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C O M P U T E R  S C I E N C E

Thermodynamic computing via autonomous quantum 
thermal machines
Patryk Lipka- Bartosik*, Martí Perarnau- Llobet, Nicolas Brunner

We develop a physics- based model for classical computation based on autonomous quantum thermal machines. 
These machines consist of few interacting quantum bits (qubits) connected to several environments at different 
temperatures. Heat flows through the machine are here exploited for computing. The process starts by setting 
the temperatures of the environments according to the logical input. The machine evolves, eventually reaching a 
nonequilibrium steady state, from which the output of the computation can be determined via the temperature of 
an auxilliary finite- size reservoir. Such a machine, which we term a “thermodynamic neuron,” can implement any 
linearly separable function, and we discuss explicitly the cases of NOT, 3- MAJORITY, and NOR gates. In turn, we show 
that a network of thermodynamic neurons can perform any desired function. We discuss the close connection 
between our model and artificial neurons (perceptrons) and argue that our model provides an alternative physics- 
based analog implementation of neural networks, and more generally a platform for thermodynamic computing.

INTRODUCTION
Computing systems can take a variety of forms, from biological 
cells to massive supercomputers, and perform a broad range of 
tasks, from basic logic operation to machine learning. In all cases, 
the computational process must adhere to the principles of physics 
and, in particular, to the laws of thermodynamics. In general, infor-
mation processing and thermodynamics are deeply connected, see, 
e.g., (1–3).

More recently, links between thermodynamics and computation are 
being developed. At the fundamental level, bounds for the thermody-
namic cost of computation are derived, see, e.g., (4–6). From a more 
practical perspective, a promising direction explores low- dissipation 
computing. Here, models for elementary gates and circuits based on 
electronic transistors working in the mesoscopic regime, or even 
toward the single- electron mode, are considered (7–12). Crucially, 
thermodynamic models of computation must be thermodynamically 
consistent, meaning that they adhere to the laws of thermodynamics 
(13). This allows one to analyze their thermodynamic properties, e.g., 
energetic cost or dissipated heat, using the framework of stochastic 
thermodynamics. This approach already brought considerable prog-
ress, and further insight can be expected by moving to the fully quan-
tum regime (14–18).

Another exciting direction is thermodynamic computing (19–22). 
This represents a paradigm for alternative physics- based models of 
computation, similarly to quantum computing or DNA computing. 
The main idea is to exploit the thermodynamic behavior of complex, 
nonequilibrium physical systems to perform computations, looking for 
not only a computational speedup but also a reduced energy cost. This 
approach has been explored in the context of machine learning and AI, 
see, e.g., (23–26). Very recently, promising progress has been reported, 
showing that a computational speedup in linear algebra problems can 
be achieved via a controllable system of coupled harmonic oscillators 
embedded in a thermal bath (27).

In this work, we develop a model for thermodynamic computing 
starting from a minimal model of a quantum thermal machine. More 
precisely, we develop autonomous quantum thermal machines that 

can operate as computing devices where logical inputs and outputs 
are encoded in the temperature. As our device shares strong simi-
larities with the basic model of an artificial neuron (the perceptron 
used, e.g., in neural networks), we refer to it as a “thermodynamic 
neuron.” Overall, our guiding motivation is to use diverse techniques 
offered by quantum thermodynamics to enhance our understanding 
of fundamental aspects of computation.

To construct our computing device, we start from the model of 
minimal autonomous quantum thermal machines (28, 29), which 
are made of a small quantum system (few interacting qubits) in con-
tact with thermal baths at different temperatures. A first observa-
tion is that the effect of such a thermal machine onto an external 
system—heating or cooling—depends on the temperatures of the 
heat baths. Viewing these temperatures as an input and the tem-
perature of the external system as an output, the thermal machine 
can be seen as a computing device (see Fig.  1). By associating a 
logical value to the temperature (e.g., cold temperatures corre-
sponding to logical “0” and hot temperatures to logical “1”), we 
show that the autonomous machine can implement logical gates. As 
a first example, we show how a small quantum refrigerator/heat 
pump can be used to implement an inverter (NOT gate). This repre-
sents the simplest example of a thermodynamic neuron. In turn, we 
present a general model of a thermodynamic neuron and show that 
it can implement any Boolean linearly separable function. Such a 
function can be thought of as an assignment of 0 or 1 to the vertices 
of a Boolean hypercube (i.e., a geometric representation of its truth 
table). This allows one to divide the vertices into two sets. The Boolean 
function is said to be linearly separable if these two sets of points 
can be separated with a line. We discuss explicitly the examples of 
NOR and 3- MAJORITY. A key element in this construction is the 
concepts of virtual qubits and virtual temperatures (29), which al-
low us to establish a close connection between our machines and 
perceptrons, a common model of an artificial neuron. Further-
more, we show that, by constructing networks of thermodynamic 
neurons, one can implement any desired function, and we discuss 
the example of XOR. We detail an algorithm, inspired by artificial 
neural networks, for designing thermodynamic neurons (and their 
networks) for implementing any given target function. We conclude 
with a discussion and an outlook.
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Before proceeding, we highlight a number of relevant features of 
our model. First, as it is constructed from a minimal model of quan-
tum thermal machines, the model is thermodynamically consistent. 
Hence, the model allows for an examination of the trade- off be-
tween consumed energy, dissipation, and performance, which we 
investigate. Second, as it is based on changes of temperatures and 
flows of energy, the model involves only one conserved quantity, 
namely, energy. Computation in our model occurs solely as a result 
of heat flowing from one part of the machine to the other. This is in 
contrast to most conventional models of computation, in particular 
models for nanoscale electronic circuits, where heat is an unwanted 
by- product that hampers computation and introduces errors. Last, 
the functioning of our model can be intuitively understood by ex-
ploiting interesting connections between quantum systems at ther-
mal equilibrium and artificial neural networks.

RESULTS
Framework
Autonomous quantum thermal machines
Quantum thermal machines usually consist of a small- scale physical 
system described within quantum theory. This system is then placed 
in contact with external resources, such as thermal baths or driving, 
to implement a thermodynamic task such as cooling, heating, or 
producing work; see, e.g., (30) or (31) for reviews.

Here, our focus is on a special class of quantum thermal ma-
chines known as autonomous quantum thermal machines [see (32) 
for a recent review]. Their main interest resides in the fact that these 
machines work autonomously, in the sense that they are powered by 
external resources that thermal (typically two or more heat baths 
at different temperatures) and their internal dynamics is time- 
independent (modeled via a time- independent Hamiltonian). While 
first models can be traced back to the thermodynamic analysis of 
masers (33), recent works have developed a framework for discussing 
minimal models of autonomous thermal machines, working as re-
frigerators, heat pumps, and heat engines (28, 29, 34). Many physical 

models of quantum thermal machines (35–40) can be mapped back 
to these minimal abstract models (32). More recently, autonomous 
machines have also been devised for achieving other tasks such 
as the creation of entanglement (41), timekeeping (i.e., clocks) 
(42–44), and thermometry (45). A key aspect of these machines is 
their autonomy making them relevant from a practical perspective 
(46), and first proof- of- principle experiments have been reported 
(47, 48). More generally, the limits of designing autonomous quan-
tum devices have been discussed (49).
Open quantum system dynamics
In this work, we will focus on autonomous quantum thermal ma-
chines consisting of few qubits, i.e., few two- level quantum systems. 
To start with, let us review the dynamics of a single qubit in contact 
with a heat bath. First, the qubit features two energy eigenstates: the 
ground state |0⟩ and the excited state |1⟩, with respective energies E0 
and E1 > E0. The state of the qubit is represented by a density opera-
tor ρ, and its mean energy is given by Tr[ρH], where H = E0|0⟩⟨0| + 
E1|1⟩⟨1| denotes the Hamiltonian. A convenient quantity is the en-
ergy gap, ϵ ≔ E1 − E0. Without loss of generality we take E0 = 0 so 
that the qubit’s energy is fully specified by its energy gap. When 
placed in contact with an environment, the qubit evolution is de-
scribed by the master equation

The first term captures the unitary evolution governed by the 
Hamiltonian, while the second term captures the environment’s im-
pact on the qubit via the dissipator ℒ[·]. Here, we use the common 
assumption of weak coupling to write down the dissipator, i.e., we 
assume that the qubit is weakly correlated with its environment.

As the qubit evolves over time, it eventually reaches a steady state 
when ρ̇ = 0 . When the environment is a thermal bath, with an in-
verse temperature β = 1/kT, the resulting steady state is given by a 
qubit thermal (Gibbs) state: τ(β) = e−βH/Z, where Z = tr e−βH is the 
canonical partition function. In this case, the probability of the qubit 
to be in the excited state is given by the Fermi- Dirac distribution

Note that this function coincides with the sigmoid function used 
in machine learning. We will explore this connection more careful-
ly later.
Thermal machines
The machines we will consider typically consist of several qubits 
with energy gaps ϵk. The qubits weakly interact with each other 
via an energy- preserving interaction. This is modeled by a time- 
independent interaction Hamiltonion, Hint, which commutes with 
the free Hamiltonian H0 = ∑k ϵk|1⟩⟨1|k, i.e., [Hint, H0] = 0. In what 
follows, we will slightly abuse notation and write |i⟩⟨i|k to denote a 
tensor product acting as identity everywhere except at position k, 
i.e., 1 ⊗ … ⊗ |i⟩⟨i|k ⊗ … ⊗ 1. Each qubit is then connected to a 
thermal bath. In general, these baths are at different (inverse) tem-
peratures βk. When the coupling between qubits and thermal baths 
is weak, the dynamics of such a machine is well captured by a local 
master equation (50) of the form

where ρ now denotes the multi- qubit state of the machine.

