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Abstract

In a society with a growing share of elderly, musculoskeletal diseases (MSDs) have become a

major burden not only for those affected but also for the health care system and have been found

to be the main reason for work time loss in the European Union. MSDs are a group of disorders,

including osteoarthritis, which affects body parts like bones, muscles, tendons and joints. They

cause pain and reduce mobility and flexibility. A better understanding of these diseases can be

achieved by acquiring knowledge of the patient-specific morphology of the involved anatomical

structures. Magnetic resonance imaging (MRI) is a non-invasive technique for acquiring volu-

metric tomographic images. It allows the determination of anatomical parameters like volume,

cross-sectional area, or pennation angle.

MRI, like other medical imaging techniques, is subject to constant improvement. This concerns,

among others, image quality, resolution, acquisition duration and costs. It has led to an ever-

growing number of acquisition with higher resolutions, resulting in big numbers of large data

sets. The interpretation of MRI data is a lengthy process that requires special training and

knowledge about anatomy and imaging properties. Depending on the acquisition parameters,

analysing the MR images, e.g. to identify organs or pathological tissue, is a complex and time-

consuming task. With higher resolutions, an increase in the total number of scans, and a reduc-

tion of medical personnel, there is less and less time left for image interpretation. This requires

automated processing of the data to assist the medical personnel. This can be, for example, in

the form of the detection of potentially pathological tissue or the extraction organs and other

anatomical structures. Some MRI protocols can generate multi-channel images, which can high-

light different anatomical structures in different channels.

We focus on the extraction of musculoskeletal structures (bones, muscles) from the lower limb.

In our work, we have focused on three main objectives: development of an MRI protocol, pro-

cessing and labelling of the image data, and the exploitation of multi-channel data during the

segmentation of individual muscles. All these tasks have been addressed with a focus on effi-

ciency.

We propose an MR acquisition protocol that generates seamless, high-resolution images of thigh

and calf. Our setup goes beyond clinical routine and uses a special coil for signal amplification.

We have developed a coil support structure that allows us to move the coil along the immobilised

patient without touching. This prevents artefacts from movements between acquisitions.

The acquired image data is then processed, following our pipeline. This includes stitching, noise
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and bias field reduction and the identification of different classes of image content. We present

a method to identify air in the image. As the MR scanner has a big opening, large parts of the

image is empty, showing only air. Using our air labels, we can crop the image and reduce the

file sizes. This is particularly important for multi-channel images. An additional method allows

the fast and reliable identification of muscle tissue. We propose a massively parallel version of

these techniques.

Once the image data is acquired and processed, we identify the individual muscle. Using the

labels and prior knowledge, we align a muscle template. This template is modified with our

deformable model framework under the influence of image forces to match the actual anatomy.

This is an iterative process and the image forces use the multi-channel image data to find relevant

image features. We propose coupled multi-resolution deformable models that allow working on

different resolutions in parallel.

This work is aimed at helping the understanding of diseases by providing personalised anatom-

ical models. There is a large number of applications; we show a contribution towards the digital

patient and the determination of personalised pennation angles.
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Résumé

Dans une société ou le nombre de seniors est en constante augmentation, les troubles musculo-

squelettiques (TMS) sont devenus une charge considérable, non seulement pour ceux qui sont

affectés mais aussi pour le système de santé. Il a été découvert que c’était la raison principale de

perte de temps de travail dans l’Union Européen. Les TMS sont un groupe de troubles, comme

l’arthrose, qui affecte des parties du corps humain, comme les os, les muscles, les tendons ou les

articulations. Ils causent des douleurs ainsi qu’une réduction de mobilité et de flexibilité. Une

meilleure compréhension de ces maladies peut être accomplie en acquérant des connaissances

morphologiques spécifiques de la structure anatomique du patient. L’imagerie par résonance ma-

gnétique (IRM) est une technique non-invasive qui permet d’acquérir des images volumétriques

tomographiques. Cela permet de déterminer les paramètres anatomiques tels que le volume, les

sections transversales ou l’angle de pennation.

L’IRM, tout comme d’autres techniques d’imagerie médicale, est sujet à une amélioration constante.

Cela concerne, entre autre, la qualité d’image et sa résolution, le temps d’acquisition ainsi que

son cout. Cela a conduit à un nombre croissant d’acquisitions ayant une grande résolution, ayant

pour résultat l’augmentation des volumes de données. L’interprétation des données de l’IRM est

un long procédé qui nécessite une formation particulière ainsi que des connaissances en anatomie

et en imagerie. En fonction des paramètres d’acquisition, analyser les images IRM, par exemple

identifier les organes ou les tissus pathologique, est une tâche complexe qui nécessite beaucoup

de temps. Avec une résolution plus élevée, l’augmentation du nombre total de scans, ainsi que

la réduction du personnel médicale, il y a de moins en moins de temps disponible pour l’in-

terprétation des images. Il est nécessaire d’automatiser le traitement des données afin d’assister

le personnel médical. Cela peut être, par exemple, en détectant des potentielles pathologies des

tissus ou en segmentant les organes ou d’autres structures anatomiques. Certains protocoles IRM

peuvent générer des images à plusieurs canaux, ce qui permet de mettre en mettre en évidence

différentes structures anatomiques à partir de plusieurs canaux.

Nous nous focalisons sur l’extraction de la structure musculo-squelettique (os, muscles) des

membres inférieurs. Dans notre travail, nous nous sommes concentrés sur trois objectifs prin-

cipaux : développer un protocole IRM, traiter et annoter les images, et d’exploiter les données

multicanaux lors de la segmentation des muscles. Toutes ces taches ont été traitées en se concen-

trant sur l’efficacité.

Nous proposons un protocole d’acquisition par résonance magnétique qui permet de générer
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des images haute résolution, sans discontinuités, pour la cuisse et le mollet. L’installation va

au-delà des habitudes cliniques et utilise une bobine spéciale afin d’amplifier le signal. Nous

avons développé un support de bobine qui nous permet de bouger la bobine le long du patient

immobilisé sans le toucher. Cela permet de prévenir certains artefacts dus aux mouvements entre

les acquisitions.

Les images acquises sont ensuite traitées, en suivant notre pipeline. Cela comprend la fusion

d’images, la réduction du bruit, la correction du biais et l’identification des différentes catégories

de contenu de l’image. Nous présentons une méthode afin d’identifier l’air dans une image.

Comme les scanners à résonnance magnétique ont une grande ouverture, une large partie de

l’image est vide, montrant uniquement de l’air. En utilisant notre méthode de marquage de l’air,

nous pouvons rogner l’image et réduire la taille des fichiers. C’est particulièrement important

pour les images multicanaux. Une méthode supplémentaire permet une identification rapide et

précise des tissues musculaires. Nous proposons une version extrêmement parallélisée de cette

technique.

Une fois que l’image a été acquise et traité, nous identifions les différents muscles. En utilisant

les annotations et les précédentes connaissances, nous alignons un modèle générique de muscles.

Ce modèle a été modifié avec notre système de déformation sous l’influence d’images alignées

par contrainte sur l’anatomie réelle. C’est un procédé itératif dans lequel la contrainte imposée

aux images est basé sur la recherche de caractéristiques pertinentes sur des images multicanaux.

Nous proposons d’utiliser des modèles déformables multi-résolution couplés permettant de tra-

vailler en parallèle sur plusieurs résolutions.

Ce travail a pour but d’aider la compréhension des pathologies en fournissant des modèles

anatomiques personnalisés. Il y a un grand nombre d’applications, nous montrons notre contri-

bution dans le domaine des patients digital et dans la détermination d’un angle de pennation

personnalisé.
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Chapter 1. Introduction

1.1 Motivation

Musculoskeletal diseases (MSDs) are a major burden on society. This group of diseases often

affects joints and is prevalent in the elderly. Knowledge of the individual morphology of the

involved anatomical structures can not only lead to a better diagnosis and treatment but also to

a better general understanding of these diseases. A promising approach is an examination that

not only relies on one source of information but exploits multi-scale knowledge.

Musculoskeletal diseases are a group of disorders that affect different body parts such as bones,

muscles, tendons, and joints. MSDs are often chronic and mostly occur in the elderly population.

They cause pain, lead to a reduction of muscle performance, and eventually total incapacity of

performing certain tasks. This reduction of mobility and flexibility causes the need for assistance

and care.

The World Health Organisation (WHO) therefore has declared the last decade as the decade of

bones and joints [CB12]. The health care costs resulting from MSDs are an economic burden, in

particular with an ageing population. MSDs have been found to be the main reason of work-time

loss in the EU [PTVvH+12]. The morphology of anatomical structures that play an major role at

the joint level, captured e.g. through medical imaging, can help to explain some origins of MSD.

MRI allows the determination of parameters like cross-sectional area, volume, pennation angle,

from musculoskeletal structures [Seg07].

Medical imaging technologies have been vastly improving over the last decades. The number

of scans increases as well as the resolution of these scans, leading to massive amounts of data

generated. The invention of Magnetic Resonance Imaging (MRI) in 1972 gave a way to image

inner organs without the hazard of ionising radiation as used by Computed Tomography (CT).

The resulting increase of scans can be underlined by numbers from the OECD and is shown in

Figure 1.1. The total number of MRI acquisitions has more than tripled from 9.1 million to 35

million over the last eighteen years and there are no signs of an end of this trend. Interpretation

of the generated data is a lengthy process that has to be performed by trained professionals or

radiologists, which are required to have a lot of experience. The main challenges lie in the image

quality that depends on several factors like acquisition duration, acquisition parameters, imaged

organs, patient condition, artefacts, noise, and implants. There is a high variety in the resulting

images, therefore making it a complex task to identify structures in the images.

1.2 Context

MIRALab has been founded in 1989 by Prof. Magnenat-Thalmann with a core research focus

on computer graphics and animation (e.g., virtual humans ([MTSC04, LMT08, KMT11]) and

cloth simulation [VT00, VMT05, VMTF09]). This strong background has then allowed to pioneer

research in anatomical modelling. Long experience in medical modelling and simulation has

been gathered ([KBG+95, GKBMT96, MTWT98, YCGMMT03, MTYCS04, GMMT06, MTCS08,

SKMT11]). The combination of a comprehensive examination of an articulation with detailed
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1.3 Objectives
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Figure 1.1 – MRI usage in the United States of America according to OECD data.

anatomical models and the simulation of soft tissues in motion ([Cha08, ACS+09, CAVMT09])

were carried out in several successful projects like CHARM [dMMoL+], Co-Me [VHM], 3D

Anatomical Human (3DAH) [ACV+], and MultiScaleHuman (MSH) [HMLM+]. Recent research

expands to calculation acceleration approaches like GPUs [SIG+11] or tools and techniques for

collaborative working [HNS+10].

MIRALab is coordinating and leading the MultiScaleHuman project. This project gathers seven

partners from four European countries to create a novel multi-scale approach to understand-

ing musculoskeletal diseases. Five core biological scales (molecular, cellular, tissue, organ, and

behaviour) are being exploited and the resulting knowledge is gathered in a visualisation and

knowledge management system that helps physicians to improve their understanding, diagno-

sis, and treatment of MSDs in physiological human articulations. The project partners yield their

experience in fields including molecular imaging, cellular biology, anatomical modelling, motion

analysis, biomechanical and soft-tissue simulation, interactive visualisation, haptic interaction,

and ontology-based knowledge management. With two hospitals and an industry partner, the

MSH project covers the complete process from interacting with patients to providing a proof of

concept towards further commercial applications.

1.3 Objectives

The main research objective of this thesis is to devise advanced image segmentation techniques

to extract and create 3D models of musculoskeletal structures from images. This process includes

the development of an image acquisition protocol, the image labelling and the actual segmenta-

tion with a focus on the use of efficient methods.
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The resulting three main objectives, as shown in Figure 1.2, are based on each other:

Development of an imaging protocol

Development of an MR image acquisition protocol to seamlessly cover the full leg. This

includes the selection and parametrisation of MR sequences as well as the physical setup

of the coils needed. In the last step, the acquired individual and partially overlapping

images have to be combined into a continuous data set.

Advanced tissue labelling

For the labelling, the goal is the identification of different tissue types (bones, muscles, fat)

and surrounding air. This can be used for fast visualisation during the acquisition and the

initialisation of segmentation approaches.

Exploitation of multi-channel image data during the segmentation

The segmentation process will be realised with deformable models, which can use prior

knowledge about the structures. The focus lies on the segmentation of muscles in the hu-

man thigh. By using multiple inputs from the acquisition generated by different sequences,

the multi-channel image data will be used for robust segmentation. These multi-channel

inputs consist of mDixon images that can be decomposed into water, fat, in-phase and

opposed-phase channels, and T1 weighted magnitude images.

Development of an 
imaging protocol

Advanced tissue 
labeling

Exploitation of 
multi-channel data 
for segmentation

Figure 1.2 – The main objectives propose a pipeline from image acquisition and tissue labelling to the
exploitation of multi-channel data for segmentation.

1.4 Contributions

Following the objectives defined above, we present contributions in three objectives in this thesis.

We demonstrate an MR acquisition protocol that generates seamless, high-resolution images of

the musculoskeletal system of thigh and calf. We then show how we can rapidly label different

tissue types in these images. We then present the use of deformable models for efficient muscle

segmentation. An overview of these contributions is shown in Figure 1.3.

In clinical routine, imaging is performed only on areas with pathologies. When full-body acquisi-

tions are performed, they are low-resolution and often skip the lower limbs. All involved organs

have to be taken into consideration to study musculoskeletal diseases of the knee. Therefore,

the acquisition has to be seamless from ankle to hip. We have developed a setup that allows us

to move the signal-amplifying coil while the subject rests immobilised, without contact or skin

deformation through compression.

We identify different tissue types (bones, muscles, fat) and surrounding air. High-resolution,

multi-channel image data drastically increases the memory consumption. We contribute a me-
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thod that uses the air mask to crop the image and reduces the file size by 62 to 72%. Prior

identification of tissue types is used to increase segmentation quality and is also used as an

input for the initialisation. Our method for identifying muscle tissue is fast and reliable while

maintaining correctness of the results.

a) b) c) e)d)

Figure 1.3 – Main steps of the contribution: Development of an imaging protocol (a) and processing of the
resulting images (b,c), advanced tissue labelling (d) and identification of individual muscles (e).

Once the muscle tissue has been labelled, it has to be separated into the individual muscles. This

process is realised with deformable models. The focus lies on the segmentation of muscles in the

human leg. By using multiple inputs from the acquisition, coming from different sequences, the

multi-channel image data is used for robust segmentation. These multi-channel inputs consist of

mDixon images that can be decomposed into water, fat, in-phase and opposed-phase channels,

and T1 weighted TSE magnitude images. An example of this multi-channel information can

be seen in Figure 1.4. We have developed a framework to perform these tasks. The resulting

methods and algorithms are evaluated on their efficiency. We propose a coupled multi-resolution

segmentation process for speed-up.

b)a) c) d) e)

Figure 1.4 – Example of the multi-channel images: Dixon (in-phase (a), water (b), fat (c), and opposed-phase
(d)) and T1 TSE (magnitude).

We have compared our results with manual segmentations to assess the accuracy. Medically

experienced people have performed the manual segmentation, to enable the comparison of our

contributions.

1.5 Thesis Organisation

This thesis is organised as follows: This first chapter contains an introduction that describes the

motivation for this work. It explains the need for segmentation methods for medical images and

the possible effects on the diagnosis of musculoskeletal diseases. We present the objectives and

contributions and conclude with an overview of the thesis structure.
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The second chapter discusses related work. We give an overview of medical imaging techniques

and motivate our choices. Then, we present and compare general segmentation approaches.

We show more advanced techniques, including registration and classification. We motivate the

need to incorporate model information and present different methods (Snakes, Level Sets, and

Deformable Models). We then explore how multi-channel image data can provide additional

input for more accurate segmentation. As this thesis is focused on the human lower limb, we

provide a short introduction to the affected anatomy and discuss segmentation approaches for

muscle tissue. Finally, we conclude by summarising and categorising our findings.

In the following chapters, we present the individual contributions that form the pipeline from

acquisition, processing and initialisation to segmentation. This pipeline is shown in Figure 1.5. In

each chapter, we first introduce the methodology that we contribute and then present the results.

Acquisition

Processing Initialisation

Segmentation

Figure 1.5 – Overview of the complete pipeline with the steps from the acquisition, the image processing,
the labelling of muscle tissue, registration for initialisation to the deformable model-based segmentation.

The third chapter focusses on the acquisition. We present our MRI setup, the coils and sequences

used and discussed the initial processing steps, including stitching and air filtering. We introduce

the data sets that will be used throughout this work and evaluate and discuss the acquisition

results.

Chapter four discusses our proposed image processing. We show the denoising and intensity

correction. We present our muscle tissue labelling approach and its evaluation. Finally, we show

how it can be moved to the massively parallel architectures for more efficient processing.

The fifth chapter presents the model initialisation. Placing the models is an important step for

the segmentation. We discuss several techniques and then present our approach for localising
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joints. Following the localisation, the models need to be adjusted for individual subjects, we

demonstrate a technique for that.

Chapter six is dedicated to the segmentation. We introduce our deformable model framework

and present its structure and main components. After evaluating the framework, we demonstrate

a webviewer for a more flexible visualisation of medical data sets. Lastly, we introduce coupled,

multi-resolution meshes that form a parallel version of the pyramid approach to increase effi-

ciency.

The last chapter discusses the results of this thesis. We summarise the presented methods and

the achieved results. Two applications of our work are given. We show our contributions and

give an outlook on possible extensions and additions.

The annexe provides additional material that had to be omitted in the main text. We provide

an overview of medical nomenclature, a more comprehensive anatomy introduction and the

information and consent sheets used in our study. We also present additional types of deformable

models.
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2.1 Motivation

The extraction of musculoskeletal structures from medical images is a complex task. It can be

decomposed into image acquisition and image segmentation.

Medical imaging aims to capture the body optically but also in ways that are imperceptible to the

human. It ranges from the acquisition of spectrographic information of the skin to methods to

capture the tissues inside of the body. Many applications require information about inner organs

(e.g. liver) for diagnostic and therapeutic reasons. The visibility of fractures in X-ray images

allows adequate surgery planning and preparation, more advanced MRI acquisition allow the

detection of ligament ruptures. There exist different imaging approaches that carry different

advantages and disadvantages. We will present and discuss several techniques and motivate our

choice.

Medical images gain their value through the interpretation. Depending on the used techniques,

the contained information can be very abstract, e.g. in an ultrasound image. While the analysis

by radiologists still is the gold standard, the growing number of acquisitions has fostered the

development of techniques for (semi-)automatic image analysis. We will give an overview of basic

approaches and discuss more advanced approaches afterwards. We will continue by presenting

deformable models, which benefit from the model information that they carry.

Some image acquisition techniques allow the generation of multi-channel information. We will

discuss how to use this information for more reliable segmentation techniques that are more

resistant to image artefacts.

In this thesis, we are looking into the segmentation of musculoskeletal structures, in particular,

muscles. We, therefore, give an overview of the muscles of the lower limb in Section 2.11, before

we discuss the current state of the art in muscle segmentation in Section 2.12.

2.2 Medical Imaging

Medical imaging provides a way to get an inside perspective of the human body without (or with

very little) harm. Rather than using invasive methods like exploratory surgery, modern medical

imaging provides the ability to detect bone fractures, tumours or metabolic diseases without

touching the patient. In this section, we will explain the development from x-ray imaging to MRI

(and nuclear medicine). After shortly covering further imaging methods, this section ends with

a comparison of the presented techniques.

2.2.1 X-Ray Imaging

In this section, we will describe medical imaging methods that use X-rays. These ionising rays

have been discovered by Wilhelm Conrad Röntgen 1 in 1895. They are capable of traversing dense

1. In 1901, Röntgen received the first Nobel Prize in Physics for this discovery.
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structures and allow the imaging of structures beneath the surface. In the following sections, we

describe radiography and its extension, Computed Tomography.

2.2.1.1 Radiography

In traditional radiography, the body is placed between an X-ray source and a detector. The X-rays

are generated at the source, usually through the acceleration of electrons and their sudden decel-

eration at a target metal. During this deceleration, bremsstrahlung is emitted. If the acceleration

is tuned to the correct value, X-rays are submitted as bremsstrahlung.

The X-rays are focused on the area of interest and traverse the body. Inside the body, they are

partially absorbed. Therefore, X-ray imaging falls into the category of the ionising approaches.

The absorption rates depend on the density of the traversed tissue and hence allow to infer the

internal structure. After leaving the body, the rays are caught by a detector. Older systems still

use specialised photographic films that need to be developed while newer systems use large

arrays of digital photo-detectors. Digital acquisition is on the rise since it allows almost instant

access to the results and can be directly integrated into the hospital IT [YR97].

X-ray imaging is commonly used in emergency care because it is very fast. It is good at high-

lighting bony structures [Lew04] and is often used to detect fractures [BDB+01]. An example of

an X-ray image of the elbow joint is shown in Figure 2.1.

Source DetectorSubject X-ray image

Figure 2.1 – Working principle of X-ray imaging (left). The X-rays are created at the source, traverse the
body and are absorbed in the detector. The resulting image (right) shows the accumulated density of the
traversed tissue (Source: Eric Schmuttenmaer, Flickr)

2.2.1.2 Computed Tomography

X-ray imaging only can show accumulated densities along a single direction; a 3D reconstruction

is not possible. The 3D information is often needed for further diagnosis [HKB+06] and better

analysis of partially covered organs. Creating several scans repeatedly from different directions

has proven not to be practical.

To overcome this limitation, the Computed Tomography (CT) [Kal06] uses the Radon transform

[Bey87]. A CT scanner and an example scan of the abdomen can be seen in Figure 2.2. During

the acquisition, the scanner takes intensity images while rotating around the patient [Doi06]. The
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acquisition results in a high number of scans from different angles. These scans are all taken

along the transverse plane. The scans can be transformed into a sectional image using the radon

transform. If this process is repeated along the superior-inferior axis, it is possible to create a

full volumetric 3D reconstruction. These machines have been improved by acquiring 16 or up to

64 parallel planes at the same time. Further improvement allows a spiral shaped capture so that

acquisition can be performed in one continuous motion, resulting in less stress for the patient.

The Cone Beam CT (CBCT) [SF08] pushes the concept even further by using a cone-shaped set

of x-rays and a 2D detector.

Figure 2.2 – CT scanner (left) and resulting scan (right). Source: Images are public domain.

The resulting intensity values can be transformed into Hounsfield units (HUs) [Bro77]. HUs are

well-defined and based on the intensity of water. An intensity value µx can be converted into a

HU using the following equation:

HU = 1000× µx − µwater

µwater
(2.1)

Table 2.1 – Hounsfield unit values for selected substances

Substance HU
air -1000
fat -84
water 0
blood 30 - 45
muscle 40
soft tissue 100 - 300
bone 700 - 3000

A consistent mapping between HU is available for many substances, an extract of those is shown

in Table 2.1. This mapping makes image interpretation and analysis less complex and more

robust. Nonetheless, it must be noted that this mapping can still be invalidated through strong

artefacts in the image, e.g. larger implants.

