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Résumé et introduction  

1. Introduction 

1.1 Epidémiologie et facteurs pronostiques de cancer 

    Le cancer se place en deuxième position, derrière les maladies cardiovasculaires, comme 

facteur mortalité en occident. Pour l'année 2004 les projections aux Etats Unis sont de 

1,368,030 nouveaux cas de cancer (699,560 hommes et 668,470 femmes) et 563,700 décès. Le 

cancer du poumon reste la majeure cause de mortalité cancéreuse chez les deux sexes (32% des 

hommes, 25% des femmes), et représente 12% des nouveaux cas attendus pour cette année. 

Considérant les femmes uniquement le cancer du sein et des ovaires sont les deux plus 

répandus. Parmi les 668,470 nouveaux cas attendus chez les femmes la proportion de cancer du 

sein sera de 32% et celle de cancer ovarien sera de 4%. 

    La majorité des cancers ovariens sont d'origine épithéliale (Epithelial Ovarian Cancers, 

EOC) et englobent les tumeurs séreuses, les tumeurs mucineuses, les tumeurs de l'endomètre, 

les carcinome à cellules claires, les tumeurs de Brenner, les tumeurs indifférenciées et enfin 

les tumeurs épithéliales mixtes parmi lesquelles le carcinome à cellules claires est connu 

comme indicateur de mauvais pronostic. Quelques facteurs de risque ont été identifiés dans les 

cancers ovariens comme Cycline D, P53, P21 et CA125; cependant la valeur pronostique de 

ces facteurs de risque reste controversée. 

    Le cancer du sein est largement le plus répandu chez les femmes. Plusieurs facteurs sont des 

indicateurs de pronostic, tels que la taille de la première tumeur, l'implication d'un nodule 

lymphatique, le type et degré pathologique de cette tumeur, le statut des récepteurs aux 

œstrogènes à la progestérone. 

    Les cancers du poumon restent toutefois les cancers les plus fréquents également chez les 

femmes. Ils ont été divisés en deux classes: "small cell lung cancer" (SCLC) and non small cell 

lung cancer (NSCLC). Les facteurs pronostiques pour les NSCLC sont le degré pathologique et 

le stade clinique. Le gène le plus souvent muté -tous types de cancer du poumon confondus- est 

P53, qui est fortement lié à leur développement. Une mutation dans ce gène représente un 

indicateur de mauvais pronostic, quel que soit le stade de progression du NSCLC. 

    Malgré les progrès récents dans les traitements anti-cancéreux, l'incidence de la maladie et 

sa mortalité changent très peu, les pronostics souvent peu clairs, et surtout le taux de survie sur 

5 ans n'a pas significativement augmenté. Par conséquent l'accent a été mis sur des études 
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portant sur des patients, le diagnostic précoce et la prévention, et qui ont amené au 

développement d'analyses génétiques. 

    L'identification de BRCA1 (BReast CAncer susceptibility gene 1) a constitué un pas 

important vers l'élucidation de ces mécanismes moléculaires. En effet des mutations dans 

BRCA1 ou BRCA2 sont impliquées dans 40-50% des cancers familiaux précoces du sein, et de 

plus en plus d'évidences vont dans le sens d'un rôle de ces deux gènes également dans les 

cancers sporadiques du sein et des ovaires. Toutefois ces deux seuls gènes ne suffisent pas à 

expliquer tous les cas de cancers ovariens, et dès lors il paraît nécessaire de se tourner vers leurs 

partenaires fonctionnels. BARD1 (BRCA1 Associated Ring Domain 1) est une  protéine 

pouvant former un dimère avec BRCA1. 

 

1.2  Structure de la protéine BARD1 

    BARD1 fut découverte lors d'un criblage 2H (two hybrid screening) comme protéine 

interagissant avec BRCA1. Son gène, BARD1 , se trouve sur le chromosome 2 en position 

2q34-q35 et code pour une protéine de 777, 765 et 768 acides aminés chez l'homme, la souris 

et le rat respectivement. Trois régions sont hautement conservées: un domaine N-terminal 

RING (86,7% d'homologie), trois répétitions internes en tandem d'ankyrines  (90.1% 

d'homologie) qui sont des motifs (ANK) que l'on trouve fréquemment impliqués dans des 

régulations transcriptionnelles, et deux motifs BRCT en C-terminal (79,8% d'homologie). Les 

domaines RING de BARD1 et BRCA1 se combinent pour former une quadruple hélice stable 

avec leurs structures en directe apposition. L'hétérodimère ainsi formé est plus résistant à la 

protéolyse que les homodimères respectifs. Bien que la structure en solution des domaines 

ANK et BRCT ne soit pas bien connue, ces trois domaines structuraux conservés pourraient 

bien être essentiels aux fonctions de BARD1. 

 

1.3 Expression et localisation intracellulaire de BARD1 

    Le niveau d'expression de BARD1 est très haut dans la rate et les testicules, mais pas dans le 

cœur, le cerveau, le foie, les poumons, le muscle squelettique ou le rein. Dans la plupart des 

cas, BARD1 et BRCA1 sont exprimés en même temps dans les tissus, mais l'expression de 

BARD1 reste relativement constant pendant le cycle cellulaire, ce qui n'est pas le cas de 

BRCA1 qui augmente en phase G1 tardive, et atteint un maximum pendant la phase S. Dans les 

organes contrôlés hormonalement et spécialement dans l'utérus, l'expression de BARD1 
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augmente de la phase diestrus à postestrus , par opposition à BRCA1 dont l'expression 

augmente de la phase diestrus à estrus précoce, et diminue pendant l'estrus et le postestrus. 

Bard1 est exprimé à tous les stades de la spermatogenèse alors que BRCA1 l'est seulement  

dans les spermatocytes meiotiques et les spermatides rondes précoces. Tous ces éléments 

portent à croire que BARD1 a des fonctions indépendantes de BRCA1. 

    Bard1 a d'abord été décrite en tant que protéine nucléaire, trouvée dans des extraits de 

noyaux et colocalisant avec BRCA1 en "nuclear dots" durant la phase S. En cas de dommage 

sur l'ADN, les points formés par BARD1 et BRCA1 se dispersent, mais une partie se reforme 

spécifiquement dans des sites contenant PCNA, ce qui suggère une implication de ces deux 

protéines dans la réparation de l'ADN. Les données actuelles en fait que BARD1 est capable de 

faire la navette entre noyau et cytoplasme où elle se trouverait impliquée dans ses fonctions 

apoptotiques. 

 

1.4 Fonctions biologiques de BARD1 

    Bard1 joue un rôle important dans le maintient de la stabilité génomique et du phénotype. 

Dans des cellules d'épithélium mammaire de souris réprimées pour ce gène des changements 

notables dans le phénotype cellulaire peuvent êtres observés, incluant des altérations de forme, 

de taille, une haute fréquence de cellules multinucléées ainsi qu'une progression aberrante du 

cycle cellulaire. La perte de BARD1 résulte en une instabilité chromosomique et une mort 

embryonnaire précoce a cause d’un dysfonctionnement du cycle cellulaire, mais qui n’est pas 

accompagnée par une augmentation d’apoptose. 

    Le complexe BARD1-BRCA1 est une structure essentielle à certaines fonctions 

biologiques. Les deux protéines se stabilisent entre elles, participent à la réparation de l'ADN, 

sont impliquées dans des régulations transcriptionnelles, le RNA processing et l'ubiquitination 

d'autres protéines en vue de leur dégradation. On peut voir BARD1 colocaliser avec BRCA1 et 

RAD51 en petits points nucléaires durant la phase S ou avec PCNA dans des sites qui se 

révèlent lors d'une lésion à l'ADN. BARD1 interagit avec CstF-50 (Cleavage stimulation 

Factor), inhibe la polyadénylation in vitro, et prévient d'un mauvais processing du RNA. Le 

complexe BARD1-BRCA1 a une activité d'ubiquitine ligase beaucoup plus haute que des 

préparations individuelles, dans les quelles un mutant de BRCA1 dérivé d'une tumeur (C61G) 

s'est même trouvé avoir perdu complétement cette capacité. En conditions de stress 

génotoxique, l'expression de BARD1 augmente et induit une apoptose indépendante de 
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BRCA1. La transfection ou la surexpression de BARD1 induit une mort cellulaire présentant 

les signes caractéristiques de l'apoptose, alors que des cellules réprimées pour ce gène sont 

incapables d'une réponse apoptotique à un stress génotoxique. Le mécanisme présumé 

d'activation de la voie apoptotique par BARD1 se fait par la voie de signalisation de P53. En 

contraste avec la localisation nucléaire essentielle au complexe BARD1-BRCA1 pour la 

réparation de l'ADN, L'induction de la voie apoptotique est corrélée avec une localisation 

cytoplasmique de BARD1. 