ρ̇ = −i
[
H , ρ

]
+ℒ

[
ρ
]

(1)

g(βϵ) = ⟨1�τ(β)�1⟩ =
1

1 + eβϵ
(2)

ρ̇ = −i
[
H0 +Hint, ρ

]
+

∑
k
ℒ

(k)
[
ρk
]

(3)

Fig. 1. Thermodynamic neuron. the thermodynamic neuron is an autonomous 
quantum thermal machine designed for computing. the device consists of few in-
teracting qubits (yellow dots), connected to several thermal environments. the in-
put of the computation is encoded in the temperature of heat baths (depicted in 
red). this generates heat flows through the machine, which eventually reaches a 
nonequilibrium steady state. the output of the computation can be retrieved from 
the final temperature of a finite- size reservoir (shown in blue). By designing the 
machine (setting the qubit energies and their interaction), specific functions be-
tween the input and output temperatures can be implemented.
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The main assumption that we are going to use in this work is lo-
cal detailed balance, which, in our current context, means that local 
thermal states are the fixed point of each dissipator, i.e.

This condition is well justified when the couplings in Hint are suf-
ficiently weak (50). A quantity relevant to our analysis is the heat 
current released from the qubit to the heat bath in this process. This 
is given by

We note that, in certain cases, a qubit of the machine will be cou-
pled to two different baths, in general, at different temperatures. In 
this case, the total dissipator for the qubit is simply obtained by sum-
ming the dissipators with respect to each bath. In turn, this implies 
that the total heat current is the sum of the heat currents with re-
spect to each bath.

Although our key qualitative findings only require the detailed 
balance condition, introducing a specific thermalization model 
would allow us to support our results with numerical evidence. To 
keep the presentation simple, we will use the so- called reset model 
[see, e.g., (28)] in which the dissipators take the simple form ℒ(k)[ρ] = 
γk(Trk[ρ] ⊗ τ(βk) − ρ), where Trk[·] denotes the partial trace over 
qubit k and γk is the coupling, which corresponds to the probability 
that qubit k thermalizes with its bath. We assume that all systems are 
labeled, and no relevance is given to the order of the tensor product. 
Note that Trk[ρ] ⊗ τk(βk) represents the multi- qubit state after a full 
thermalization event. This model can be viewed as a collisional pro-
cess, where, in each instant of time, the qubit has a certain probabil-
ity to collision with a thermal qubit from the bath. Within this 
model, the heat current from Eq. 6 is given by

where pk is the probability that the qubit connected to the bath is in 
an excited state. We note that, in certain cases, a qubit of the ma-
chine will be coupled to two different baths, in general, at different 
temperatures. In this case, the total dissipator for the qubit is simply 
obtained by summing the dissipators with respect to each bath. In 
turn, this implies that the total heat current is the sum of the heat 
currents with respect to each bath.

Last, a quantity of interest for our work is the dissipation generated 
by the machines. To quantify dissipation, we use entropy production 
rate Σ̇ . This quantity captures the fundamental irreversibility of the 
machine. The second law of thermodynamics restricts the behavior of 
any thermal machine. For our autonomous machines, it reads

where S(ρ) ≔ − Tr[ρlogρ] is the von Neumann entropy of the ma-
chine and jk(t) is the total heat current flowing into the kth heat bath 
at time t. We also use the dot notation to indicate complete time 
derivatives, e.g., Σ̇ ≡ d

dt
Σ.

The quantity Σ̇ is the rate of entropy production, which quanti-
fies the speed at which heat (entropy) is dumped into all environ-
ments connected with the machine, see, e.g., (30, 51, 52). It therefore 

measures the amount of information that is lost (i.e., transferred to 
unobserved degrees of freedom). It is also a central quantity appear-
ing in thermodynamic uncertainty relations (TURs) (53–55) as well 
as bounds on the speed of a stochastic evolution (56). We will be 
mostly interested in the dynamics of the steady state of the system, 
which corresponds to ρ̇ = 0 or equivalently Ṡ

[
ρ(t)

]
= 0.

An important class of quantum thermal machines is autono-
mous machines. Such machines operate without requiring external 
control over their internal components (e.g., couplings or local en-
ergies) as they operate in the steady- state regime. This autonomy 
offers a key advantage: It eliminates the need for complex, high- 
precision control, which is a major contributor to the energy con-
sumption of traditional nanoscale devices. An interesting platform 
for realizing autonomous quantum thermal machines are thermo-
electric quantum dots (57).
Autonomous quantum thermal machines and virtual qubit
Before we explain our model of a computing thermal machine, it is 
worth discussing a simpler machine, namely, the three- qubit ther-
mal machine introduced in refs. (28, 29). The intuition developed 
for this model can be then used to understand more complex quan-
tum thermal machines.

Consider a thermal machine that consists of two qubits 𝒞0 and 
𝒞1 such that 𝒞i is in a thermal contact with a heat bath at an inverse 
temperature βi for i = 0,1. Let ϵ0 be the energy spacing of qubit 𝒞0 
and ϵ1 ≤ ϵ0 be the energy spacing of qubit 𝒞1. In the absence of in-
teractions with an external system, each qubit interacts only with its 
own thermal bath and hence reaches thermal equilibrium at the cor-
responding inverse temperature. Therefore, the state of qubit 𝒞i can 
be written as

where Z𝒞i = 1 + e−βiϵi. Consequently, the two qubits are jointly 
described by a tensor product state τ𝒞0(β0) ⊗ τ𝒞1(β1) and have 
four different energy eigenstates, i.e., |i⟩𝒞0|j⟩𝒞1 for i, j ∈ {0,1}. Let us 
now focus on two particular eigenstates, namely

These two states have an energy spacing ϵv ≔ ϵ1 − ϵ0 and span a 
subspace of the joint Hilbert space that is usually referred to as the 
virtual qubit [see also (58)]. For that subspace, we can further assign 
a virtual temperature βv by looking at the ratio of populations in the 
virtual qubit, that is

which allows us to express βv as

Observe that the virtual temperature, as a function of the local 
energies ϵ0 and ϵ1, can take any range of values. In particular, notice 
that it can fall outside of the range specified by β0 and β1 and can 
even take negative values. This corresponds to a population inver-
sion (29).

Let us now add another qubit to the machine, denote it with 𝒞z 
and place it in a thermal contact with the virtual qubit. To enable an 
interaction between the new qubit and the virtual qubit, we choose 

ℒ
(k)
[
τ
(
βk
)]

= 0 (4)

jk ≔ Tr
{
Hℒ

(k)
[
ρ
]}

(5)

jk ≔ Tr
{
Hℒ

(k)
[
ρ
]}

= γkϵk
[
g
(
βkϵk

)
− pk

]
(6)

Σ̇ ≔ Ṡ
[
ρ(t)

]
−

∑
k

βkjk(t) ≥ 0 (7)

τ
�i

�
β
i

�
=

1

Z
�i

��0⟩ ⟨0�
�i
+e

−βiϵi �1⟩ ⟨1�
�i

�
(8)

�0⟩ v ≔ �0⟩
�0
�1⟩

�1
, �1⟩ v ≔ �1⟩

�0
�0⟩

�1
(9)

e−βvϵv ≔ v

⟨
1 ∣ τ

�0

(
β0
)
⊗τ

�1

(
β1
)
∣1
⟩
v

v

⟨
0 ∣ τ

�0

(
β0
)
⊗τ

�1

(
β1
)
∣0
⟩
v

=
e−β0ϵ0

e−β1ϵ1
(10)

βv =

(
ϵ0

ϵ0 − ϵ1

)
β0 −

(
ϵ1

ϵ0 − ϵ1

)
β1 (11)
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the energy of the former to be ϵz = ϵv. This allows the systems to 
resonantly exchange energy with the following Hamiltonian

where χ specifies the coupling strenght and “h.c.” stands for Hermi-
tian conjugate. The above interaction induces a transition between 
two degenerate energy eigenstates |1⟩v|0⟩𝒞z ↔ |0⟩v|1⟩𝒞z, which ef-
fectively places the virtual qubit in a thermal contact with the new 
qubit. After a sufficiently long amount of time, the temperature of 
the qubit 𝒞z reaches the virtual temperature βv.

Let us now observe that such a three- qubit thermal machine can 
operate as either a refrigerator or a heat pump. In Fig. 2, we plot the 
virtual (inverse) temperature βv as a function of β1 for a fixed value 
of β0. More specifically, notice that, when β1 ≤ β0, the inverse virtual 
temperature is larger than both β0 and β1; hence, the machine oper-
ates as a refrigerator. When β0 < β1 < (ϵ0/ϵ1)β0, the inverse virtual 
temperature βv is smaller than both β0 and β1; hence, the machine is 
a heat pump. Last, when β1 > (ϵ0/ϵ1)β0, the virtual temperature is 
negative, meaning that the device operates as a heat engine. Notice 
that, in all three regimes, the virtual temperature falls outside of the 
range of “easily accessible” temperatures specified by β0 and β1 that 
could be achieved simply by coupling one of the qubits to the two 
heat baths.

