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Therapeutic drug monitoring (TDM) is uncommon in child and adolescent psychiatry,
particularly for selective serotonin reuptake inhibitors (SSRIs)—the first-line pharmacologic
treatments for depressive and anxiety disorders. However, TDM in children and
adolescents offers the opportunity to leverage individual variability of antidepressant
pharmacokinetics to shed light on non-response and partial response, understand
drug-drug interactions, evaluate adherence, and characterize the impact of genetic
and developmental variation in pharmacokinetic genes. This perspective aims to
educate clinicians about TDM principles and examines evolving uses of TDM in SSRI-
treated youths and their early applications in clinical practice, as well as barriers to TDM in
pediatric patients. First, the impact of pharmacokinetic genes on SSRI pharmacokinetics in
youths could be used to predict tolerability and response for some SSRIs (e.g.,
escitalopram). Second, plasma concentrations are significantly influenced by
adherence, which may relate to decreased efficacy. Third, pharmacometric analyses
reveal interactions with proton pump inhibitors, oral contraceptives, cannabinoids, and
SSRIs in youths. Rapid developments in TDM and associated modeling have enhanced
the understanding of variation in SSRI pharmacokinetics, although the treatment of anxiety
and depressive disorders with SSRIs in youths often remains a trial-and-error process.

Keywords: therapeutic drug monitoring, selective serotonin reuptake inhibitor, depressive disorder, anxiety
disorder, tolerability, pediatric, child and adolescent psychiatry

INTRODUCTION

Therapeutic drug monitoring (TDM)—the determination of medication concentrations in patients
with the goal of optimizing medication dosing—is uncommon in child and adolescent psychiatry,
potentially owing to numerous barriers that have limited its adoption into clinical practice.

Selective serotonin reuptake inhibitors (SSRIs) are the mainstay of pharmacologic treatment
for pediatric depressive (Goodyer and Wilkinson, 2019) and anxiety disorders (Strawn et al.,
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2020b), as well as obsessive compulsive disorder (OCD)
(Watson and Rees, 2008). SSRI dosing in children and
adolescents generally relies on a ‘one size fits all’ approach.
Clinicians often initiate antidepressants at low-doses and
slowly titrate these medications until either encountering a
side effect or response. If intolerable side effects occur, the
SSRI dose is decreased, or the medication is discontinued.
Moreover, the initial SSRI dose is often based on the dosages
used in clinical trials and the clinician’s comfort with titration.
The dose a clinician targets for an individual patient is
frequently the mean dose used in clinical trials and the
adequacy of antidepressant treatment trials for individual
patients is based on target doses (Brent et al., 2008; Strawn
et al., 2020a), which fail to account for adherence and variation
in drug exposure.

In contemporary clinical practice, factors that influence
antidepressant exposure have not yet been incorporated into
treatment guidelines for pediatric anxiety (Walter et al., 2020)
and depressive disorders (Cheung et al., 2007). Moreover,
many psychiatric clinicians contend that circulating
antidepressant concentrations are unrelated to response
(Ruhé et al., 2006). However, this conflicts with
recommendations to titrate SSRI dose in patients with

partial responses (Dwyer et al., 2020) and to consider
lowering doses in patients with tolerability concerns
(Wilens et al., 2003; Luft et al., 2018). Further, intrinsic
factors that affect drug concentrations are rarely considered
in clinical trials of antidepressants in youth.

Given the current approach to dosing SSRIs and increasing
evidence linking variation in SSRI exposure and differences in
efficacy and tolerability, TDM may have increasing utility in
child and adolescent psychiatry. TDM offers the opportunity
to leverage individual variability of antidepressant
pharmacokinetics to: 1) shed light on non-response and
partial response (Sakolsky et al., 2011); 2) understand drug-
drug interactions (Vaughn et al., 2021); 3) evaluate adherence
(Fekete et al., 2020); and 4) understand the impact of genetic
and developmental variation in pharmacokinetic genes
(Strawn et al., 2020c). With these considerations in mind,
this Perspective introduces clinicians to TDM principles and
illustrates TDM applications in child and adolescent
psychiatry. In parallel, this Perspective introduces
pharmacologists to the complexity of exposure-response and
exposure-tolerability relationships in child and adolescent
psychiatry and the unique factors that complicate these
relationships.