    Le mutant de BRCA1 C61G, trouvé dans une tumeur, se trouve dans l'incapacité de lier 

BARD1, suggérant un rôle de BARD1 dans la suppression tumorale mediée par BRCA1. De 

plus en plus de résultats indiquent que BARD1 pourrait bien être un suppresseur de tumeur à 

lui-seul. La répression de  son expression dans les cellules épithéliales mammaires de souris 

résulte en des changements phénotypiques rappelant ceux de la pré-malignité. Son expression 

se trouve également diminuée dans des lignées de cellules cancéreuses. Plusieurs mutations 

génétiques et altérations somatiques ont été trouvées dans les cancers humains du sein, des 

ovaires et de l'utérus. 

    Alors que les études in vitro montrent clairement que la protéine elle-même est un 

suppresseur de tumeur, ses fonctions dans le cancer et la carcinogenèse restent à élucider. Cette 

étude a pour objectif d'analyser l'expression de BARD1 en rapport avec son impact sur les 

tumeurs cliniques et par là-même mettre la lumière sur son rôle dans la tumorigenèse. 

2.  Résumé 

    Des mutations dans le gène de prédisposition de tumeur, BARD1, ont été trouvées dans de 

nombreux cas de cancer du sein, de l’ovaire ou de l’utérus, que ceux-ci soient hérités ou 

spontanés. La protéine BARD1 joue un rôle dans la réparation de l’ADN et l’ubiquitination 

comme protéine associée de BRCA1. BARD1 et BRCA1 se co-localisent dans des focis 

nucléaires. Indépendamment de BRCA1, BARD1 peut induire l'apoptose (la mort cellulaire) 

en présence de p53, et en réponse à un stress gènotoxique. La réparation de l’ADN et l'apoptose 

sont des fonctions anti-tumorales importantes qui sont souvent défectueuses dans des cellules 

cancéreuses. Pour expliquer pourquoi certaines cellules cancéreuses ont échappées à 

l’apoptose, nous avons posé l’hypothèse que BARD1 et/ou  p53 puissent être défectueux.  

    Nous avons donc déterminé par immunohistochimie, les niveaux d'expression de BARD1 et 

de p53 dans des tissues de cancer de l’ovaire, du sein et du poumon (non-small-cell). Pour cela, 
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les anticorps primaires N19 et C20, qui reconnaissent respectivement les épitopes N- et C- 

terminaux de BARD1, ont été employés.  

    L'expression de BARD1 est fortement élevée dans le cytoplasme de la plupart des cellules 

cancéreuses, tandis qu’une coloration nucléaire faible est observée dans le tissu sain entourant 

la tumeur. L'expression maximale de BARD1 est associée au cancer ovarien le plus invasif, le 

carcinome à cellules claires. Dans le cancer du sein, l'expression de BARD1 est corrélée avec 

une tumeur peu différentiée, de grande taille et une baisse de la survie des patientes. Les 

concentrations de protéines BARD1 sont semblables dans les tumeurs présentant des mutations 

soit de BARD1 soit de BRCA1 ou dans des cancers sporadiques. Cependant, les concentrations 

protéiques de BARD1 sont élevées dans des cancers présentant des mutations de BRCA1 et de 

p53. Par opposition aux cancers du sein ou de l’ovaire, dans les cancers du poumon, aucune 

corrélation n’est mise en évidence entre l’expression de BARD1 et le stade ou le grade de la 

tumeur.  

    Nos données suggèrent que dans des cellules cancéreuses il existe une forme de BARD1 qui 

a perdu sa fonction suppresseur de tumeurs. Des expériences de RT-PCR, exécutées sur 10 cas 

de cancer ovarien, ont révélé l'absence de la portion 5' de l'unité de transcription de BARD1 

dans sept de ces tumeurs et le séquençage des autres trois cDNA a permis d'identifier une 

mutation missense A1291G aboutissant à un changement d'acide aminé de glutamine 406 en 

arginine. Ces données suggèrent donc que des changements génétiques et épigénetiques 

puissent mener à l’accumulation de BARD1 dans le cytoplasme des cellules tumorales. De 

plus, la présence cytoplasmique de BARD1 pourrait être un facteur pronostique défavorable 

pour les cancers du sein et de l’ovaire. 
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Abstract 

Mutations in tumor suppressor gene BARD1 have been found in cases of inherited and 

spontaneous breast, ovarian and uterine cancers. The BARD1 protein plays a role in DNA 

repair and ubiquitination as binding partner of BRCA1 with which it colocalizes to nuclear 

dots. Independently of BRCA1, BARD1 can induce p53-dependent apoptosis in response to 

genotoxic stress. DNA repair and apoptosis are tumor suppressor functions that are often 

defective in cancer cells. In cancer cells that escaped from apoptosis, we expected that either 

BARD1 or p53 might be defective. We therefore determined expression levels of BARD1 and 

p53 in ovarian, breast, and non-small-cell lung cancers by immunohistochemistry. For this, the 

primary antibodies N19 and C20, which recognize epitopes at the N- and C-terminus of 

BARD1 respectively, were used. BARD1 expression was highly upregulated in the cytoplasm 

in most cancer cells, while a weak nuclear staining was observed in the surrounding normal 

tissue. A maximum of BARD1 expression was associated with the most malignant ovarian 

cancer, clear cell carcinoma. In breast cancer, BARD1 expression was correlated with poor 

differentiation, large tumor size, and short disease-free-survival time. Tumors with either 

BARD1 or BRCA1 mutations showed similar BARD1 protein levels as sporadic cancers. 

However, BARD1 levels were elevated in cancers with BRCA1 and p53 mutations. In contrast 

to breast and ovarian cancers, no correlation of BARD1 expression with either grade or stage 

could be determined for lung cancer. Our data suggested that an aberrant form of BARD1 

deficient of its tumor suppressor function might be expressed in cancer cells. RT-PCR, 

performed on 10 cases of ovarian cancers, revealed the absence of the 5’portion of the BARD1 

transcript in seven tumors, and sequencing of the remaining three identified a missense 

mutation A1291G resulting in an amino acid change of glutamine 406 to arginine. These data 

suggest that genetic and epigenetic changes might lead to elevated cytoplasmic expression of 

BARD1, and that cytoplasmic BARD1 might be a poor prognostic factor for breast and ovarian 

cancers. 
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Introduction 

1. Epidemiology and prognostic factors of cancer 

    Cancer has been the second leading cause of death (the first is heart disease) in western 

countries. A total of 1,368,030 new cancer cases and 563,700 deaths are expected in the United 

States in 2004. Lung cancer, with high incidence, is still the leading cause of cancer death in 

both sexes (32% for men and 25% for women). Breast cancer and ovarian cancer are 2 of the 

major cancers in females. In 2004 the estimated new cancer cases in the United States will be 

approximately 699,560 for men and 668,470 for women, among which lung cancer accounts 

for 12-13% for men and women, and breast cancer and ovarian cancer accounts approximately 

for 32% and 4% in women (Figure 1) 1.  

    Majority of ovarian cancers is of epithelial origin. Epithelial ovarian cancers (EOC) include 

serous tumors, mucinous tumors, endometrioid tumors, clear cell tumors, Brenner tumors, 

undifferentiated tumors and mixed epithelial tumors (Scully RE, in: Young RH, Clements PB 

eds. Atlas of tumor pathology, 3rd series. Washington DC. Armed Forces Institute of Pathology, 

1996:27), among which clear cell carcinoma is reported to have specific biological features and 

worst prognosis 6-10. Few prognostic factors have been identified in ovarian cancer so far, such 

as cyclin D, p53 and p21, and CA125; for some of these their prognostic values are 

controversial 11-23. The frequency of over-expression of a mutant p53 is found to be 

significantly higher in advanced stage III/IV ovarian cancer as compared to stage I cases 

(10–20%). This may indicate that p53 inactivation is a late event in ovarian carcinogenesis 

(reviewed in Feki and Irminger-Finger, 200424).  