Thermodynamic neuron for NOT gate
In this section, we describe an autonomous thermal machine im-
plementing an inverter (NOT gate). This represents the simplest 
example of a thermodynamic neuron. We start with a short and in-
tuitive description of the machine’s operation after which we pro-
vide a more in- depth discussion of its functioning.

The machine is sketched in Fig. 3A. It is composed of two parts, 
which we refer to as the collector (𝒞) and the modulator (ℳ). The 
collector consists of three interacting qubits connected to different 
environments. The first two qubits (denoted 𝒞0 and 𝒞1) are con-
nected to two heat baths, denoted ℬ0 and ℬ1, at inverse tempera-
tures β0 and β1, respectively. The first bath ℬ0 simply represents a 
reference bath; hence, β0 will simply be fixed to a certain value and 
called the reference temperature. The second bath ℬ1 will be used to 

encode the input of the computation. These two heat baths are sup-
posed to have an infinitely large heat capacity; hence, their tempera-
ture will remain constant during the time evolution of the machine. 
Last, the third qubit of the collector (denoted 𝒞z) is connected to an 
environment ℬz with a finite heat capacity C (this can be viewed as 
a finite- size reservoir). They key point is that the inverse tempera-
ture βz of ℬz will evolve in time, and the final temperature (in the 
steady- state regime) will encode the output of the computation.

To guide intuition, it is useful to think of the collector as a simple 
(three- qubit) thermal machine (28, 29), which we discussed in Au-
tonomous quantum thermal machines and virtual qubit. When the 
input temperature is hot (β1 < β0), the machine works as a refrigera-
tor, i.e., cooling down the output environment ℬz. On the contrary, 
when the input temperature is cold (β1 > β0), the machine works as 
a heat pump, heating up ℬz. Hence, we see that the machine works 
as a sort of inverter for the temperature. We encourage the reader to 
take a look at Fig. 2, which illustrates different regimes of operation 
of a three- qubit machine that is equivalent to the collector of the 
NOT gate.

Because of the action of the collector, the output inverse tem-
perature βz depends linearly on the input β1, as demonstrated in 
Eq. 11. From a signal processing perspective, this translates to an 
inverting linear amplifier. When a signal passes through a sequence 
of such devices, any noise present in the signal will be amplified, 
potentially leading to unwanted bit flips. To enhance the noise ro-
bustness of the collector, a nonlinear modulation of the output 
inverse virtual temperature is required. This modulation should 
minimize the output variation for small input fluctuations within 
designated logical regions (i.e., where the collector acts as a refrig-
erator or a heat pump). At the same time, the output should change 
substantially when the input transitions to a different logical region. 
This ensures that the any noise- induced distortion of the signal in 
the output will be minimized.

The above modulation will be realized by another part of the ma-
chine, i.e., the modulator. It is a single qubit machine that is coupled 
to two thermal baths, i.e., a reference bath ℬr with a fixed inverse 
temperature βr and the output bath ℬz (see Fig. 3A). This has the 
effect to delimit a specific range for the output temperatures βz, 
making the response of the device effectively nonlinear and hence 
closer to an ideal NOT gate.

In the following, we present in detail the models for the collector 
and the modulator and then discuss the dynamics of the machine 
and its operation as a NOT gate. Last, we investigate the trade- off 
between the gate performance (as given by the average error rate) 
and dissipation (as given by entropy production).
Collector
The collector 𝒞 is composed of three qubits, which we denote 𝒞i for 
i ∈ {0,1,z} (see Fig.  4), with energy gaps ϵi. Each qubit is weakly 
coupled to an environment, denoted ℬi, at (inverse) temperatures βi 
with the coupling constants γ for 𝒞0 and 𝒞1 and μ for 𝒞z. Therefore, 
the collector can be seen as a three- qubit thermal machine that we 
discussed in Autonomous quantum thermal machines and virtual 
qubit. This three- qubit system is described by a joint state ρ𝒞 that 
evolves according to the master equation (Eq. 3), i.e.

with the local Hamiltonian H0 = ∑i ∈ {0,1,z} ϵi|1⟩⟨1|𝒞i and local dis-
sipators ℒ = ℒ(0) + ℒ(1) + ℒ(z).

Hint = χ�1⟩ ⟨0� v ⊗ �0⟩ ⟨1�
�z

+ h. c (12)

ρ̇
𝒞
= −i

[
H0 +Hint, ρ𝒞

]
+ℒ

[
ρ
𝒞

]
(13)

R H H

Fig. 2. Different operation regimes of a three- qubit thermal machine. the plot 
shows the inverse virtual temperature βv as a function of bath inverse temperature 
β1 when keeping β0 fixed. When β1 < β0, the inverse virtual temperature becomes 
larger than both β0 and β1, which means that the machine operates as a refrigera-
tor. When β0 < β1 < (ϵ0/ϵ1)β0, we have the exactly opposite situation and the ma-
chine operates as a heat pump. Last, when β1 > (ϵ0/ϵ1)β0, the machine operates as 
a heat engine. Figure adapted from ref. (29).
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It is important to ensure that energy can flow between the qubits. For 
this, we choose the energy gap of the third qubit 𝒞z to be ϵz = ϵ0 − ϵ1. 
This implies that the two states |1⟩𝒞0|0⟩𝒞1|0⟩𝒞0𝒞z and |0⟩𝒞0|1⟩𝒞1|1⟩𝒞z 
have the same energy and can be coupled via the interaction Hamiltonian

where χ is the coupling strength. This interaction conserves the total 
energy (because [H0, Hint] = 0), which guarantees that energy can be 
exchanged even in the weak coupling regime.

We want to understand the effect of the collector on the output 
environment ℬz in the steady- state regime, i.e., when ρ̇

�
= 0 . To do 

so, we will follow the approach of ref. (29), which is summarized in 
Autonomous quantum thermal machines and virtual qubit and vi-
sualized in Fig. 4.

First, note that, from the form of the interaction Hamiltonian 
Hint, we see that there are only two states of the machine that ex-
change energy in the steady- state dynamics. These are simply the 
two states we discussed above that have the same energy. Now let us 
think of the three- qubit system as a machine comprising the first 
two qubits 𝒞0 and 𝒞1 and the target qubit 𝒞z. The effect of the ma-
chine is to thermalize the target qubit 𝒞z with a virtual qubit char-
acterized by the two levels

These levels form a virtual qubit with energy gap ϵv = ϵ0 − ϵ1. Let 
us denote with gv ≔ ⟨1|vτ𝒞0(β0) ⊗ τ𝒞1(β1)|1⟩v the occupation of the 
excited state of this effective system. Then, the ratio of populations 
in the subspace associated with the virtual qubit becomes gv/(1 − gv) = 
e−βv(ϵ0 − ϵ1), where βv is the (inverse) virtual temperature

Using the intuition developed in Autonomous quantum thermal 
machines and virtual qubit, we can now understand the steady- state 
dynamics of the collector 𝒞. The collector aims to thermalize the 
target qubit 𝒞z to the virtual temperature βv, as can be seen by re-
writing the interaction Hamiltonian in terms of virtual qubit levels 
as in Eq. 12. The only difference with respect to the setting from 
Autonomous quantum thermal machines and virtual qubit is that 
now the target qubit is itself coupled to a finite heat bath ℬz at an 
inverse temperature βz and therefore the regime of the collector’s 
operation (i.e., if it acts as a refrigerator or a heat pump) is defined 
with respect to the inverse temperature βz instead of β0.

When βv > βz, energy flows from the target qubit 𝒞z to the 
machine (via the virtual qubit), effectively cooling the target qubit 
down; the machine acts as a refrigerator. On the other hand, when 
βv < βz, energy flows toward the qubit 𝒞z, heating it up in the process; 

Hint = χ�1⟩ ⟨0�
�0

⊗ �0⟩ ⟨1�
�1

⊗ �0⟩ ⟨1�
�z

+ h. c (14)

�0⟩ v ≔ �0⟩
�0
�1⟩

�1
, �1⟩ v ≔ �1⟩

�0
�0⟩

�1 (15)

βv =

(
ϵ0

ϵ0 − ϵ1

)
β0 −

(
ϵ1

ϵ0 − ϵ1

)
β1 (16)

A B C

Fig. 3. Thermodynamic neuron for implementing a NOT gate. (A) design of the machine. the collector consists of three interacting qubits (yellow dots), each con-
nected to a thermal environment. the logical input is encoded in the temperature β1 of the heat bath ℬ1 (red), while the output will be retrieved from the final tempera-
ture β∞

z
 of the finite- size reservoir ℬz (blue); the heat bath ℬ0 is at a fixed reference temperature. the collector implements the desired inversion of the temperature. to 

make the response nonlinear, we must add the modulator, which consists of an additional qubit connected to a reference heat bath. (B) Relation between the input 
temperature β1 and the final output temperature β∞

z
 (in the steady- state regime). notably, the machine produces the desired inversion of the temperature. the quality of 

the response can be increased by tuning the machine parameters, in particular by increasing the energy gap ϵ1 of the collector qubit 𝒞1. Black dashed line shows the 
characteristics of an ideal nOt gate. (C) trade- off between the average dissipation ⟨Σ⟩ (see eq. 29) and the average error ⟨ξ⟩ (see eq. 27). We see clearly that, to increase 
robustness to noise, the machine must dissipate more heat to the environment. the inset shows the entropy production as a function of the input temperature β1 for 
different values of the qubit energy ϵ1. Parameter values: βhot = 1, βcold = 2, γ = χ = 1, μ = 10−4, ϵz = 0.1, τ = 108, and β0 = βz(0) = 3/2.

