heat equation in time using backward Euler, then we have
the following convergence result for the parareal algorithm.

Theorem 4 (Heat Equation Convervence Result). Under the conditions
of Theorem 2, if a = w?, and G(tgi1,t, Ur) = BUY with B = 1+w+AT
from backward Euler, the parareal algorithm has a superlinear bound on the
convergence rate on bounded time intervals,

n n
max |lu(te) - Uf | < 25 TL(k = ) max |lu(t) = Ufll2,  (16)
1<k<k nl 1<k<k
where ||-||2 denotes the spectral norm in space and the constant vs is universal,
vs = 0.2036321888. On unbounded time intervals, we have

sup [[u(te) — Ugll2 < 27" sup ||u(tr) — Uflle, (17)
k>0 k>0

where the universal constant v = 0.2984256075.

Proof. A simple calculation shows that the numerator in the superlinear
bound (7) is for backward Euler uniformly bounded,

—w2AT 1

- <
1+w2AT| =Ts

le
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where the maximum ~; is attained at w? AT = &, := 2.512862417. This leads
to (16) by using the Parseval-Plancherel identity.
The convergence factor in the linear bound (12) is also bounded,

|e—w2AT _ L |
14+w2 AT
1_ 1 <
14+w2 AT

where the maximum ; is attained at w?> AT = Z; := 1.793282133, which leads
to (17) using the Parseval-Plancherel identity.

Next, we consider a pure advection problem
U =uy, in 2 =R, u(0,z)€ L*(12). (18)
Using a Fourier transform in time, this equation becomes
Uy = —iw. (19)

The convergence results of Theorems 2 and 3 can be directly applied. If we
discretize the advection equation in time using backward Euler, then we have
the following convergence result for the parareal algorithm.

Theorem 5 (Advection Equation Convergence Result). Under the
conditions of Theorem 2, if a = —iw, and G(tgy1,te, UY) = BUL with
g = m from backward Euler, the parareal algorithm has a superlinear
bound on the convergence rate on bounded time intervals,
a® 4
ma [lu(ti) —UFls < 5%

: (k —j) max ||u(ty) = Uplla,  (20)
1<k<F 0

) 1<k<k
]:

where the constant o is universal, as = 1.224353426.

Proof. A simple calculation shows that the numerator in the superlinear
bound (7) is for backward Euler uniformly bounded,

; 1
—iwAT | < as,

e 1+ iwAT

which leads to (20) using the Parseval-Plancherel identity.

Remark 2. There is no long term convergence result for (18). The convergence
factor in (11) is not bounded by a quantity less than one.
5 Numerical Experiments

In order to verify the theoretical results, we first show some numerical ex-
periments for the scalar model problem (3) with f =0, a = 1, ug = 1. The
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Fig. 1. Parareal convergence for (3) on a short, medium and long time interval.

Backward Euler method is chosen for both the coarse approximation and the
fine approximation, with time step AT and AT /m respectively. We show in
Figure 1 the convergence results obtained for 7' =1, 7' = 10 and T = 50,
using £ = 10 and m = 20 in each case. One can clearly see that parareal
has two different convergence regimes: for T = 1, the algorithm converges
superlinearly, and the superlinear bound from Theorem 2 is quite sharp. For
T = 10, the convergence rate is initially linear, and then a transition occurs
to the superlinear convergence regime. Finally, for " = 50, the algorithm is in
the linear convergence regime and the bound from Theorem 3 is quite sharp.
Note also that the bound from Theorem 1 indicates stagnation for 7' = 10,
since AT = 1, and divergence for T' = 50, since then AT > 1. The parareal
algorithm does however also converge for AT > 1.
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Fig. 2. Error in the L norm in time and L? norm in space for the parareal
algorithm applied to the heat equation, on a short (left) and long (right) interval.

We now turn our attention to the PDE case and show some experiments
for the heat equation us = uy, + f, in (0, L) x (0, 7] with homogeneous initial
and boundary conditions and with f = 2%(1 — z) + 2. The domain length L
is chosen such that the linear bound in (17) of Theorem 4 is attained, which
implies that L = m\/AT/Z;. With AT = 1/2 and m = 10 we obtain the
results shown in Figure 2. On the left, results are shown for T' = 4, where the
algorithm with AT = 1/2 will converge in 8 steps. One can see that this is
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clearly the case. Before that, the algorithm is in the superlinear convergence
regime, as predicted by the superlinear bound. Note that the latter bound
indicates zero as the error at the eighth step, and thus can not be plotted
on the logarithmic scale. On the right, the error is shown for 7' = 8, and the
algorithm is clearly in the linear convergence regime.