    Breast cancer is the most common cancer in females. Many factors have been reported to 

influence the prognosis for breast cancer, such as the primary tumor size, the lymph node 

involvement, pathological type and grade, status of estrogen and progesterone receptors and 

other biomarkers such as HER-2, p53, bcl-2, Bfl-1, Ki-67, VEGF-C 25-31.  Tumor suppressor 

p53 is often inactivated and overexpressed in breast cancers. Although there are some reports 

that p53 mutations have a negative correlation with DFS (disease-free survival) or RFS 

(relapse-free survival), especially in older patients32-34. The prognostic value of p53 is still 

controversial.  
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    Lung cancer is by far the most frequent type of cancer, roughly divided into small cell lung 

cancer (SCLC) and non small cell lung cancer (NSCLC). Prognostic factors for NSCLC 

include the pathological grade and clinical stage. However, the most frequently mutated gene 

in all types of lung cancer is p53, and has been linked to lung cancer development 35 and was 

described as an unfavorable factor for prognosis in any stage of NSCLC 36-38.     

    Despite the recent progress in treatment of cancers, the incidence and mortality has changed 

very little and the prognosis for the cancers remains unclear and the 5-year-survival rate for 

cancer has not improved a lot. From 1974 to 1999, the 5-year survival rate for breast cancer and 

lung cancer was 78-87% and 12-15%, respectively. Seemingly, the focus was more on the 

subjects, on early diagnosis, and on prevention, and has lead to progress in the development of 

genetic studies.  

 

2. Genetic factors affecting cancer 

    Cancer is a genetic disease. In 1914 Boveri hypothesized that cells become malignant either 

because of over-activation of a gene that promotes cell division or because of loss of function 

of a gene that normally restrains cell growth. This hypothesis is largely correct, although 

defects in DNA repair genes are also involved. Genes that promote normal cell growth are 

referred to as proto-oncogenes, and activation of such genes by point mutation, amplification, 

or dysregulation converts them to oncogenes. Genes that normally restrain cell growth are 

called tumor suppressors, and unregulated cell growth arises if their function is lost. 

    Till now, many genes having been studied, as mentioned above, and mutations of the p53 

gene are by far the most common genetic abnormalities found in all types of human cancer. 

Some tumor suppressor genes are responsible for familial cancer syndromes, for example: p16 

mutation for familial melanoma syndrome 39, 40, BRCA1 for familial breast/ovarian cancer 

syndrome 41, 42. The identification of BRCA1 was an important breakthrough. BRCA1 is 

known to be one of the breast cancer susceptibility genes, because mutations in BRCA1 or 

BRCA2 have been reported to account for 40-50% of the early onset familial breast cancers 41, 

42. There is accumulating evidence for a potential role of BRCA1 and BRCA2 in sporadic 

breast and ovarian cancers 43-45. However, mutations of BRCA1 and BRCA2 do not account for 

all breast ovarian cancers. The functional partners of BRCA1 or BRCA2 could be the 
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candidates for those cancers without BRCA1 or BRCA2 mutations. BARD1 is one of the 

proteins dimerzing with BRCA1.  
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2004 Estimated US Cancer Deaths*  

Men 
290,890

Women 
272,810

Lung & bronchus 32% 
Prostate     10% 
Colon & rectum    10% 
Pancreas     5% 
Leukemia     5% 
Non-Hodgkin    4% 

lymphoma  
Esophagus                4% 
Liver & intrahepatic   3% 

bile duct 
Urinary bladder 3% 
Kidney 3% 
All other sites 21% 
ONS=Other nervous system 

25% Lung & bronchus 
15% Breast 
10% Colon & rectum 
6% Ovary 
6% Pancreas 
4% Leukemia 
3% Non-Hodgkin 

 lymphoma 
3% Uterine corpus 
2% Multiple myeloma 
2% Brain/ONS 
24%     All other sites 

Men 
699,560 

Women 
668,470 

2004 Estimated US Cancer Cases* 

32% Breast 
12% Lung & bronchus 
11% Colon & rectum 
 6% Uterine corpus 
 4% Ovary   
 4% Non-Hodgkin 

 lymphoma   
 4% Melanoma 

  of skin 
 3% Thyroid 
 2% Pancreas 
 2% Urinary bladder 
20% All Other Sites 

Prostate 33% 
Lung & bronchus 13% 
Colon & rectum 11% 
Urinary bladder 6% 
Melanoma of skin 4% 
Non-Hodgkin              

lymphoma             4% 
Kidney 3% 
Oral Cavity 3%  
Leukemia 3% 
Pancreas 2% 
All Other Sites          18% 

 

Figure 1 Estimated US cancer death and new cancer cases in 2004. The leading cause of cancer 
death in both sexes is lung cancer. *Excludes basal and squamous cell skin cancers and in situ 
carcinomas except urinary bladder. Source: American Cancer Society, 2004; adapted from 1.   
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3. Tumor suppressor gene BARD1  

3.1 Structure of BARD1 (BRCA1 associated RING domain protein)  

    BARD1 was first identified by yeast two-hybrid screening as a protein interacting with 

BRCA146. The BARD1 gene locates to chromosome 2 at 2q34-q35, it encodes a protein of 777 
46, 765 47, and 768 48 amino acids in human, mouse and rat, respectively. Unlike other tumor 

suppressor genes with a homology from 78% to 98% 49, human BARD1 and mouse BARD1 

share only 70% identity of amino acids. But highly conserved structures can be found in three 

regions: a N-terminal RING domain (homology 86.7%), three internal tandem ankyrin repeats 

(ANK) (homology 90.1%), which are found in many proteins involved in transcriptional 

regulation 50 and two C-terminal BRCT motifs (homology 79.8%) 4. The physical state of full 

length BARD1 is not known yet. The RING domain is the most recognizable structure in the 

primary sequence of BARD1. It is structurally homologous to that of BRCA1, characterized by 

a short antiparallel three-stranded β-sheet and two large Zn2+ binding loops, but lacks the 

central α-helix between the third and fourth pair of Zn2+ ligands 3. Although the regions 

comprising RING domains of BARD1 (residues 26-119) and BRCA1 (1-109) can form 

homodimer in vitro, they are not stable structures, they preferentially form heterodimer 51 and 

only BARD1-BRCA1 heterodimeric complexes have been found in vivo 46. The paired RING 

domains of BARD1 and BRCA1 combine together to form a stable four-helix bundle with the 

core elements of the two RING domains in direct apposition to one another 52 (Figure 2). This 

structure is more resistant to proteolysis than homodimers. The solution structures of ANK and 

BRCT domain of BARD1 are not well known. However, these three highly conserved 

structures might be essential for BARD1 functions. 

3.2 Expression and subcellular localization of BARD1 

    BARD1 is highly expressed in spleen and testis 4, but not in heart, brain, liver, lung, skeletal 

muscle or kidney 4. In most cases, BARD1 and BRCA1 are coordinately expressed in the 

tissues, but BARD1 expression remains relatively constant during the cell cycle 53, although 

increases during mitosis is also observed 54. This differs from BRCA1 which increases in late 

G1 and reaches a maximum during S phase 53.  In hormonally controlled organs, especially in 

the uterus, BARD1 expression is increasing from diestrus phase through postestrus phase 

whereas BRCA1 expression increases from diestrus to early estrus and decreases during estrus 
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and postestrus 47. During spermatogenesis, BARD1 is expressed in all stages while BRCA1 is 

only expressed in meiotic spermatocytes and early round spermatids55. This suggests that 

BARD1 has some functions independent of BRCA1. 

    BARD1 was first described as a nuclear protein. It was found in nuclear extracts 46 and 

localizes to BRCA1 ´nuclear dots’ in the nucleus during S phase 56. Upon DNA damage, 

BRCA1 and BARD1 nuclear dots disperse, but part of them re-aggregate focally at sites 

containing PCNA, suggestive of a role in DNA repair 53. BARD1 regulates the subcellular 

location of BRCA1 by masking the nuclear export signal (NES) of BRCA1 57. However, 

emerging data show that BARD1 is a protein shuttling between nucleus and cytoplasm. 

Rodriguez et al identified NES near the RING domain of BARD1, which may be masked by 

co-expression of BRCA1 and results in nuclear retention. Its cytoplasmic location is associated 

with its apoptotic function which is markedly reduced by BRCA1 54.   