Fig. 4. Virtual qubit in the collector. the sketch shows the energy structure of a 
three- qubit collector. the hilbert space of the two physical qubits 𝒞0 and 𝒞1 con-
tains a two- dimensional subspace with an energy gap ϵv = ϵz (so- called virtual qu-
bit) and effective temperature βv (so- called virtual temperature). the interaction 
hamiltonian Hint is chosen so that this virtual qubit interacts with the physical qubit 
𝒞z, cooling it down (or heating up) in the process.
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the machine acts as a heat pump. Which one of these different ma-
chine’s behaviors actually occurs depending on the inverse tempera-
tures β0 and β1 via Eq. 16? This ability of the collector to change its 
behavior based on the input temperature is the basic principle be-
hind our inverter.

Recall that the target qubit 𝒞z is coupled to its own (finite) ther-
mal bath ℬz. In turn, the mechanism described above will have the 
effect of thermalizing the output environment ℬz to the virtual tem-
perature. To see this, consider the steady- state current from the 
collector 𝒞 to the output environment ℬz under the reset model of 
thermalization (see Eq. 6)

where gz(x) ≔ g(xϵz) and g is the Fermi- Dirac distribution from 
Eq. 2. The collector attempts to bring the temperature of the envi-
ronment ℬz closer to the virtual temperature. By choosing energy 
gaps ϵ0 and ϵ1 appropriately [i.e., the linear weights in Eq. 16], we 
can, in principle, obtain any linear inverting behavior.
Modulator
The modulator ℳ is composed of a single qubit with an energy gap 
ϵℳ = ϵz. The qubit is put in contact with two thermal baths: ℬr at an 
inverse temperature βr with a coupling rate γ and ℬz with a different 
coupling rate μ′. The qubit state ρℳ evolves according to the follow-
ing master equation

In the steady state, the excited- state population of the qubit de-
pends only on the coupling rates γ and μ′. We set these rates so that 
μ′ ≪ γ, ensuring that the qubit will effectively thermalize to the in-
verse temperature βr. Therefore, the steady- state heat current from 
ℳ to ℬz under the reset model (Eq. 6) reads

The modulator attempts to bring βz closer to the (inverse) tem-
perature βr, and the strength of this effects is controlled by the 
coupling rate μ′. The choice of the values of βr and μ′ will therefore 
completely specify the behavior of the modulator. By appropriately 
choosing these two parameters, we can specify the range of the out-
put temperature βz leading to a nonlinear response of the machine 
(see the Supplementary Materials A for more details).
Dynamics of the machine
We now combine our understanding of the collector and the modu-
lator to gain insight into the full evolution of the machine. The col-
lector and the modulator are both connected to an environment ℬz 
with a finite heat capacity C. The temperature change of this en-
vironment is proportional to the sum of all entering heat currents. 
Specifically, we assume that the temperature Tz ≔ 1/βz changes 
according to the calorimetric equation Ṫz =

1

C

(
j
𝒞
+ j

ℳ

)
 , which, in 

terms of βz, reads

Consequently, the steady- state inverse temperature β∞
z

 is obtained 
by solving the equation j𝒞 + jℳ = 0.

Crucially, the couplings of the collector and the modulator to 
ℬz are set to be much weaker than their couplings to the heat baths 
ℬ0, ℬ1, and ℬr, i.e., we have that γ ≫ μ, μ′. This implies that the 

dynamics of the whole machine has two intrinsic timescales. The 
first (fast dynamics) is associated with the internal evolution of the 
collector 𝒞 and the modulator ℳ. Hence, both parts of the machine 
will reach their steady states relatively quickly. This means that the 
qubit 𝒞z of the collector will reach the virtual temperature βv (see 
Eq.  16), while the modulator qubit will be at temperature βr. The 
second (slow dynamics) is associated with the changes of the tem-
perature of the output environment ℬz. This means that ℬz will 
slowly thermalize via the contact with qubits 𝒞z and ℳ to an inter-
mediate temperature between βv and βr.

Let us now discuss the slow evolution more carefully. We denote 
by βz(t) the time evolution of the temperature of the output envi-
ronment ℬz. The heat currents delivered from the collector 
and the modulator alter βz(t) according to Eq. 20. The steady state of the 
output environment ℬz is achieved when β̇z(t) = 0 . Denoting the 
stationary value of βz(t) with β∞

z
 and solving the equation j𝒞 + jℳ = 0, 

we obtain the following expression for the steady- state temperature

where Δ ≔ μ/(μ′ + μ). To interpret the temperature of the output res-
ervoir ℬz as a valid logical signal, we need to limit the possible values 
of output temperature β∞

z
 to a well- defined range βcold and βhot, where 

the parameters satisfy βcold > βhot but are otherwise arbitrary. To en-
force this requirement, we can fix the free parameters of the modulator 
(see the Supplementary Materials A for details). Choosing μ′ and βr so 
that Δ = gz(βhot) − gz(βcold) and gz(βr) = gz(βcold)/(1 − Δ) leads to

with Q(βv) ≔ gz(βhot)gz(βv) + gz(βcold)[1 − gz(βv)] and βv is the vir-
tual temperature given in Eq. 16.

At this point, we are ready to discuss the performance of our 
inverter. In Fig. 3B, we plot the transfer characteristics (TC) of our 
machine in the steady- state regime. Specifically, we see that the be-
havior between the input and the output temperatures, β1 and βz, 
respectively, is an inversion. For a cold (hot) input temperature, the 
output temperature is hot (cold). Note that, in the figure, we have set 
βcold = 2 and βhot = 1. More generally, from Eq. 22, we see that, 
(i) when β1 = βhot, we have β∞

z
≈ βcold , and (ii) when β1 = βcold, 

we get β∞
z
≈ βhot.

In addition, we can see from the figure that the quality of the NOT 
gate depends on the model parameters, in particular on the 
energy gap ϵ1 of the collector qubit 𝒞1. The larger ϵ1 becomes, the 
closer we get to an ideal NOT gate (i.e., inverted step function). 
It can be shown that, in the limit ϵ1 → ∞, the TC becomes the ideal 
inverted step function. We investigate analytically in the Supple-
mentary Materials A the properties of the TC in Eq. 22, showing its 
dependence on the energies of the collector qubits ϵ0 and ϵ1 and 
the inverse temperature β0 of the reference bath. More specifically, 
Eq. 22 describes a function that is very similar to a sigmoid (or 
Fermi- Dirac) function f(x) = (1 + ex)−1, i.e.

where x ≔ (ϵ1 + ϵz)(β0 − β1). When ϵz is small (compared to ϵ1), the 
roles of the free parameters become clear: β0 characterizes the loca-
tion of the step in β∞

z
 and ϵ0 ≈ ϵ1 describes its steepness. For larger 

values of ϵz, the TC still demonstrates the desired inverting behav-
ior; however, the role of the parameters ϵ0 and β0 becomes a bit more 

j
�
≔ μϵz

[
gz
(
βz
)
− gz

(
βv
)]

(17)

ρ̇
ℳ

=ℒ
(r)
[
ρ
ℳ

]
+ℒ

(z)
[
ρ
ℳ

]
(18)

j
ℳ

≔ μ�ϵz
[
gz
(
βz
)
− gz

(
βr
)]

(19)

β̇z = −
1

C
β2
z

(
j
𝒞
+ j

ℳ

)
(20)

gz
(
β∞
z

)
= Δgz

(
βv
)
+ (1 − Δ)gz

(
βr
)

(21)

β∞
z
=

1

ϵz
log

[
Q
(
βv
)−1

− 1
]

(22)

β∞
z
= f (x) + �

(
ϵz
)

(23)
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complicated to interpret (see the Appendix Supplementary Materi-
als A for details).

We note that the exact functional dependence between the input 
β1 and the output β∞

z
 depends on the amount of heat current and 

hence also on the explicit thermalization model used. To arrive at 
Eq. 23, we used the simple reset model from Eq. 6. Choosing a dif-
ferent thermalization model leads to different mathematical forms 
(nonlinear functions f ); however, the machine’s fundamental ability 
to invert temperatures remains unchanged.
Logic operation
As seen above, our device produces the desired inversion relation 
between the input and output temperatures. The next step is to use 
the machine as a NOT gate, for which we must now encode the log-
ical information appropriately in the corresponding temperatures.

In what follows, the input and output signals will be described by 
random variables x, y ∈ {0,1, ⌀}, where 0,1 represent the binary log-
ical values and ⌀ denotes an invalid result that cannot be assigned. 
The logical input x is encoded in the inverse temperature β1 of heat 
bath ℬ1, while the logical output y is decoded from the final (in-
verse) temperature β∞

z
 of ℬz. For that, we use the mapping

Parameters βcold and βhot characterize the machine’s range of opera-
tion, while δ captures its robustness to noise in the output signal. All 
these parameters are a part of the machine’s design and can be chosen 
arbitrarily, depending on the specific working conditions (e.g., how 
much noise is the machine expected to tolerate). Mapping logical values 
to intervals as above allows one to tolerate fluctuations in the output 
signal, i.e., interpret them correctly even if they differ between rounds 
due to the stochasticity of the machine’s evolution. In principle, we 
could also consider having noise in the input signal. Similarly, we could 
also consider mapping the output of the machine to several logic states, 
therefore effectively simulating a function with several output values. 
However, to keep the presentation simple, we will not do this here.