CT and CBCT are robust and fast technologies. They have their strengths in skeletal imaging but

lack the details in soft tissue. The use of ionising radiation means an additional burden on the

patients: In Switzerland, 173 cases of cancer caused by X-ray imaging have been reported. This
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results in an 1% attributable risk [BD04].

2.2.2 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is an imaging technology that allows distinguishing be-

tween pathological and healthy tissue in clinical practice. It is non-invasive and very tolerable.

Just in the United States of America, the number of MR scans has increased in the last sev-

enteen years from 9 million a year to almost 34 million. MR scans allow a good distinction

between different types of soft tissue [MZMM12, VPJ02, JGSL97]. Several kind of sequences

[OAC+09, TTF+97, LHG+96] allow broad applications and the image quality can even be in-

creased with contrast agents [RBM+05, SS08, TKR+08, Car06]. MR scans can also capture time-

variant processes [FJT94]. It is possible to scan slices within a second to acquire dynamic image

series, e.g. of a beating heart [CML+12]. To capture moving organs, e.g. the heart or the abdomen

while breathing [FVC+11], the acquisition can be synchronised to external input like heart rate

or breath rate.

Nonetheless, MRI also carries some disadvantages. MR scans usually take more time than other

methods [VSG+15]. Due to the strong magnetic fields that are used, common contraindications

are metal implants, pacemakers, or tattoos. Due to the small diameter of the machines (60cm,

newer systems up to 75cm) claustrophobia can be a problem. Affected patients have to be moni-

tored carefully or drugged. Although open MR scanners exist, they achieve a lesser image quality

due to a lower magnetic field that is less homogeneous. MR scanners consume much energy (40-

100kW) and are very noisy (exact amount depends on sequence), ear protection is required for

patients during the scans. The combination of long acquisition times and high energy consump-

tion makes MRI expensive.

2.2.2.1 History

The history of MR imaging goes back to 1952 when Herman Carr created a one-dimensional

image in his Ph.D. thesis [Car52]. Raymond Damadian built the first MRI machine in 1972. It

was targeted to find cancerous structures, based on an idea published in 1971 [Dam71]. Later

it was found that this is impossible with the proposed method. In 1973, Paul Lauterbur created

first 2D and 3D images using gradient coils and 1974 he produced a cross-sectional MR scan of a

mouse. Finally, in 1977, Damadian, Minkoff and Goldsmith performed the first scan of a human.

A comprehensive write-up of the history of MRI and the controversies around it can be found in

[Kau14].

2.2.2.2 Working Principle

Magnetic resonance imaging uses nuclear magnetic resonance to create cross-sectional images.

A strong, static magnetic field B0 aligns the nuclei of the atoms. The nuclei spin around them-

selves. A strong magnetic pulse deflects the nuclei so that they go into a precession. Due to the

strong static field, they return to their initial position. The duration of the return depends on the
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type of atom. During the return energy is emitted as a radio-frequency (RF) signal that can be

detected. The return is controlled by two independent processes: T1 and T2 relaxation. They can

be influenced by the repetition time TR and the echo time TE.

This is a very fragile process that needs to be carefully timed since only ten out of 106 protons give

a signal. The signal-to-noise ratio is approximately proportional to field strength B0, therefore

stronger fields produce better images. The current generation of scanners has a field strength of

3T. The main engineering challenge is to keep the field homogeneous, which is crucial for image

quality. Since there are always small inhomogeneities in the field, advanced bias field correction

techniques [TG09b] have been proposed and are now common in MR image processing.

The spatial localisation of the received RF signals is done using additional field gradients that

encode the position [LWS+12]. Therefore, a free selection of the cross-section planes is possible,

although usually the common coronal, axial, and sagittal planes are used, as they are easier to

address with the gradient coils.

The captured signal value can not be directly linked to tissue types; the interpretation is done

using contrast and gradients. A strong signal is called hyperintense and shows very bright, weak

signals are called hypointense and are shown dark. T1-weighted images make fat hyperintense,

e.g. fatty structures like bone marrow, T2-weighted images highlight stationary liquids.

2.2.2.3 Artefacts

Motion Artefacts During the imaging process, the patient is expected to lay perfectly still. This

can cause inconsistencies between acquisition steps, leading to seams at transitions. If motion

artefacts occur within an acquisition step, the phase information is modified and causes a wrong

representation [AHS+99]. A possible solution is the averaging of multiple acquisitions although

this leads to longer acquisition times. Sometimes motion artefacts are caused by frequency cou-

pling from the machine, e.g. through a mounted coil. Figure 2.3 shows such an artefact.

Flow Artefacts Even if the patient lies perfectly still, the organism is still running. Blood is being

pumped through veins and arteries. This flow causes artefacts [EF90] like shown in Figure 2.4.

Flow artefacts are a subclass of motion artefacts. These artefacts are hard to avoid. Their orienta-

tion can be controlled by adjusting the field gradient. Another approach is to adjust the capture

to the pumping sequence. This comes with the cost of highly increased acquisition times.

Field Inhomogeneity By using stronger magnets, the volume usable for scanning has been in-

creased. At the margins of the volume, field inhomogeneities can occur, as the field weakens

further away from its centre. It will results in stripes [VPL07] on the resulting image, see figure

2.5. This artefact can also be caused by external magnetic field, which supports the need for a

good shielding of the MRI machine.

Metal Implants Hip implants, pacemakers, and other implants can, although being certified for

MR compatibility, cause artefacts [HWP+11]. The magnetic flow differs drastically in the metal

port from the surrounding tissue and, therefore, causes field inhomogeneities with the conse-

quences previously described.
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Figure 2.3 – Extreme case of motion artefact. The subjects movements destroy the spatial coherence of the
measured signals.

Figure 2.4 – The blood circulation through the aorta inside the knee joint causes the flow artefact shown in
this figure.

Partial Volume Artefacts The Partial Volume Artefact [VVBV01] is caused by imaging voxels

containing two different tissues and, therefore, possessing a signal average of both tissues. It

blurs boundaries that usually would be clearly visible.

Ghosting Artefacts Ghosting artefacts can occur when the captured object stretches out of the

selected field of view of the scanner [RABM97]. An example is shown in Figure 2.6.

Chemical Shift Effect This artefact results from the shift of tissues and causes a clearly visible,

black delineation at the edge [SVS84].

Folding artefact Imaging a large structure with a too small field of view will result in parts of

the images folding over to the other side.
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Figure 2.5 – Inhomogeneities artefact, a gradient along the muscles of both thighs is clearly visibly. It results
from an inhomogeneous magnetic field.

Figure 2.6 – Ghosting artefact in the lower half of the image: Instead of the femur a ghost of the other knee
is seen.

2.2.2.4 Protocols

Many parameters influence the resulting data set of an MRI scan. The two most prominent pa-

rameters are the T1 and T2 times. They can be tuned to highlight or suppress different tissue

types. Their flexibility can be expanded by using tracers: Chemical compounds that are injected

into the patient and accumulate in the region of interest. These tracers are chosen to have bene-

ficial MR properties so that, for example, inflammations can be detected.

The combination of acquisition parameters, body part and, if necessary, tracer is called a proto-

col. There exist many standard protocols in clinical routine, allowing reproducible acquisitions

of consistent quality. Protocols take a one-time effort for creation but then offer long-term ben-

efit. In the following part, we will introduce three protocols that have proven to be useful for

musculoskeletal imaging.

Modified Dixon (mDixon)

In 1984, Dixon [Dix84] has developed a modification of a spin echo pulse sequence. His approach

allows generating images that show only water and only fat. The method has no significant
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increase in acquisition time as well as comparable speed and signal-to-noise ratio. It increases

the contrast between organs and allows better tissue characterisation.

The modified Dixon technique (mDixon) is a multipoint method for 3D water-fat magnetic reso-

nance imaging. It uses an unrestricted echo time (TE) for more efficient scanning over traditional

Dixon. The mDixon sequence consists of two parts. First, water and fat are attenuated in phase,

resulting in the in-phase image. In a second step, the pulse is tuned to acquire fat and water

out of phase. By voxel-wise adding the in-phase and opposed-phase images, a water showing

image can be generated. By subtracting the opposed-phase image from the in-phase image, a

fat highlighting data set can be created. Figure 2.7 shows an example of the four images that

are acquired. In comparison with current 3D volumetric fat suppression methods, mDixon pro-

vides greater speed, improved signal-to-noise-ratio (SNR), multiple contrasts and more robust fat

suppression. Today, the mDixon protocol is used for many applications like the detection of can-

cer metastasis [CKM+12], progress monitoring limb-girdle muscular dystrophy [WHC+13], and

liver fat quantification [FRM+12]. Other applications are the attenuation correction for hybrid

PET/MRI [BFS+12], and the assessment of muscle fat content [FPE+14].

T1 TSE (Turbo Spin Echo)

Spin echo sequences are the most commonly used pulse sequence. The timing can be adjusted

to weight T1, T2, proton, or spin density. A 90-degree pulse is followed by a series of 180-degree

refocusing pulses that improve the SNR. An accelerated version is the turbo spin echo, which

reduces the acquisition duration. In the T1 weighted case, the images show the different T1

relaxation times of the tissues. In this sequence, fat appears very bright (gives a high signal), and

water very dark (gives a low signal). This is helpful for the identification of muscles, since the

inter-muscular fat, which separates the individual muscle groups, is highlighted.

Knee Acquisition Protocol

The anatomical structures at the joint level are very small and, therefore, a high resolution is

needed to capture them. Higher resolutions always compromise between acquisition duration

and SNR. For knee acquisitions, a specialised coil is being used. It wraps closely around the

joint and provides improved SNR. The Philips VISTA SPAIR sequence is a 3D TSE sequence

with Variable Flip Angle. It is an extension of the above describe TSE sequence that temporarily

varies the flip angle between consecutive RF pulse to increase the SNR and to compensate phase

encoding artefacts. With this sequence, it is possible to highlight cartilage and ligaments.

2.2.3 Other Methods

For the sake of completeness, we will give a short overview of other common medical imaging

techniques, covering positron emission tomography, ultrasonography, endoscopy, thermography

and electrical impedance tomography.

Positron Emission Tomography (PET) is an imaging technique of the nuclear medicine. It allows
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(a) (b)

(c) (d)

Figure 2.7 – Cross-section of the thigh, showing femur and muscles, using the Dixon protocol: (a): in-phase,
(b): opposed-phase, (c): water-emphasizing and (d): fat-emphasizing.

to capture quantitative information about the metabolic system. First, the patient is injected

with a tracer, made of molecules labelled with positron emitting isotopes. Through metabolic

processes, the tracer accumulates, for example, in tumours. The PET scanner then captures the

gamma radiation from the decay of the isotopes. The natural decay rate makes the process time

critical as the half-life time of common tracers ranges from 2 minutes (O15) through 20 minutes

(C11) up to 110 minutes (F18). PET is usually done as a hybrid acquisition in combination with CT

or MRI [JWN+08]. The low-resolution PET benefits from the spatial information from CT/MRI

to localise the relative position of tracer accumulations in the body. An overview of the early

developments in nuclear medicine has been provided by Brownell et al. Brownell1990.

Ultrasonography is a technology used to image structures using (ultra-)sound. It used for car-

diac imaging and as well as prenatal diagnosis. Further organs include the thyroid, kidney and

bladder. The spreading of the sound waves is limited by bones and gas, so areas of uses are

limited. A sound wave is sent through the skin using a quartz crystal to create the images.
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The sound wave is reflected at the transition boundary of different tissues. The reflection is re-

ceived using linear or two-dimensional detectors; the reconstruction of images uses the signal

run-time and exploits the Doppler effect. Ultrasonography can be performed in real-time to get

a live video feed. First experimentation goes back to the 1950s; the first application was cancer

diagnosis [WN51, Wat09]. However, US only works near the body surface and has a low SNR.

Endoscopy is a way to look inside the body. Through a set of fibres, light is sent into the body and

the absorption is returned through a second set of fibres. Like this, organs can be diagnosed when

they are accessible through natural cavities or minimal cuts. This technique has been extended

to include small tools to perform minimal incision surgeries.

Thermography 2 collects the infrared radiation (9− 14 µm) emitted by objects, to get a tempera-

ture distribution image. The method is limited to the body surface and a thin layer below it. It

allows detecting effects like raised temperatures and assists in mammographies. Thermography

is usually used to extend the information gathered using other methods and also for patient

monitoring.

Electrical Impedance Tomography (EIT) 3 was invented by Henderson et al. [HW78] in 1978,

the first working device was built by Barber and Brown[BB84] in 1984. The principle idea is the

distinction between tissues by their impedance. EIT is used for the detection of cancer in skin and

breast and lung function monitoring. Using a belt of electrodes that is placed around the tissue

to be imaged, small currents (a few µA) with frequencies around 10-100 Hz are sent through

the body and received by the other electrodes. The acquired data can be reconstructed using

complex algorithms. In 2011, first commercial systems were offered to monitor the lung capacity

of patients that receive intensive care and for breast cancer detection.

2.2.4 Comparison

The methods presented above all carry advantages and disadvantages. The proper choice of

imaging technique depends on several factors: acquisition duration, region to be imaged, struc-

tures of interest, but also economic factors like availability and price. X-rays have been proven

useful for minor fractures, CT is popular for more complex injuries and in emergency care. MR

has strong capabilities in imaging soft tissues, especially inner organs like liver, kidney and mus-

cular system. PET (Positron Emission Tomography) and PET/MR are used in nuclear medicine,

usually to detect tumours. To monitor lung volume during surgery, EIT is a good candidate. US

is commonly used for pre-natal and coronal examination. A comparison chart of the different

properties of the presented techniques can be found in Table 2.2.

For musculoskeletal modelling, visibility of soft tissues is crucial. Furthermore, spatial informa-

tion is required to locate structures and to measure their dimensions. The modelling of the lower

limb requires imaging of a large area. Therefore, exposure should be kept low, and acquisition

2. Also known as infrared thermography (IRT), thermal imaging, digital infrared thermal imaging (DITI), and thermal
video.

3. Also known as applied potential tomography, electrical impedance imaging, conductivity imaging or impedance
computed tomography.
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time (which is linked to price) should be kept low. X-ray, CT, and CBCT show low costs and

good bone visibility. However, their invasiveness and low visibility of soft tissues like muscles

and tendons rule out their use in musculoskeletal modelling. PET only shows low resolutions

and is very invasive; EIT cannot image soft tissues, so these techniques cannot be used either.

Ultrasound imaging shows muscle structures at a low cost, but is only applicable close to the

body surface - the complete diameter of the lower limb cannot be covered.

Table 2.2 – Comparison of popular imaging techniques by their properties to evaluate the applicability for
musculoskeletal imaging (-: negative, o: neutral, +: positive).

X-Ray CT CBCT MRI PET PET/MR US EIT
Resolution - + + + o + o -

Exposure to radiation - - - + - - + +
Popularity + + o + - - + +

Price + o o - - - + o/-
Acquisition time + + + o - - + +

Soft tissue visibility - - - + + + + -
Bone visibility + + + o - o + -
Non-invasive - - - + - - + +

After considering the other options, MRI is the best fitting imaging technique for musculoskeletal

modelling. Although it is more expensive and requires longer acquisition times, MRI provides

higher resolutions, good soft tissue visibility and acceptable visibility of bones. MRI is non-

invasive as it uses no ionising radiation and is wide-spread among hospitals. Furthermore, MRI

allows tweaking the imaging protocols for specific applications. The tweaks can highlight, for

example, the boundaries between soft tissue, which we will discuss later in this thesis. A good

understanding of the imaging technique and the protocols used is a crucial factor for selection,

design and configuration of segmentation approaches.

2.3 General Segmentation Approaches

Medical imaging nowadays is part of the routine in hospitals. The acquired images get better

in quality and improvements are made to reduce the exposure of patients to radiation. Modern

techniques allow for capturing small details and for differentiating between kinds of soft tissue.

However, with the increased number of images and their higher resolution, interpretation has

become a more complex task. Nonetheless, medical image segmentation is required for applica-

tions like radiotherapy, preoperative planning and postoperative evaluation.

Medical image segmentation, as described by Elnakib et al. [EGS+11] in a survey, is the process

of identifying regions of interest in images. Approaches range from simple ones that only exploit

intensity values or region information to model-based ones that include a priori knowledge.

The images often suffer from noise, aliasing and anomalies or may contain gaps in boundaries,

providing challenges that are hard to handle with non-model-based approaches.

Common segmentation approaches can be put into four categories, based on the features they

use. Pixel- and Histogram-based methods directly work on the intensity value of a pixel or its
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position in the histogram. The region-based methods exploit neighbourhood properties and are

often used for tubular structures like arteries, veins or the colon. Edge-based methods perform

edge detection on the image and then try to stitch the detected edges together. Texture-based

methods analyse the textures in an image and therefore can detect structures with non-uniform

intensities. A comprehensive survey of these and further methods has been made by Lorenz

[ES03]. We describe and discuss these methods below.

2.3.1 Pixel- and Histogram-based Methods

Pixel-based methods directly operate on individual pixels (or voxels) and can be simple thresh-

olds [SLJ13], ranges or more complex transfer functions between an intensity and the member-

ship of a segment. The membership of a pixel/voxel with the intensity i can be tested using the

function f (i):
f (i) =

�����������
true if n >= threshold

false if n < threshold

An example of threshold-based segmentation is shown in Figure 2.8. In a 2D example, different

thresholds for low, medium and high intensities are visible.

(a) (b)

(c) (d)

Figure 2.8 – Thresholding segmentation principle. From an original 2D image (a), pixels with low (b),
medium (c) and high (d) intensities are selected and shown with stripes.

Thresholding is used on brain MR images [SLJ13] and to determine the volume of the left ven-

tricular of the heart [JSR+08, NdGH09]. Due to the low spatial resolution and the absence of steep

gradients, thresholding can also be used for segmenting PET images [JFE+07]. Newer approaches

consider the input images to consist of two fuzzy sets [YD13], to reduce the need for a concrete

threshold. Shahbazpanahi et al. [SRM14] propose to use a genetically learned transfer function

for thresholding in 2D X-ray images for the segmentation of the lung volume. Thresholding is

a simple approach that performs well on datasets with low complexity where the detection of

very high (PET) or low values (X-ray) is needed. Since no neighbourhood information is used,
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spatial model concepts can not be expressed. To overcome this, the watershed approach has been

proposed.

The watershed approach tries to locate sinks, surrounded by high intensities in the image. This

2D driven approach is shown in Figure 2.9. It has been used for lung cancer segmentation

[KTL15] and for segmenting the Visible Human data set [CWJ05]. More sophisticated approaches

combine clustering, watershed and edge-based methods for brain segmentation [NOF+06]. While

more robust than thresholding, the watershed approach can suffer from producing many small

segments and requires further processing the re-established spatial coherence of segments.

Figure 2.9 – Watershed segmentation of the Visible Human data set (a) and working principle (b). Source:
Cates et al., Case study: an evaluation of user-assisted hierarchical watershed segmentation., [CWJ05], used with
permission.

2.3.2 Region-based Methods

Region-based methods expand the segmentation around a neighbourhood based on seed points

as shown in Figure 2.10. They are commonly used for slice-wise growing [AM14], vessel recon-

struction [AM14] and the reconstruction of massively branched, tubular structures like arteries,

veins, or µCT bone scans [RMPCO02]. Other uses are the local application of image enhance-

ments, e.g. in ultrasound images [KGG11]. While region-based methods include local neigh-

bourhoods, they lack a more comprehensive understanding of the segmented structures.

2.3.3 Edge-based Methods

Segments in images are often limited by edges, areas with high gradients. Examples of such

edges can be seen in Figure 2.11. These gradients can be detected using image kernels like the

Canny-[Can86] or Sobel-[SF73] image operators. Edge-based methods are often combined with

thresholding for the segmentation of the brain in MR images [TH11, TWM+00, JS12]. In CT, they

have been used for kidney segmentation [MM15]. 2D images are widely segmented using edge-

based methods, e.g. malaria cell detection in microscopy [SE15], the partition of photographies

[FH04], or the segmentation of man-made structures in satellite imagery [MSK04]. However, the

detected edges have to be processed, stitched and combined to create connected segments. This

complex task becomes more expensive in 3D with planes instead of edges.
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(a) (b)

(c) (d)

Figure 2.10 – Region growing principle on a sample 2D image. First a seed point is selected (a), and then
over a series of steps (b), (c), (d) the neighbourhood is explored and added (shown through stripes) if
appropriate.

(a) (b) (c)

Figure 2.11 – Fine (b) and more rough (c) segmentation of edges in a sample 2D image (a).

2.3.4 Texture-based Methods

Organs and other anatomical structures often carry a distinct texture on their surfaces. Texture

analysis [DFRVM14] can be used for distinguishing between different organs. They combine

different kernels and features for image classification [ZMLS06]. They can be used for images

with repeated features, e.g. muscle fibres [KBFW07]. Common use cases are endoscopy images

and skin analysis. MRI texture analysis is also used in brain imaging [KKGV01], abdominal

imaging [WPNK08] and analysis of lesions in breast [NCY+08] and brain [KKGV01, KPG08].

However, skeletal muscles do not carry discernible texture features [BACP12b] which could be

used for segmentation. Visible features in skeletal muscles are limited to diseases like lymphoma

[CJP+10], inflammation [SKE+09] and others [TTK12].

2.3.5 Comparison

The presented general segmentation methods can be applied to different domains. Many are

successful in highly specialised use cases. However, they require customization. Since they are

very general, they need to be adapted for more complex use cases. We have found that for
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musculoskeletal modelling in MR images, these methods are not sufficient. They either specialise

on features not present (texture and edges), non-applicable model properties (tubular, region-

based) or intensity properties that are not given in MRI (threshold, watershed).

2.4 Morphology-based Methods

Morphological operations are important techniques in processing image data. The theory behind

these was introduced by Serra [Ser82] in 1982. They were first employed to analyse images by

Haralick et al. [HSZ87]. Dilation and erosion are two main morphological operations. They apply

a structuring element to modify the boundaries of objects in a binary image. Erosion is used to

eliminate protrusions, to shrink or thin the objects. In opposite, dilation lengthens or thickens

objects. The dilation of a binary image A by the structuring element B can be written as (A⊕ B)

and the erosion (A⊖ B) can be defined as:

A⊕ B = �z�(B̂)z ∩ A ≠ �� (2.2)

A⊖ B = {z�(B)z ⊂ Ac} (2.3)

with B̂ as reflection of B and Ac as supplement of A. A more detailed description of their func-

tion and purpose in the medical domain can be found in [ZZM12]. The combination of erosion

followed by dilation is called opening, a dilation followed by erosion is called closing. Dilation,

erosion, opening and closing are demonstrated in Figure 2.12.