    The mechanism of BARD1 degradation is not known. However, a 67kDa proteolytic 

cleavage product has been found associated with apoptosis in cancer cells 48. A shorter splice 

form of BARD1β, which lacks RING finger but retains proapoptotic activity, was found in 

later stages of spermatocyzes precursors55. Auto-ubiquitination on RING domain maybe one of 

the mechanisms of protein degradation 54.  
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Figure 2 Structure of BARD1 and BRCA1. (A) The highly conserved structures of BARD1 and 
BRCA1: RING motif and BRCT domain in both BRCA1 and BARD1, 3 ankyrin repeats (ANK) in 
BARD1 but not in BRCA1. The numbers underneath indicate the identity of the regions of human and 
mouse BARD1. (B) Solution structure of BARD1-BRCA1 heterodimer. The paired RING domains of 
BARD1 (in blue) and BRCA1(in red) combine together to form a stable four-helix bundle with the core 
elements of the two RING domains in direct apposition to one another. Site I and site II indicate the 
Zn2+ binding site (ref. 3-5). 
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3.3 Biological functions of BARD1 

    BARD1 plays an important role in maintaining genomic stability and phenotype. In 

BARD1-repressed murine mammary epithelial cells, marked phenotypic changes have been 

found, including altered cell shape, increased cell size, high frequency of multinucleated cells 

and aberrant cell cycle progression 47. Loss of BARD1 resulted in chromosomal instability and 

early embryonic lethality which caused severe impairment of cell cycle proliferation but not 

accompanied by increased apoptosis 58.  

    BARD1-BRCA1 complex is an essential structure for biological functions. BARD1 and 

BRCA1 stabilize each other, participate in DNA repair, transcriptional regulation, RNA 

processing, ubiquitination, and apoptosis. Cotransfection of BARD1 with BRCA1 reduces 

BARD1-induced apoptosis 2, 59. Similarly, over-expression of BARD1 reduces BRCA1 

dependent apoptosis 60. These data suggest that the BARD1-BRCA1 complex contributes to 

DNA repair and cell survival. A tumor-associated mutation in BRCA1 C61G resulted in a 

deficiency in binding to BARD1, suggesting a role of BARD1 in BRCA1 mediated tumor 

suppression. BARD1 co-localizes with BRCA1 and Rad51 (a major participant in 

double-strand break repair and homologous recombination) in discrete nuclear dots during S 

phase 53 or with PCNA in DNA damage-inducible nuclear foci 56. BARD1 also participates 

with BRCA1 in homology-directed repair of chromosomal breaks (DSB). In this case, nuclear 

localization of BARD1 and BRCA1 is not compromised, suggesting a direct effect on repair 61.  

    A fragment of BARD1 comprising half of ANK through BRCT domain (residues 464-777) 

binds in vitro to the ankyrin repeats domain of Bcl-3 and modulates the transcriptional activity 

of NF-κB and NF-κB driven gene expression62. 

    BARD1 interacts also with CstF-50 (cleavage stimulating factor), inhibits polyadenylation 

in vitro, and prevents inappropriate RNA processing 63. A tumor-associated germline mutation 

in BARD1 (Q564H) exhibits reduced binding to CstF-50 and abrogated inhibition of 

polyadenylation 64.  These findings are supportive of a BARD1 function in DNA repair and 

indicate a link between RNA processing, DNA repair and tumor suppression. 

    Ubiquitination is nowadays recognized as a multifunctional signaling mechanism with 

regulatory significance comparable to that of phosphorylation. The functional consequence of 

ubiquitination varies, including protein degradation, repair activation, transcriptional 

regulation and cell cycle control. Ubiquitin conjugates to target protein requiring the actions of 
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ubiquitin–activating enzyme (E1), ubiquitin-conjugating enzyme (E2) and ubiquitin-ligase 

(E3). Although BARD1 and BRCA1 have very low ubiquitin ligase activity (E3), the 

BARD1-BRCA1 complex shows dramatically higher ubiquitin ligase activity than individual 

preparations of BARD1 or BRCA1, while a tumor-derived mutation of BRCA1 C61G lost 

ubiquitin ligase activity 65. Although the exact target protein of BARD1-BRCA1 ubiquitination 

is not clear, RNA polymerase II holoenzyme (Pol II), reported to be one of the 

BRCA1-associated proteins66, might be suspected. Upon DNA damage, BARD1-BRCA1 

ubiquitination activity increases and degradation of RNA polymerase II and transcription arrest 

is observed. BARD1 RING domain or BARD1-BRCA1 complexes also have 

autoubiquitination function 67 which may serve as a signaling event, such as in DNA repair or 

in regulating the BARD1-mediated inhibition of mRNA polyadenylation after DNA damage 64, 

instead of serving as target for proteasomal degradation. Or, perhaps the BARD1-RING 

domain is the target of protein degradation by the ubiquititin pathway, as speculated for 

BRCA1 68. 

    Upon genotoxic stress, BARD1 expression increases and induces BRCA1-independent 

apoptosis. BARD1 transfection or overexpression induces cell death, which displays features 

of apoptosis while BARD1-repressed cells are defective for apoptotic response to genotoxic 

stress2. A proteolytic product, 67kDa protein, found in apoptotic bodies of rat colon cancer 

cells was identified as an apoptotic cleavage product of BARD1 and antibodies against this 

product were detected in rats immunized with apoptotic bodies against experimentally induced 

colon cancer 48. In prostate cancer, treatment with Camptothecin causes BARD1 and NF-κB 

upregulation and induces apoptosis 69. All these suggest that BARD1 participate in apoptotic 

response. The mechanism of BARD1 induced apoptosis is presumed to act through a p53 

pathway2. In contrast to the nuclear retention of BARD1-BRCA1 complex in DNA repair, 

BARD1-induced apoptosis is reported to be associated with cytoplasmic location of BARD1 54, 

59.  

    A tumor associated mutation in BRCA1 C61G resulted in deficiency in binding to BARD1, 

suggesting a role of BARD1 in BRCA1 mediated tumor suppression. There is accumulating 

evidence that BARD1 itself is a tumor suppressor. Repression of BARD1 expression in murine 

mammary epithelial cells resulted in the phenotypic changes reminiscent of premalignancy 47. 

BARD1 expression is reported to be some reduced in breast cancer cell lines 70. Thai et al have 
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described the BARD1 somatic and germ-line mutations in a subset of primary breast, ovarian 

and uterine cancers 71. Ishitobi reported a germline mutation in Japanese familial breast 

cancers 72. Mutation of BARD1 was also found with elevated frequency in Finnish breast 

cancer families 73. Particularly BARD1 germline mutations were identified in breast and 

breast/ovarian cancer families without BRCA1 or BRCA2 alterations 74.   

    While in vitro studies provide evidence that BARD1 itself is a tumor suppressor, the 

function of BARD1 in cancer and in carcinogenesis remains unclear. The aim of this study was 

to investigate the BARD1 expression and its significance in the clinical tumors and to shed 

light on the role of BARD1 in tumorigenesis.  
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Materials and methods 

1. Clinical data 

    Ovarian cancer and sporadic breast cancer specimens were obtained from the Pathological 

Division of Department of Gynecology and Obstetrics of Geneva University Hospitals. 

Non-small-cell lung cancer specimens were offered friendly by Dipartimento Scienze 

Cardio-Toraciche e Respiratorie, Napoli, Italy. The samples of BARD1-mutant breast/ovarian 

cancer and BRCA1-mutant breast/ovarian cancer were from University of Pisa, Italy. The 

pathological diagnosis were made by experienced pathologists blinded of the experiments, 

according to World Health Organization (WHO) classification of tumors and the American 

Joint Committee on Cancer (AJCC) TNM (AJCC Cancer staging  handbook. TNM 

classification of malignant tumors. Sixth edit. Springer 2002).  

    44 cases of sporadic ovarian cancer, from women of 26 to 83 years of age, were analyzed, 

comprising 16 cases of serous carcinoma, 11 cases of mucinous carcinoma, 10 cases of 

endometrioid carcinoma, and 7 cases of clear cell carcinoma, graded from G1 to G3, according 

to the Silverberg system75.  