The thermal machine discussed in Thermodynamic neuron for 
NOT gate performs computation in an inherently stochastic man-
ner, and therefore the actual machine’s output will fluctuate around 
the steady- state value from Eq. 22. This will lead to possible errors in 
the gate implementation. Characterizing these errors is important to 
assess the quality of the gate, in terms of its robustness to noise.

In the following, we describe the machine as a binary channel 
defined by the encoding e(β1 ∣ x) and decoding d

(
y ∣ β∞

z

)
 as specified 

in Eq. 24. The input distribution is denoted p(x). The behavior of the 
machine is then specified by a conditional distribution

where T(βz ∣ β1) describes the actual response βz of the machine to 
the input β1. Because the evolution is ultimately stochastic, we as-
sume that the actual response of the machine to the input β1 is dis-
tributed according to

where 𝒩(μ, σ) is a Gaussian with mean μ and SD σ. The output heat 
bath ℬz is a macroscopic system that is composed of a large number 

of particles. In such a large system, according to the central limit 
theorem, the sum of temperature fluctuations tends toward a Gaussian 
distribution. Because the temperature βz is a macroscopic property 
related to the average kinetic energy of the particles, it reflects the 
sum of these microscopic fluctuations, and hence Gaussian distri-
bution provides a reasonable approximation to the actual distri-
bution. Moreover, a larger heat bath (higher C) can sustain more 
energy fluctuations without a substantial change in its average tem-
perature. This translates to a wider distribution (larger SD) in the 
Gaussian distribution.

The average computation error ⟨ξ⟩ is the probability of observing 
an output different from the desired one, i.e.

where δxy is the Kronecker delta function. The above quantity is di-
rectly related to the shape of the TC (see Fig. 3B). Notably, the closer 
TC is to an ideal NOT gate (black dashed line), the smaller is ⟨ξ⟩. 
The actual TC of our machine approaches the ideal one in the limit 
of ϵ1 → ∞. This indicates that the quality of the computation can be 
enhanced at the cost of using more energy, which implies that the 
machine will dissipate more heat. In the following discussion, we 
will examine this trade- off in more detail.
Trade- off between entropy production and noise robustness
Here, we investigate the relation between the quality of the gate, as 
quantified by the average computation error, to its thermodynamic 
cost, given by the amount of entropy that is produced during the 
computation.

First, let us evaluate the entropy production. As mentioned, the 
dynamics of the machine features two different timescales. The pri-
mary source of dissipation is given by the slow dynamics, in which 
the temperature of the output reservoir changes. The latter being 
connected to the collector and the modulator, the total dissipation rate 
is given by Σ̇ = Σ̇

𝒞
+ Σ̇

ℳ
 . We have that Σ̇

�
= −β0j0 − β1j1 − βz j� 

and Σ̇
ℳ

= −βz jℳ − βr jr ; here, j0,1,r denotes the current from the 
heat bath ℬ0,1,r to their respective qubit. Under the action of the 
slow dynamics, the entropy of the qubits in the machine does not 
change, i.e., Ṡ

(
ρ
�

)
= 0 . Because of this, the entropy production is 

the weighted sum of the heat dissipated in each environment. To 
quantify the total dissipation incurred during the computation, we 
have to integrate the dissipation rate over time, i.e.

where τ is the running time of the computation, indicating when the 
final temperature output β∞

z
 is read off.

We see that this quantity depends on β1. Hence, the dissipation 
will vary depending on the input. In the inset of Fig. 3C, we show 
this behavior, also considering different values of the parameter ϵ1. 
As expected, because the rate of dissipation is proportional to the 
heat currents flowing into the environments, the larger the energy of 
the qubits, the larger the rate of heat dissipation. Moreover, as ex-
pected, when β1 = β0, dissipation vanishes.

Next, let us estimate the dissipation averaged over different 
rounds of the computation, i.e., averaging over the inputs. We get 
the quantity

x=

�
0, β1=βhot

1, β1=βcold

y=

⎧
⎪⎨⎪⎩

0, β∞
z
≤ (1+δ)βhot

1, β∞
z
≥ (1−δ)βcold

� otherwise

(24)

p
(
y ∣x

)≔ � d
(
y ∣ βz

)
T
(
βz ∣ β1

)
e
(
β1 ∣x

)
dβ1dβz (25)

T
(
βz ∣ β1

)
∝�

(
β∞
z
,C

)
(26)

⟨ξ⟩ =
�

x∈{0,1}

�
y∈{0,1}

p(x)p
�
y ∣x

�
δxy (27)

⟨
Σ
(
β1
)⟩

=

τ

∫
0

⟨
Σ̇
(
β1
)⟩

dt (28)

⟨Σ⟩ = �
x∈{0,1}

∫ p(x)e
�
β1 ∣x

�
Σ
�
β1
�
dβ1

(29)
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In Fig. 3C, we examine the relation between the total dissipation 
〈Σ〉 and the average computation error 〈ξ〉. We consider a uniform 
input distribution p(x) = 1/2 and a sufficiently long computing time 
to ensure we are close to the steady- state regime, τ = 108. There is a 
monotonous relation between the two quantities. As expected, we 
see that lowering the average error rate comes at the price of increas-
ing the dissipation.

Last, let us mention that the choice of temperatures βcold and βhot 
plays a crucial role in the machine’s performance. A wider tem-
perature range enhances noise resistance, making the machine less 
susceptible to small temperature fluctuations. However, this benefit 
comes at a cost—a larger temperature gap increases the thermal-
ization time, essentially slowing down the thermodynamic neuron’s 
computations. This creates an interesting trade- off between noise 
robustness and computational speed.

Thermodynamic neuron for linearly separable functions
In the previous section, we presented an autonomous thermal 
machine for performing a simple computation task, namely, invert-
ing a signal. In this section, we generalize this construction for per-
forming more complex computations. In particular, we show that 
any linearly separable function (from n bits to one bit) can be 
implemented via such a machine and give an effective algorithm 
for setting the appropriate machine parameters. This represents 
the general form of a thermodynamic neuron. We discuss explic-
itly examples for implementing the NOR gate and 3- MAJORITY.

A key step will be to establish a close connection between the 
thermodynamic neuron and the perceptron, the standard algorithm 
for modeling an artificial neuron. In particular, this connection ex-
ploits the notion of the virtual qubit.
Model
A thermodynamic neuron is an autonomous quantum ther-
mal machine that implements a binary function from n bits to 
one bit. In analogy with the thermal machine for inversion from 

Thermodynamic neuron for NOT gate, the general model of a 
thermodynamic neuron consists of two main parts: the collector 
𝒞 and the modulator ℳ (see Fig. 5). The design of the collector 
is a generalization of the single- input collector, while the modu-
lator is exactly the same.

The (generalized) collector 𝒞 consists of n + 2 qubits 𝒞i with 
energy gaps ϵi. The first qubit 𝒞0 is connected to the reference heat 
bath ℬ0 at a fixed inverse temperature β0. The remaining qubits 𝒞1 
to 𝒞n are connected to input heat baths, their temperatures (β1 to 
βn) encoding the n input bits. The last qubit 𝒞z is connected to 
the output reservoir ℬz with a finite heat capacity C. The modula-
tor ℳ consists of a single qubit connected to a heat bath at a refer-
ence temperature βr and the output reservoir ℬz.

To understand the dynamics of the collector, we will again use 
the idea of a virtual qubit, now associated with a two- dimensional 
subspace within the Hilbert space of qubits 𝒞0, …, 𝒞n. A multi- 
qubit machine can have many virtual qubits; hence, we need nota-
tion to specify which virtual qubit is relevant for our problem. For 
that, we introduce a binary vector h = (h0, h1, …, hn), where hi ∈ {0,1} 
denotes if a given physical qubit i contributes its ground (hi = 0) or 
excited (hi = 1) state to the virtual qubit.

A virtual qubit specified by a vector h consists of two multi- qubit 
energy levels

where ⊕ denotes addition mod 2. The energy gap ϵv of the virtual 
qubit with levels |0⟩v and |1⟩v is given by

�0⟩ v ≔ ��h0⟩�0

��h1⟩�1
… ��hn⟩�n

(30)

�1⟩ v ≔ ��h0⊕1⟩
�0

��h1⊕1⟩
�1

… ��hn⊕1⟩
�n

(31)

ϵv ≔
n∑
i=0

(−1)hi⊕1ϵi (32)

A B

Fig. 5. General model of the thermodynamic neuron and analogy with a perceptron. (A) Structure of a thermodynamic neuron for implementing an n- to- one bit 
function. the collector 𝒞 consists of n + 2 qubits, connected to the input heat baths (red), reference heat baths (gray), and the output reservoir (blue). the working prin-
ciple of the collector is to thermalize qubit 𝒞z to the virtual temperature βv (see eq. 29). in turn, this affects the temperature of the finite- size output reservoir ℬz (blue). 
the modulator controls the range of output temperatures, making the response effectively nonlinear. in the steady- state regime, the final output temperature is given by 
β∞
z

 given by a nonlinear function of βv (see eqs. 35 and 36). the machine can implement any linearly separable binary function by appropriately setting the parameters: 
the qubit energies, the interaction hamiltonian, and the temperatures of the reference heat baths. notably, this machine is closely connected to the perceptron model 
shown in (B), which is used extensively in machine learning. Given inputs xk, the perceptron first computes a weighted sum y then processed via a nonlinear activation 
(sigmoid) function f. Similarly, the thermodynamic neuron first creates a virtual qubit at temperature βv, which is a weighted sum of the input temperatures βk. Second, 
the modulator implements the nonlinear activation function. note that, in a specific regime (ϵz sufficiently small), the thermodynamic neuron implements a perceptron 
as the activation function tends to a sigmoid in this case.
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The design of the machine is then completely characterized by 
the vector h and the energy gaps ϵi for i ∈ {0,1, …, n}. These param-
eters can be chosen freely—they specify the binary function imple-
mented by the thermodynamic neuron.