(a) (b) (c)

(d) (e) (f)

Figure 2.12 – This figure depicts the effects of morphological operations on an image (a) using the structur-
ing element (d). The shown operations are erosion (b), dilation (c), opening (e), and closing (f).

The application of morphological operations in (semi-) automatic medical segmentation ap-

proaches has shown great potential. Resmi et al. [RT12] demonstrate brain tumour segmentation

in MR images, Jin et al. [JIL+03] show an approach for adipose tissue segmentation for whole

body T1 MR images. A semi-manual software for fat and muscle segmentation that uses thresh-

olds has been developed by Mattei et al. [MFC+06]. Appel et al. [AALB13] give an overview of
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the challenges connected with biomaterials and discuss the different imaging techniques and

applications.

Another application of morphological operations is edge detection. Yu-Qian et al. [YQWHZC+05]

have shown this in medical images. The extra-ocular muscle boundary in CT images can be

detected with the approach of Souza et al. [SR00] and Elliott et al. [EWG+97] have shown a semi-

automatic method for human calf muscle volume measurement that combines morphological

operations with boundary following. These methods are computationally expensive.

Other approaches use a combination of morphological operations and clustering, for example,

the work of Barra et al. [BB02], or the registration of pre-segmented atlases as demonstrated by

Leinhard et al. [LJR+08] for abdominal fat segmentation. Applications of morphological opera-

tions to other regions of the body include the work of Kullberg et al. [KAJF07] which specialises

on the abdominal region and Kober et al. [KGZS11] for shoulder muscle segmentation.

Monziols et al. [MCB+06] have presented an approach for the quantification of different types of

tissue in pig carcases. They use morphological operations in MR images to detect subcutaneous

fat and have developed a prediction model for belly fat. Kimori et al. [Kim11] have shown a

method for contrast enhancement in mammographic, chest and retinal images. They use mor-

phological operations, followed by contrast modification techniques. The work of Makrogian-

nis et al. [MSF+12] is a method for measuring subcutaneous fat and muscle volume. They use

morphological operations followed by the application of active contours. Their work is focused

on single slices of the mid-thigh and the calculation of the active contours is complex. Csapo

et al. [CMS+14] have investigated age-associated differences in triceps composition by testing a

series of MR sequences that provide fat and water maps. Elliot et al. [EWRP13] use the variable

projection (VARPRO) to find an iterative solution on the segmentation of cervical spine mus-

cle fat. Thomas et al. [TNL+14] demonstrate an automated whole-body muscle segmentation in

an adapted Dixon sequence. They use a non-rigid registration process followed by threshold-

ing and fat removal and can distinguish between muscle compartments. The methods require

time-consuming calculations. There are many groups working on fat labelling in MR images

[VKA+13, HK13, PSR+13, TFM+13, AKP+14].

Overall, morphological operations are very capable when used for tissue type labelling. However,

the identification of individual structures, e.g. single muscles, is not possible.

2.5 Classification

Image segmentation is the process of assigning labels to pixels or voxels. For every pixel/voxel

additional information may be generated, such as gradients, additional channels, and derivatives.

These features, after normalisation, can be considered a vector describing the location of the

sample in a feature space. During the training of a classifier, training samples with manually

assigned labels (=belonging to a specific segment) are used. The classifier tries to find a (higher

dimensional) curve that separates the groups of samples. Once the curve is found, it can be

used to test efficiently on which side new samples are located and to assign them corresponding
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labels.

a) b)

Figure 2.13 – Example of classification. Samples (blue/x and orange/+) are plotted along two features (x-
and y-axis) (a). To divide the two groups, a parable (black, dashed) is introduced (b) which allows a fast
classification of samples as members of either group.

There exist many different approaches to classification. They include fuzzy c-means (FCM) clus-

tering [HWWL14], decision forests [GCM+11], random ferns [PGC+11], random walkers [Gra05].

Hidden Markov models (HMM) can also be used for classification [IJKY06, AIA11]. MR phase

information can be another input for classification [BFS+07].

2.6 Registration

In short, image registration is the process of finding a transformation (T) that maps a reference

image to a target image [GSKP11]. A fixed image, usually carrying an annotation, and a moving

image, which should receive the annotations, are given. The registration is the process of finding

a transformation that increases the correct overlap/overlay of the moving image on the fixed

image. These transformations could be a translation, scaling, rotation or more complex ones.

Figure 2.14 shows the principle of registration with a small example.

T

a) b) c)

Figure 2.14 – Principle of registration. A moving object (grey, a) with the bounding box should be overlaid
on the fixed image (grey, c). The bounding boxes more clearly demonstrate the needed transformations. In
this example, the transformation T (b) consists of a height scaling with the factor 1.5 and a rotation of 20°.

While commonly a regular grid is used to express the deformation of the transformation (T),

more complex meshes, tuned to specific use case, can be used [CGZM15]. This so called non-

rigid registration can also be done using B-splines [KSP07]. Registration has a high computational
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cost. Therefore, the application of multi-core CPUs or GPUs for massive parallelisation is an

active area of research [SSKH10].

Registration may also be used to register a label image [ESS12]. During this process, an initial

atlas is transformed to the target image and gives a segmentation.This segmentation from atlas

registration can also be the input to further segmentation approaches [FWCO06, FBCO07].

Depending on reference and target image, the accuracy of the registration can vary within the

image [GFW13]. Additionally, the registration process is very sensitive to changes in the subjects

pose and size. The differences can only be expressed to a certain extent before the accuracy

decreases drastically.

In the rest of this thesis, we will use the term registration to express the registration of label

image and therefore, we consider it a segmentation technique.

2.7 Graph Cuts

Graph cuts are used to solve computer vision problems efficiently through global optimisation. A

formulation as energy minimising approach (e.g. in level sets) can be reduced to the maximum-

flow problem. The image is represented as a graph with nodes for the pixels/voxels and edges

connecting adjacent nodes. The edges are weighted based on the intensity gradient between the

pixels/voxels they connect. By selecting pixels/voxels inside and outside the segment, a flow

can be assumed between these nodes. The max-flow-min-cut theorem states that the maximum

flow is limited by a minimal cut. By solving this optimization problem, this cut, which equals

the segment boundary between the inside and outside nodes, can be determined. An example

illustration of a graph cut in a 2D image can be found in Figure 2.15.

S

T

Figure 2.15 – Working principle of graph cuts. Pixels inside (S) and outside (T) the segment are defined and
a graph, weighted by gradients, is built. The cut (black) equals the segment boundary.

Ababneh et al. [APG11] have presented an application of this approach for the segmentation of

the knee bones in MR images. Zhou et al. [ZYZ10] have presented a graph-cut-based method for

industrial image segmentation. Zhu-Jacquot et al. [ZJZ07] have proposed a method to combine

graph-cuts with statistical shape priors. A similar approach has been presented by El-Zehiry

et al. [EZE08]. Chen et al. [CUB+12] have demonstrated a combination of graph-cuts and active
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appearance models to get more accurate segmentation results.

Vineet and Narayanan [VN08] demonstrated how to calculate graph cuts on the GPU. Their ap-

proach achieves better performance as it exploits the highly parallel structure of GPUs for concur-

rent calculation. Another optimisation has been proposed by Delong and Boykov in 2008 [DB08].

Their approach reduces the memory requirements for large data sets and achieves a nearly linear

increase in computational speed with respect to the number of processors in multi-core systems.

Lee et al. [LSP+10] have proposed Branch-and-MinCut in 2010. This approach combines graph

cuts and other techniques like branch-and-bound to allow a global optimisation for a wide class

of energies. This can be used to include shape- or colour-distribution priors.

2.8 Comparison

Until here, we have presented several segmentation approaches, general ones, registration, classi-

fication and more. To select a technique, we must evaluate if it can produce robust, reproducible,

and correct results. Therefore, we have defined criteria tailored to our use case to compare the

approaches.

The segmentation of the lower limb covers a large area and many different structures. Seg-

mentation approaches have to be efficient and limit their computational costs to limit the total

processing time. An approach can only be used if it is possible to integrate into practical sce-

narios. While this might be tackled in some cases by parallelisation and use of many-core CPUs

or GPUs, foundational complexity in the algorithms will be a growing problem with higher im-

age resolutions. The scope of the approaches can be either global or local. Local implies the use

of only information which is located closely, e.g. neighbouring image elements, whereas global

approaches also include a more comprehensive understanding of the structure to be segmented.

An example would be spatial constraints, e.g. minimal diameter or maximal length. In clinical

routine, the conditions of acquisitions can not be fully controlled. Subjects may have injuries

or disabilities that prevent them from taking the optimal posture during the scans. Therefore,

a segmentation approach has to be insensitive to (at least small) posture changes. Finally, the

segmentation approach has to fulfil some sanity checks. The resulting model has to be a single,

connected component, just like the structure to be segmented. A subdivided output with miss-

ing parts is not a desirable output. Finally, soft tissues usually have a smooth, gapless surface. A

segmentation approach has to preserve these properties, stairs that go beyond the quantification

of the image, should be avoided. A tabular comparison of the approaches with the presented

criteria can be found in Table 2.3.

It is important to have smooth, connected results. Therefore, we can exclude the following ap-

proaches which cannot guarantee this: histogram-, region-, and texture-based as well as classi-

fication approaches. Edge-based and morphological approaches work locally and discard global

connections. Registration is the only global approach but suffers from high computational costs

and sensitivity to posture changes. This means that none of the presented approaches fulfils

the selected criteria. To overcome this, a new group of approaches has been proposed: model-
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Table 2.3 – Comparison of presented segmentation methods using the criteria defined in this section. De-
sired values have been printed in bold letters.

Insensitive to
posture changes

Local /
global

Computational
costs

Connected
results

Smooth
results

Histogram Yes Local Low No No
Region Yes Local Low Yes No

Edge Yes Local Med Poss. Yes
Texture Yes Local Med No Poss.

Morphology Yes Mixed Low Yes Poss.
Classification Yes Local Low No No

Registration No Global High Yes Yes

based segmentation. This class of approaches integrates specific model information, like shape,

appearance, and rigidity and allows a more robust and flexible segmentation in changing imag-

ing conditions. Deformable models are a popular technique of the model-based segmentation

approaches.

2.9 Model-based Segmentation

Deformable models have been first proposed by Terzopoulos et al. in 1987 [TPBF87]. They provide

a robust segmentation approach that uses bottom-up image-based constraints and top-down

constraints from prior knowledge. Deformable models can be curves or surfaces (or of higher

dimension, e.g. for temporal segmentation). They evolve under the influence of internal and

external energies. The internal energy controls the curve’s smoothness and the external energy

aims to attract the model towards boundaries in the image domain. Deformable models are an

interesting approach as they combine geometry (to describe the shape), physics (to simulate the

behaviour) and approximation theory (for model fitting).

Deformable models have a broad range of possible applications. They have been used in com-

puter graphics [NMK+06], to calculate the deformation of clothes [BW98] and in image com-

position [MB95]. Other uses include optical flow analysis for facial animation [DM00] and the

determination of vehicle types [ZTHW12].

Due to their power and robustness, deformable models are often used in medical applications.

For example, Deserno et al. [DLM+09] presented an application for segmenting the bony or-

bit while Heimann et al. [HMS+10] proposed a grand challenge for knee segmentation. Schmid

[SKMT11] presented the segmentation of the hip bone, Snel et al. [SVG02] used a deformable

model for wrist segmentation and Rafai et al. [RBH+00] proposed a method for skull segmen-

tation. Another medical use is surgery simulation which has been reviewed by Meyer et al.

[MLM+05]. Medical simulation approaches that use deformable models to describe the mechani-

This section was previously published as:
M. Becker, and N. Magnenat-Thalmann, “Deformable Models in Medical Image Segmentation,” in 3D Multiscale Physiological
Human, 1st ed. Springer-Verlag London, 2014, pp 81-106.
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cal behaviour need proper evaluation. Marchal et al. [MADC08] proposed a new and open frame-

work to combine several metrics and models to compare different algorithms.

Several surveys on deformable models have been published, e.g. by McInerney et al. [MT96] in

1996, Montagnat et al. [MDA01] in 2001 and Hegadi et al. [HKH10] in 2010. Moore et al. [MM07]

provided a general survey of deformable models while Jain et al. [JZDJ98] have reviewed de-

formable template models, which are used for segmentation, image retrieval and video tracking.

Deformable 
models

Continuous 
Models

Explicit 
Representation

Finite Elements

Implicit 
Representation

Level sets

Discrete Models

Discrete Meshes

Mesh
Spring-Mass 

Model

Particle Systems

Snakes
Knowledge 

based

Shape based
Appearance 

based
Transformation 

based

Figure 2.16 – Classification of Deformable Models, based on [HD11]

Heimann and Delingette [HD11] have proposed a scheme for organising the different kinds of

deformable models (see Figure 2.16). They can be divided into discrete and continuous repre-

sentations [MDA01, HD11]. The discrete models can be split into particle systems and meshes.

Continuous representations can have either an explicit (snakes) or implicit (level sets) description

of their surface. These different classes of deformable models will be surveyed in this overview.

First, we will introduce active contour models, also known as snakes (Section 2.9.1). Next, several

approaches to the level sets method will be discussed (Section 2.9.2), followed by a description

of discrete deformable models (Section 2.9.3). We take a look at knowledge-based deformable

models (Section 2.9.4) that are a specialisation. Other types of deformable models are discussed

in the Appendix. An overview of external forces (Section 2.9.5) follows. In the conclusion, the

most important aspects are summarised and outlooks are briefly discussed.

2.9.1 Snakes

Active contour models, usually called snakes, are a class of deformable models with a continuous

representation based on an explicit surface description. They have been originally proposed by

Kass et al. [KWT88] in 1988 and have been applied as a method for edge detection [LL93], motion

tracking [Pet99], stereo matching [BD93] and interactive image interpretation [KWT88]. Other

applications are shape modelling [TF88, MT95] and segmentation [LL93, DKY95].

The main concept is to use an energy-minimising parametric curve or a spline, reducing the

problem to a minimisation problem. Snakes need to be initialised closely to the final shape to
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ensure that they are attracted to the correct features.

The energy of a snake a(s) can be written as

Esnake(a(s)) = Eext(a(s))+ Eint(a(s)) . (2.4)

The external energy Eext represents external constraints and image influence to get the contour

pulled towards desired image features. The factor w1 is used to weigh the ratio between internal

and external energy.

Eext(a(s)) = � −w1�∇a(s)� ds (2.5)

The internal energy expresses smoothness and tension constraints:

Eint(a(s)) = 1
2 � w2�∂a(s)

∂s
�2 +� w3�∂2a(s)

∂s2 �2 ds (2.6)

where w2 is the weight of the influence of stretching on the contour and w3 weighs the bending.

An example of a snake for segmenting the femoral shaft is shown in Figure 2.17.

Xu et al. [XP98] have proposed the gradient vector flow (GVF, see section 2.9.5.2) as a new ex-

ternal image force to improve segmentation results. This concept has been extended by Cheng

et al. [CFK04] to a directional GVF. In 1993 Ivbins and Porril [IP94] have shown a region growing

segmentation that exploits a snake with pressure force and statistical characteristics of the image.

Mitrea et al. [MBM+12] have reviewed snakes and proposed an iterative method for snake calcu-

lation. Wang et al. [WGY+07] showed a method for muscle extraction from the leg using snakes.

Kauffmann et al. [KGG+03] proposed a snake-based method to quantify cartilage thickness and

volume in MR images.

0 1 2 3

5 7 10 20

Figure 2.17 – Segmentation of the femoral shaft in an MR image using snakes. The figure shows the initial
shape and the progress after 1, 2, 3, 5, 7, 10, and 20 steps.
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Ip and Shen [IS98] proposed affine invariant active contour models (AI snakes) in 1998. AI snakes

are an efficient method of establishing a correspondence between model and data. The basis for

their energy function is formed by local and global affine-invariant features.

In 1999, Vemuri and Guo [VG99] presented hybrid geometric active models. They introduced a

hybrid geometric snake to allow for topology changes. Their model allows for the representation

of global shapes with local details.

Another approach to topology adaptive snakes has been proposed by McInerney and Terzepou-

los in 2000 [MT00]. Their T-Snakes offer topological flexibility and significantly extend conven-

tional snakes. This approach has been extended further by others [DF01, OREG05].

2.9.2 Level Sets

Level sets have been introduced in 1988 by Osher and Sethian [OS88] to overcome the difficulties

that snakes have with changes in topologies. Their work has proven to be a powerful tool in

segmentation. The ability of level sets to perform automatic topology changes can be useful in

many cases, especially for the segmentation of objects with high shape variations like shown by

Israel-Jost et al. [IJDAB14]. A common segmentation application is the ventricles, as demonstrated

by Angelini et al. [AHP+05].Implementations can be found in tools like ITK-SNAP [YPH+06] and

YaDiV [FBW11] or libraries like LSMLib 4.

Like snakes, level sets can be regarded as continuous deformable models. To overcome the draw-

backs of snakes and to allow topology changes, level sets make use of an implicit representation.

A deformable surface S is implicitly represented as an iso-surface of a time-varying scalar func-

tion, embedded in 3D. In Figure 2.18, the principle is illustrated for the segmentation of the liver.

The right side shows the 3D time-varying scalar function, on the left, the corresponding iso-

surface is shown. The iso-surface is generated from the 3D surface. Therefore, topology changes

are easily possible

Let F ∶ W × IR→ IR, W ∈ IR3. A level set S can be defined as an iso-hypersurface on F as follows:

S = {x ∈ W�F(x) = 0} (2.7)

We assume F to be a distance map that is negative inside the level set and positive outside. To

integrate a temporal evolution, we iteratively modify F and get

∂F
∂t
+ F �∇F� = 0 (2.8)

with F as speed function. The speed function controls the image influence on the evolution of the

level set surface. This formulation leads to the need to solve partial differential equations (PDE).

To define the speed function, we use the surface’s normal N and curvature k, defined as:

4. http://ktchu.serendipityresearch.org/software/lsmlib/index.html
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N = ∇F
�∇F� k = div� ∇F

�∇F� � . (2.9)

Figure 2.18 – Level set (b) and corresponding iso-surface (left) during liver segmentation.

Osher and Sethian [OS88] proposed a level set approach that exploits edges. Image gradients are

used to slow down the expansion of the model. The speed function is defined as the sum of a

curvature force and an expansion force. This force is scaled by a stopping function that makes

use of the image gradient at this point.

Using these speed values, the new distance map can be updated. The resulting contour is the

input for the next iteration step. This approach does not stop the contour at high gradients

completely but only slows it down. Therefore, it is possible that after a large number of steps,

the contour could overcome high gradients. This is a behaviour that should always be taken into

consideration. Figure 2.19 shows an example of a patella segmentation using an edge stopping

level set approach.

Instead of a gradient stopping function, an alternative approach defines an energy potential that

is consequently minimised. The foundational work on this approach has been done by Mumford

and Shah in 1989 [MS89]. The area and volume covered by the level set S are important in this

approach and can be determined using the Heaviside function, which needs to be smoothed

as described by Zhao et al. in [ZCMO96]. The calculation is performed in three steps. First, the

average image intensity for voxels inside and outside the segment is calculated. The next step

is to compute the energy of each voxel using the weighted area, volume and image intensities

inside and outside the region of interest. Finally, the distances are being updated using these

energies.

2.9.2.1 Extensions

Over the years, several extensions to level sets have been proposed. The normal iteration of level

sets is limited to single voxel distances per step. Sethian [CIKW99] developed an extension for

fast marching, allowing the contour to move more than one voxel per iteration step. This was

previously prevented by numerical instabilities. In 2001, Chan and Vese [CV01] have presented
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Figure 2.19 – Example of an edge stopping level set (green) for segmentation of the patella after (a) 10, (b)
20, (c) 30, (d) 40, (e) 60 and (f) 80 steps. It moves towards the high gradient at the boundary of the bone.

an approach to level sets that is not based on an edge-function and can operate on very noisy,

unsmoothed images. Zhang et al. [ZMSM08] showed a hybrid approach that uses both boundary

and region information to get accurate results by reducing leaking problems. Yeo et al. [YXSN09]

have proposed a new external force in 2009. Their geometric potential force is based on hypoth-

esised interaction between relative geometry and image gradients. Caselles et al. [CKS95] have

proposed geodesic active contours as a connection between snakes and geometric curves.

Other extensions focus on performance optimizations. In 1999, Adalsteinsson and Sethian [AS95]

have proposed only to calculate the speed function for a narrow band around the current con-

tour. Whitaker [Whi98] showed a computational method (sparse-field algorithm) that combines

the level sets approach with the efficiency and accuracy of parametric representation. A solu-

tion to use level sets without the need for solving PDEs has been proposed by Shi and Karl

in 2005 [SK05]. Finally, Unger et al. [UPB08] have extended geodesic active contours with GPU

usage to improve performance.

2.9.3 Discrete Deformable Models

Unlike snakes and level sets, discrete deformable models do not use a continuous representation

of their surface. Instead, they are modelled using particles or meshes (see section 2.9.3.2). In

a discrete deformable model, forces are calculated in an iterative process and applied to the

particles or vertices in the mesh. Several physical and numerical schemes can be used for this

purpose while an abort criterion terminates the segmentation. When dealing with meshes, special

attention has to be paid to local resampling, topology adaptation and the avoidance of (self-)
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intersections and collisions. Kainmueller et al. [KLZ+08] proposed coupled deformable models.

They exploited redundant structures that appear when segmenting multiple connected objects in

parallel. They demonstrated a model for femur and ilium that reduces the need for expensive self-

intersection testing. In their approach, the logical relationship can be retained using combined

intensity profiles.

Bredno et al. [BLS03] gave a description of the components needed for a discrete deformable

model. It consists of a surface, forces, a surface resolution adjustment approach and an abort

criterion. In an iterative process, forces are calculated and applied. Afterwards, the surface is

adjusted. The abort criterion defines the iteration end. This process is illustrated in Figure 2.20.

The calculation of forces, e.g. the ones described in Section 2.9.5, is the first step. If a force is

calculated for an edge or a triangle, it has to be distributed to the corresponding vertices. The next

step is the movement of the vertices. The translation of each vertex is determined according to the

selected numerical implementation. If the volume or shape of the models changes significantly,

resampling processes are often needed. They adjust the mesh to ensure the geometrical quality

of the triangles and modify the mesh in a way that triangles are small enough to fit into the

desired structures. For example, the segmentation of a small vein needs a constant refinement as

the model grows along the tubular structure. In a final step, a check is performed to see if the

iteration process should be terminated. This can be triggered for example after a certain number

of steps or once the vertices have reached equilibrium.