    54 cases of sporadic lung cancer aged from 39 to 77 years old (mean age 62.9ys), 20 cases of 

squamous cell carcinoma, 21 cases of adenocarcinoma, 8 cases of large cell carcinoma, 4 cases 

of adenosquamous carcinoma and 1 case of anaplastic change. Cases of pathological grade 1 to 

grade 3 was 2, 18, 21 respectively, and 12 cases were variable in G1 to G3. 29 cases in stage I; 

8 cases in stage II; 15 cases in stage III, 1 case in stage IV. (Table 1) 

In total 10 cases of sporadic breast cancer, 9 invasive ductal carcinoma (DCI), 1 invasive 

lobular carcinoma (LCI), and 13 cases of breast/ovarian cancers with BRCA1 mutations from 

11 families (10 DCI of the breast, 3 ovarian carcinoma), and 5 cases of breast cancers with 

BARD1 mutations from 4 BARD1-mutant families (DCI) were included in our study. 
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 Table 1. Clinical data of ovarian carcinoma and NSCLC 

 Ovarian carcinoma Number of cases     Total 

Histology Serous carcinoma 
Mucinous carcinoma 
Endometrioid carcinoma 
Clear cell carcinoma                     

         16 
         11 
         10 

 7 

       44 

Grade G1 
G2 
G3 

         21 
      19 
      4 

       44 

 NSCLC Number of cases     Total 

Histology Squemous cell carcinoma 
Adenocarcinoma 
Adenosquemous carcinoma 
Large cell carcinoma 
Anaplastic change 

20 
      21 

 4 
            8 

               1 

       54 

Grade G1 
G2 
G3 
G1-G3 

              2 
              18 
              21 
              12 

       53 

Stage I 
II 
III 
IV 

     29 
     8 

      15 
1 

       53 

 

2. Immunohistochemistry  

    5µm-thick sections of  formalin-fixed and paraffin-embedded tissue were deparaffinized  

with xylene and rehydrated through descending alcohol (100% alcohol x2, 95% alcohol x2, 

75% alcohol x1, H2O x1); the sections were boiled 5 minutes in microwave oven for antigen 

retrieval, and then blocking the endogenous peroxidase. The slides were incubated over night 

at 4°C in a humidified chamber with the primary antibody after BSA (bovine serum albumin) 

blocking the nonspecific proteins. The primary antibodies we used for detecting BARD1 were 

BARD1-N19 (sc-7373) and BARD1-C20 (sc-7372; Santa Cruz Biotechnology) which 

recognize the epitope of N-terminus and C-terminus of BARD1 protein. Secondary antibodies 

(rabbit-antigoat) with HRP were applied in dilution 1:100 at room temperature 1 hour. Then, 

DAB staining was performed 15 minutes at room temperature. The slides were counterstained 

with hematoxyline before dehydration and mounting. To quantify expression of BARD1 or 

p53, four different regions were chosen from each stained tumor section, the total number of 

cells and the number of positively stained cells were counted. The average was calculated to 
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determine the percentage of BARD1 positive cells. These quantifications were repeated 

independently by three persons.   

 

Table 2. Primary antibodies used in the study    

Specificity Dilution Incubation source product 

BARD1-N19 1:25 Over night; 4ºC goat sc-7373 

BARD1-C20 1:20 Over night; 4ºC goat sc-7372 

p53 1:20 Over night; 4ºC rabbit sc-6243 

 

3. RNA isolation from the frozen tissue sections 

    TRIzol Reagent was used to isolate RNA from the frozen tissue. 4-5 10µm-thick sections 

were used for each sample. 100-150µl of TRIzol Reagent were added onto the slides (the total 

amount of sections and TRIzol Reagent depended on tissue size) and incubated 5 minutes at 

room temperature. Pipetted carefully several times to homogenize the tissue and transferd the 

homogenized tissue into a RNase-free eppendorf tube. Proceeding extractions were operated 

following the protocol of RNA isolation with TRIzol Reagent. Added 0.1ml of  chloroform and 

centrifuge 14,000g 15minutes at 4ºC to separate the phases. The aqueous phase was transferred 

to a clean RNase-free eppendorf tube and equal volume of isopropanol was added. After 

centrifugation at 4ºC, the pellet was washed with 75% ethanol. 20µl of RNase-free water was 

added to elute RNA. RNA concentration was measured and the quality was assessed by 

D260/D280 ratio. 

 

4. RT-PCR (reverse transcription and polymerase chain reaction) 

    For reverse transcription, 1µg of RNA was used in 21µl of reverse transcription buffer 

containing 1µl of dNTP(10mM), 1µl of oligo dT, 2µl of DTT(0.1M), 4µl of 5x First Stand 

Buffer. The reaction took place at 65ºC 5 minutes followed by 42ºC 2mins and 1µl of 

Superscript II (Invitrogen) was added, then incubations were 42ºC 50 minutes and 70ºC 15 

minutes. 2µl of cDNA was used as a template for PCR with different primers (Table 1). 40 

cycles of stepwise PCR (annealing temperature from 65 ºC to 56ºC, each cycle decrease 1ºC, 
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and then 55ºC 30 cycles) was performed with Taq polymerase in a final reaction volume of 

50µl. Primary denaturation (94 ºC, 3minutes) and final extension (72ºC, 10minutes) were the 

same for each PCR reaction. 10ul of PCR product was used for analysis in 1% of agarose/TAE 

gel with ethidium bromide (EtB) and the band was visible under ultraviolet light. 

  Table 3. Primers and conditions 
forward primer site reverse primer site PCR 

product 
size (bp) 

Extension 

72ºC 

5’ccatggaaccggatggtc3’ 74 5’aacaccaccgggtatcaaaa3’ 1481 1407 100s 

5’ccatggaaccggatggtc3’ 74 5’cgaaccctctctgggtgata3’ 2252 2178 120s 

5’agcaagtggctccttgacag3’ 783 5’cgaaccctctctgggtgata3’ 2252 1469 100s 

5’ctccagcataaggcattggt3’ 1441 5’cgaaccctctctgggtgata3’ 2252 811 60s 

 

5. Cloning and sequencing 

    QIAEX II kit was used for DNA purification. The purified DNA was cloned into pGEM-T® 

Easy vector (Promega, Figure 3). The ligation and transformation were performed according to 

the manufacturer’s instructions. The insert/vector ratio was 3:1. 2µl of the ligation reaction 

mixed with 50µl of JM109 High Efficiency Competent Cells (Cat#L2001) in LB was plated 

onto the LB/ampicillin/PTG/X-Gal plate and incubated at 37ºC over night. The recombinant 

clones could be identified by color screening on indicator plates. 5 white colonies in each plate 

were chosen and incubated in 3ml of LB with ampicillin at 37ºC over night. Recombinant 

plasmid DNA was isolated using Miniprep kit (Sigma) and followed by sequencing with 

primers T7 and SP6 (Figure 3). 
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Figure 3  pGEM-T easy vector circle map and sequence reference points. 
 In this study, the primers T7 and SP6 were used for sequencing. 
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Results  

1. BARD1 expression in sporadic ovarian cancer  

    We used two antibodies for testing BARD1 expression, N19 and C20, which recognize 

epitope at the N-terminus and C-terminus of BARD1 protein, respectively. These antibodies 

had been used in previous studies and their specificity had been tested2, 76. From expression 

studies in the mouse, we knew that BARD1 is expressed in the mouse ovary2, 47 with maximal 

expression in germ cells but not in granulosa cells and sparsely in theca cells (figure 4).  

 
 mouse ovarian tissue 

N19 40x 

N19 40x 

b 

a 
mouse breast tissue  

N19 10x

c  
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Figure 4. BARD1 expression in normal mice tissue.  In ovarian follicles  before ovulation, BARD1 
stained the germ cells positively in the nucleus (a), but not in the granulosa cells or theca cells. 
After ovulation, only a few cells were stained in the nucleus (b). In breast tissue, BARD1 stained 
a few mammary gland epitheliums in the nucleus.(c,d) 

 

 

 

 

    Interestingly, BARD1 was highly expressed in the cytoplasm of tumor cells. In the normal 

tissue surrounding the tumor, however, little staining and nuclear localization was observed 
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(Figure 5). This results contrast with the expression of BRCA1, which is generally down 

regulated in ovarian and breast carcinoma.  
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Figure 5. BARD1 expression in cancer and normal tissue. BARD1 is highly expressed in the 
cytoplasm of ovarian carcinoma cells (a), while little staining in peripheral normal ovarian tissue (b). 