Let us now discuss the dynamics of the thermodynamic neuron. 
The machine engineers a virtual qubit at the desired temperature 
and places it in thermal contact with the output qubit 𝒞z in reso-
nance with the virtual qubit (ϵz = ϵv). This thermal contact is real-
ized via an interaction Hamiltonian Hint ≔ g(|0⟩⟨1|v ⊗ |1⟩⟨0|𝒞z + h. c.). 
In turn, qubit 𝒞z thermalizes the output reservoir ℬz to the virtual 
temperature.

To characterize the virtual temperature, observe that the excited- 
state population of the virtual qubit in the steady- state reads

where gi(0) = (1 + e−βiϵi)−1 and gi(1) = 1 − gi(0). The virtual tem-
perature βv satisfies exp[−βvϵv] = gv(βv)/[1 − gv(βv)] and is given by 
(see the Supplementary Materials B)

The virtual temperature is a linear combination of input tem-
peratures βi, with relative weights specified by energy gaps ϵi and hi. 
This relation will be crucial in the next subsection where we estab-
lish a connection with perceptrons.

Thermodynamic neuron, in analogy with the inverting thermal ma-
chine, features two natural timescales: Thermalization within the collec-
tor and the modulator happens quickly, while the thermalization of the 
output environment ℬz happens slowly. In particular, the time evolution 
of the output βz(t) is governed by the slow dynamics and given by Eq. 20.

To solve for the inverse steady- state temperature β∞
z

 , we proceed 
as before (see Eq. 21). We find

with Q(βv) ≔ gz(βhot)gz(βv) + gz(βcold)[1 − gz(βv)] and βv is given 
by Eq. 34. Recall that temperatures βcold and βhot specify the desired 
temperature range for the computation. Following the derivation 
in the previous section, we can expand β∞

z
 in the energy gap ϵz 

and obtain

where f(x) = (1 + ex)−1. Therefore, we see that, for small ϵz, the out-
put temperature β∞

z
 behaves essentially as the sigmoid function. For 

larger values of ϵz, the function differs from the sigmoid one but still 
offers a similar qualitative behavior.

It is important to emphasize that the more inputs a thermody-
namic neuron has, the lower is the probability of occupying its vir-
tual subspace. This means that the time it takes to equilibrate the 
target qubit 𝒞z to the virtual temperature βv increases with the num-
ber of inputs. To address this challenge, using multiple, intercon-
nected thermodynamic neurons arranged in a network might be 
more efficient than using a single, complex neuron with many in-
puts. We will explore how to build such networks of thermodynam-
ic neurons in Network of thermodynamic neurons.
Connection with perceptrons
At this point, it is insightful to establish a formal connection be-
tween our model of the thermodynamic neuron and the perceptron 

(59). The latter represents the most common model of an artificial 
neuron and serves as a fundamental component of artificial neu-
ral networks.

The perceptron (see Fig. 5B) is a simple algorithm for linear 
binary classification (60). For a vector of inputs x = (x0, …, xn), it 
produces an output z given by

where x0 = 1 by convention, w = (w0, …, wn) is a vector of weights 
that specifies the behavior of the perceptron, and f is the activation 
function (sigmoid). The perceptron allows for a classification of the 
input space into two classes; it provides a linear separation of the 
inputs depending on the value of the function (0 or 1).

At this point, the connection appears clearly. The thermodynam-
ic neuron computes via a two- step procedure, which is very similar 
to the perceptron. First, given the inputs (encoded here in the tem-
peratures β1, …, βn), the collector produces a virtual qubit, whose 
virtual temperature is given by a weighted sum of the input tem-
peratures, with weights given by the energies ϵk see (Eq. 34). This 
corresponds exactly to the computation of the weighted sum y in the 
perceptron. Second, through the effect of the modulator, the output 
response becomes nonlinear, and the final temperature β∞

z
 is given 

by a nonlinear function of the virtual temperature (see Eq. 35). 
In particular, in the regime of small ϵz, this nonlinear functions be-
comes the sigmoid, hence corresponding exactly to the case of the 
perceptron (see Eq. 36). This analogy is important and is further 
illustrated in Fig. 5.

An interesting insight from this analogy is that it sheds light 
on the importance of the modulator in our model. If the machine 
would involve only the collector, then the final output temperature 
would be simply the virtual temperature, corresponding to a trivial 
activation function f(y) = y in the perceptron algorithm, which is 
known to perform poorly in machine learning. The modulator pro-
vides the essential ingredient of nonlinearity: Its effect is to map the 
virtual temperature in a nonlinear manner to a temperature inside 
the range from βhot to βcold. Depending on the value of ϵz and the 
choice of the thermalization model, we get different types of nonlin-
ear function. In particular, when ϵz is small and thermalization is 
a reset model, we get the sigmoid function as in a perceptron. This 
suggests that thermodynamic neurons could serve as a physical 
model for a fully analog implementation of perceptrons.
Algorithm for designing the machine
Beyond the conceptual interest, the above connection between the 
perceptron and our thermodynamic neuron is useful. Suppose we 
want to design a thermodynamic neuron implementing a given logic 
operation (e.g., the majority). For this, one would need to find an 
appropriate combination of qubit energies {ϵi} and the vector h that 
specifies the interaction Hamiltonian Hint. This problem is generally 
hard and would require rather intensive optimization, especially for 
more complex functions. Finding the appropriate set of parameters 
is equivalent to answering the following question: How to choose 
the systems’ local and interacting Hamiltonian so that we achieve 
the desired steady state? In what follows, we will present a neural 
network–inspired algorithm, which answers this question quickly 
and efficiently by finding both the appropriate energy structure and 
the interaction Hamiltonian of the thermodynamic neuron. Nota-
bly, this structure needs to be set only once and, from now on, the 

gv
(
βv
)≔ g0

(
h0
)
⋅ g1

(
h1
)
⋅ … ⋅ gn

(
hn
)

(33)

βv =
1

ϵz

n∑
i=0

(−1)hiβiϵi (34)

β∞
z
=

1

ϵz
log

[
Q
(
βv
)−1

− 1
]

(35)

β∞
z
= f

(
βv
)
+ O

(
ϵz
)

(36)

z = f
(
y
)
with y =

n∑
i=0

xiwi (37)
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thermodynamic neuron will serve its purpose (i.e., implement the de-
sired function) without any further need of changing its parameters. 
The algorithm thus provides a general method for designing a thermo-
dynamic neuron implementing arbitrary linearly separable functions.

The main idea of the algorithm is to first run a classical machine 
learning algorithm that finds the separating hyperplane for the (linearly 
separable) binary function that one would like to implement. Then, ex-
ploiting the formal connection between the perceptron and thermody-
namic neuron, one chooses the parameters of the model so that the 
virtual temperature directly corresponds to the separating hyperplane 
found by the machine learning algorithm.

Specifically, suppose we want to implement an n- input binary 
function R(x), where x = (x1, …, xn). First, we define the mapping 
between logical inputs and outputs and temperatures. The logical 
inputs and output are denoted with x1, …xn, y ∈ {0,1} and encoded 
in the inverse temperatures of the respective environments through 
the following procedure

where i ∈ {1, …, n}. As before, we focus on the range of tempera-
tures from βhot to βcold.

Next, we construct a thermodynamic neuron implementing R(x). 
For this, we must appropriately set the parameters of the machine, 
namely, β0, ϵk for k ∈ {0,1, …, n}, and the vector h. Moreover, we also 
introduce a parameter α > 0, which quantifies the overall energy 
scale of the qubits comprising the machine and hence as well the 
quality of implementing the desired function. For that, we can use 
the following algorithm.

Algorithm 1: Designing the thermodynamic neuron
Input: n, R(x), ϵz, α
Output: β0, ϵk, and hk for k ∈ {0, 1, …, n} [see (32)]
Proceed according to the following steps:

1. Construct a training set D ≔ {(
x(i), yi

)}2n

i=1
 , where x(i) =[

x
(i)

1
,… , x

(i)
n

]
 and yi = R[x(i)].

2. Train a linear classifier (e.g., a sigmoid perceptron) to classify xi into 
two classes: yi = 0 and yi = 1. This gives a vector of weights w = (w0, …, wn).

3. Set the elements of the vector as h = (h0, …, hn)

4. Set qubit energies as ϵk as

5. Set the bias inverse temperature β0 as

To see why the above algorithm works, let us observe that the 
virtual temperature from Eq. 34 becomes

Using the expansion from Eq. 36, we have

which is exactly the output of the perceptron algorithm for a sigmoid 
activation function. This demonstrates that the thermodynamic 
neuron model can implement all functions that can be realized 
using a (sigmoid) perceptron, namely, all linearly separable func-
tions. The class of functions that can be implemented with a ther-
modynamic neuron is strictly larger than the sigmoid perceptron, 
which can be seen by choosing different thermalization models.