Forces
calculation

Forces
application

Surface
adjustment

Abort?
Yes

No

Figure 2.20 – Process of the iterative deformation of a surface (a-e) using forces.

2.9.3.1 Numerical Implementation

There are several possibilities to implement the physical properties of a discrete deformable

model. The forces may be modelled directly or as Hookean spring forces, as presented by Gilles

and Magnenat-Thalmann [GMT10] and Schmid [SKMT11]. In their formulation, a translation

from the point xi to xj is weighted by a factor ah:

Fh = ah(xj − xi) (2.10)

A common approach to describing the forces is by applying Newtonian physics, but a popular al-

ternative is to use Lagrangian dynamics [SVG02]. Other approaches include the Finite Difference

Methods (FDM) [TPBF87] and Finite Element Methods (FEM) [MT95, CCA92, CC93, TM91].
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2.9.3.2 Mesh Types

Simple segmentation algorithms often create point clouds as a result. To initialise a deformable

model, an initial shape has to be provided, which can be derived from point clouds. The conver-

sion from a point cloud can be done using the marching cube algorithm as proposed by Lorensen

and Cline [LC87] in 1987. The resulting mesh will be closed but also will contain a high number

of faces, higher than needed in most cases. In this case, reduction techniques can be applied,

but they will have an impact on the mesh quality. Miller et al. [MBL+91] have proposed an-

other approach, the Geometrically Deformable Model (GDM) in which the mesh of a deformable

model is grown into the point cloud. This results in a lower number of triangles while preserv-

ing the topology and details. Most discrete deformable models use traditional triangle meshes.

Delingette [Del94, Del99] proposed to use a simplex representation to store the model geometry.

A n-simplex mesh contains vertices that all have n+1 distinct neighbours. Arbitrary topologies

can be represented using 2-simplex meshes (each vertex has exactly three neighbours). Faces can

have an arbitrary number of vertices and can be non-planar. A comparison between simplex and

triangle meshes is shown in figure 2.21. Simplex meshes have been used for example in the seg-

mentation of cardiac structures by Montagnat et al. [MD05] and for musculoskeletal structures in

the lower limb by Gilles [GMMT06].

Figure 2.21 – Triangle (a) and simplex (b) meshes

To improve iteration performance, Lachaud and Montanvert [LM99] proposed a coarse to fine

model while Snel et al. [SVG02] have demonstrated a multi-resolution scheme. Pons et al. [PB07]

demonstrated an implicit triangular mesh that performs a Delaunay triangulation ”on-the-fly”

when needed. A permanent connection through continuous tessellation has been presented by

Gilles et al. [Gil07].

2.9.3.3 Particle Systems

A different approach to discrete deformable models are particle systems which operate mesh-

less. A collection of independent particles gets assigned physical properties, such as mass, posi-

tion, speed and acceleration and evolve according to classical Newtonian mechanics.

Particle systems can represent arbitrary topologies but pose a great challenge when it comes to

visualisation and the definition of surfaces. Szeliski and Tonnensen [ST92] have proposed to use

oriented particles to represent surfaces. They use several techniques to derive a surface from the

particles. This approach has been extended by Lombardo [Lom04] to define curvature and to get
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an implicit surface description.

2.9.4 Knowledge-based Deformable Models

Deformable models require initial shape information to achieve better results. Knowledge-based

deformable models are a group of approaches that aim to invoke more prior knowledge through

additional features. This will increase the flexibility in poor images and the robustness against

inaccurate initialisations. A comprehensive overview of knowledge-based deformable models

has been given by Schmid [SKMT11] in 2011. A simple approach would be assigning labels with

an associated behaviour to the model. Other models use the statistical or probabilistic variation

of selected features. In this section, possibilities for feature selection are discussed, followed by

the alignment process and construction of the statistical model. We conclude with the description

of the two main approaches: active shape models and active appearance models.

2.9.4.1 Feature Selection

Features select the property of the models that will be exploited. They can be summed up in

three categories: shape-, appearance- and transformation-based features.

Shape-based Features. Cootes et al. [CHTH94, CTCG95] have proposed shape-based features in

1994. They use prior shape information to improve results and limit shape variability to the shape

variations from training data. A set of points, called landmarks, represents image features. They

have to be (usually manually) selected from a large number of training data. Another approach

for these point distribution models (PDM) can be to replace landmarks with parameters of a

medial axis [YZG05].

Appearance-based Features.

To exploit image properties, appearance-based features can be such as intensity, gradient, texture,

and momentum. Intensity profiles (IP, see section 2.9.5.2) are very important and commonly used.

In 3D, appearance-based features suffer from an increased complexity (highly increased memory

and computational effort).

Transformation-based Features.

A third group of approaches are transformation-based features; they are not used commonly.

They exploit transformation parameters that can be used for the statistical deformation model.

They have also been extended to support non-rigid transformations.

2.9.4.2 Construction

The creation process of statistical or probabilistic models of feature variation can be divided

into two parts. Initially, the training models have to be aligned before the construction can be

performed.

The alignment process aims at eliminating pose changes that are not feature related. To do this,

commonly the iterative generalised Procrustes approach [Gow75] is applied.
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T∗ = argmin
T

�
i
��yi − T(x)��2 (2.11)

The transformation T∗ is obtained by finding a transformation that minimises the distance be-

tween a model x and all other models yi. The resulting transformation T∗ is a combination of

translation, rotation, and scaling. Once this transformation is applied, all models are in a com-

mon coordinate frame: the model space of the point distribution model. Although aligned, these

models still have a substantial amount of shape variability.

The actual construction process uses the corresponding and aligned features and performs a

principal component analysis (PCA). PCA has been introduced by Pearson [Pea01] in 1901. This

technique has been used for the point distribution model (PDM) by Cootes and Taylor [CHTH94].

Given n shapes Y1, Y2, ..., Yn, the mean shape can be defined as

Y = 1
n

n�
i=1

Yi . (2.12)

The covariance matrix is defined as

S = 1
n − 1

n�
i=1
(Yi −Y)(Yi −Y)T (2.13)

and its eigenvectors correspond to the largest eigenvalues of S. The eigenvectors describe the

most significant variation modes from which a subset (much smaller than the number of points)

is used.

This approach needs a sufficiently high number of training models. Otherwise, a poor generality

is given, leading to poor adaptation to new data and enforcement of an over-constrained be-

haviour. Approaches to solving this problem include Bayesian inference [ER00], synthetic shape

variations [CT95] or the derivation of new shapes from existing training shapes [TKLL06].

2.9.4.3 Active Shape Models and Active Appearance Models

Active Shape Models (ASMs) use a statistical model of shape feature variations. To implement

them, a model fitting process constrains movement to the modes defined by the trained models.

In each iteration step of this process, the closest parametric model to the model X with the

deformation dX is searched for and forces are applied to deform the model towards this shape.

Given the model shape Y, the model X can be represented as follows:

X +MY +Xc (2.14)

with M being the matrix for scaling and rotation and Xc the translation vector of the centre of X.

The estimation of the pose adjustment can be done efficiently using a standard least-squares ap-

proach as described in [CTCG95]. An example for the segmentation of lung and cerebellum using
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ASMs is given by Ginneken et al. [GFS+02]. Lamecker et al. [LKW+07] presented an approach to

use ASMs for the segmentation of the bony orbit.

Active Appearance Models (AAM) have been proposed by Cootes et al. [CET98] in 1998. They

combine a statistical model of the shape and the grey-level appearance. This extends the models

for shape Xs with another one for the image texture Xt, assuming that all textures have been

warped to the mean shape. Olabarriaga et al. [OBN04] have presented the use of AAMs for

thrombus segmentation; Shen et al. [SLH11] have extended the approach to active volume models.

2.9.4.4 Conclusion

Knowledge-based deformable models are a powerful tool for segmentation. They can express a

wide range of valid shape variations and can enforce proper model evolution in areas of low

information or in the vicinity of artefacts. However, they rely on large collection of required

training data. While some training data can be derived from fewer models, the required amount

of models is very high. Since there is very little imaging of the whole leg, there is not sufficient

training data available for muscle segmentation. Furthermore, muscles are prone to high shape

variations, which also depend on the pose during acquisition.

2.9.5 External Forces

Forces determine the deformation of the model. They bridge the gap between the model with

its internal forces and the image domain. Over the years, these external forces have evolved

from intensity or gradient based image forces to complex approaches using statistics or vector

flow techniques. In this section, we will present some basic forces that are commonly used in

deformable models. Advanced forces follow as an extension. We conclude with the description

of interactive forces. All following forces will be calculated for a vertex x with the normal nx and

will be scaled by a factor a.

2.9.5.1 Basic Forces

Pressure Force

In areas with low image information, the model tends to stay at its current position as there

are no image features to attract it. To overcome this issue and to reduce the need for very close

initialisation, Cohen et al. [Coh91] have proposed a balloon or pressure force.

Fpressure(x) = apnx (2.15)

It evolves the model along its surface normals and depending on the sign of ap the model can

either shrink or expand.
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Laplacian Smoothing Force

Image noise or artefacts may stop small parts of the model. To prevent this from happening,

model smoothing can be applied. An example for a common approach is the Laplacian smooth-

ing:

Fsmooth(x) = as
1

�Ux(D)� �y∈Ux(D)
y − x (2.16)

It calculates the centroid of the neighbouring vertices and defines a force towards that point.

Improvements have been proposed by Shen et al. [SHL+11]. Figure 2.22 shows an example for

smoothing (transformation from cube to sphere) and pressure force (growing).

Figure 2.22 – The combination of pressure force and smoothing transforms a cube into a sphere.

Simple Image Force

A simple approach to include image features is the use of normalised intensity gradients that, for

example, can be calculated using central differences. Along the vertex normal, several gradients

are being calculated and the force will be directed towards the higher gradients:

Fimage(x) = −ainx
dmax�
dmin

k(d) ∗F(x + d ⋅ nx) (2.17)

where k(d) is a weighting factor on the distance and ∗ is the convolution operator. An image

interpretation factor F can be calculated, in this case, the gradient.

2.9.5.2 Advanced Forces

The basic forces can be extended by more advanced approaches to improve results and runtime.

Image Intensity Profiles

Instead of simply using the image gradient, intensity profiles can be used to compare the inten-

sity curve along the normals. By doing so, the desired structure can be described more powerful

and it allows a distinction between noise-induced gradients and targeted edges. This approach

is commonly used [BMVS02, CHTH94, CT01]. Clustering has been proposed to reduce the com-

plexity of the high number of intensity profiles. For instance, Chung and Delingette [CD09] have
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proposed an Expectation-Maximization-based algorithm for clustering and classification. An ex-

ample of image intensity profiles in a magnetic resonance (MR) image of the femur is shown in

Figure 2.23.

A

B
C

D

A
B
C
D

Figure 2.23 – Example of intensity profiles sampled in an MR image of the femur.

Multiscale Gaussian Potential Force

The Gaussian Potential Force is designed to attract a model towards image features and is defined

as

Fg(x) = ag�∇[Gs(x) ∗ I(x)]�2 (2.18)

with I(x) the intensity image, Gs(x) a Gaussian function, ag a weight and ∗ the convolution

operator. This force has been extended by Terzopoulos et al. [TWK87] to a multi-scale scheme. To

overcome the need of an initialisation close to the final contour, they propose to use a large initial

value of s to broaden the search space. Once equilibrium has been reached, s could be decreased

to maintain the accuracy of the original approach. Until now, no criterion has been established

to determine when to reduce s, limiting the utility of the multi-scale Gaussian potential force.

Distance Potential Force

To extend the attraction range, Cohen and Cohen [CC93] have proposed to use a distance map

in 1993. The values in this map are obtained by using either the Euclidian distance [Dan80] or

Chamfer distance [Bor84] to calculate the distance between a voxel and the closest boundary

point.

Dynamic Distance Force

This force extends the distance potential force to include a larger spatial area around the sur-

face [Sap95, AS99]. The dynamic distance has improved handling of boundary concavities. It

is calculated by examining the image for features or gradients along the surfaces normal. The

maximal search distance is limited by a threshold Dmax.
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Fdynamic(x) = ad
D(x)
Dmax

n(x) (2.19)

The resulting force can pull the model towards distant image features. Nonetheless, the search

is very time-consuming and has to be repeated during every step. Lowering the threshold can

shorten the runtime but also reduces the attraction range for image features.

Gradient Vector Flow

In 1998, Xu and Prince [XP98] have proposed a new external force model. Their Gradient Vector

Flow (GVF) field is calculated as the diffusion of an intensity image. It allows a more flexible

initialization and supports a more efficient convergence to concavities.

Ng et al. [NFO+07] present a medical image segmentation that uses a feature-based GVF snake.

The iteration is stopped once the accuracy is sufficient by exploiting image features. The work

of Zhao et al. [ZCZ11] has improved the dynamic GVF force field and introduced a strategy of

deformable contour knots for a B-spline based model.

Omnidirectional Displacements

When working with deformable surfaces, forces are commonly directed along a line, usually the

surface’s local normal. Kainmueller et al. [KLH+12] have proposed omnidirectional displacements

for deformable surfaces (ODDS) that consider a sphere around each vertex. By doing so, a global

optimisation can be performed. This technique has been proven to be useful in regions of high

curvature, e.g. tips. They have also proposed a hybrid approach, fastODDS, to overcome the high

memory and runtime requirements.

2.9.5.3 Interactive Forces

Image artefacts, different protocols and implants can cause problems in the automated segmen-

tation of medical images. In a clinical environment, operators can guide the deformable model to

overcome these problems. The so-called interactive forces provide a link between real-time user

input and model iteration.

Kass et al. [KWT88] have proposed two interactive forces. Spring forces are designed to pull the

model in the direction of a point p. Their strength is proportional to the distance from p:

Fspring(x) = as(p − x) (2.20)

The opposite effect can be achieved using volcano forces. They push a model away from a point

p:

Fvolcano(x) = av
r
�r�3 (2.21)
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with r = x − p. Interaction forces often are only computed for a small neighbourhood to reduce

computational costs. When using all points, the complexity is of order O(n2), while a small

neighbourhood m with m � n can reduce the complexity to order O(n ⋅m). Other approaches

include smart paint [MS12], and live wire [PHA08]; an overview can be found in [ZX13].

2.9.6 Conclusion

We have presented an overview of the current state of deformable models in medical image seg-

mentation. They are a powerful tool for the given image conditions and, therefore, play an im-

portant role. We have surveyed current snakes and level sets methods that are examples for con-

tinuous shape representation. These usually two-dimensionally used approaches achieve good

results with high computational costs. However, they are highly dependent on a good initial-

ization. Contrary to snakes, level sets can adapt to different topologies automatically. Discrete

deformable models are three-dimensional approaches, which can be represented as particle sys-

tems or through different mesh types. They can also be based on several physical foundations.

They provide great flexibility and have proven useful in many cases. Depending on the structure

of interest, deformable models have to be carefully configured and parametrised. An extension

to deformable models is the incorporation of prior knowledge to make them more robust in com-

plex image conditions. These knowledge-based deformable models exploit prior knowledge on

shape and appearance. They need a large training base and complex training but are very robust.

We have presented several forces that cover the tools needed for creating deformable models.

2.10 Multi-Channel Image Processing

In the previous section, we have found that deformable models are a good segmentation tool

that can provide comprehensive and robust results. However, like all methods, they rely on

the amount of information carried by the input images. For optical acquisition, it is possible to

increase this information by using colour- instead of grey-scale-images. With special acquisition

sequences, it is possible to generate extra channels of information in MR scanners. This additional

information benefits segmentation approaches, including the ones we have discussed in the pre-

vious sections. In this section, we will discuss how these methods benefit from multi-channel

data and how they use it. We have grouped promising approaches based on the grouping in the

previous sections: statistical, texture-based, model-based, registration, and other.

Statistical segmentation approaches work on image features. The feature space can be largely in-

creased by using multi-channel input. Pauly et al. [PGC+11] use random ferns to produce multi-

dimensional regression output that can be used to detect and locate organs. Their approach

works on multi-channel dixon images. Geremia et al. [GMC+10] use spatial decision forests in

multi-channel MRI data to detect multiple sclerosis lesions in the human brain. A probabilistic la-

belling approach using multi-shapes of pre-trained priors is presented by Changizi et al. [CH10].

Grady [Gra05] use a random walker and priors for image segmentation in different modalities.

Pham [Pha03] present an unsupervised classification method that uses edge-clustering. Ange-
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line et al. [AIJL02] propose an improved statistical model for multi-channel images. They use a

fuzzy segmentation process and test it on the Visible Human data set and on brain MRI. Zhang

et al. [ZBS01] demonstrate a segmentation of multi-channel brain images. They use a Hidden

Markov Random Field model and the Expectation-Maximization Algorithm to generate their re-

sults. An irregular Markov Random Field has been proposed by Smits and Dellepiane [SD97].

They apply the MRF to handle properly low signal areas and use optical remote sensing data to

validate their approach. Bourgeat et al. [BFS+07] propose to use the MR phase information as an

additional input channel.

Derived from statistical segmentation are texture-based approaches. The additional information

gives more means to express the texture and makes it easier to define and detect it. A study of

local features and kernels has been done by Zhang et al. [ZMLS06]. They are used for texture

classification and object categorization. Their work uses colour, hence multi-channel, images.

Lakshmanan proposes [Lak01] a texture analysis method. They use a hierarchical, multi-scale

scheme and apply it to the segmentation of real-world scenes. Randen and Husoy [RH94] pro-

pose a multi-channel filtering approach improved image texture segmentation. Dubuisson and

Gupta [DJG00] propose to use texture fusion in aerial images for GIS applications.

Some work has been done on using model-based approaches in multi-channel images. Bogovic

et al. [BPB13] present a geometric deformable model that can use multiple objects in parallel and

works on colour images (multi-channel). Lehmann et al. [LBS03] give a review of active contours

in medical image segmentation in single- and multi-channel images. They classify the methods

by dimensionality, object representation and parameter selection. Xu et al. [XHY02] use a Markov

random field based active contour to segment multi-channel images. They use colour images

and multi-contrast MRI. A level set approach is followed by Vese and Chan [VC02] that uses

multiple-phases. They test their framework on different MRI and colour images. Multi-channel

brain data has been segmented by Vacheta et al. [VYBS95] using a deformable active contour

model. Zhu et al. [ZLY96] propose to use multi-band information to improve image segmentation

using snakes.

Multi-channel information may also be used to improve registration results. Heinrich et al.

[HJB+12] introduce their modality independent neighbourhood descriptor that can be used for

multi-modal deformable registration of an atlas. Multi-modal here means that either multiple

data sets from different devices like CT and MRI, or different sequences of the same modality

can be used. Their work shows better results than other techniques like entropy images or condi-

tional mutual information. Guo [Guo06] shows the use of multiple modalities in GVF for image

registration. Chang et al. [CSV00] present an active contour without edges which they apply on

vector-valued (multi-channel) images. They present an example on the identification of nebula

in colour space images. Skull segmentation is shown by Rifai et al. [RBH+00] using deformable

models that compensate for partial volume effects in their MR images.

There are several other segmentation approaches that have been used with multi-channel images.

Plaza et al. [PPVM06] present their work of using mathematical morphology for the segmentation
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of multi-channel images. A hierarchical approach to colour image segmentation has been shown

by Cheng and Sun [CS00]. They use homogeneity to identify the sub-parts of colour images. Heigl

et al. [HPN99] work on the tracking of objects in multi-channel images. Malladi et al. [MSB96]

discuss the use of the multiple channels of colour images in their min/max curvature flow filter.

Pien and Gauch[PG94] also work on multi-channel brain data, using variational segmentation.

The work of Fechter et al. [Fec11] is about a manual segmentation approach that has time as an

additional channel.

Table 2.4 – Classification of multi-channel segmentation approaches.

Approach Publications
Statistical [PGC+11], [GMC+10], [CH10], [Gra05], [AIJL02], [ZBS01], [SD97], [Pha03]
Texture-based [ZMLS06], [Lak01], [RH94]
Model-based [BPB13], [LBS03], [XHY02], [VC02], [VYBS95]
Registration [HJB+12], [Guo06], [CSV00], [RBH+00]
Other [PPVM06], [MSB96], [CS00], [HPN99], [PG94], [Fec11]

In conclusion, we have found that the use of multi-channel over single-channel input provides

the segmentation approach with more information. This leads to more robustness and better

results. Furthermore, some structures become visible which have been invisible in other chan-

nels. We list an overview of the approaches and publications in Table 2.4. The improved results,

stemming from multi-channel input and the ability of MRI to generate this, motivate our choice

to work with multi-channel MR images. In this section, we have shown that several classes of

segmentation techniques benefit. However, while benefiting from multi-channel information, the

disadvantages as presented in the previous sections, still prevail. Based on this conclusion, a

model-based approach, in particular, deformable models, seems to be the most appropriate for

the segmentation of musculoskeletal structures of the lower limb in multi-channel images.

While many segmentation approaches have been tested or used with multi-channel images, de-

formable models have not yet been used with them for muscle segmentation. Muscles are hard to

delineate and current segmentation approaches are computationally costly (Section 2.12). There-

fore, we expect the combination of deformable models, which have lower computational costs

and are robust, with multi-channel image data, which carries additional information to help find-

ing the fine delineation between individual muscles, to show improved results in comparison to

the current state of the art. To further investigate the performance of our chosen approach, we

will briefly present the anatomy of the lower limb with a focus on muscles before we discuss

related work in muscle segmentation.

2.11 Muscles of Thigh and Calf

Muscles can be divided into three types: skeletal, cardiac (heart muscles) and smooth muscles

(involuntary/subconscious contraction in the walls of hollow organs, e.g. blood vessels). Skeletal

muscles can be contracted consciously and are attached to bones (through tendons). They are

formed by many individual compartments, bundles of muscle fibres or myocytes, that all share

the same orientation. Between these compartments can be adipose tissue. Skeletal muscles have
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an origin and an insertion point. A visualisation of the structure of muscles can be seen in Figure

2.24.

Figure 2.24 – Muscles are attached to the bones through tendons. They are composed of a large number
of muscle fibres which are grouped into fascicles. To nurture the muscle, it crossed by fine blood vessels.
Source: NIH National Cancer Institute, USA

Muscles are stimulated by electrical impulses, transmitted through nerves. The maximum force

possible depends on the cross-sectional area but is often increased through the use of levers,

e.g. quadriceps through patella. Skeletal muscles usually work as a pair, so that there always is

an opposite movement possible, e.g. for extension and flexion. For many movements more than

just a pair of muscles is involved; muscles show a complex interplay forming groups for certain

movements. This flexibility results in a wide range of motions that are possible with a limited

number of muscles.

2.11.1 Muscles of Thigh

The thigh can be subdivided into three muscle compartments; anterior, medial and posterior

compartment. Figure 2.25 shows the muscles of the thigh, from an anterior and posterior per-

spective as well as a traversal, mid-thigh profile.