    We investigated the BARD1 protein expression in four types of ovarian cancers: clear cell, 

serous, endometrioid, and mucinous carcinoma. The extend of BARD1 expression varied 

considerably between the different histological types of ovarian cancer. In clear cell 

carcinoma, all cells were stained homogeneously and all cases had high positivity of BARD1 

staining (90% of the cells were stained in average), while in the other types of ovarian 

carcinomas, BARD1 expression varied from 0 to 95% of positive cells and showed a mosaic 

expression pattern, which was most prominent in serous carcinoma (Figure 6). To quantify the 

expression of BARD1, the proportion of positive cells was determined in tumor tissue (see 

Material and Methods). Clear cell carcinoma had highest percentage of BARD1 positive cells. 

The variation within each histological type of tumor was from 0 to 90 percent, but in clear cell 

carcinoma from 80 to 100 percent. This difference of expression was statistically significant 

(p<0.005) (Figure 7).  
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    In the majority of the cases, N19 and C20 antibodies stained the same regions when tested on 

adjacent tissue sections (Figure 6,8A), but differences in N19 and C-20 staining were observed 

in endometrioid, mucinous, and serous carcinoma (Figure 8B). In most of these cases N-19 

staining was lost and C-20 staining was retained. This loss of N-terminal epitopes could be 

explained by changes on the gene, the transcript, or the posttranslational level.  

    Since BARD1 can act as apoptosis inducer by stabilizing the tumor suppressor p532, we also 

determined p53 expression levels in the same cases. Consistent with observations made in 

other types of cancer 24, p53 showed nuclear localization in the ovarian cancer cells while 

BARD1 was localized to the cytoplasm (Figure 9A), which excluded a BARD1-p53 

interaction. In some cases, BARD1 and p53 co-localized in the same region, in others BARD1 

and p53 expression showed completely different distributions in the same region. Similarly to 

BARD1, p53 expression levels varied in different histological types of carcinoma. In clear cell 

carcinoma, p53 expression was slightly higher than in the other types of cancer, but the 

variations were not as striking as observed with BARD1 staining and not statistically 

significant. Comparison of the expression levels of BARD1 and p53 proteins showed no 

obvious correlation (Figure 9B).  

    In summary our data indicate that BARD1 expression in ovarian cancer is correlated with 

histological tumor type, but not with histological differentiation, tumor size, serum CA125 

level, or age of the patient (data not shown). Since clear cell carcinoma, where maximal 

BARD1 expression was found, have a lower reported five year survival, it is suggestive that 

BARD1, rather than p53 positivity, is correlated with a poor prognosis.  
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Figure 6. Different expression levels of BARD1 in different pathological type of ovarian 
carcinoma. In clear cell carcinoma, N19 and C20 stained diffusely the tumor cells, while in other 
type of ovarian carcinoma, it showed mosaic staining. CCC: clear cell carcinoma; EnC: 
endometrioid carcinoma; SeC: serous carcinoma; MuC: mucinous carcinoma 
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Figure 7. Distribution of BARD1 (N19) expression in different type of ovarian carcinoma. The 
expression of BARD1 in CCC was significantly different with that in other type of ovarian 
carcinoma (p<0.005). CCC: clear cell carcinoma; EnC: endometrioid carcinoma; SeC: serous 
carcinoma; MuC: mucinous carcinoma 
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Figure 8. Comparison of N19 and C20 staining. (A) Homogenous and identical staining with N19 
and C20 was observed in clear cell carcinoma. (B) Representative example of diverging staining 
obtained with N19 and C20, as observed in some cases of serous carcinoma. 
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Figure 9. Comparison of BARD1 (N19 and C20) and p53 expression in ovarian and breast carcinoma. 
(A) BARD1 staining was cytoplasmic, p53 staining was nuclear. In some cases, BARD1 and p53 
co-localized in the same region (upper panels), in others BARD1 and p53 expression showed 
completely different distributions in the same region (lower panels). (B) Comparison of BARD1 and p53 
expression in four pathological types of ovarian carcinoma. BARD1 positivity decreased from clear cell 
carcinoma to mucinous. This tendency was less pronounced for p53 positivity. CCC: clear cell 
carcinoma; EnC: endometrioid carcinoma; SeC: serous carcinoma; MuC: mucinous carcinoma.  
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2. BARD1 expression in breast cancer  

2.1 BARD1 expression in sporadic breast cancer 

    We analyzed BARD1 expression in 10 cases of sporadic breast cancer. As observed in 

ovarian cancers, BARD1 was localized in the cytoplasm. The expression levels of BARD1, 

detected with N19 and C20 were variable. Mosaic staining patterns were observed in some 

cases (Figure 10), as it was observed in serous ovarian carcinoma. Comparing the expression of 

BARD1 with tumor differentiation and tumor size, we found that considerably more staining 

was observed in G3 grade tumors than in G1, and more in T4 staged tumors than in T1 (Figure 

10 C).  

    We analyzed the expression of p53 in the same samples, but could not establish any 

correlation between p53 and BARD1 expression. Unlike BARD1, p53 levels did not increase 

with tumor size or undifferentiated state. Since tumor differentiation, size, and stage are 

prognostic factors for breast cancer, it therefore seems likely that BARD1 rather than p53 

staining is associated with a poor prognosis for breast cancer and it maybe a prognostic marker 

of breast cancer. 

2.2 BARD1 expression in breast cancers carrying BARD1 mutations 

    Several mutations of BARD1 have been reported associated with breast and ovarian cancer.  

We analyzed BARD1 expression in 5 cases of 4 different BARD1 mutations of breast cancer 

families. The mutation sites were A957G, A1009T, G1743C, 1144del21, respectively74. Since 

these mutations are associated with breast cancer, one could speculate that they might affect 

BARD1 protein function. Using antibody BARD1-N19, however, we found, similar to what 

we observed in sporadic breast and ovarian cancer, intensive cytoplasmic staining (Figure 

11A). The percentage of BARD1 positive cells was also similar to that of sporadic breast 

cancer. The staining intensity and the percentage of positive cells were not correlated with a 

specific mutation site. It was unclear at this point whether all BARD1 mutations investigated 

result in a cytoplasmic localization of the protein, or whether the cytoplasmic localization of 

BARD1 is dictated by other tumor factors and not influenced by specific mutations. 

    It can be concluded that aberrant location of BARD1 is a negative prognostic factor, but not 

necessarily associated with a specific mutation. 

 

 31



2.3 BARD1 expression in breast cancer with BRCA1 mutations 

    We analyzed BARD1 expression in 13 cases of BRCA1 mutant breast/ovarian cancer 

including 10 cases of invasive ductal breast cancer (DCI) and 3 cases of ovarian cancer.  In 

BRCA1-mutant cancers, BARD1-N19 staining was similar to that in sporadic breast cancer 

and BARD1-mutant breast cancer (Figure 11B). The mutation type of BRCA1 didn’t correlate 

with the extent of BARD1 staining. Thus BRCA1 mutations did not influence the pattern of 

BARD1 expression nor the stability of BARD1 protein expressed in tumors, as expected, based 

on previous reports54, 77. 

    In four cases, patient outcome data were available and BARD1 expression levels could be 

correlated with the disease free survival (DFS). High BARD1 expression was observed in 

patients with shorter DFS than in those with longer DFS, suggestive that BARD1 expression 

was negatively correlated with DFS (Figure 11C) in patients with BRCA1 mutant tumors.  

    It was interesting to know whether BARD1 expression in cancers with BRCA1 mutations 

correlated with p53 mutation status. RT-PCR was performed and p53 cDNA was cloned and 

sequenced. Interestingly higher BARD1 expression levels were found correlated with tumors 

carrying p53 mutations. In p53 wild type tumors low levels of BARD1 expression were found 

and in p53 mutant tumors BARD1 expression was elevated (Figure 12). These data further 

support the conclusion that BARD1 expression in tumors is not indicative of its apoptosis 

function, which depends on a functional p53.  