Equation 44 also reveals the role of parameter α, which quantifies 
the steepness of the threshold separating the two outputs or, in other 
words, the quality of implementing the desired function. In general, 
α acts as a rescaling of all the energies ϵk of the qubits in the collec-
tor. Hence, increasing α leads to more dissipation and also lowers 
the errors in the computation. In particular, for the NOT gate, one 
can see that α = ϵ1.

Last, we note that Algorithm 1 should be thought of as a meta- 
algorithm because it relies on a separate routine to train a linear 
classifier (step 2). Consequently, its effectiveness and convergence 
depend on the chosen classifier’s properties. Notably, using a classi-
fier with guaranteed convergence translates to similar guarantees for 
Algorithm 1.

To illustrate how to use Algorithm 1 to design thermodynamic 
neurons, we now provide two examples.
Example 1: NOR gate
The NOR gate takes n = 2 input bits and returns as output the nega-
tive OR (see truth table in Fig. 6A). To design the thermodynamic 
neuron, we follow the steps discussed in Algorithm 1. Using the 
truth table of NOR, we first construct the set D of 2n = 4 data points 
(see Fig. 6B). In principle, we could now run the algorithm and de-
termine the vector of weights w. Because, in this case, the separating 
hyperplane can be found by hand, we simply choose x1 + x2 = 1/2. 
This leads to the vector of weights w = (1, −2, −2). Consequently, 
the interaction vector h and energy vector ϵ ≔ (ϵ0, ϵ1, …, ϵn) become

with the reference (inverse) temperature β0 = (ϵz + 4)−1. This choice 
of parameters leads to the virtual temperature

The machine’s response β∞
z

 is then given by Eq. 34 with βv as 
given above. In Fig. 6C, we plot the response of the thermody-
namic neuron as a function of the input temperatures β1 and β2. 
The pattern of output temperatures clearly matches the desired 
NOR function.

xi =

�
0, β

i
=βhot

1, β
i
=βcold

y=

⎧
⎪⎨⎪⎩

0, β∞
z
≤ (1+δ)βhot

1, β∞
z
≥ (1−δ)βcold

� otherwise

(38)

hk =

{
0 if wk ≥0

1 if wk <0
(39)

ϵk =

⎧
⎪⎨⎪⎩

α
�����
ϵz−

n�
k=1

wk

�����
if k=0

α��wk
�� otherwise

(40)

β0 =
||w0

||
ϵz −

n∑
k=1

wk

(41)

βv =
1

ϵz

[
(−1)i0β0ϵ0 +

n∑
k=1

(−1)ikβkϵk

]
(42)

=
α

ϵz

[
w0 +

n∑
k=1

wkβk

]
(43)

β∞
z
= f (x) + �

(
ϵz
)
, x = α

(
w0 +

n∑
i=1

wkβk

)
(44)

h = (0, 1, 1), ϵ = α
(
ϵz + 4, 2, 2

)
(45)

βv = α
(
1 − 2β1 − 2β2

)
(46)
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Notably, the NOR function is functionally complete, i.e., any 
logic function on any number of inputs can be constructed using 
only NOR functions as building blocks. Consequently, by con-
necting multiple thermodynamic neurons appropriately, one can, in 
principle, carry out any classical computation. This shows that the 
thermodynamic neuron is a universal model of computation.
Example 2: 3- MAJORITY
The 3- majority function takes n = 3 inputs bits and outputs most of 
the input bits. Its truth table is shown in Fig. 7A. To implement 
3- MAJORITY using a thermodynamic neuron, we again use Algo-
rithm 1. We construct the training set D of 2n = 8 data points (see 
Fig. 7B). Using the algorithm, we found a vector of weights w = 
(−4,3,3,3). The interaction vector h and the energy vector ϵ are 
then given by

and the reference temperature is given by β0 = (ϵz + 12)−1. This 
choice of parameters leads to the virtual temperature

As before, the machine’s response β∞
z

 is given by Eq. 34 with βv 
specified above. In Fig. 7C, we plot the response of the thermody-
namic neuron as a function of the input temperatures β1, β2, and 
β3. The pattern of the output temperatures matches the desired 
3- MAJORITY function.
Limitations
From the close connection with perceptrons, we can immediately 
deduce a general limitation on the class of functions that can be 
implemented via a single thermodynamic neuron, namely, linearly 
separable functions.

It is known that perceptron can only represent functions that are 
linearly separable (61). These are functions for which the set of 
inputs for which the function takes value 0 can be separated from 
those whose output is 1 via a simple hyperplane. Consequently, this 
constraint also limits the range of functions that can be modeled 
using a single thermodynamic neuron. It is however possible to 
overcome this limitation by considering networks of neurons. In the 
next section, we will see how networks of thermodynamic neurons 
can be used to compute any binary function.

Network of thermodynamic neurons
Perceptrons can be assembled into a network. By increasing the 
complexity of such a network, it gains the ability to represent more 

complex functions. According to the universal approximation theo-
rem, a network with sufficiently many layers of perceptrons can 
approximate any binary function (62). An interesting question is if 
thermodynamic neurons can also be assembled into networks in 
such a meaningful manner. In this section, we explore this question 
in detail.
Combining thermodynamic neurons
In the thermodynamic neuron, the input heat baths are considered 
to be infinite, while the output heat baths are assumed to have a finite 
heat capacity. When we connect thermodynamic neurons in a 
network, the output of some neurons becomes the input for others. 
However, this poses a challenge: How can we ensure proper func-
tioning of the network when we treat the finite output heat bath of 
one thermodynamic neuron as the input to another? The finite ca-
pacity of the heat bath could disrupt the intended operation of the 
entire network by introducing unwanted heat currents (e.g., flowing 
backward). As a result, we can no longer guarantee the validity of 
Eq. 35 for thermodynamic neurons that constitute the network.

A potential approach to combine thermodynamic neurons is to 
consider an external agent with access to infinite heat baths at tem-
peratures βcold and βhot. Let us consider a simple network composed 
of two concatenated thermodynamic neurons. The agent measures 
the temperature of the output heat bath of the first thermodynamic 
neuron and, depending on the outcome, couples the input qubit of 
the second thermodynamic neuron (𝒞1) to either βcold or βhot. As 
a consequence, no unwanted heat currents flow through the output 
heat bath of the first thermodynamic neuron and the input qubit 
of the second thermodynamic neuron is coupled to an infinite 
heat bath.

The proposed method for combining thermodynamic neurons 
relies on temperature measurements, therefore taking away their au-
tonomy. In the Supplementary Materials C, we present an alter-
native method of combining thermodynamic neurons that uses a 
clock. Such a device can be realized autonomously by using an 
autonomous clock powered by heat baths at different temperatures 
(42), thus providing a way to make the full computation autono-
mous (i.e., without invoking external control).

On the basis of the analysis presented above, it is evident that 
thermodynamic neurons can be interconnected in a manner similar 
to how perceptrons are linked in artificial neural networks. In 
this sense, networks composed of thermodynamic neurons can be 
viewed as analog implementations of neural networks, inheriting 
the same capacity to perform binary functions. In other words, any 

h = (1, 0, 0, 0), ϵ = α
(
ϵz + 12, 3, 3, 3

)
(47)

βv = α
(
4 − 3β1 − 3β2 − 3β3

)
(48)

A B C

Fig. 6. Example 1: NOR. Analysis of the thermodynamic neuron for implementing 
the nOR function. the truth table of nOR is given in (A). (B) All possible logical 
states of the machine (blue and red dots) where the color corresponds to the 
desired output. (C) the response β∞

z
 of the thermodynamic neuron as a function of 

the inputs β1 and β2. the device does implement the desired nOR gate.

A B C

Fig. 7. Example 2: 3- MAJORITY. Analysis of the thermodynamic neuron for imple-
menting the majority function on three input bits. (A) truth table. (B) Possible logi-
cal states of the machine. the separating hyperplane (dashed line) is specified by 
the equation x1 + x2 + x3 = 4/3. (C) Machine’s response β∞

z
 as a function of the in-

puts β1, β2, and β3. We see that the machine implements the desired operation.

D
ow

nloaded from
 https://w

w
w

.science.org at U
niversite de G

eneve on O
ctober 04, 2024



Lipka-Bartosik et al., Sci. Adv. 10, eadm8792 (2024)     4 September 2024

S c i e n c e  A d v A n c e S  |  R e S e A R c h  A R t i c L e

12 of 15

function achievable by a feed- forward neural network can also be 
realized through a corresponding network of thermodynamic neu-
rons. Given that neural networks are recognized for their ability to 
approximate any binary function, this implies that networks of ther-
modynamic neurons can serve as a universal model of computation.

An intriguing direction for further exploration involves con-
sidering alternative techniques for connecting thermodynamic 
neurons that do not necessitate extra thermodynamic resources. 
Moreover, one could further imagine networks of thermodynamic 
neurons, which leverage the backflow currents in a useful manner. 
This could potentially enable feedback within the network, leading 
to more complex and interesting network dynamics.
Designing networks of thermodynamic neurons
Finding the correct design of a network of thermodynamic neurons 
for implementing a given function is a nontrivial problem. There are 
many networks that can implement a given function. Here, we dis-
cuss a heuristic approach for determining the network structure 
for a given binary function. We note that this is only a heuristics, 
and hence the network of thermodynamic neurons obtained via this 
method is not guaranteed to implement the correct function.