The anterior compartment of the thigh contains the muscles sartorius, and the quadriceps, con-

sisting of rectus femoris, vastus lateralis, vastus intermedius, and vastus medialis. Their main task is

knee extension and hip flexion. They originate from hip and femur and insert to the tibia, via the

patella where the quadriceps tendon turns into the patella ligaments.

46



2.11 Muscles of Thigh and Calf

Figure 2.25 – Muscles of the thigh. Source: Henry Gray (1918) Anatomy of the Human Body

The medial compartment contains the adductor muscles of the hip and is formed by the gracilis

muscle and the adductors. Depending on the source, the pectineus and obturator externus muscles

can also be considered to be part of the medial compartment. The adductors are formed by these

muscles: adductor longus, adductor brevis, adductor magnus, and adductor minimus. Together they

are used to pull the thigh medially, to support the trunk during sideways movements and they

contribute to thigh flexion.

The posterior compartment consists of three muscles located in the posterior part of the thigh.

These muscles are semitendinous, semimembranosus, and biceps femoris with its long and short head.

Together with their tendons, they are known as hamstrings. They connect knee and hip joint and

play a crucial role in common movements like walking and running. They act as antagonist to

the quadriceps in the deceleration of the knee extension.

The different compartments are separated by the medial intermuscular septum and the lateral inter-

muscular septum. The medial intermuscular septum of thigh separates the anterior compartment

of the thigh from the medial compartment; it is located between the vastus medialis, and the

adductors. The lateral intermuscular septum separates the anterior compartment of the thigh

from the posterior compartment; it is located between the vastus lateralis and biceps femoris.

2.11.2 Muscles of Calf

The muscles of the calf can be divided into four compartments; the anterior compartment, the

lateral compartment, and the superficial and deep posterior compartment. These compartments,

along with a traversal profile are shown in Figure 2.26.

The lateral compartment contains two muscles, fibularis longus and fibularis brevis. They perform
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Figure 2.26 – Muscles of the calf. Source: Henry Gray (1918) Anatomy of the Human Body

the extension and flexion of the foot.

The anterior compartment is formed by tibialis anterior, extensor hallucis longus, extensor digitorum

longus, and fibularis tertius. They are used to dorsiflex and extend the digits and the great toe.

The fibularis tertius dorsiflexes the ankle and aids in the eversion of the foot.

The superficial posterior compartment is formed by the plantaris muscle and the triceps surae

muscle pair, consisting of the gastrocnemius and the soleus. The accessory soleus and the Achilles

tendon are considered to be part of it. They stabilise the ankle and are an important part of

forward locomotion. Jumping is another movement that relies on the contribution of the triceps

surae.

The deep posterior compartment contains the popliteus muscle and the muscle in the tarsal tunnel,

which are flexor hallucis longus, flexor digitorum longus, and tibialis posterior. The popliteus unlocks

the knee during walking; the other allow the bending of the foot.

These compartments are separated by the anterior, posterior, and transverse intermuscular sep-

tum. The Anterior crural intermuscular septum separates the lateral from the anterior com-

partment of the calf. The Transverse intermuscular septum is located between the deep and

superficial posterior compartments. It is connected to Tibia and Fibula. The Posterior crural in-

termuscular septum separates the Soleus from the deep posterior and the lateral compartment.

2.12 Muscle Segmentation

The reconstruction of anatomical structures from CT or MRI is a complex task, as demonstrated

by Gargiulo et al. [GHR+14]. They present three studies on evaluating muscle density changes,
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impact on bone and muscle after hip replacement and the electrical behaviour of the brain. The

approaches for muscle segmentation fall into three main categories: classification, model-based,

and atlas-based.

Classification approaches can be used to detect muscle tissue and with additional processing

to identify muscles. Baudin et al. [BACP12b, BACP12a] propose a mathematical formulation

that uses prior knowledge in a random walks formulation. Their statistical shape atlas is then

coupled to it. Their results show potential but still need improvement. They use a graphical

model to determine automatically seed locations. This work is based on their previous approach

[BACP12c]. Kober et al. [KGZS11] show a method to identify muscle tissue in 4D MRI data

of the upper arm. They use it for a visualisation of deformations during flexion. Mirzaalian

et al. [MHHR11] use a manual segmentation of knee flexors and extensor for shape analysis

in diagnosis. Barra and Boire [BB02] present a possibilistic clustering algorithm that reliably

separates fat from muscle tissue. A compartmental labelling approached is tested by Thomas

et al. [TNL+14]. Andrews et al. [ACH14] have proposed a new log-ratio transform for mapping

probabilistic labels to vectors for learning statistical models. They present their segmentation on

the thigh. A statistical model for the segmentation of the rectus abdominis muscle in CT images

has been proposed by Kamiya et al. [KMZ+13]. The classification of muscle tissue in the thigh

has been shown by Imamoglu et al. [IGTH+15] in T1 and T2 images. They achieve good results

but do not identify individual muscles.

Model-based approaches carry a low amount of information about the structure to be segmented.

A model-based approach for skeletal muscle segmentation in MR images has been proposed

by Jolivet et al. [JDR+14] . They use a segmentation in several slices which is then interpolated

through the data set. Firbank et al. [FHWC01] show a method that uses active contours to segment

the extra-ocular muscle. Andrews et al. [AHY+11] present a probabilistic approach for extension

of knee extensor and flexor muscles. They use shape-prior that can indicate regions of uncer-

tainty. Gilles [Gil07] proposed a deformable model for muscle segmentation in low-resolution

MR images. However, it has long calculation times.

A recent work of Avendi et al. [AKJ16] explores the combination of deep learning (DL) and

deformable models to achieve a fully automatic segmentation of the left ventricle. The DL is

applied to the ground truth and learns the shape of the structure. This knowledge is applied

during the deformable model segmentation.

Using an atlas with annotated muscles has been proposed by several groups for muscle segmen-

tation. Ahmad et al. [AYDM14a, AYDM14b] present an approach for thigh where they identify

muscle tissue in general and muscle compartments. Individual muscles are not addressed. Other

works have addressed the individual muscle segmentation in the rat leg. The work by Sdika

et al. [STL+15] present a multi-atlas approach that benefits from imposed plane restrictions which

lead to high accuracy and reliability.

All segmentation approaches require manual segmentation for training and evaluation. Barnouin

et al. [BBBV+13] assess the reliability and quality of manual segmentation of the rectus femoris
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muscles. The results show that manual segmentation is a feasible way to evaluate the quality

of automatic approaches. An approach to simplify the manual segmentation task has been pro-

posed by Ray et al. [RMN+14]. Their framework is built on previous manual segmentations and

a matching of that database using a cylinder projection of the thigh.

2.13 Conclusion

In this review of related work, we have looked at different kinds of segmentation approaches,

how multi-channel data can improve segmentation results and current approaches to muscu-

loskeletal modelling.

We have found general segmentation techniques (threshold-, region-, edge-, and texture-based) to

be not sufficient for musculoskeletal segmentation. Morphological operations have been shown

to be powerful in the labelling of tissue types. However, identification of individual structures is

not possible. We have then discussed classification, registration and graph-cuts and found that all

these approaches lack a comprehensive model understanding needed for muscle segmentation.

Model-based approaches resolve this. Deformable models, in particular, are a powerful tool for

model-based segmentation. We have described several types.

Modern medical imaging devices allow creating images that have multi-channel information.

Multi-channels can result from colour images (RGB) or special acquisition sequences in MR scans

(T1-, T2-weighted brain scans, mDixon scans). After reviewing the literature, we have found the

additional information from multi-channels can improve segmentation outcome and the quality

of results.

Finally, we have reviewed current approaches for muscle segmentation and have identified the

main three categories they fall into classification, atlas-based and model-based approaches.

Several imaging techniques are widely available nowadays. We have reviewed them and their

working principles and have found MRI to be most suitable musculoskeletal anatomical mod-

elling. It can provide high-resolution data in reasonable durations and the multitude of protocols

allows the highlighting of soft tissues. Furthermore, it is possible to create multi-channel image

data in a single scan. This provides additional input without increasing acquisition time. There-

fore, we propose to use the mDixon sequence which produces four different channels.

Based on our survey of related work, we have found that there is only little use of multi-channel

images. While multi-channel data provides additional input for all kind of applications, most

approaches use them for classification or texture analysis. We have found only little application

with model-based techniques and none in combination with deformable models.

As we have found, deformable models are a robust and flexible technique for segmentation. We

have presented related that uses deformable models for muscle segmentation. however, muscle

segmentation has been found to be complex task due to the anatomical complexity. The con-

trast in soft tissues is often low and the distinction between individual muscles is complicated

with very little visibility. We propose to combine deformable models with multi-channel image
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forces for musculoskeletal segmentation as our contribution. Multi-channel information requires

a reconsideration of the full pipeline from acquisition, processing, and initialisation to final seg-

mentation. With the growing amount of data, special attention has to be paid to the increased

memory and calculation requirements to ensure timely results can be integrated into clinical

processes. We will present our approaches in the following chapter.
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3.1 Motivation

Image acquisition is a crucial step in the anatomical modelling process. Mistakes and false as-

sumptions during protocol design and application can cause problems in all the later stages and

may require inefficient workarounds or could impact segmentation quality. After careful consid-

eration of several imaging techniques (see Section 2.2), we have chosen MRI and have developed

an acquisition protocol that is tailored for our application. To achieve best results, we have used

surface coils for signal amplification and have designed a special support for them to allow us

to generate seamless data sets. We are using two different acquisition protocols that highlight

muscle boundaries to generate the multi-channel data used during segmentation. The raw image

data from the scanner has to be processed to be used in the segmentation. The image data has

been acquired in several stacks, due to the size of the coil used. We present a method stitch these

stacks together. The total scanned volume is larger than the subject and related to the field of

view of the scanner. We discuss an approach to detect the surrounding air and crop the image

data so that only the subject remains to reduce the storage requirements. This is crucial for our

high-resolution data that is multiplied by the number of channels.

3.2 Image Acquisition

Image acquisition is a crucial part of the process; all following steps rely on the acquired image

data. The acquisition relies on various factors; together they are called protocol. Based on our

analysis in Section 2.2, we have chosen MRI as imaging modality. It gives good contrast for

soft tissues while avoiding harmful ionising radiation. Our goal is to define a protocol for the

musculoskeletal imaging of the lower limb. MRI offers us the right contrast. Furthermore, for the

protocol, we have to define the sequences, the resolution, the number of sub-scans, the position

of the subject and if we use additional equipment like surface coils for signal amplification.

The acquisition protocol is a compromise of several variables:

— Resolution: The image resolution determines the visibility of structures. It has an impact

on the duration of the acquisition as it increases with the resolution. Higher resolutions

increase the level of noise. However, coils can be used to minimise that impact.

— Signal to Noise Ratio (SNR): The signal to noise ratio is influenced by the resolution

and the duration of the scans. Higher resolutions usually carry more noise. Shortening

acquisitions also increases noise, whereas longer sampling during the scan can reduce it.

— Structures: The choice of visible structures can influence the selection of sequences for

highlighting. To gain better visibility, other structures can be suppressed, which must be

considered during protocol design. The amount of needed detail and the size of structures

directly influence the choice of resolution and consequent acquisition duration.

— Coils: Additional surface coils can be used during acquisition to increase the signal and

reduce the noise. These coils can also increase the resolution or reduce the acquisition

duration. However, they have to be placed close to the subjects and might cause deforma-
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tions. Coils have a limited field of view which can cause the need to move them during

acquisition.

— Duration: The duration of the acquisition is not only an economical cost factor but also

determines the resolutions that can be achieved. Some protocols can be time-consuming

and, therefore, might be limited in resolution.

Based on these factors, we have developed a setup and have selected coils and sequences in

collaboration with experienced radiologists. During the two year process, many optimisations

have been made that lead to the current iteration which we will describe in the following sections.

3.2.1 MRI Setup

We use a Philips Ingenuity TF PET/MR scanner available in the facilities of the University Hospi-

tal of Geneva (HUGE) for the development of the scanning protocol. This scanner combines a 3T

MRI with a PET device, connected by a turning scanner table. The combination of the anatomical

imaging from MRI and the PET metabolic information in the same coordinate system, allows ad-

vanced diagnostic options. However, in our study, we have focussed our work on the MRI data

because the PET data is of a low resolution which prohibits contributions to the segmentation.

The volume of interest has been defined to be the lower limb, starting at the femoral head and

ending at the ankle. During a later evaluation with gait specialists, we have expanded the volume

to include the hip. The subjects are placed in a supine position on the scanner table. This causes

some deformation on the subjects soft tissues due to the pressure of the body. This has been

ruled favourable over a standing MRI, which would suppress this deformation but only gives

lower resolution results. The subjects have been placed on cushions for comfort. Small supports

have been placed under the knee joints, causing a small bending; this allows the subjects to carry

out small movements which are required for a study performed in parallel (see [JTD+14]). The

subject is automatically moved , feet first, by the table through the MR scanner as its field of view

is smaller than our volume of interest.

Initial scans have raised the need for a higher resolution to distinguish fine anatomical details.

Therefore, we have chosen to use an additional surface coil for signal amplification.

3.2.2 Coils

Acquisitions that cover large parts of the body pose a challenge to setups, especially when coils

are used. Often these coils do not cover the complete volume of interest, and the acquisition has

to be broken down into several sub-acquisitions, called stacks. The subject must not move in

between to get a continuous image. Furthermore, special care has to be taken when using coils.

Usually, they are put as close a possible to the subject, often directly on the skin. This results in

deformations of the soft tissue not only on the surface but also on deeper layers like the muscles.

When the coils are being moved, this deformation changes. This prevents the stitching into a

single continuous image.

The coil used in this protocol consists of an anterior and posterior part. Our setup has two
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separate parts to handle these coils. The posterior coil has been made movable by placing a

board between the patient and the table, for the anterior coil we have developed another support

structure. We will describe these structures in the following sections.

3.2.2.1 Posterior Coil

We have designed a board for the subject to lie on which is designed to allow moving the coil

under the subject without body contact. It has the same dimensions as the scanner table and a

key that fits the slot of the table. This way, it is fixed to the table and is stable while the table

moves or the coil is repositioned.

wings

Figure 3.1 – Dimensions of the board have selected to match the table of the scanner. The indentation allows
accommodating the wings of the coil, leaving additional space on one side for the connecting cable.

The board has indentations on both sides to accommodate the “wings” of the coil (see Figure

3.1). The indentation on the right side has been prolonged to fit the connecting cable of the coil.

The length has been set to 125cm to cover subjects of any sizes from hip to toe.

Near the leg, the board is 32.7cm wide, which is sufficient for normal sized subjects. To increase

the stability of the setup and to prevent the board from bending under the weight of a subject,

flexible blocks are placed along a guide below the board (see Figure 3.2). They have rope handles

that allow moving them so that they are always placed close to the coil. The complete board on

a scanner table with a coil is shown in Figure 3.3.

sc
an

ne
r

coil

scanner table

wooden board

Figure 3.2 – Illustration of the placement of the coil (blue) above and below the subject with the help of
the board (orange). The arrows indicate the movements of the coils that allow a complete acquisition of the
complete leg.
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3.2.2.2 Anterior Coil

The anterior coil has to be placed above the subject. As the dimensions of the hip are usually

larger than the dimensions of the calf, the support structure for the anterior coil has to support

different heights.

Our setup consists of two inverse u-shaped structures that hold the coil at its superior and inferior

end. They are made of two wooden poles that are connected by a plastic screw. The poles have

multiple holes (see Figure 3.3, left) for the screws at different heights to allow adjustments. The

width can be controlled by the position of the screw nuts (see Figure 3.3, right). The poles fit into

the comb structure of the “wings” of the coil. Velcro straps and the placing inside the combs give

the structure enough stability.

3.2.3 Sequences

During the development of the protocol, several sequences have been evaluated based on the

previously defined criteria (resolution, duration, visibility). Numerous tests have found that two

sequences (T1 Turbo Spin Echo and mDixon) fit our criteria best. By using both, we can benefit

from their advantages.

The two sequences which are used in the image acquisition - T1 Turbo Spin Echo (TSE) and

mDixon - are using the following parameters:

— T1 TSE: TR = 633ms, TE = 20ms, resolution = 0.67× 0.67× 4mm, field of view = 430× 273×
400mm, and gap between slices = 1.33mm.

Figure 3.3 – Scanning of a subject using the full set-up. The poles and their role in holding the anterior coil
are clearly visible.

aus

57



Chapter 3. Image Acquisition

— 3D mDixon: TR = 4.6ms, TE1 = 1.45ms, TE2 = 2.8ms, resolution = 0.78× 0.78× 1.50mm, and

field of view = 500× 336× 195mm.

The T1 TSE scans have a slice thickness of 4mm and between the individual slices is a gap

of 1.5mm. The mDixon slices carry information from a 3mm slice. However, they overlap with

1.5mm and the resulting slice thickness, therefore, is 1.5mm.

The scans give different magnitude based images from mDixon and T1 TSE sequence. The

mDixon magnitude images are the in-phase image II , the opposed-phase image IO, the fat image

IF and the water image IW . The T1 TSE scan produces a magnitude image IM. Examples of these

images can be seen in Figure 3.4.

b)a) c) d) e)

Figure 3.4 – Different modalities: mDixon (in-phase, water, fat, and opposed-phase) and T1 TSE (magni-
tude).

The total acquisition time depends on the leg length of the volunteer. The acquisition takes

about seven minutes per stack, moving the setup can be done in four minutes. Subjects usually

range from three to five stacks. This leads to total times from 29 minutes with three stacks to 52

minutes for five stacks. There are an additional five minutes for switching to the knee scan setup

and seven minutes for the actual scan. The time line of typical scan can be seen in Figure 3.5.
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Figure 3.5 – The image acquisition consists of a static and a high-resolution knee scan. Survey and reference
precede all scans. The static scan consists of stacks that include mDixon and T1 TSE scans. The knee scan
combines a T1 TSE and a 3D DP Vista scan. Every item contains the duration in m:ss format.

3.2.4 Challenges in the Image Setup

The MRI setup has been improved iteratively during development, however as part of the pro-

cess, some compromises had to be made. The posterior soft tissues are deformed due to supine

position of the subjects. The image resolution has been limited by the duration of the acquisi-

tion. The used scanner has a tube diameter of 60cm. This allows the majority of subjects to fit in

there. In the presented setup, the support structure for the anterior coil takes up additional space
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and prevents overweight subjects from participation. The range of motion of the posterior coil,

currently limited by the board to 125cm, also limits the leg length of subjects.

3.3 Image Data

We have performed an MRI study with five volunteers. The study has been done at the University

Hospital of Geneva, Switzerland (HUG) following the protocol described in Section 3.2. It was

approved by the local Ethical Committee for Research On Humans (CEREH) of the HUG and

the Swiss Agency for Therapeutic Products. Participants have been informed about the study

and the goals using the sheets presented in Section C.3 and have given their consent on the form

presented in Section C.4.

The subjects have been selected to fit the required criteria. They had to be between 18 and 35

years, male and needed to perform regularly physical activity: on average one hour per week.

The activity was required so that the muscles are clearly shaped and the subjects were able to

follow the required motions in the study design. The broader scope of the study was to research

the impact of muscle injuries in athletes, so the age has been restricted to peak athleticism. Two

of the subjects were active runners, two were soccer players and one followed light activity. This

distribution allows us to see potential impacts of the different kinds of activities.

Due to more strict regulations on pregnancies, women had to be excluded. Furthermore, subjects

were asked for other exclusion criteria stemming from the MRI (metal implants, metal ink tattoos,

claustrophobia). Finally, all subjects were able to leave the study at any moment without any

repercussions.

Following the acquisition, the data has been reviewed for quality and anonymised. Regarding

accidental findings, the subjects were asked for their preference in the informed consent form.

Three stacks have been acquired for Subject 1 and 2. Subject 3 required four stacks. Before the

acquisition of Subjects 4 and 5, it has been decided to extend the imaged volume to include the

full hip. This has lead to a total number of five and respectively four stacks for Subjects 4 and 5.

During the acquisition, there was a movement in the left leg of Subject 1 between two stacks.

This has caused to discontinuities in the dataset; we will discuss them in Section 3.5. The other

subjects did not show similar problems. We have found that with taller subjects (e.g. Subject 3),

the careful alignment on the centre of the scanner table is very important. Our coil support takes

up additional space and must not touch the subject. Since the scanner opening is rather small to

ensure a uniform magnetic field, there is only very little space (millimetres in some cases) left

between the scanner and our setup.

3.4 Processing

The raw image data from from the scanner has to be processed further to be used. The use of the

surface coil leads to the acquisition of multiple stacks of images which first have to be stitched
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Table 3.1 – Statistical data (age, height, weight, activity) of the study participants.

Subject 1 2 3 4 5
Age (years) 26 24 29 22 32
Height (cm) 175 172 197 176 173
Weight (kg) 85 65 84 68 58

Activity None Running Running Soccer Soccer

into a single image. Then, a process to identify the air surrounding the subject is applied. It

helps to reduce the file sizes and can mask in the following steps. This reduces calculation times

and already allows to extract a surface model. This model can be used for visualisation and can

be matched with body scans. Each stack carries an independent range of intensities, potentially

leading to large jumps between stacks in the stitched image. We propose a method to reduce

these variations by doing a slice-wise analysis of the intensity ranges. Due to small irregularities

in the magnetic field of the scanner and the body moving through it, additional variations of the

intensities can occur. We use established approaches to measure this bias field and remove its

influence. The complete process is shown in Figure 3.6. In the following sections, we will describe

the parts in detail.

3.4.1 Stitching

The use of the coil leads to splitting of the acquisition into several sub-acquisitions. The resulting

images, stacks, have to be stitched back together to create the original image, which covers the

full lower limb. Near the ends of the scanner, the magnetic field deteriorates, causes a bending of

structures in the scans, which needs to be compensated for [WGZ+08, GWZ09]. In our scan setup,

the length of the coil is significantly shorter than the scanner field. Therefore, no compensation

is needed.

During the scans, when the coil is moved, special attention is paid to make sure that there is a

small overlap between the stacks. However, the field of view of the scanner is not continuous

between the stacks as the coil might have been moved sideways or the volume of interest is

smaller, e.g. the ankles are smaller than the hip. During the scan, the subject is told not to move.
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Acquisition
Duplicate 
removal 

(Dixon only)
Stitching Air masking

Intensity 
harmonization

Bias Field 
Correction

Figure 3.6 – The preprocessing pipeline consists of several steps: Acquisition, stitching, air masking, inten-
sity and bias field correction, noise reduction, and muscle tissue labelling.