FIGURE 1 | The pharmacokinetics of escitalopram in a 14-year-old adolescent female. (A) Predicted concentration-time curve after a single 10 mg dose in a
CYP2C19 normal metabolizer. The maximum concentration (CMAX), trough concentration (C0), and time to maximum concentration (TMAX) are shown. (B)
Concentration-time curve showing seven doses of 10 mg every 24 h in a CYP2C19 normal metabolizer. Dots indicate the CMAX after each dose, the C0 prior to the
seventh dose and the concentrations at 12 and 24 h after the seventh dose. The half-life (t1/2) is shown by the bracket above the curve for the seventh dose. (C)
Escitalopram concentrations after the 14th dose of 20 mg/day are shown for a CYP2C19 poor metabolizer (blue, [PM]), intermediate metabolizer (red, [IM]), normal
metabolizer (green, [NM]), rapid metabolizer (purple, [RM]) and ultrarapid metabolizer (orange, [UM]). Dots indicate the maximum concentration after the dose and the
concentrations at 12 and 24 h after the 14th dose. Dotted lines indicate therapeutic window (Hiemke et al., 2018). (D) For each metabolizer phenotype, the squares
indicate the concentration at 12 h after the 14th dose of 20 mg/day, with the whiskers indicating the maximum concentration (CMAX) and the trough concentration (C0).
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SSRI Pharmacokinetics in Youths
SSRI exposure is affected by many individual factors (e.g., age,
concomitant medications, and cytochrome P450 (CYP) activity),
as well as medication dose, amount, and frequency of doses. CYP
activity is influenced by genetic polymorphisms affecting the
amount and/or function of the protein, age-related changes in
the maturation of the enzyme and altered enzyme activity due to
specific diseases, as well as inflammation. Understanding the
impact of these factors on SSRI pharmacokinetics warrants
additional discussion. Consider an adolescent girl with
generalized anxiety disorder who is treated with the
escitalopram (Figure 1). Following an initial 10 mg dose of
escitalopram, her maximal escitalopram concentration (CMAX)
is 9.7 ng/ml, the time to the maximal concentration (TMAX) is
4.1 h, and the trough concentration (C0) prior to the next dose is
6.6 ng/ml (Figure 1A). The area under the curve (AUC) is
calculated by summing the area under the concentration-time
curve between doses or over a certain time frame (e.g., AUC24) or
until infinity (AUC∞). The AUC is dependent on the dose
administered and the clearance, and AUC can be calculated by
dividing the dose by the clearance. The t½ is the time required for
a patient to eliminate half the concentration of the drug in the
blood. The population average for the t½ of most SSRIs is long
(e.g., 24 h for escitalopram), so several days are required to reach
steady state, and the concentration decreases by half between
daily doses.

The patient’s “steady state” occurs when the peaks and troughs
are consistent across days because the amount of the medication
being added each day is equal to the amount being eliminated
from the body each day. Importantly, despite the common
misconception, steady state does not indicate that the
concentration is consistent between doses. As such, for a
medication with a t½ of 24 h, the concentration still fluctuates
by two-fold each day. Along these lines, some clinicians have
argued that t½ can be used to determine dosing interval; however,
given the variation within a t½ (Figure 1), dosing intervals that
are less than the t½ may be required to maintain consistent
exposure above the therapeutic threshold for some SSRIs in youth
(Strawn et al., 2019). Steady state is usually achieved after about
4–5 t½s of the drug (Figure 1B).

For some SSRIs in youths, CYP activity—which varies across
development (Koukouritaki et al., 2004)—substantially impacts
exposure (AUC), CMAX, and t½. The impact of CYP2C19 activity
on exposure (AUC), CMAX, and t½ are shown in Figure 1C. At
steady state, after a 20 mg daily dose, CYP2C19 poor metabolizers
are likely above the 80 ng/ml toxicity threshold, while ultrarapid
metabolizers are likely to be under the 15 ng/ml therapeutic
threshold (Hiemke et al., 2018). CYP2C19 activity is also
affected by the variability in its expression during growth (e.g.
between 5 months and 10 years of age, 21-fold variability is seen)
(Kodidela et al., 2017). Moreover, certain disease conditions, such
as inflammation, have an impact on CYP2C19 and other CYPs in
children above 12 years of age, but not in children below 12 years
of age (Koukouritaki et al., 2004). Such age-related differences in
enzyme function shall be taken into consideration along with
other factors while dosing titrations are being performed. In
clinical trials, C0 is often determined prior to a dose, but in clinical