3. BARD1 expression in non-small-cell lung cancer (NSCLC) 

    To determine whether BARD1 expression was limited to tumors of hormonally regulated 

tissues, we investigated its expression in lung cancers. 54 cases of sporadic NSCLC were 

analyzed for BARD1 (N19 and C20 antibody staining) and p53 protein expression. BARD1 

was found in the cytoplasm in the lung cancer cells similar to what we observed in the ovarian 

and breast carcinoma. We compared the expression of BARD1 (N19 and C20) in tumors of 

various histological type, pathological grade, and clinical stage. In large cell carcinoma, 

BARD1 expression was higher than in other types of lung cancer. BARD1 levels were 

increasing from adeno to squamous and large cells, however, no correlation of BARD1 with 

p53 expression levels were found (Figure 13). However, the expression of p53 was clearly 

increasing with stage of tumors and was elevated in poorly differentiated cancers as compared 
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to well-differentiated NSCLC with a statistical significance of p<0.05 (Figure 13B). This 

finding is consistent with the observation that more that 50% of  lung cancers exhibit p53 

mutations and that p53 is the major target for mutations during malignant transformation35.  
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Figure 10. The expression of BARD1 in sporadic breast cancer. BARD1 (N19) staining was less in well 
differentiated G1 tumor (A) than that in poorly differentiated G3 tumor (B). In some cases, it showed 
mosaic staining as that in serous ovarian carcinoma.  (C) Correlation of BARD1 (N19/C20) and p53 with 
pathological differentiation and tumor size. BARD1 expression was highly elevated in grade 3 and T4 
tumors.  
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Figure 11. The expression of BARD1(N19) in BARD1-mutant or BRCA1-mutant breast cancers. 
BARD1 stained in the cytoplasm of BARD1-mutant breast cancer (A) and BRCA1 mutant cancer 
(B). The left case in (B) had less staining than the right one. (C) Expresssion of BARD1 had negative 
association with  disease free survival (DFS) in the BRCA1-mutant breast cancers. 
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Figure 12. Relationship between BARD1 expression and status of p53 mutations in BRCA1-mutant 
breast/ovarian cancers. (A) BARD1 (N19) expression was higher in BRCA1-mutant breast cancers 
with mutated p53 (p53mt) than in those with wild type p53 (p53wt) (upper panel). Similarly, 
BRCA1-mutant ovarian cancers with mutant p53 (p53mt) had more BARD1 (N19) expression than 
those with wild type p53 (p53wt) (lower panel). (B) Comparison of BARD1 expression levels (% 
positive cells) with p53 mutation status in BRCA1-mutant breast/ovarian cancers. 
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Figure 13. The expression of BARD1-N19/C20 and p53 in NSCLC. (A) ) Staining of BARD1 (N19) and 
p53 in NSCLC. BARD1 was cytoplasmic, p53 nuclear. (B) The expression of BARD1 and p53 compared 
in pathological differentiation and clinical stage. No correlation was found for BARD1, but p53 
expression was correlated with grade and stage. (C) BARD1 and p53 expression and distribution of 
BARD1-N19 expression in different histological types of NSCLC. adeno:adenocarcinoma; squam: 
squamous cell carcinoma; adenosqu: adenosquemous carcinoma; large: large cell carcinoma 
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4. Aberrant form of BARD1 expressed in tumors 

    Several reported functions of BARD1 suggest a role in tumor suppression. Its upregulation 

in tumors therefore led to speculate that the form of BARD1 expressed in tumors might be an 

aberrant form deficient of its tumor suppressor function. To test this hypothesis, RT-PCR 

amplified and cloned and sequenced BARD1 cDNAs from frozen tissue sections of ovarian 

tumor samples. Control RNAs, from HeLa cells and from human cytotrophoblasts, lead to 

similar amplification of the 5' and 3' portions of the BARD1 transcript. However, in 7 of 10 

tumor samples, , RT-PCR showed a complete loss of the N-terminal half of the protein coding 

region (nucleotides 74 to 1481), or the segment including nucleotides 783 to 1441 (Figure 14). 

Similar amplification of the 5' and 3' halfs of BARD1, as performed with control RNAs, was 

only possible in three cases, OB23, OB35, and OB37. In these three cases, we found the same 

missense mutation A1291G, which translates into an arginine instead of glutamine (Q406R) 

(Figure 14B). In some cases the lack of the N-terminal half of the BARD1 transcript was 

consistent with the observed loss of N-19 but not C-20 staining by immunohistochemistry.  

    We concluded that the form of BARD1 which is overexpressed in cancer cells and localized 

to the cytoplasm, presumably presents an aberrant form of BARD1. Interestingly, BARD1 

expression is highly elevated in clear cell ovarian carcinoma and poorly differentiated, large 

sized breast cancers which have the worst prognosis for five year survival. This expression 

pattern of BARD1 is similar to p53, which shows elevated expression in tumors, correlated 

with poor prognosis, and when expressed in tumors, is mostly mutated. Whether similar 

aberrant forms of BARD1 exist in lung cancer remains to be determined.  
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Figure 14. Transcriptional expression of BARD1 in ovarian cancers. (A) RT-PCR analysis of 10 
ovarian cancers. Control RNA from HeLa cells (C+) and RNA from ovarian cancers were tested using 
primers amplifying the N-terminal (74-1481) or C-terminal (1441-2252) part of the transcript. The 
results obtained with forward primers 783 and reverse primer 1481 were similar to that of 74-1481 
(data not shown). Samples 8, 24 and 33 were performed on two doublicate samples for the same 
tumor (*). In 7 of 10 cases the N-terminal part could not be amplified, and was weaker than the 
C-terminal part in the remaining ones. (B) Mutation A1291G found in tumors 23, 35, and 37 is 
indicated (red arrow) on the schematic diagram of the BARD1 protein structure. RING, ankyrin (ANK) 
and BRCT domains of BARD1 are presented with known mutations indicated by arrows. Primers used 
for RT-PCR are shown underneath.   
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 Discussion 
    Originally BARD1 has been described as a tumor suppressor that participates in DNA 

repair, transcriptional regulation, RNA processing, and ubiquitilation by binding to BRCA1 46, 

63, 78. Repression of BARD1 expression in murine mammary epithelial cells resulted in 

phenotypic changes reminiscent of premalignancy 47 and to genomic instability 47, 58, 77, 79 and 

overexpression leads to apoptosis 2 suggesting a function in tumor suppression independently 

of BRCA1.  

    Consistent with its presumed role as tumor suppressor, the transcriptional expression of 

BARD1 is reduced in breast cancer cell lines 70.Furthermore, tumor associated mutations of 

BARD1 were found for both somatic and germ-line mutations in a subset of primary breast, 

ovarian and uterine cancers 71. Ishitobi reported a germ line mutation in Japanese familial 

breast cancers 72. Mutations of BARD1 were also found with high frequency in Finnish breast 

cancer families 73. Ghimenti et al. identified BARD1 germline mutations in breast and 

breast/ovarian families that were negative for BRCA1 and BRCA2 alterations 74. 

    It is generally assumed that genetic mutations could induce structural changes of the protein 

product, leading to a loss of function due to a presumed decrease of protein stability. However, 

we observed an important upregulation of BARD1 protein expression in cancer tissue as 

compared to normal tissue, in many tumors of non-familial origin and unknown genetic status 

of BARD1 or BRCA1as well as in tumors associated with four specific mutations of BARD1. 

Similarly, we found BARD1 upregulation in tumors with BRCA1 mutations while BARD1 

destabilization would be expected in the absence of BRCA1 by a reduced mutual stabilization 

of BARD1-BRCA1 77 . 

    The protein expression of BARD1 in tumors has not been investigated before and there is no 

reported immunohistochemical study of BARD1 in human cancer tissue. BARD1 was 

described as a nuclear protein 46, 56 , and in association with apoptosis its translocation to the 

cytoplasm is observed 54, 60. However, here we report that BARD1 localizes to the cytoplasm in 

cancer cells that are not apoptotic. We conclude that BARD1 expressed in cancers corresponds 

to an aberrant form and/or a form that lacks tumor suppressor functions due to posttranslational 

modifications. It even is possible that BARD1 acquires novel (dominant negative) functions in 

favor of tumor cell growth. Alternatively, factors influencing the intracellular localization of 

BARD1 and/or its stability could be modified in the tumor cells. In fact, elevated expression in 
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tumors has been reported for p53, which when upregulated in cancer cells is derived from 

abnormal protein stability and/or long half -life of mutated form80. 