Therefore, the subject is always at a well-defined position relative to the scanner table. Scanner

table and scanner are connected to each other and the position of the scanner table relative to

the scanner can be stored during the acquisition of the stacks. Usually, the first stack is used as

the origin of the global coordinate system. Using the origin of each stack in the global coordinate

system, their dimensions and spacing, we can calculate the bounding boxes of the stacks and

the total bounding volume. Then, an image with properties of the bounding volume is created,

and the stacks are copied into it. Areas that are not copied into mean that there is no image

data available. This means, there are no structures, so that an intensity of 0, like no signal, can be

inserted. Finally, the pair-wise overlap of the stacks is calculated and the datasets are interpolated

between them using a linear approach. The working principle is illustrated in a 2D example in

Figure 3.7.

The image data from the separate stacks is placed in a uniform global grid. This means the initial

stack that defines the grid is perfectly aligned. For the following stacks, an error of half a voxel

edge length may be introduced. This could be avoided by re-sampling the image data. However,

this leads to interpolation errors and potential loss of details. Furthermore, our image data has a

sufficiently high resolution, which keeps the offset in the sub-millimetre range: ≤ 0.5�0.5�0.75mm.

This offset is individual per stack and does not accumulate over the stacks of a data set.

Furthermore, we propose not to use linear interpolation, but to use the following weighting, as

shown in Figure 3.8, which gives more weight to the stacks that the slices are closer to.
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a) b) c)

Figure 3.7 – The bounding box of the stacks (a) is used for stitching. The stacks are copied into a new image
(c) and linearly interpolated in overlapping volumes (b, shaded area).
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Figure 3.8 – Different interpolation approaches between stacks: Linear (left) and non-linear (right).

3.4.2 Air Filtering

Large areas of the image data are covering air. These areas carry no relevant information and

increase the image size unnecessarily. The field of the view, generating these areas, needs to be

large during an acquisition to reduce image artefacts, like the partial volume effect. However,

consequent image processing suffers from larger file sizes and the need to process more data,

causing longer calculation times. Therefore, the reduction of air content in the image data is an

important step.

We are using the pipeline shown in Figure 3.9 to create an air mask. We start by taking the four

mDixon images and add them voxel-wise. In all four images, different tissue types have high-

intensity values while the air always has low values. This way, we create an image with high

intensities on tissue and low intensities on air. This process also amplifies the noise contained

in the images, e.g. shown enlarged in the circle in Figure 3.9. Most of the noise image elements

are small and size and not connected to the leg. A search for these connected components is

performed and all components with a volume below a pre-defined threshold are being dropped.

Our tests have shown that this task can be computationally expensive due to a high number of

very small components. Therefore, we first run an erosion step that removes the majority those
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Figure 3.9 – The air masking pipeline takes all four mDixon channels (a) as input. It applies the depicted
series of operations and creates the air mask. The result (b) shows the non-masked image parts (black) with
overlaid fat(red).

components. As the resulting model can still have holes, we perform a series of dilation and

erosion steps, also known as closing. The resulting mask is inverted from tissue representation

to air and is subject to minimal size constraints.

The air mask is valuable for several processing tasks. It can be used to constrain filters to the

actual image content, e.g. the noise reduction and bias field correction. As these methods use

non-local techniques, the removed influence of the air parts leads to more accurate results. The

field of view of the scanner is of a fixed size. Therefore, it does not adapt between thin and

heavier subjects. The field of view is rarely fully filled. Therefore, much unused information is

stored in the images. Using the air mask we were able to reduce the file sizes. In our datasets, we

could reduce the file sizes to approximately one-third of the original size. When working with

multi-channel data, this advantage applies to every single channel and therefore propagates.

Smaller file sizes accelerate calculation and filtering times but also reduce memory pressure on

older systems and make the use of graphics memory more feasible. The resulting mask can be

used for visualisation; it generates an output similar to a body scanner [KHAK10].

3.5 Evaluation of the Seamless Stitching and Processing

Following the acquisition, the images have to be stitched and processed. In this section, we will

discuss our findings and how the processing, in particular, the air filtering was applied.

During the image acquisition, as discussed in Section 3.3, Subject 1 has moved between the acqui-

sition of two stacks. This has lead to discontinuities, which became visible after the interpolation,

as shown in Figure 3.10. The interpolation was initially configured to use the full overlap. De-

pending on the size of the subject and the distribution of stacks, the overlap could be up to 15

cm.

In cases of movements, like for Subject 1, the caused artefacts spread over a large region. There-
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Figure 3.10 – Subject moved during acquisition resulting in the two consecutive stacks not being aligned.
During the interpolation, the above-seen artefact occurs.

fore, we have decided to reduce the slices that are used for interpolation to a maximum of ten.

This limits the blurred region to only up to 15 mm. Using a non-linear interpolation method

could help to reduce artefacts.

Using the air mask we were able to reduce the file sizes through cropping the volume of interest.

In our datasets, we were able to reduce the file sizes to approximately one-third of the original

size. This matter in particular for large, multi-channel datasets. Smaller file sizes accelerate cal-

culation and filtering times but also reduce memory pressure on older systems and make the use

of graphics memory more feasible. In our subjects, we were able to achieve reductions from 62%

to 72%. The file sizes before and after cropping and the reduction can be seen in Table 3.2.

Table 3.2 – Air filtering results of file size reduction.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
Uncropped 1877 MiB 1973 MiB 2133 MiB 1998 MiB 2418 MiB

Cropped 701 MiB 571 MiB 728 MiB 684 MiB 658 MiB
Reduction 62% 71 % 66 % 66 % 72 %

We have applied the proposed bias field correction as well as the noise reduction. We discuss

these steps in Sections 4.2 and 4.3. In Figure 3.11, we show the data set of Subject 1 before (a)

and after the bias field correction (b). Furthermore, we show the air label in the dataset (c) and

the 3D reconstruction of the surface.

3.6 Conclusion

The extraction of musculoskeletal structures from medical images is a complex task. This includes

the imaging parameters and the consequent processing and filtering. First, we have presented our

approach for the image acquisition. MR imaging shows satisfactory visibility with soft tissues.

Our selected protocols, mDixon and T1 TSE, and the resolution are a good compromise between
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Figure 3.11 – Image data set of Subject 1 before (a) and after (b) bias field correction. The air label is shown
in (c) and a 3D reconstruction in (d).

acquisition duration and image quality. To increase the SNR, we use a surface coil. We have

developed a support structure to move it without touching the patient during the individual

stacks.

In summary, we have contributed methods for acquiring multi-channel MR image data. We have

demonstrated a new setup for continuous, gap-less multi-channel MR image acquisition using

coils and subsequent processing of this multi-channel data. The acquisition has been used in a

study with five subjects. Once the individual stacks have been acquired, we have stitched them. A

large portion of the acquired volume is air, and we have proposed a fast technique to identify it.

After the cropping of the volume of interest in the image data we were able to reduce the data set

sizes by 66% on average. This reduces storage requirements and memory usage in multi-channel

data sets.
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4.1 Motivation

Following the image acquisition, we need to process the image data. It carries artefacts from

the scanner that we need to compensate for first. Another important step is the classification of

tissue types, muscle tissue in our case. With the large multi-channel data sets, processing has to

be efficient. Massively parallel computing can help to accelerate some of the tasks.

The intensity values of a voxel in an MR image do not directly related to the tissue but a radio

response. This response varies on a large number of factors and can lead to different intensity

ranges between different stacks. Therefore, we need to normalise the intensities between the

stacks. Finally, small variations in the bias field of the scanner can skew the measured intensities.

These variations are caused by imperfections in the main magnetic field of the scanner, which

we have to compensate in software. Another artefact stemming from the acquisition is noise. We

investigate techniques to suppress the noise in the image data as we cannot prevent it during

the scans. In the next processing step, we use properties of the image data to label muscle tissue.

This can be achieved by using morphological operators and the multiple channels which high-

light different structures. These operations on large data sets benefit from many-core parallel

processing. We propose a method to use GPGPUs for the processing.

4.2 Intensity Correction

The splitting of the acquisition into several sub-acquisitions producing stacks can cause problems

to keep consistency on the seams. Unlike CT with its Hounsfield units, MRI has no consistent

intensity-tissue mapping. The range of intensities in an MR image depends on several factors,

including the sequence used, the tissue imaged, and the field of view used. Besides inter-stack

corrections, the intensities within a stack are also non-uniform. This is caused by the bias field of

the scanner and requires proper correction. We will describe two approaches for the correction.

First the inter-slice correction, which evaluates the range of intensities between neighbouring

slices. The other approach is the bias field correction, which estimates the error in the magnetic

field.

4.2.1 Inter-stack Correction

Different stacks can have vastly different ranges of maximal intensities per slice. We have found

this to be in particular the case in the T1 TSE scans where the scans of the knee joint show higher

intensities than the thigh. A plot of the minimal and maximal intensity value per slice can be

found in Figure 4.1. Also, within stacks, the intensities are not uniform, our data shows jumps

and spikes. This must be an artefact of the acquisition since the actual anatomical structures do

not show these jumps.

We propose to correct these jumps by creating a uniform range of intensities per slice. First, we

identify minimal and maximal intensity value per slice. We choose 0 to be the shared minimal

intensity value and pick 10.000 (selected from the range of maximal values per slice) as the shared
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maximal intensity. The result can be seen in Figure 4.1b. Due to the spikes in our image data, there

are jumps between the slices. We propose to approximate the intensities by a continuous curve,

leading to smoother results as shown in Figure 4.1c. This removes the spikes of the previous

approach.
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Figure 4.1 – The minimum and maximum intensities can vary vastly between the individual stacks (a, d).
Simple corrections can cause jumps between slices (b). Using a smoothed correction curve, these jumps can
be prevented and the correction is more uniform (c).

This technique allows us to have a more uniform distribution of intensities among the slices of

different stacks. It is very fast and can be easily parallelised. However, the resulting image data

has lost some information about the actual range of intensities. Therefore, our technique reduces

the information which can be derived from the image. Furthermore, although we uniform the

intensities between slices, artefacts within slices are not addressed. Estimating the bias field is an

approach that can correct these artefacts.

4.2.2 Bias Field Correction

MR images carry noise that can be characterised by a non-uniform intensity distribution through-

out the image. The main cause are inhomogeneities in the B0 field. These can have many reasons

and are hard to prevent. One major source is the introduction of the subject into the B0 field as

the body has a different magnetic flow than the surrounding air. Another source is a degradation

of the B0 field near the boundaries of the field of view. These inhomogeneities result in inten-

sity variations, dark spots, in the acquired images. These are complex to compensate since the

inhomogeneties in the magnetic field cannot be predicted by a model. They depend on several

parameters such as the object which is scanned, its position and its thickness.

The correction of this low-frequency bias field is a field of active research. In 1994, Wells III[WGKJ94]

proposed to use the Expectation-Maximization (EM) algorithm to estimate tissue classes and the

bias field in MR image data. Then, in 1997, Styner et al. [SG97] presented a polynomial model that

uses (1+1)ES optimisation. They evolved their work into a new correction method called para-

metric bias field correction (PABIC), one of the dominant approaches used nowadays. The other
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common approach is the non-parametric non-uniform intensity normalisation (N3) proposed by

Sled et al. [SZE98]. Their method is independent from the used sequence and is an iterative ap-

proach to estimate bias field using tissue types. An ITK implementation has been proposed by

Tustison et al. [TG09b]. A review of the different methods by Vovk et al. can be found in [VPL07].

The main concept of the non-parametric non-uniform intensity normalisation (N3) algorithm

[SZE98] is to estimate the original signal (homogeneous field) iteratively by estimating the bias

field without any prior assumptions. The non-uniformity of the intensities can be seen as a

multiplicative source of error. Therefore, it is possible to find an estimation of the original image

by estimating the bias field and division of the acquired MR image.

Sharpening the logarithmic image of the dataset gives a first approximation of the bias free

image by only restoring the high frequencies. Removing them from the original image gives a

good estimation of the bias field. This estimated bias field is removed from the original image.

Iteratively, this process is repeated until the bias field estimation closely matches the real bias

field. The final step is to divide the MR image by the bias field estimation in order to correct the

non-uniform intensity in the dataset. An example for a correction in the opposed-phase images

of our data sets can be found in Figure 4.2.

a) b) c)

Figure 4.2 – The unprocessed image data from the MR scanner shows large inhomogeneities (a). Using the
N3 algorithm, we estimate the bias field (b) to correct the image. The resulting image (c) shows a more
uniform distribution of intensities and clearer details at the boundaries of the field of view.

We have chosen to use the implementation by Tustison and Gee [TG09b]. It is a solid implementa-
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tion that can be integrated easily with our DMFramework and gives access to many parameters,

including the following:

— Shrink factor: Controls the sub-sampling of the input image to reduce the calculation

duration.

— Mask image: Selects the areas that should be processed, this can be used to ignore air.

— Number of iterations: Maximum number of iterations to reach the final bias field estima-

tion.

— Number of fitting levels: The algorithm obtains an estimation of the bias field by smooth-

ing the subtraction of the uncorrected image by the estimated original image. For smooth-

ing, B-splines are used. The number of hierarchical levels influence the details in the mesh

resolution used for the estimation.

The mask and the number of iterations are crucial parameters for the applicability of the method.

The mask can speed up the calculation and improve the quality of the output. The number of

iterations can be used to stop the iteration when the process no longer converges. In order to

estimate the noise, the algorithm uses a Gaussian model, which is characterised by the full width

at half maximum (FWHM) of the Gaussian curve. Therefore, the estimation of this parameter

is essential for output the algorithm. We have found that the quality of the filter increases with

the value of FWHM. The uniformity is almost fully restored when FWMH is over 0.6, on closer

inspection, the best results are obtained with FWHM values of 0.65. The fitting levels define the

precision of the filtering since they define the hierarchy and hence the precision of the smoothed

estimation of the bias field. We obtain the best results for a fitting level of 6 or 7.

With the parameters proposed so far, the calculation time is very high. The shrink factor is a

parameter which can accelerate the calculation. However, using a too high value for the shrink

factor (SF) reduces the quality of the filter output. In our tests, a SF of 8 results in the introduction

of inhomogeneities. SFs over 5 do not have a significant impact on shortening the calculation

duration. Values near 2-3 give better results at the cost of longer calculations. Therefore, we

propose a shrinking factor of 4 or 5.

In our tests, we have found that the N3 algorithm is efficient and gives a satisfying results. The

calculation takes time but can be performed autonomous. The user does not need to provide an

estimation of the bias field. Also, the algorithm provides the estimated bias field which can then

be used to correct quickly all channels in our multi-channel datasets. To evaluate the quality of

the correction of the bias field, we measure the intensity distribution in the muscle tissue before

and after correction. We use the data set of Subject 2, a shrink factor of 5, a fitting level of 6

and an FHWM of 0.65. The results can be found in Figure 4.3. It can be seen that the frequency

with the bias field is distributed on a wide range of intensities. After the bias field correction, the

frequency of only few intensities increases, resulting in a more homogeneous distribution within

the muscle label.
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Figure 4.3 – Histogram based evaluation of the bias field reduction. The graph shows the intensities and
their frequency with and without bias field. The histogram covers the volume labelled as muscle tissue,
higher intensities have been omitted in the graph due to their low frequencies.

4.3 Denoising

MR signals are very weak and sensitive to noise. The use of surface coils makes the scanner

more sensitive and allows higher resolutions. However, these higher resolutions either increase

the acquisition time or the level of noise. Longer acquisitions are more stressful for the patients

and cause higher costs.

The noise in images can impact processing and needs to be corrected to prevent it from mis-

leading algorithms such as segmentation. The presence of noise has led to the need to filter the

image. Many approaches have been proposed, and most of them are suited to specific niches. In

2005, Buades et al. [BCM05] proposed a new approach, the non-local means (NL-means, NLM)

algorithm which is based on a non-local averaging of the voxels in a data set. The non-local

aspect derives from calculating the denoised voxels from all voxels with a similar Gaussian

neighbourhood. It has found adoption not only in MR image noise reduction but also in many

other domains, including image and video processing. Tabelow et al. [TVP15] used a similar ap-

proach which exploits an image pyramid representation and a maximum likelihood estimation

to determine the level of noise. Lie et al. [LHZD13] propose to reduce of speckles in US images

by using NLM filtering. They provide a GPGPU implementation and demonstrate significant

accelerations.

Denoising filters are based on the re-evaluation of every voxel value in order to correct the error.

Each voxel in the image is compared with the other voxels, so the algorithm can estimate a

correct value. Neighbourhood filters, for instance, compare voxels with their neighbours. The

non-local means algorithm expands the comparison to the full image. The filter assigns a new

intensity to a voxel by analysing the similarity between that voxel and all others in the image.

The new intensity is the weighted average of all voxels: the weight increases with the similarity

between the voxels. More precisely, the NL-means method analyses the similarity between the

neighbourhood of the processed voxel and the neighbourhood of all others. Taking into account

all information of the entire image, helps the reconstruction of the texture after filtering.

Our MR images have a noise signal which overlays the original images and causes a granular

texture. This is shown in Figure 4.4. We apply the NL-means algorithm to remove this noise
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without changing the details in the texture which is needed for successful muscle segmentation.

a) b)

Figure 4.4 – Transverse section through the thigh (MRI) of the water-channel in the mDixon scan of Subject
2 showing the noise in MR images (a). The results of the noise reduction are shown in (b).

We use the NL means implementation of ITK with the following parameters:

— Sigma: The noise is considered as an additional independent and identically distributed

(i.i.d.) Gaussian signal which needs to be estimated. Sigma is the standard deviation of the

i.i.d. Gaussian model of the noise. The efficiency of the filter depends on the estimation of

its value.

— RSearch: The algorithm looks for similar pixels which are located in a region described

by this radius.

— RComp: In order to estimate the similarities between two pixels, the calculation are made

on the pixel neighbourhood with a size of RComp.

— H: The degree of filtering allows to control the strength of the denoising.

— PSTh: The threshold used to discard insignificant pixels. It is used to accelerate the calcu-

lation.

Sigma is the most influential parameter in the algorithm, a wrong estimation will not remove the

noise. We have found that the granular aspect of the muscles starts to be corrected and the best

filtering is obtained with a sigma value of 40. For the filtering degree (H), an initial assumption

would be that higher values would generate better results. However, [TVGPAFW12] propose to

constrain H between 0.8 and 1.2. This confirmed that the denoising is more efficient with higher

values of H. Some regions of the thigh still have the granular noise after the filtering with H

values of 0.8 and 1. Based on this, we have chosen the value of H to be 1.2. The default value for

the threshold (PSTh) gives good results, changing its value decrease the quality of the filtering.

The muscle has been found to be more granular when PSTh is lower.

The two last parameters, RSearch and Rcomp, are crucial for the algorithm. They define the ex-

73



Chapter 4. Image Processing

pansion of the comparison zone, which is the characteristic of the NL-means method. The quality

of the details in the texture in the filtered image will depend on their values. As suggested by

literature, a larger radius results in better results. However, if they are too large, the calculation

time lengthens. By increasing these radius, the strength of the filtering increases. Values higher

than 10/5 for RSearch/Rcomp cause very high the calculation times. Therefore, the best configu-

ration is not the one with the best quality, but a compromise with the best quality for a reasonable

calculation time. The configuration 10/5 gives the most promising results.

We have found the non-local means denoising method to be efficient on the MR images. The

ability of the filter to remove the noise without altering the details in the images is an essential

advantage in the processing phase before segmentation. To evaluate the quality of the denoising,

we study the histograms of the muscle tissue before and after processing. We use the data set

from Subject 2, a sigma value of 40, a filtering degree (H) of 1.2, a threshold (PSTh) of 2.3 and

a RSearch/Rcomp of 10/5. The results can be found in Figure 4.5. It shows that the relevant

intensities for the muscle labels are more compressed. Their frequency is higher among the main

components and lower for less typical intensities. The SNR (as ratio between the average (muscle)

values and their standard deviation [GC11]) reflects this with an improvement from 5.1 to 5.4.
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Figure 4.5 – Histogram based evaluation of the noise reduction step. The graph shows the intensities and
the frequency before and after denoising. The range of intensity has been optimised for the muscle tissue,
the histograms have been constrained to the muscle labelled volume.

4.4 Muscle Labelling

The MRI mDixon sequence is fast and creates a multi- channel image, highlighting fat and water

in separate channels. Selected combination of image operations in the multi-channel data can

be used to label specific regions of interest (ROIs) or segments. These image operations include

thresholding, morphological and connectivity operations. Based on that, we have developed a

fully automated technique to label muscle tissue in the lower limb. It can be used in several

applications to improve quantitative estimations in diagnosis.

Similar techniques have been used for fat labelling. Valentinitsch et al. [VKA+13] demonstrate

a method for detecting adipose tissue depots using morphological operations. They limit their

work to the calf. Hu and Kan [HK13] describe the principle and applications of quantitative

proton MR techniques to measure fat. Poonawalla et al. [PSR+13] have performed an evaluation

study for their adipose tissue magnetic resonance imaging method. Thomas et al. [TFM+13] dis-
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cuss whole-body fat distributions and imaging techniques. They show examples for different

modalities and how the obtained data can be used for detecting fat distribution. Livingstone

et al. [LBK+13] compare the results of hepatic and pancreatic fat measurements in mDixon and

1H magnetic resonance spectroscopy. Ristic et al. [RBZ+12] have studied the connection between

subcutaneous fat measurements and metabolic prediction. They use the waist circumference

and ultrasound data. Addeman et al. [AKP+14] show an automatic adipose segmentation in the

abdominal region. They use thresholding in mDixon images. Garteiser et al. [GDTG13] semi-

automatically segment adipose tissue in mice. They apply thresholding after a Gaussian fitting

of the pixel intensity histograms. Tang et al. [TSM11] have described an automatic technique for

fat measurement in mice. It is based on morphological operations and fuzzy learning.
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Figure 4.6 – The muscle detection process uses the fat image (a) and the air mask (b) as input. The depicted
series of operations creates the muscle label image (c). The intra-muscular fat removal step (d) is optional.

The muscle detection works similar to the air masking; the process can be seen in Fig 4.6. We

start with the fat image and apply a minimal threshold to gain a fat mask. We perform an erosion

to remove noise, followed by a series of dilation and erosion steps to close holes. We take the

air image and dilate it several times so that it overlaps at the skin once we add the air and fat

images. In the resulting image, we enforce a minimal size of connected components. After an

inversion of the mask, we receive the muscle image, which we once more filter for component

size to remove the risk of remaining artefacts. A last step can be used to reduce intra-muscular

fat in the resulting image; this is optional as some applications benefit from hole-free results.

4.4.1 Evaluation and Results

We have selected the subjects 1 - 4 from our study to evaluate our approach. We have performed

a manual segmentation of multiple slices in the two subjects. The position of the slices is shown
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Fig 4.7c. Table 4.1 shows that we have measured the volume of manual and automatic segmen-

tation in these slices. Also, we have calculated the Sørenson-Dice coefficient, which has been

adopted as standard in medical image segmentation evaluation when label images are used. An

SDC of 0 expresses disjunct segments, a value of 1 expresses identity. For two segments S and T,

the formula is the following:

SDC(S, T) = 2
�S ∩ T�
�S�+ �T�

Table 4.1 – This table lists the results of the comparison of the automatic (auto) and manual (man) seg-
mentation in several slices per subject. It provides the segment volume in ml and a comparison using the
Sørenson-Dice coefficient.