practice, patients are often seen between 12 and 24 h after the last
dose, and this timing affects SSRI concentrations (Figure 1D).
Similarly, adherence has a significant effect on SSRI
concentrations (Figure 2). Importantly, failing to account for
time since the last dose, the number of previous doses, and
adherence introduces substantial variability that obscures the
relationship with genotype, metabolizer activity, and response.
Yet, many pharmacokinetic models of SSRIs in adults (Shelton
et al., 2020) and in youths do not account for many (or all)
pertinent covariates (Findling et al., 2006b, 2017; Reinblatt et al.,
2009). Failing to account for enzyme ontogeny, allometric scaling
or inclusion of the appropriate parameters into these
pharmacokinetic models could over or underestimate
exposure, which could obscure the relationship between
response and exposure or between tolerability and exposure.
Inclusion of these covariates in models could help further
describe differences in SSRI pharmacokinetics (Figure 1)
(Cheung et al., 2019). Such interactions of pharmacogenetics
and ontogeny of the enzymes, together with auto- or drug-based
enzyme inhibition/induction, must be considered in future
investigations to develop precision dosing algorithms.

TDM and SSRI Pharmacokinetics/
Pharmacogenetics in Youths
Relationships between pharmacokinetically-relevant genes (e.g.,
CYP2D6 and CYP2C19) and SSRI exposure have been established
over the past 2 decades. Recently, a meta-analysis of 94 unique
studies, revealed significant relationships between CYP2D6 and
CYP2C19 metabolizer status and escitalopram, fluvoxamine,
fluoxetine, paroxetine and sertraline exposure and reciprocal
apparent total drug clearance (Milosavljević et al., 2021). In
this meta-analysis, the strongest evidence was for escitalopram
and sertraline (Milosavljević et al., 2021). However, only recently
has the relationship between SSRI exposure and metabolizer
phenotype been explored in pediatric patients, despite
preliminary evidence that SSRI exposure may relate to
response and tolerability in adolescents with anxiety (Birmaher
et al., 2003; Reinblatt et al., 2009; Strawn et al., 2020c) and
depressive disorders (Sakolsky et al., 2011).

In a modeling-based simulation of CYP2C19 phenotypes in
adolescents, CYP2C19 metabolizer phenotype was associated
with differences in escitalopram and sertraline CMAX and
AUC0-24. CMAX and AUC0-24 were higher in slower
metabolizers (i.e., poor and intermediate metabolizers) and
lower in patients with increased CYP2C19 activity, although
the magnitude of these differences was more pronounced for
escitalopram than for sertraline (Strawn et al., 2019).
Additionally, these models may have implications for dosing.
For escitalopram, poor metabolizers may require 10 mg/day and
ultrarapid metabolizers may require 30 mg/day to achieve an
exposure that is equivalent to 20 mg/day in a normal metabolizer.
For sertraline, to achieve AUC0-24 and CMAX similar to normal
metabolizers receiving 150 mg/day, poor metabolizers require
100 mg/day, whereas a dose of 200 mg/day was required in
rapid and ultrarapid metabolizers. This raises the possibility
that a target concentration could better inform dosing
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compared to a target dose (Hiemke et al., 2018). These models
lend additional support to previously proposed dosing regimens
(Findling et al., 2006a). For example, in younger patients and at
lower doses, sertraline has a shorter t½, raising the possibility that
“twice-daily dosing might be reasonable for youths” (Findling
et al., 2006a).

Recently, a prospective trial of adolescents with generalized
anxiety disorder demonstrated that patients with faster CYP2C19
metabolism (i.e., rapid and ultrarapid metabolizers) had lower
escitalopram AUC0-24 (p < 0.05) and lower CMAX. Additionally,
two studies have examined CYP2C19 phenotype and sertraline
and escitalopram concentrations in large pediatric cohorts. In
sertraline-treated youths aged 6–17 years (N � 107, mean age:
14.5 ± 2.1 years), our group examined sertraline and
desmethylsertraline concentrations. Sertraline dose to
concentration ratios were decreased in youths with faster
CYP2C19 metabolism relative to those with slower metabolism
(p � 0.002). Fitting of individual patient data to pharmaokinetic
models revealed associations between CYP2C19 phenotype and
AUC and CMAX (Poweleit et al., 2021). Also, in escitalopram-
treated youths (N � 104, mean age: 15 ± 1.8 years) escitalopram
concentration to dose ratios were decreased in patients with faster
CYP2C19 metabolism relative to those with slower metabolism
(p < 0.001). Also in this sample, escitalopram AUC0-24

significantly decreased with increased CYP2C19 metabolism
and CMAX was higher in slower metabolizers, relative to faster
metabolizers (Vaughn et al., 2021b).