To find an appropriate set of weights for a network of thermo-
dynamic neurons, we again take inspiration from artificial neural 
networks. More specifically, suppose we want to implement an n- 
input binary function R(x). To construct the network implement-
ing R(x), we first choose the structure of the network, i.e., the 
number of layers, the number of thermodynamic neurons in each 
layer, and specify the connectivity between thermodynamic neu-
rons. Next, we appropriately choose the free parameters of each of 
thermodynamic neuron, namely, their reference temperature β0, 
the set of energy gaps {ϵk}, and the interaction Hamiltonian Hint. 
These parameters can be determined using a straightforward ex-
tension of Algorithm 1: Basically, the only difference now is that 
now the training step (step 2) is performed on the whole network 
rather than a single thermodynamic neuron. To illustrate this 
procedure, below we present a network with three thermody-
namic neurons for implementing the XOR function, i.e., a func-
tion that is not linearly separable.
Example 3: XOR gate
The binary XOR function takes n = 2 input bits and returns the par-
ity. It is not a linearly separable function (see Fig. 8B). Hence, it can-
not be implemented with a single thermodynamic neuron. To 
implement XOR, we choose the network structure presented in 
Fig. 8A. The reason for selecting this particular structure is based on 
the fact that a binary XOR function can be expressed as a combina-
tion of three gates, namely, OR and NAND, whose outputs are fed 
through an AND gate. The structure of the network we chose mim-
ics this equivalence. Within this network structure, we then use 
Algorithm 1 to compute the parameters of thermodynamic neurons 
implementing these three binary functions. Specifically, we con-
struct the corresponding training set D of 2n = 4 data points (see 
Fig. 8B). Then, we perform step 2 of the algorithm using the stan-
dard backpropagation algorithm (63) combined with the ADAM 
optimization (64), obtaining the vectors of weights that correspond 
to our approximation of the XOR function. Consequently, we use 
steps 3 to 5 of Algorithm 1 to compute the energy and the interac-
tion vectors as well as the reference bath temperature for each neu-
ron. Thermodynamic neurons are then connected using the method 
discussed in Combining thermodynamic neurons. The response 
of the machine, i.e., the inverse temperature of the last thermodynamic 

neuron, is shown in Fig. 8C as a function of the input tempera-
tures β1 and β2. We see that the network implements the desired 
XOR function.

DISCUSSION
In this work, we introduced autonomous quantum thermal machines 
called thermodynamic neurons for performing classical computa-
tion. The machine is composed of several qubits, which are coupled 
to thermal environments at different temperatures. The logical 
inputs and outputs of the computation are encoded in the tem-
peratures of these environments. By engineering the energies and 
interactions of the machine’s qubits, the device can implement any 
linearly separable function. In particular, we discussed the imple-
mentation of NOT, 3- MAJORITY, and NOR gates, the latter en-
abling universal computation. For more complex functions, we give 
an efficient algorithm for tuning the machine parameters. In turn, 
this algorithm can also be used for networks of thermodynamic 
neurons, which enable the direct implementation of any desired 
logical function.

A notable aspect of our machines is that they rely solely on 
changes in temperature and energy flows: They compute with heat. This 
sets them apart from conventional (nanoscale) electronic comput-
ing devices and other alternative computation models, such as phonon- 
based computation (65–69), spintronics (70–72), or superconducting 
circuits (73), where heat- related effects typically hinder computation.

Our work also brings progress from the perspective of autonomous 
quantum thermal machines by demonstrating a new application 
for them, namely, classical computation. A single thermodynamic 
neuron can be considered an autonomous device [see (46)], while 
their networks can be made autonomous via the addition of a ther-
modynamic clock (42). An interesting question is if the clock could 
be directly imbedded in the network of thermodynamic neurons. In 
parallel, our work also further demonstrates the relevance of virtual 
qubits and virtual temperatures for computation (29). This comple-
ments recent works where these notions are used for characterizing 
thermodynamic properties of quantum systems (74, 75), the per-
formance of thermal machines (76, 77), and fundamental limits on 
thermodynamic processes (78).

Another relevant aspect is that our model is thermodynamically 
consistent, in the sense of complying with the laws of thermodynamics. 

A B C

Fig. 8. Example 3: XOR. (A) Structure of a network of thermodynamic neurons that 
can implement the XOR function. in this case, the training set (i.e., the truth table of the 
function for all possible inputs) cannot be separated by a hyperplane [see (B)] as 
the function is not linearly separable. the machine produces the desired response 
as shown in (C): the response β(2,1)

z
 as a function of the inputs β1 and β2. note that 

this machine for implementing XOR can be seen as the composition of a nAnd 
gate and an OR gate, whose outputs β(1,1)

z
 and β(1,2)

z
 are then supplied as an input to 

an And gate with output β(2,1)
z

. D
ow

nloaded from
 https://w

w
w

.science.org at U
niversite de G

eneve on O
ctober 04, 2024



Lipka-Bartosik et al., Sci. Adv. 10, eadm8792 (2024)     4 September 2024

S c i e n c e  A d v A n c e S  |  R e S e A R c h  A R t i c L e

13 of 15

This allowed us to investigate its thermodynamic behavior and con-
trast it with the machine’s performance as a computing device. Spe-
cifically, for the NOT gate, we observe a clear trade- off between 
dissipation and performance, in terms of noise robustness. That is, 
enhancing the performance of the gate requires increasing dissipa-
tion. More generally, a similar trade- off relation between dissipation 
and performance exists for a general computation process carried 
out by the thermodynamic neuron. It would be interesting to pursue 
this direction further, e.g., prove a universal relationship by taking 
inspiration from TURs (79). We want to emphasize that many mod-
els of computation consider their thermodynamic aspects under 
various approximations. Such approximations are generally valid in 
a specific range of parameters, and outside this range, they can pre-
dict an unphysical behavior, e.g., leading to violations of thermody-
namic laws. With the growing interest in energy- efficient computing, 
developing thermodynamically consistent models of computation 
nowadays becomes increasingly important and has the potential for 
practical applications.

Outlook
Our work also opens interesting questions from the point of view of 
machine learning and, more generally, for thermodynamic computing.

As we discussed, thermodynamic neurons have a direct connec-
tion to perceptrons and neural networks. In particular, a physical 
implementation of thermodynamic neurons (and more generally 
their networks) would provide an alternative physics- based ap-
proach for realizing neural networks. This would represent a direct 
(analog) implementation, hence possibly bypassing some of the 
challenges of more standard digital (transistor- based) simulations of 
neural networks. Notably, the energy requirements and heat dissipa-
tion of the latter is very substantial, and looking for analog imple-
mentations for reducing this thermodynamic cost is important [see, 
e.g., (80)]. While the current model of thermodynamic neuron is 
abstract and its potential thermodynamic benefits in comparison to 
traditional neural network implementations are not yet well under-
stood, investigating the relevance of the thermodynamic neurons in 
this context is an interesting question.

From a more fundamental perspective, our model could also 
be used to investigate the thermodynamics of autonomous learning, 
e.g., using the techniques of refs. (81–83) to modify qubit energies 
based on the outcome of the computation. In this way, the machine 
would be able to “learn” a desired behavior in a fully autonomous 
manner, i.e., to improve its own decisions based on reward or 
penalty. We believe that this provides an interesting approach for 
modeling the process of learning in a thermodynamically consis-
tent manner.

Our work can also be discussed from the perspective of ther-
modynamic computation (19, 20, 27). Here, we believe that an in-
teresting aspect of our model is the fact that computations are 
implemented in a physical process that is far out of equilibrium. We 
use machines connected to multiple environments at different tem-
peratures and consider nonequilibrium steady states. What compu-
tational power can we obtain from such a model? While we have 
seen that it can perform universal classical computation and is also 
naturally connected to neural networks, a key question is to de-
termine its efficiency (notably in terms of time) for solving rele-
vant classes of problems. For example, could this model provide 
a speedup compared to classical computers for a relevant class of 
problems?

The performance of thermodynamic neuron depends on how 
quickly it reaches equilibrium (thermalization). Our simulations 
with a single neuron show that complete thermalization is not es-
sential. Notably, the qualitative behavior of the model is similar even 
if it is allowed to thermalize only partially (so- called transient re-
gime). This opens exciting possibilities for exploiting the transient 
regime to speed up the operation of thermodynamic neurons. At the 
same time, full thermalization might become more important when 
combining multiple neurons together. On top of that, thermaliza-
tion times generally increase with the number of inputs to the ther-
modynamic neuron. Thus, in some cases, using a longer network 
of simpler thermodynamic neurons might be a better choice than 
a shorter network with more complex ones. This is an interesting 
trade- off that we leave for further exploration in future research.

These are rather long- term perspectives, and a more pressing 
one is the potential implementation of thermodynamic neurons. In 
this respect, recent progress on realizing autonomous quantum 
thermal machines with trapped ions (47) and superconducting 
qubits (48), together with theoretical proposals in quantum dots 
(35) and cavity quantum electrodynamics (37) are relevant. An in-
teresting alternative is to investigate if the physics of our model can 
be reproduced by a fully classical model based on rate equations. 
This would open the door to a classical implementation within sto-
chastic thermodynamics (84).

Supplementary Materials
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