Subject 1 Subject 2
left leg right leg left leg right leg

Method man
(ml)

auto
(ml) SDC man

(ml)
auto
(ml) SDC man

(ml)
auto
(ml) SDC man

(ml)
auto
(ml) SDC

Slice 1 0.79 0.84 0.96 0.88 0.96 0.92 0.97 0.99 0.98 0.96 0.98 0.97
Slice 2 11.60 12.23 0.97 11.37 12.30 0.97 11.88 12.09 0.97 11.85 12.24 0.97
Slice 3 0.49 0.59 0.90 0.44 0.53 0.91 0.75 0.80 0.95 0.72 0.76 0.94
Slice 4 0.44 0.54 0.88 0.51 0.57 0.92 0.59 0.70 0.90 0.61 0.73 0.89
Slice 5 14.99 15.93 0.95 15.90 16.66 0.95 16.15 16.75 0.95 16.15 16.50 0.96
Slice 6 21.86 23.07 0.97 22.37 23.60 0.97 21.96 22.67 0.97 21.17 21.92 0.97
Slice 7 23.84 25.35 0.96 23.68 24.72 0.97 23.30 24.65 0.96 22.31 23.67 0.96

Subject 3 Subject 4
left leg right leg left leg right leg

Method man
(ml)

auto
(ml) SDC man

(ml)
auto
(ml) SDC man

(ml)
auto
(ml) SDC man

(ml)
auto
(ml) SDC

Slice 1 0.96 0.94 0.98 0.91 0.95 0.97 0.77 0.81 0.97 0.69 0.80 0.93
Slice 2 14.29 14.99 0.97 13.80 14.06 0.98 14.18 14.50 0.98 13.18 13.62 0.98
Slice 3 10.64 11.03 0.97 10.07 10.40 0.97 11.39 11.92 0.97 11.11 11.58 0.97
Slice 4 0.56 0.65 0.89 0.52 0.65 0.86 0.74 0.90 0.91 0.70 0.74 0.91
Slice 5 15.86 16.28 0.97 14.36 14.41 0.95 20.01 20.99 0.97 19.78 20.01 0.97
Slice 6 21.31 22.32 0.97 20.72 21.55 0.98 27.83 28.61 0.98 26.66 27.83 0.98
Slice 7 25.37 26.58 0.97 25.29 27.19 0.96 28.93 30.32 0.97 27.16 28.93 0.97

Subject 5
left leg right leg

Method man
(ml)

auto
(ml) SDC man

(ml)
auto
(ml) SDC

Slice 1 0.68 0.72 0.96 0.70 0.72 0.97
Slice 2 10.94 10.85 0.97 10.72 10.52 0.97
Slice 3 0.41 0.51 0.85 0.38 0.48 0.83
Slice 4 0.30 0.42 0.74 0.32 0.44 0.81
Slice 5 12.05 12.49 0.96 12.12 12.70 0.95
Slice 6 18.46 19.16 0.97 18.40 18.69 0.97
Slice 7 22.57 23.44 0.97 21.77 22.96 0.97

Our measurements can be split into two parts. The joint area, consisting of slices 3 & 4, is located

close to the knee joint (as shown in Fig 4.7d) with its ligaments, tendons, menisci and other tissue

types. Therefore, it is more complex to assign labels. The main area, with slices 1, 2, 5, 6, and

7, covers mid-thigh and calf. Table 4.1 shows the result without the fat reduction step; all areas

combined have an average SDC of 0.95 ± 0.03. The joint area has an average SDC of 0.91 with a

standard deviation of ±0.02; the main area has an SDC of 0.96± 0.02.
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Table 4.2 – The results for the muscle labelling without and with fat reduction technique. The average SDC
(with standard deviation) between manual and automatic technique is listed, as well as their difference.

all main area joint area
Method average std. dev. average std. dev. average std. dev.

without fat reduction 0.95 0.02 0.97 0.02 0.91 0.02
with fat reduction 0.96 0.02 0.97 0.01 0.93 0.01

difference 0.01 0.01 0.003 0.006 0.027 0.002

The use of the fat reduction results in an increased SDC as presented in Table 4.2. A more detailed

analysis shows that this improvement mainly stems from the joint area, the main area only shows

small improvements.

The comparison of manually and automatically determined volume is presented in Fig 4.7 (a).

The measurements all show a bigger volume for automatic than manual labelling (equality indi-

cated by the dotted line). A graphical overlay of the symmetrical difference between manual and

automatic segments on the water image is shown in Fig 4.7 (b). It can be seen that the segment

difference is mainly rooted in inter- and intra-muscular fat as well as veins and arteries.
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Figure 4.7 – Plot of manually and automatically segmented muscle volume (a), the results of the experiments
with fat reduction are shown in orange, the ones without in blue. Symmetrical difference between manual
and automatic segmentation overlaid on the water image without (b) and with (c) fat reduction. Position of
the slices (1: bottom, 7: top) that were used for evaluation (d).

Several other groups have worked on muscle labelling of the thigh. Kang et al. [KPV+07] have

proposed a fuzzy C-means approach (FCM), Pinti et al. [PHKTA06] have proposed a surface

expansion-based segmentation method (SEB). The work of Urricelqui et al. [UMV09] present an

unsupervised recursive algorithm that is based on histograms, thresholding, and connectivity

(URA). Andrews et al. [AHY+11]. use a model-based technique with prior knowledge (MBPK).

Imamoglu have presented saliency-based methods (SBM) [IGTG+14] and a fuzzy version (FSBM)

of their approach [IGTH+15]. All works present their results in different formats. The F-measure

is the harmonic mean of precision and recall; accuracy equals the recall. Another measure the

coincidental pixel (CP) rate. We compare these approaches with our results in Table 4.3. We can

see that our quantitative results are slightly higher while the computation time is lower.

During the evaluation, we have found that our method shows inferior results in the joint area. In

these areas, many muscles end and are connected by tendons to the bones. Possible approaches
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Table 4.3 – Muscle labelling of the thigh in comparison with SoA. There have different evaluation chosen
by these publications. However, we list these values to give an orientation.

Approach Evaluation Quantitative Results Computation Time
FCM [KPV+07] Accuracy 0.91 NA
SEB [PHKTA06] Accuracy 0.94 NA
URA [UMV09] CP-Rate over 90% ≈ 300s / slice
MBPK [AHY+11] DSC 0.95 NA
SBM [IGTG+14] F-measure 0.92 ≈ 1s / slice
FSBM [IGTH+15] F-measure 0.92 ≈ 10s / slice
Our method [BMT14] DSC 0.97 ≈ 0.1s / slice

would be an extension to tendons, e.g. visible with other sequences, or to rely on a small, local

atlas. Our results currently identify if a tissue is a muscle or not.

The muscle labels created by our approach can be used for many purposes, including visualisa-

tion, clinical analysis, pose estimation and initialisation of further segmentation processes.

Medical image visualisation is a complex task. Volumetric data sets are not intuitive, and the

navigation using several planes is time-consuming. Our presented technique allows the robust

removal/masking of noisy air and the identification of fat and muscle structures. A real-time

3D rendering of muscle and fat tissue, enriched with two femur models, is shown in Figure

4.8. Indicated by arrows on the right image is visible how the muscle surface allows the visual

differentiation of distinct muscles.

Figure 4.8 – Applications of the muscle labelling. Simple gray-scale visualisation is commonly used in
clinical environments (left). Our proposed technique could give additional instant feedback to radiologists.
In the rendering, the distinction of individual surface muscles is possible (right).

In clinical environments, feedback for technicians and radiologists during image acquisition is

very limited. Based on simple gray-scale visualisations, decisions on further acquisitions and/or

different modalities have to be made. Our robust technique is fast and can be used for further

highlighting of structures that could reduce the time per case for radiologists.

Another application is the registration of a pre-defined atlas. Using the air image and that atlas,

the imaged body part can be identified and the pose of the subjects can be estimated. Further-

more, muscle labels can also be useful to initialise other segmentation methods to differentiate

between distinct muscles, e.g. deformable models.
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4.5 Acceleration through Massively-Parallel Image Processing

The processed image data can help radiologists during the acquisition. However, this is only

possible if the data is available (almost) immediately. The time spent in the scanner not only is a

burden for the patients but also increases costs for the hospital. Furthermore, the possible total

number of patients is reduced, resulting in longer waiting lists.

Over the last decade graphical processing units (GPUs) have not only increased their perfor-

mance but also have become more generic. These general-purpose GPUs (GPGPUs) allow access

to their highly parallelized cores. In combination with high-speed memory, GPGPUs have proven

to be able to reduce calculation times for image processing tasks. To meet our requirements for

near-realtime feedback to radiologists, GPGPUs can be used for acceleration. Modern scanners

already use GPGPUs for the image reconstruction, e.g. the Radon transform in CT or MR recon-

struction [QHCJ15]. Therefore, GPGPUs are widely available in machines with direct access to

the image data.

Graph processing is a popular task on GPGPUs. An overview, bottlenecks and fields for future

research have been discussed by Xu et al. [XJA14]. Images can be considered a special case of

graphs. Therefore, medical image processing can also be considered a good use case for GPGPU

accelerated processing. Eklund et al. [EDFL13] and Smistad et al. [SFB+14] provide an overview

currently used approaches. Al-Ayyoub et al. [AAADJ+15] present an overview GPGPU based

fuzzy C-means approach, Schmid et al. [SIG+11] demonstrate an implementation of knowledge

based deformable models. An additional way to further improve performance is to use multiple

GPGPUs in parallel. Fang et al. [LMHF14] have demonstrated an approach for fast satellite image

data segmentation by distributing images to multiple GPGPUs. Medical applications for the

detection and segmentation of objects have been shown by Grace et al. [GFFK15].

In the following sections, we will discuss the platform selection for our approach, describe the

general architecture of GPGPUs and present the implementation of the methods needed for air

and muscle labelling.

4.5.1 Platform Selection

Besides multi-core platforms like OpenMP, Intel ArBB (Array Building Blocks) and TBB (Thread

Building Blocks), two main platforms for many-core (GPGPU) programming exist: CUDA 1, a

proprietary platform from nVidia and OpenCL, that is standardised and maintained by the

Khronos group. The most recent version of CUDA is 7.5, OpenCL has been recently published in

version 2.1. While nVidia often updates CUDA to support new versions of their GPUs, OpenCL

is platform agnostic and, therefore, needs fewer updates.

The selection between CUDA and OpenCL depends on a number of factors that go beyond pure

performance. Many comparisons on typical applications have been proposed, for example by

Fang et al. [FVS11] and Karimi et al. [KDH11]. While Karimi et al. find CUDA faster in data

1. Initially an acronym for Compute Unified Device Architecture
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transfer and execution. Fang et al. initially also found CUDA to be faster, however, they were

able to minimise the difference through optimisations. In comparison with multi-core systems,

Sanchez et al. [SFSG12] have found that with small data sizes vector SIMD-CPUs can deliver

performance results comparable to CUDA; this does not apply to large data sets. Finally, Shen

et al. [SFSV13] have evaluated common strategies and challenges from an application-centric

perspective in OpenCL systems. Many of their points apply to other many-core systems like

CUDA.

Based on reviewing the literature, we have decided to use CUDA. It offers a slightly better

performance and a broad range of compatible GPGPUs was available to us. While OpenCL is

officially supported by nVidia, they only support version 1.1. However, starting with version 2.0,

primitives for 3-dimensional data sets have been introduced that not only make development

easier but also benefit from optimised memory access patterns. This is crucial in our large data

sets. Finally, CUDA comes with extensive documentation, several openly available libraries and

a large number of publications on different GPGPU applications.

4.5.2 GPGPU Architecture

GPGPUs have been designed for massively parallel data processing. While modern CPUs have

few cores with long pipelines and complex instruction scheduling, GPGPUs have many cores

with a much more simple architecture. These cores are designed to run short tasks with a lim-

ited instruction set. Since there is a large number of them, a high complexity would result in a

prohibitive large number of transistors and large chip areas needed.

The code running on the GPGPU is called kernel. A GPGPU consists of multiple streaming multi-

processors (SM). The total volume (called grid) is divided into blocks that are distributed across

the SMs. These blocks consist of many threads and must be able to run independently; an or-

dered execution is not guaranteed. Threads within a block have shared memory and can be

synchronised at certain points. Within a block, threads are divided into warps of 32. They share

the same current instruction but have individual registers. The structure of the kernel code must

be chosen carefully: too much different branching within warps hurts performance. The main

architecture is shown in Figure 4.9.

Based on the block size and the current block and thread id, the coordinates of the voxel for

processing can be calculated as follows:

x = blockIdx.x ∗ blockDim.x + threadIdx.x

y = blockIdx.y ∗ blockDim.y + threadIdx.y

z = blockIdx.z ∗ blockDim.z + threadIdx.z

Kernels can only access GPGPU memory; all data has to be transferred to and from the host

memory. This has to be included into performance measurements and can cancel the benefits

from parallellization in the GPGPU for smaller data sets.
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Block (0,0)

Block (0,1)

Block (1,0)

Block (1,1)

Block (2,0)

Block (2,1)

Thread (0,0)

Thread (0,1)

Thread (0,2)

Thread (1,0)

Thread (1,1)

Thread (1,2)

Thread (2,0)

Thread (2,1)

Thread (2,2)

Grid (3x2) Block (3x3)

SM
 0

SM
 1

Figure 4.9 – The grid represents the working task for the GPU. It can be broken down into blocks which can
run on different streaming multiprocessors (SM). A block is composed of threads which run interweaved
in parallel.

4.5.3 Pixel-wise Operations

This category contains the addition of images, multiplication and thresholding. These tasks oper-

ate pixel-wise independent from their neighbourhood. Therefore, their parallelization is straight

forward. We have implemented these methods to either use a target image or to run in-place. The

corresponding kernels are shown below. The high parallelism and efficient scheduling of warps

allows running kernels on a single voxel only while still having a performance gain.

Listing 4.1 – Kernels for adding two images with target image (top) and in-place (below).

__global__ void addImageKernel ( short * out , short * in1 , short * in2 ) {

unsigned i n t idx = z * dim_x * dim_y + y * dim_x + x ;

out [ idx ] = in1 [ idx ] + in2 [ idx ] ;

}

__global__ void addImageInPlaceKernel ( short * inOut , short * in2 ) {

unsigned i n t idx = z * dim_x * dim_y + y * dim_x + x ;

inOut [ idx ] = inOut [ idx ] + in2 [ idx ] ;

}

4.5.4 Morphology Operations

Initially, we have considered using the nVidia Performance Primitives 2(NPP) as implementation

for the morphological operations. While NPP shows 5-10 times speed improvements over CPUs,

we cannot use it, because it is available only for 2D image data. Thurley and Danell [TD12] have

shown another CUDA implementation of morphological operations. Although they also only

work on 2D images, they confirm that speed improvements over CPUs are possible.

We propose a 3D implementation that is tailored to our use case. We need to apply erosion and

dilation with a radius of 1 voxel. We have tested two different neighbourhoods (N6 and N26).

As shown in the kernel code below, we operate pixel-wise. Through the structuring into blocks

and warps, many of the neighbouring voxels are already in the caches. This reduces access time

2. https://developer.nvidia.com/npp
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and accelerates the calculation. The in-place requires two runs. First, all elements that will be

removed/added are identified. As the calculation is performed in parallel and not serial, later

run threads could operate on image data was already modified. Therefore, we only mark the

resulting changes (by placing the value 2) and check for it during execution. In a second run, the

2s are replaced with the desired value (erosion: 0, dilation: 1).

Listing 4.2 – Kernels for N26-dilating a binary image with (top) target image and (bottom) in-place using

the proposed two-step process.

__global__ void dilateImageKernelN26 ( short * outImg , short * inImg ) {

i f ( inImg [ z * dim_x * dim_y + y * dim_x + x ] == 1) {

outImg [ z * dim_x * dim_y + y * dim_x + x ] = 1 ;

return ;

}

i n t counter = 0 ;

for ( t e s t _ x , t es t_y , t e s t _ z in N26 ( x , y , z ) ) {

counter += inImg [ t e s t _ z * dim_x * dim_y + t e s t _ y * dim_x + t e s t _ x ] ;

}

i f ( counter > 0) {

outImg [ z * dim_x * dim_y + y * dim_x + x ] = 1 ;

} e lse {

outImg [ z * dim_x * dim_y + y * dim_x + x ] = 0 ;

}

}

__global__ void dilateImageKernelN26InPlace ( short * inOutImg ) {

i f ( inOutImg [ z * dim_x * dim_y + y * dim_x + x ] == 1) {

inOutImg [ z * dim_x * dim_y + y * dim_x + x ] = 1 ;

return ;

}

i n t counter = 0 ;

for ( t e s t _ x , t es t_y , t e s t _ z in N26 ( x , y , z ) ) {

i f ( inOutImg [ t e s t _ z * dim_x * dim_y + t e s t _ y * dim_x + t e s t _ x ] != 2) {

counter += inOutImg [ t e s t _ z * dim_x * dim_y + t e s t _ y * dim_x + t e s t _ x ] ;

}

}

i f ( counter > 0) {

inOutImg [ z * dim_x * dim_y + y * dim_x + x ] = 2 ;

} e lse {

inOutImg [ z * dim_x * dim_y + y * dim_x + x ] = 0 ;

}

}
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4.5.5 Connected Component Labelling

Connected component labelling, or blob detection, is a process that detects connected parts

within an image. The connectivity depends on the use case, in 2D N4 and N8 are commonly

used, in 3D N6 and N26. There exist several approaches to the problem, recent approaches oper-

ate serial and in two passes like the work of Wu et al. [WOS09] and Gupdate et al. [GPP+14].

Several approaches for CUDA implementations have been shown. They usually are implemented

for 2D grids, e.g. the work by Kalentev et al. [KRKS11]. Other works, e.g. by Hawick et al. [HLP10]

and Barnat et al. [BBBČ11] have evaluated the performance of CCL algorithms on CPU and

GPGPU. They have found that optimised CPUs are often faster for low- and medium-resolution

images and that the GPGPU is faster with growing data sets. These evaluations have been made

with 2D data. We expect to benefit from a GPGPU implementation because our data sets are

larger by magnitudes due to the third dimension.

The presented methods use the Union-Find method. The main part is a label equivalence tree

(LET). Every label has an entry point to an equivalent label. Initially, they are the same. First, the

image elements are labelled with continuous labels. Then, the neighbourhood for every image

element is evaluated. If the intensities are the same, the LET is updated to the smaller label of

both elements. Once this is completed, the LET contains indirect, tree-like reference to equivalent

labels. Using the code shown in Listing 4.3 on each entry in the LET, these trees flattened. A final

iteration over the image data allows looking up the minimal label for each element in the LET.

This method produces connected labels that are not continuous.

Listing 4.3 – Method used for flattening the label equivalence tree (LET).

func t ion Find ( LET , x )

i f LET[ x ] == x

return x

e lse

return Find (LET[ x ] )

func t ion Union ( LET , x0 , x1 )

root0 = FindRoot ( LET , x1 ) ;

root1 = FindRoot ( LET , x2 ) ;

LET[ root1 ] = min (LET[ root1 ] , root0 ) ;

LET[ root0 ] = min (LET[ root0 ] , root1 ) ;

The Union-Find method works well for small and medium sized 2D data sets, however, with

our 3D data, we need a different approach. Stave et al. [ŠB11] propose a multi-step process:

First classical union-find in small blocks, then merging to larger blocks using an LET, and finally,

flattening the LET and applying it to the image data. We will describe the steps and our proposed

implementation next.

Step 1: Initial labelling

We have selected a block size of 16× 8× 8. This limits the merging steps to 7 in our data sets and
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is still sufficiently fast. Within the block, every single voxel is processed by a single thread. The

shared memory is allocated on a per block basis and large enough to hold an LET per block of

our dimensions. Therefore, we can do fast updates of this local LET. At the end of the kernel,

the local LET is merged with the global one. By doing this in a single copy-operations, we have

reduced access to global memory, in particular, the fragmented read and write operations from

updating the local LET. In Figure 4.10, we show the resulting block from labelling an inverted

and thresholded IP image.

a)

b)

Figure 4.10 – Visible label blocks from the initial labelling (a). During the merging of 4 blocks, twelve sides
have to be processed (b).

Step 2: Merging

During the merging phase, eight neighbouring cubes are combined into a single one by updating

the labels along the neighbouring sides. This iterative process is repeated by halving the number

of blocks and doubling the dimension of an individual block until it spans the full data set. A

block is defined as four neighbouring cubes. These cubes share a total of twelve sides which can

bee seen in Figure 4.10 (right). The first dimension of the threads is assigned one of the sides

(0..11). Once the blocks grow larger, additional threads can be created to sub-partition the sides

of the cubes in the blocks. Since shared memory is not large enough to hold the LET, it is stored

in global memory and entries require atomic updates (atomicMin).

Step 3: Flattening and continuity of labels

After the threads have updated the global LET, it has to be flattened. This can be done in an

iterative parallel process. The labels of flat LET are not continuous. This can be achieved through

a relabelling. However, this is done best in a single, sequential process.

Step 4: Label Transfer

Once the LET has been flattened, the labels can be directly transferred to the final image. In our
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case, we know that the number of labels is low. Therefore, we can switch from a 4-byte number

representation to a 2-byte representation. This reduces the memory consumption.

Another possibility is to check the size of the connected components. This could be done in a

single kernel. Then LET could be updated for labels that are too small by setting the LET for

these labels to 0 (background).

Adjustment to large 3D data sets

The presented method proposed by [ŠB11] is described to work with n-dimensional data sets,

however, results have been presented only for 2D data sets. With increasingly large data sets,

modifications have to be made. A data set with 600*600*300 requires 205 MB with a 16 bit repre-

sentation. In a data set with potentially 600*600*300 labels, a 32 bit representation of the labels is

needed. This increases the label image to 410MB. If we follow the approach with a global LET, it

would require 810MB. Furthermore, we have to look at the uncropped image data, because the

cropping is based on the air filtering, which requires the CCL. Since cropping based on the air

reduces the data sets by approx 66%, we have to triple the actual data set sizes. This results in

prohibitively large sizes of 1.2GB for the label image and 2.4GB for the LET.

Therefore, we propose a serious of modifications to the original approach. We propose to perform

the steps 3 and 4 after every merging step. Furthermore, we propose to limit the total number

of labels per step and in general. This reduces the size of the LET drastically. It also reduces

the costs for the Union-Find step. In the first stages, we propose to enforce already a minimum

size per component. This keeps the total number low. The detection of component size is limited

to blocks and only components that do not touch the boundaries of the block can be reliably

removed if they are too small.