One study of single-dose paroxetine pharmacokinetics in
youths with depressive disorders (N � 30) found “tremendous
interindividual variability in paroxetine disposition,” but noted
clearance and excretion of paroxetine metabolites correlated with
CYP2D6 activity (Findling et al., 1999). Similar findings were
reported in a larger multiple-dose study of paroxetine in children
and adolescents (N � 62, 27 children, 35 adolescents). In this
sample, oral clearance was “highly dependent” on CYP2D6
activity, although no association was observed between
CYP2D6 phenotype or exposure and adverse events (Findling
et al., 2006b). However, the relationship between CYP2D6
activity and exposure in paroxetine- and fluoxetine-treated
youths is complicated by phenoconversion (Shah and Smith,
2015). As such, treatment with a strong CYP2D6 inhibitor such as
paroxetine or fluoxetine reduces CYP2D6 activity to levels seen in

poor metabolizers. The product insert for aripiprazole
recommends the same 50% dose reduction for patients that
are known CYP2D6 poor metabolizers and those that are
taking strong inhibitors of CYP2D6 (CDER FDA, 2014).
These patients could possibly benefit from TDM.

TDM and Drug-Drug Interactions and SSRIs
in Youths
Several studies have used modeling-based approaches and in vivo
data to examine the impact of drug-drug interactions on SSRIs in
youths. The nature of this Perspective precludes an extensive
review of these studies, including those with cancer patients,
transplant patients and critically ill children and adolescents. As
such, we will focus on the interaction between two common drug-
drug interactions. These were selected given the frequency of their
concurrent use with SSRIs in youths and given the increasing use
of cannabis (including tetrahydrocannabinol THC) and
cannabidiol (CBD) in adolescents.

Both CBD and THC are moderate to strong inhibitors of CYP
enzymes (Bansal et al., 2020; Zendulka et al., 2016) and can
interact with SSRIs and increase SSRI plasma concentrations. In a
small study of es/citalopram-treated adolescents/young adults,
aged 17–24 years, CBD significantly increased citalopram plasma
concentrations (Anderson et al., 2021). In pharmacokinetic
models of adolescents treated with sertraline or escitalopram,
CBD and/or THC increase sertraline and es/citalopram CMAX and
AUC0-24 in adolescents (Vaughn et al., 2021a). Additionally,
examination of the Food and Drug Administration Adverse
Event Reporting System database revealed co-administration of
CBD and CYP2C19-metabolized SSRIs increased the risk of some
SSRI-related side effects (e.g., diarrhea, dizziness, and fatigue),
which may relate to SSRI concentrations (Vaughn et al., 2021a).

Concomitant medications when administered with SSRIs may
predispose patients to variation in SSRI plasma concentrations
(El Rouby et al., 2018). In adolescents taking some oral
contraceptives, steady state plasma citalopram concentrations
were significantly affected (Carlsson et al., 2001). This was
further confirmed in women taking oral contraceptives and
escitalopram in whom metabolite to parent ratios were lower
compared to levels in escitalopram-treated women not taking
oral contraceptives (Reis et al., 2007). Another study found

FIGURE 2 | Modeled escitalopram concentration-time profile in a 16-year-old adolescent female CYP2C19 rapid metabolizer with generalized anxiety disorder.
Escitalopram dosage is shown in the gray bar (top) and the impact of partial adherence can be seen in the significant decreases in concentration that occurred
intermittently beginning in the third week of treatment. The asterisks represent missed doses. The gray dotted-line represents the lower therapeutic threshold for
escitalopram (Hiemke et al., 2018). Asterisks represent missed doses, and the black dot reflects the escitalopram determination at the completion of the study.
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co-administration of proton-pump inhibitors and SSRIs
increased both escitalopram and es/omeprazole plasma
concentrations (Gjestad et al., 2015). Given the potential for
drug-drug-gene interactions between proton-pump inhibitors,
some oral contraceptives, and SSRIs, TDM could help
optimize dosing while mitigating the risk of adverse events
and reduced response in children and adolescents.