    Interestingly, BARD1-N19 and BARD1-C20 staining, with antibodies recognizing 

N-terminal and C-terminal epitopes, respectively, did not always overlap, and a loss of the 

N-terminal but not C-terminal epitopes was observed in several tumors, suggesting incomplete 

expression of the transcript or protein and/or introduction of modifications affecting the 

N-terminus. Interestingly, cloning and sequencing of RT-PCR products from a number of such 

tumors revealed an aberrant form of BARD1. In seven of ten cases the 5'half of the transcript 

could not be amplified, consistent with the loss of the N-terminal epitope in some tumors. In 

the remaining three cases, which apparently expressed 5'and 3' portions of the transcript, the 

same missense mutation A1291G was found which gives rise to an amino acid substitution 

Q406R. This mutation localizes within a region that already harbors many reported 

mutations71-74 as indicated in Figure 14. In fact, the BARD1 A1291G mutation localizes close 

to a potential nuclear location signal (NLS)54, which might influence the proper function of this 

signal and explain the aberrant cytoplasmic localization. From the 10 cases sequenced in this 

report and from the immunohistochemical analysis of tumors with previously reported BARD1 

mutations, it can be concluded, that loss of the 5'portion of BARD1 transcript, or mutations in 

the region upstream of the ankyrin motif are associated with loss of nuclear localization. 

Interestingly, the A1291G mutation is different from the mutations reported before, but 

appears in 3 of 10 cases and might be a specific mutation for cancers from Geneva. 

  Although the loss of 5'half of BARD1 transcript could be due to genomic rearrangements, the 

fact that in 7 of 10 cases the 5’part of the transcript is missing, is suggestive of a mechanism 

which is not the result of random genomic instability. It is possible that new transcription 

initiation sites are used or that most of the 5’end of the BARD1 transcript is deleted due to 

alternative splicing or to translocations. Indeed, a recent finding of a new splice variant of 

BARD1 in a rat ovarian cancer cell line, missing exons 2 through 7 (Feki et al., submitted) is in 

support of the argument that aberrant transcripts missing the coding region that comprises 

regions upstream of the ANK repeat might be associated with ovarian and breast cancer.  

    It has been discussed in several studies6-10 that clear cell carcinoma is distinct from other 

types of ovarian cancers with poor prognosis and insensitivity to platinum-based chemotherapy 
81, 82.We find that BARD1 expression levels are correlated with pathological type of ovarian 

cancer, and it is in clear cell carcinoma where nearly 100 percent of the cells express BARD1, 
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while in other types of ovarian carcinomas the expression varies from 0 to 90 percent. This 

suggests that BARD1 might be correlated with negative outcome. This hypothesis was 

confirmed for cases of sporadic breast cancer, where BARD1 expression was correlated with 

poor differentiation and large tumor size. Even more so, in familial breast cancers with BRCA1 

mutations, the expression of BARD1 is inversely correlated with disease-free-survival. Taken 

together, we propose that immunohistochemical staining of BARD1 might be a negative 

prognostic factor for human breast and ovarian cancer.  

    Interestingly, a differed scenario is observed in NSCLC. Only moderate increase of BARD1 

expression in large cell carcinoma as compared to other types of lung cancer can be observed. 

BARD1 expression is neither correlated with pathological differentiation nor stage of NSCLC. 

In contrast, p53 protein expression is distinctly increased in grade 3 and stage IV cancers, 

confirming the role of p53 as primary mutation target during malignant transformation in 

NSCLC 83. From these data it can be concluded that mutations of p53 are the main predisposing 

factor in NSCLC, while in cancers of hormone-responsive organs, BARD1 mutations present a 

significant factor which maybe used as a prognostic factor.  

    Upregulation of BARD1 in tumors was observed in DNA array analyzes, investigating gene 

expression profiles of various cancers. In prostate cancer cells BARD1 was observed 

upregulated in response to treatment with 7-substituted lipophilic camptothecin 69.BARD1 

upregulation was also found in responsive to oncogenic RAS signaling 84.Finally, consistent 

with our observations for breast and ovarian cancers, BARD1 expression was described as one 

of the markers for treatment failure in embryonic central nervous system tumors 85. 

    BARD1 was also identified as component of the TGFβ signaling pathway in a study of 

breast cancers. Slightly reduced expression was found correlated with a more malignant and 

invasiveness phenotype of breast cancers, albeit only in conjunction with expression of other 

marker genes 86. These results are in contrast to our observations, however, it remains to 

consider that in most DNA array studies the 3’end portions of cDNAs are used as probes, and 

5’portions of transcripts are not represented.  

    Several reports support the notion that BARD1 is an important target gene for mutations and 

epigenetic modifications during tumorigenesis. BARD1 is one of the genes in 2q35-36, a 

region often showing LOH or amplification in cervical cancer 87. No changes in gene 

expression of  BARD1 or neighboring genes were found and it was concluded that none of 

these genes was implicated in cervical cancer. Again it cannot be excluded that expression of 
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the 3’end was maintained and expression of 5’end was lost. Our analyses make clear that 

global transcriptional analysis might be misleading. Depending on the intragenic region used 

for probing the modulation of gene expression, region-specific changes in expression, such as 

differential transcription of 5'region of genes, will not be detected.  

The most striking evidence for involvement of BARD1 in tumorigenesis is the 

BARD1-EWS or EWS-FL1 interaction in Ewing's sarcoma. Only the C-terminal portion of 

BARD1 is implicated in this interaction 88. The in vivo functions of BARD1 in association with 

the normal or the tumor-associated EWS-FL1 might be different.  

BARD1 was reported to induce BRCA1-independent apoptosis through a p53 pathway after 

DNA damage. In our study, we compared the expression of BARD1 and p53 in three types of 

cancer. We did not find any correlation of BARD1 and p53 expression levels, with exception 

of the cases of BRCA1-mutations, where BARD1 expression is increased in parallel to 

expression of mutant p53. 

    According to our previously proposed model 2 an excess of BARD1 over BRCA1 in BRCA1 

mutated cells should lead to BARD1 induced p53-dependent apoptosis. We hypothesized that 

tumor cells would inactivate either BARD1 or p53 to escape from apoptosis (Figure 15), 

however, the propensity for mutations or epigenetic alterations of one or the other could 

depend on the specific tissue. The prevalence of BARD1 mutations in hormonal tissues could 

be due to the reported hormonal regulation of BARD1 in such tissues 47, 55.   

    The elevated expression of BARD1 in tumors is similar to p53, which shows elevated 

expression in tumors, correlated with poor prognosis, and when expressed in tumors is mostly 

mutated. It is unknown whether mutated p53 contributes to poor prognosis due to loss of tumor 

suppressor functions, or whether due to newly acquired functions which are in favor of tumor 

progression.  BARD1 is translocating to the cytoplasm during apoptosis. In cancer cells it is 

localized exclusively to the cytoplasm but does not induce apoptosis. The presence of BARD1 

is correlated with poor prognosis and we conclude that the form of BARD1 that can be found in 

the tumors has lost its tumor suppressor functions but might have acquired other function that 

favor tumor growth. This could be through expression of a novel form or mutation or by 

binding to factors that favor this tumor supportive function.  

    Interestingly BARD1 behaves like a negative prognostic factor only in tumors of hormone 

related organs. This could be explained by initial hormonal control of expression 55. In lung 

cancers it is p53 which is mutated or deleted in most cancers, suggesting that it is the prime 
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target for malignant transformation. In ovarian and breast tissue BARD1 is hormonally 

regulated47 and presumably plays a role in apoptotic control of tissue homeostasis. Here 

BARD1 might be the primary tumorigenic target for alteration. 
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Figure 15. Proposed model of BARD1 function in normal tissues and in tumorigenesis. BARD1 is 
associated with 3 pathways: 1) as heterodimer with BRCA1 in repair and survival mode2; 2) excess of 
BARD1 over BRCA1 in apoptosis function2. 3) deficiency of p53 stabilization permits overriding of 
gatekeeper function of p53, either through deficiency of BARD1 or p53.  
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 Conclusions 
1. BARD1 expression is aberrantly elevated and localized in cancer tissue as compared to 

normal tissue.  

2. Abundantly expressed BARD1 in cancer cells is likely to be an aberrant form deficient of its 

tumor suppressor functions. 

3. BARD1 expression is elevated in clear cell ovarian carcinoma and poorly differentiated, 

large sized breast cancers, It has negative association with DFS in BRCA1 mutant breast 

cancer. These data suggest that BARD1 staining in the cytoplasm might be a negative 

prognostic factor in breast and ovarian cancer. 

4. BARD1 expression has no correlation with either differentiation or stage of NSCLC. 
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