TDM as a Tool to Assess SSRI Adherence in
Youths
TDM has long been used to establish adherence in SSRI-treated
adults (Reis et al., 2004, 2010). In fact, in one 6-months sertraline
trial using repeated sampling, desmethylsertraline/sertraline
ratios were used to identify non-adherence or partial
adherence in approximately 10% of the sample (Reis et al.,
2004). One pediatric clinical trial has examined concentration-
to-dose ratios in youths. In this trial, the Treatment of SSRI-
Resistant Depression in Adolescents (TORDIA) study (Brent
et al., 2008), the investigators defined a two-fold or greater
variation in the dose-adjusted concentrations of the
antidepressant medication and metabolite as “non-adherence.”
Importantly, in this sample, there was a low concordance between
clinician pill counts and concentration-dose ratios, and non-
adherence was present in just over half of the participants (Woldu
et al., 2011). It is difficult to understate the importance of non-
adherence in pediatric patients with anxiety and depressive
disorders, as well as other chronic health conditions, especially
since average non-adherence across most chronic diseases in
youths is near 50% (Walders et al., 2005; Modi et al., 2011).

While TDM has been underutilized in individual patients, it
represents a useful tool to understand variation in SSRI exposure
and non-response. As an example, the patient described in
Figure 2 was a participant in a clinical trial that included
measurement of the plasma escitalopram concentrations at the
end of treatment. At the 5, 10, and 15 mg daily doses, her C0 was
consistently below the therapeutic threshold of 15 ng/ml (based
on adult TDM guidelines) (Hiemke et al., 2018) because she was a
CYP2C19 rapid metabolizer and had inconsistent adherence at
the 15 mg/day dose. However, her phlebotomy was performed
after the CMAX, and was above the lower therapeutic threshold. If
her escitalopram concentration had been determined just a few
days prior, she would not be at steady state, which would need to
be accounted for in the analysis.

Barriers to TDM for SSRIs
In children and adolescents, TDM is frequently restricted to
clinical trials and there are significant barriers to its use
clinical practice, including a lack of acceptable ‘therapeutic
targets,’ pharmacodynamic confounding of exposure-response
relationship, long turnaround times for many assays and lower
acceptability of phlebotomy in children. Some of these barriers
can be overcome with innovations such as opportunistic
sampling and dried blood spot analysis that uses only a finger
prick of blood for a liquid chromatography mass spectrometry
drug concentration measurement (Frey et al., 2020). However,
other challenges will require substantial effort and additional

research. In addressing these challenges, we may better
understand and measure variation in SSRI metabolism,
exposure on response and tolerability and ultimately realize
dose personalization.

Limited Evidence of SSRI Concentration-Effect
Relationships
The most significant challenge to TDM arises in the clinic where
clinicians frequently assert that therapeutic targets for SSRIs are not
well established. Indeed, the lack of established pharmacokinetic-
pharmacodynamic relationships for SSRIs in pediatric patients
encumbers the routine clinical use of TDM in the clinic.
However, this view of TDM and therapeutic reference ranges
may be somewhat short-sighted. For many clinicians, the
therapeutic reference range specifies a population-based, blood
concentration below which a “response is relatively unlikely to
occur and an upper limit above which tolerability decreases or
above which [additional improvement] is relatively unlikely”
(Hiemke et al., 2018). Certainly, some patients improve at
concentrations below the therapeutic reference range or fail to
develop side effects even when concentrations exceed the
therapeutic reference range. Thus, it would behoove us to
challenge this conceptualization of TDM as a process to evaluate
patients with regard to therapeutic reference ranges for a given
medication. The utility of TDM for SSRIs in youth may be
conceptualized as a continuum of applications—a view consistent
with the Consensus Guidelines for Therapeutic Drug Monitoring in
Neuropsychopharmacology (Hiemke et al., 2018). Using this
approach, the utility of TDM in SSRI-treated youths could be
seen as Level 3 (reference ranges are unavailable or based on
non-systematic clinical experience) or Level 4 (exposure does not
correlate with response or tolerability because of “unique
pharmacology of the drug, e.g., irreversible blockade of an
enzyme, or dosing can be easily guided by clinical symptoms”)
(Hiemke et al., 2018).

Pharmacodynamic Confounding of SSRI
Concentration-Effect Relationships
Another challenge to establishing therapeutic reference range
and the ‘lack’ of relationships between exposure and response
is pharmacodynamic confounding of the exposure-response
relationship (Figure 3). There is variation in expression of the
SSRI target, the serotonin transporter (encoded by SLC6A4)
that has been associated with genetic variants (Zhu et al.,
2017). In one study of adults treated with paroxetine
(Tomita et al., 2014), there was no apparent exposure-
response relationship until the patients were divided into
those predicted to have high expression of the drug target
(L allele carriers) and those predicted to have low expression
(SS genotype). In the high expression group, the expected
positive association was seen between exposure and response.
In the low expression group, the opposite was seen, likely due
to adequate blockage of the transporter at low exposure and
off-target effects at higher exposure. It’s difficult to evaluate an
exposure-response relationship without accounting for both
pharmacokinetic and pharmacodynamic variability (Hertz
et al., 2021).
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Developmental and Disease State Influences on SSRI
Concentration-Effect Relationships
Therapeutic reference ranges may also vary developmentally and
be indication specific (Egberts et al., 2011). Further, therapeutic
reference ranges may change based on the phase of the illness, as
with other chronic, relapsing-remitting disorders (i.e., higher
exposure required during acute exacerbations relative to
maintenance phases). How variation in exposure, whether
related to intrinsic factors (e.g., metabolism) or extrinsic
factors (e.g., adherence), influences multivariate predictive
models of response and has received limited attention.
Understanding the interaction of family factors, disease state,
age, inflammation/acute systemic illness, trauma exposure and
co-morbidity is critical to refining and applying TDM-informed
predictive models for both efficacy and tolerability.

Traditional SSRIDosingApproaches asBarriers to TDM
Many presume that exposure can be inferred from a “start low and go
slow” approach. However, this approach of standardized initial dosing
and titration still places poormetabolizers at risk for side effects given a
3-fold higher exposure (Jukić et al., 2018), and may result in a

protracted course for some patients as achieving effective exposure
in faster metabolizers requires substantially more time. A second
challenge involves the clinical assertion that side effects are
unrelated to variation in exposure. Yet, from a tolerability
standpoint, variation in pharmacokinetic genes—which produces
variation in exposure—has been associated with SSRI tolerability
and relationships have been established for escitalopram-related
activation and weight gain (Aldrich et al., 2019; Strawn et al.,
2020c). Further work is needed to assess this paradigm, especially
since retrospective evaluation of SSRI tolerability in pediatric patients
has contrasted that of adults (Poweleit et al., 2019; Rossow et al., 2020).

Future Directions
While TDM in SSRI-treated children and adolescents is in its early
stages, multiple applications can already be imagined, including
evaluating adherence and establishing probabilistic models that
identify patients who are at the highest risk of side effects or who
require higher doses or alternative dosing regimens (e.g., twice vs.
once daily). Another opportunity lies in the advent of big data and
machine learning to provide predictions that act as a surrogate or
complement to traditional pharmacometrics. Machine learning and

FIGURE 3 | Pharmacodynamic confounding of the SSRI exposure-response relationship. In a combined sample of SSRI treated patients (left), there does not
appear to be a relationship between SSRI response and exposure. However, when patients are examined separately, based on a pharmacogenetic variant that impacts
pharmacodynamics (e.g., SLC6A4), some patients have a positive relationship between response and SSRI exposure whereas other patients—such as those with low
expression of the drug target—have a negative correlation between response and SSRI exposure, as per the example in the text of paroxetine and SLC6A4.
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artificial intelligence can serve as a “computational bridge between big
data and pharmacometrics,”with specific applications towards TDM
(e.g., pharmacokinetics/pharmacodynamics and dose optimization)
(McComb et al., 2021). Development of tools that allow clinicians to
input individual patient characteristics to predict their SSRI
concentration comparable to current pharmacokinetic modeling
could overcome some barriers of TDM for SSRIs (e.g., the need
for phlebotomy, long turnaround times for assays). While further
work is needed, machine learning applications have the potential to
provide generalizable and autonomous TDMpredictions for SSRIs in
youths.
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