4.5.6 Slice Histogram Generation

For the initialisation process, we use a histogram of air and muscle tissue; a complete description

can be found in Section 5.3. We can perform the generation of these histograms directly on the

GPGPU as the data is already in memory. We take the air and the muscle labels as input. The

number of blocks is identical to the number of slices. Since the histogram is slice-wise indepen-

dent, the thread can use the shared memory which has faster access times. The threads process

individual parts of the slice and store their results in the shared memory using an atomic opera-

tion. Once all threads have finished (detection through synchronisation), the result is transferred

to global memory and can be used for the initialisation.

4.5.7 Evaluation and Results

In this section, we will evaluate the processing pipeline on CPU and GPGPUs. We aim to show the

speed differences between multi-core (CPU) and many-core (GPGPU) systems and to evaluate

how the pipeline can benefit from massively parallel processing.

We evaluate the pipeline for air and muscle labelling on one CPU type and five different GPGPUs.
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Table 4.4 – Specification of the GPGPUs used for evaluation.

Gen. Cores Clock Memory Mem. clock Bandwidth
GTX 470 Fermi 448 607 MHz 1280 MB 837 MHz 133 GB/s
GTX 660 Kepler 960 980 MHz 2048 MB 1502 MHz 144 GB/s
GTX 750Ti Kepler 640 1085 MHz 2048 MB 1350 MHz 88 GB/s
M2050 Fermi 448 1150 MHz 3072 MB 773 MHz 144 GB/s
GRID K520 Kepler 1536 800 MHz 4096 MB 1250 MHz 160 GB/s

The CPU that we have used is an Intel Core i7 3770 of the Ivy Bridge generation with four cores

and eight parallel threads. It is clocked at 3400 MHz. The caches are composed of 128 KB L1-,

1 MB L2-, and 8 MB L3-cache. The system was equipped with 16 GB RAM with a bandwidth

of 12.8 GB/s. Based on our decision for CUDA, we are using only nVidia GPGPUs. Our five

cards cover the Fermi and Kepler generation, with Kepler being the current generation at the

time of writing. Except for the GTX 470, all cards have at least 2GB of memory. Within the Kepler

generation, we have selected cards that show the range between large number of cores and higher

clock rates. The GTX 750Ti represents cards with lower memory bandwidth. An overview of the

specifications of the GPGPUs used can be found in Table 4.4.

With our setup, we can generate multiple data sets of different resolutions. To better understand

the implications on the total duration of processing, we have tested the CPU and GPGPU pipeline

on different resolutions of our five subjects. First, we have tested the original, uncropped data

sets, which range from 469 to 605 MB. We have also tested the cropped data sets which range

from 125 to 185 MB. Finally, we have tested a further reduced data set of subject 1, with only 86

MB.

Table 4.5 – Total air processing times on our five subjects and reduced data sets. Missing results are caused
by insufficient GPGPU memory to store the data sets and needed temporary information.

Size CPU GTX 470 GTX 660 GTX 750i M2050 Grid K520
Subject 1 469 MB 64 s - 16 s 11 s 20 s 16 s
Subject 2 493 MB 68 s - 16 s 12 s 20 s 16 s
Subject 3 533 MB 71 s - 19 s 13 s 20 s 17 s
Subject 4 534 MB 67 s - 20 s 13 s 20 s 17 s
Subject 5 605 MB 70 s - - 14 s 23 s 19 s
Subject 1 (crop) 175 MB 22 s 8 s 8 s 4 s 7 s 6 s
Subject 2 (crop) 125 MB 15 s 6 s 5 s 3 s 5 s 4 s
Subject 3 (crop) 182 MB 25 s 8 s 8 s 5 s 7 s 6 s
Subject 4 (crop) 185 MB 22 s 8 s 8 s 5 s 8 s 6 s
Subject 5 (crop) 165 MB 23 s 7 s 6 s 4 s 7 s 5 s
Subject 1 (half) 86 MB 11 s 4 s 3 s 2 s 4 s 3 s

While we have tried to evaluate all data sets on all GPGPUs, this was not possible due to memory

constraints. For the proposed processing methods, we need to allocate at least two copies of a

single channel of the data set in GPGPU memory. There is additional memory needed for the

LET in the CCL step. Together with the memory used by the OS, the uncropped subject 5 could

not be processed on the GTX 660 as well as all uncropped data sets on the GTX 470 which only

has 1.25 GB of memory.
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Figure 4.11 – Total air processing times on our five subjects (S1 - S5) and reduced data sets (air cropped
and halved). Missing results are caused by insufficient GPGPU memory to store the data sets and needed
temporary information.

Table 4.6 – Total muscle processing times on our five subjects and reduced data sets. Missing results are
caused by insufficient GPGPU memory to store the data sets and needed temporary information.

Size CPU GTX 470 GTX 660 GTX 750i M2050 Grid K520
Subject 1 469 MB 88 s - 30 s 22 s 43 s 30 s
Subject 2 493 MB 90 s - 31 s 24 s 45 s 31 s
Subject 3 533 MB 98 s - 35 s 25 s 45 s 34 s
Subject 4 534 MB 87 s - 36 s 26 s 45 s 34 s
Subject 5 605 MB 108 s - - 29 s 51 s 38 s
Subject 1 (crop) 175 MB 33 s 15 s 14 s 8 s 16 s 11 s
Subject 2 (crop) 125 MB 24 s 11 s 9 s 6 s 11 s 8 s
Subject 3 (crop) 182 MB 31 s 15 s 13 s 9 s 17 s 12 s
Subject 4 (crop) 185 MB 31 s 16 s 13 s 9 s 17 s 12 s
Subject 5 (crop) 165 MB 32 s 14 s 12 s 8 s 15 s 11 s
Subject 1 (half) 86 MB 16 s 7 s 6 s 4 s 8 s 5 s

Our experiments show that the data processing time grows with the data set size. This applies

to both, CPU and GPGPU. We have also found that GPGPU processing times are shorter than

GPU times for air and muscle labelling. On the air labelling task, the GPGPU processing times

are between 1�3 and 1�4 of the CPU times. These results are listed in Table 4.5 and shown in Figure

4.11. The improvements for the muscle labelling were smaller, but the GPGPU processing still

ranges from 1�2 to 1�3 of the CPU times. These results are listed in Table 4.6 and shown in Figure

4.12.

During evaluation of these results, we have found that the CCL consumes a large share of the

processing. The air labelling requires two CCL passes, however, for the muscle labelling, four

passes are needed. Therefore, muscle labelling requires more time and has a smaller, but still

large, gain over the CPU-only processing approach. While the CCL takes longer when performed

on GPGPUs, we have found that operation like dilation, erosion, thresholding, and addition

benefit. We assume that this stems from the fast, aligned memory access and the massively

parallel processing of the GPGPU.

As part of the CCL implementation, we have included a step that reduces the number of labels

by filtering for minimal size during the iteration. While this allows reducing the storage for the
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Figure 4.12 – Total muscle processing times on our five subjects (S1 - S5) and reduced data sets (air cropped
and halved). Missing results are caused by insufficient GPGPU memory to store the data sets and needed
temporary information.

LET, it requires processing time. We have tested two different approaches; the first one uses local

memory and a fixed number of threads. This leaves too much work on the threads with growing

block sizes. The second approach operates block independent and allows the distribution on

many threads but it needs to use atomic operations. We have found that the Kepler GPGPUs

have a fast implementation of atomic operations and showed speed improvements over the first

approach. On Fermi GPGPUs instead, the use of atomic operations is too costly so that we have

used the second approach.

In conclusion, we have presented a GPGPU implementation of our air and muscle labelling steps.

We have achieved a reduction of the CPU processing to 1�2 to 1�4. In clinical environments, GPG-

PUs are used for image reconstruction in MR and CT scanners. This provides a wide availability

and an easier integration into clinical routine. We have identified CCL as area for future work.

The serial implementation on the CPU shows superior performance. Therefore, we propose to

evaluate the use of the CPU for CCL. The loss from data transfer from and to the GPGPU should

be smaller than the gain from the CPU based CCL.

4.6 Conclusion

The acquired image data requires additional processing. In this chapter, we have presented the

correction of non-uniform intensities on an inter- and intrastack basis, including bias field esti-

mation and compensation. Another artefact in the image data is noise. We have discussed the

non-local means approach for noise reduction. On the cleaned data, we propose a method to

label muscle tissue efficiently using morphological operations. These labels can be used for ini-

tialisation and segmentation. Finally, we propose an acceleration of these steps by using GPGPU

devices.
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5.1 Motivation

For a good segmentation, the initial models have to be placed close to their final position. De-

formable models, in particular, benefit from this. Different techniques have been proposed, in-

cluding manual approaches, edge-based methods and the Hough transform. However, those are

either too simple or too computational heavy for the complex data sets that we have acquired.

We propose a method that localises joints by using the histogram of the labelled slices of the

image data. Once we have localised the joints, the bone models can be placed and segmented.

We use the bones to register a template data set with the muscles of interest. To compensate for

changes in fat/muscle ratio and total circumference of the limb, we correct the models using the

muscle labels. We end the chapter with a conclusion.

5.2 Bone Localisation

There exist several approaches for the localisation of bones. In this section, we will present a

selection of these approaches including manual and landmark-based initialisation as well as

automatic methods using edge processing and the general Hough transform. Then, we present

our proposed method.

5.2.1 Manual Initialisation

Manual initialisation relies on user input to create a proper initial state. The user is asked to man-

ually place a model, to select seed points or to localise landmarks. There exist many techniques

for the interaction, most common is the use of mouse and keyboard. However, more advanced

techniques like haptic input devices can be used. Just like the other approaches, it is sensitive

to the quality of the images. However, human intuition can help in heavily distorted data sets.

The required manual interaction is time-consuming and needs the expertise of the user not only

in anatomy but also in the software used. Therefore, manual initialisation is not feasible for

repetitive clinical applications but is often used in research scenarios. An additional problem is

the reduced reproducibility. There can be high inter- and intra-observer variation in repetitions.

Many segmentation approaches are sensitive to initialisation. Therefore, results often depend on

the experience of the user.

A hybrid approached relies on the user for an approximate initialisation and then refines al-

gorithmically. This helps to reduce the search space and cuts down computational costs and

required time. Furthermore, it improves reproducibility.

5.2.2 Landmarks

The use of landmarks is an extension of the manual approach. Instead of translating and scaling

the whole model, the user selects a set of strong landmarks in the image, and the initial model is

automatically adjusted to obtain the best fit. In this way, the user input and hence the margin of

error can be significantly reduced. Landmarks should be positioned at significant areas that can
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be easily detected in the image. Examples would be areas of high curvature, e.g. a fissure in a

bone, or a measurable location, e.g. the middle of the femoral shaft. An initialization of a model

using seeds has been proposed by Neuenschwander et al. [NFSK97]. The correct scaling and

positioning of the model have to be determined from the seeds. This warping can be done using

the Thin Plate Spine (TPS) transform. If the number of landmarks is very small and not sufficient

for a confident pose estimation, different positions can be evaluated using a cost function that

incorporates a penalty based on image properties. An example for that can be found in [Sch11].

Using landmarks at key anatomical positions allows the invocation of prior knowledge. Other

approaches extend landmarks with the inclusion of spatial knowledge. For example, Fripp et al.

[FCWO05] proposed a cartilage initialisation system that exploits prior knowledge of the bone

location.

5.2.3 Edges and Image Features

Edges and other image features are needed for initialization techniques like the General Hough

Transform (see next section). These approaches rely on features and edges that lie on the bone

surface. Complex image features like SURF [BETV08] and SIFT [Low99] have shown poor results

because they identify features that lie within the soft tissue as shown in Figure 5.1a. Edge de-

tection algorithms like Canny or Sobel detect the bone boundaries but also create many results

inside the soft tissue (see Figure 5.1b).

Figure 5.1 – SURF features (a) and edges (b) before the application of smoothing filters.

We have evaluated several smoothing filters to reduce the number of unwanted elements in the

image, for example, fine structures in fat tissue. The min-max curvature flow filter[MSB96] has

shown the best results 1. It can be parametrised by radius, iteration number and time step. Our

1. See http://math.nist.gov/mcsd/savg/software/filters/smooth/index.html for an extensive com-
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evaluation indicates that a radius above 1 leads to an insufficient smoothing of soft tissue. A

comparison of different radius values is shown in Figure 5.2.

Figure 5.2 – Influence of the radius in image smoothing filters: 1 (a), 2 (b), 3 (c) and 4 (d) voxels.

The next parameter we have investigated is the time step size: We have found that a value near

0.0625 provides a good balance between satisfying results and noise. Larger numbers increase

the artificial noise. The evaluation has further shown that an iteration count of 10-15 is sufficient.

More iterations just increase the calculation times but have little or no effect on the resulting

image. Instead of that, we have evaluated the effect of multiple runs (applying the filter to the

filtered image). The results show an improvement in the second run and only minor changes

during the third run, as we show in Figure 5.3.

Figure 5.3 – Effect of multiple filter runs: 1 (a), 2 (b) and 3 (c) runs.

If we compare the results of edge filtering and SURF feature detection in Figure 5.4, we can see

that the SURF features are still unusable for bone boundary operations. In opposite to that, edge

detection now has reduced the number of edges that do not lie on bone boundaries.

The next step will be using the edges to perform a general Hough transformation (see next

section). By performing the filtering, we have drastically reduced the number of feature points

that has to be evaluated. Furthermore, we were able to reduce the number of unwanted edges

that do not lie on bone boundaries. The results could be further improved by tuning the edge

detection (different algorithms and parameters).

parison of smoothing filters.
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Figure 5.4 – SURF features (a) and edges (b) in the smoothed image. The total number of features is largely
reduced.

5.2.4 General Hough Transform

In 1962, Hough [Hou62] was granted a patent for Method and Means for Recognising Complex

Patterns. His approach uses templates and a voting space. For each identified image feature all

possible templates create votes for possible poses. The highest vote represents a set of parameters

for the best corresponding template. An example of an original image and the corresponding

voting space is shown in Figure 5.5. Illingworth and Kittler [IK88] have presented a review of

the Hough transform and Khoshelham [Kho07] has demonstrated an extension to 3D object

detection.

Figure 5.5 – Example of the Hough Transform for lines. Original image (a) and voting space (b).

The general Hough transform can be used for the initialisation of deformable models. Van der

Glas et al. [vdGVBV02] have demonstrated a method to detect ball joints. Seim et al. have
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proposed approaches for the hip [SKH+08] and the knee [SKL+10]. In 2010, Ruppertshofen

et al. [RLS+10] have proposed a discriminative approach for lower extremities, which has been

extended to a multi-level scheme [RKL+11]. The main use of the Hough transform to detect bones

in medical image data is on CT images, as they show clearer boundaries than MR images.

To use the Hough transform, a distinct shape is required. The work of Milner et al. [MB12] has

shown that the average diameter of the femoral head is 42.1mm for women and 49mm for men.

This concrete parametrisation gives the possibility to reduce the voting space for the Hough

transform.

We have evaluated the possibility of using the Hough transform in our data sets. We have en-

countered two major problems with it. First, the visibility of the bone boundaries was too weak to

generate satisfactory results. Second, while the femoral head has a ball shape of predefined size,

other structures, e.g. the tibia lack such simple geometrical features. To describe the variations

in the knee joint, a much larger voting space is needed, leading to weaker results with higher

uncertainty, as the votes are more distributed than for a simple ball shape.

Therefore, we are exploring other approaches including the use of histograms as described in the

next section.

5.3 Histogram Matching for Joint Localisation

The natural structure of muscles is constant among the population. They are very thin at their

attachments and tendons and continue to grow in diameter towards the centre. As most muscles

are attached near the joints, a recurrent pattern can be found among the population. The muscle

volume per transversal slice increases towards the centres of calf and thigh. If we include fat, skin

and other tissues, the same observation can be made. By sampling the slices along the inferior-

superior axis, we can generate curves (histograms) as shown in Figure 5.6. As we compare them

with the different subjects, they all carry the same characteristics. By aligning the curves to

a template with prior known locations of the joints, we can approximate the location in our

subjects.
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Figure 5.6 – Histogram of tissue (left) and muscle (right) volume per slice for five subjects.

Several approaches for aligning curves have been proposed, many of them intend to target
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5.3 Histogram Matching for Joint Localisation

problems like optical character recognition[Mar98, SKK03] or handwritten signature matching

[EFV07]. They use different techniques for aligning time series data like proposed by [WG97]

and [Jam07]. The human leg contains three major joints: ankle, knee, and hip joint. These joints

determine the position of femur and tibia, which we need for further processing steps. While

exploring the different techniques presented before; we have found that we can generate satis-

factory results by using a best neighbour registration approach. We have identified three actions

to modify the histograms: superior-inferior axis translation (SIAT), superior-inferior axis scal-

ing (SIAS) and slice volume scaling (SVS). The aim of the registration is to increase the overlap

between the histograms. We define the template histogram Ht, which is fixed, and the sample

histograms Hs, which is moving. The slice axis starts at the inferior end of the data set, at the feet.

A common zero between the data sets can be assumed due to the air masking technique which

we apply. We then identify the minimal and maximal shared slice index between both data sets:

Smin and Smax. The overlap is now defined as:

Overlap(Ht, Hs) = Smax�
s=Smin

min(Ht(s), Hs(s))

We then measure the overlap between the two histograms and test all possible operations (SIAT

+/-, SIAS +/- and SVS +/-. If any of these provides a better overlap, the best one is chosen and

applied to the sample histograms. Once no more improvement is found, we reduce the values

for scaling and translation by 50% and repeat the process. This progressive refinement allows a

fast first convergence followed by refinement for best results.

Further, we propose the following improvements. The length of legs can be easily estimated.

This allows us to define an approximate position positions for the joints. We can then define

a neighbourhood around them, e.g. with a width of 1�4 of the total leg length. These resulting

sub-histograms prevent errors which could be introduced from unrelated areas of the histogram:

e.g. optimisation for the hip joint could result in worse results for the ankle. Another approach

to improve overlap amount is to adjust the volume per slice by introducing a shared minimum

and maximum. Since we are interested only in the slice index but not the actual volume at that

slice, we can freely modify these volumes (as long as they are propagated among all slices).

The initial parameters for translation and scaling have to be chosen carefully since they can have

a large influence on the total error after histogram matching. We have performed an evaluation

of a wide range of parameters, based on our subjects and a template data set.

Finally, we can calculate different histograms from the labelled image data. These options are air

or total tissue, muscle tissue or total tissue minus muscle tissue. These different histograms show

unique characteristics, e.g. there is little muscle tissue at the knee joint, this is a property which

is constant for all subjects. Also, the shape of general muscles, e.g. hamstrings or quadriceps is

common, although the total volume depends on the level of training/activity of the subject.
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5.3.1 Evaluation and Results

In this section, we evaluate our proposed method for histogram based joint localization. We

iteratively refine the histogram overlap using SIAT, SIAS and SVS. Once a refinement is no

longer possible, we reduce the values for scaling and translation by 50%. The number of levels

limits the repetition of this process. Once we have reached the finest level, we can apply the

inverse operations to the slice positions of the ankle, knee and hip in the template to receive their

position in the subject.

We have used our five subjects and an annotated template data sets to evaluate our joint localisa-

tion. During our evaluation, we have made the following observations. While it is possible to use

muscle and tissue label histograms together, we have found that there exist pairs of joints and

labels that produce better results than others. Our experiments have shown that muscle tissue

gives best results for the knee. Hip joint and ankle can be located better using the total tissue

label. While it is possible to use the full data set for the registration of the knee, we have found

that we can achieve better results for ankle and hip joint by only using their close neighbourhood

(1�3 leg length around estimated joint location). During development, we assumed that an initial

alignment of the slice volume through scaling (SVS) so that they share the same min-max values.

However, our tests have found no improvements from that. Overall, the SVS only played a minor

role in the quality of the results, disabling it resulted in only minor losses of accuracy.

The registration process runs independently for each subjects. To influence it, we can set the

initial scaling values for SIAS and SVS, SIAT step size and the number of levels of refinement.

We also apply a limit for the total translation and scaling. We have applied an exhaustive search

to find the optimal parameters for all our subjects. The metric to evaluate the parameters was

the sum of the absolute error per subject. We will present the individual results below, in Figure

5.7 we show the evaluation of the absolute error over a range of initial parameters for SIAT and

SIAS. As the SVS has shown little or no effect on the output, we have omitted this parameter.

The knee histogram matching worked best with the muscle labels. We found an initial SIAT step

size of 32 slices with a total maximum translation of 50 slices to work best. SIAS and SVS have

both been initialised with the factor 0.01 (1±0.01); the maximum accumulated scaling was limited

to a factor of 0.2. For the knee, we have extracted a sub-histogram for matching. It was 1�4 of the

data set length long and had 1�3 of the dataset length as offset, so it was ranging from 4�12 to 4�12

of the total data set). We show the results for every subject using these parameters in Table 5.1.

Table 5.1 – Histogram matching results for the knee joint using the muscle labels.

Subject 1 2 3 4 5
Error (slices) 0 6 1 1 2
Error (mm) 0 9 1.5 1.5 3

The hip joint histogram matching to locate the femoral head worked best with the tissue labels.

We found an initial SIAT step size of 7 slices with a total maximum translation of 50 slices to

work best. SIAS has been initialised with the factor 0.01 (1±0.01), the maximum accumulated
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Figure 5.7 – In this figure, we present an analysis of the total absolute error depending on the initial pa-
rameters of the registration process. The x-axis shows initial step size for the translation along the superior-
inferior axis. The y-axis shows the initial scaling factor for the superior-inferior axis. Slice volume scaling
has been omitted due to its only small influence on the results.

scaling was limited to a factor of 0.2. SVS was initialised with a factor of 0.07. Also for the hip

joint, we have extracted a sub-histogram for matching. We have selected the superior 10% of the

data set as our acquisition protocol cuts off above the femoral head. We show the results for

every subject using these parameters in Table 5.2.

Table 5.2 – Histogram matching results for the hip joint using the tissue labels.

Subject 1 2 3 4 5
Error (slices) 0 2 0 4 1
Error (mm) 0 3 0 6 1.5

The ankle histogram matching worked best with the tissue labels. We found an initial SIAT step

size of 43 slices with a total maximum translation of 50 slices. SIAS has been disabled, SVS has

been set to 0.15. For the ankle, we have extracted a sub-histogram for matching. It was 1�4 of the

data set length long and started at the 30th slice of the dataset (from the inferior end). We had

to omit these slices as the image quality was very low. As part of the acquisition protocol and

as a compromise for the acquisition time, the ankle is not very visible in the data set and barely

included. This has been a big challenge to get a close localization of the joint, in particular for

Subject 3 and also for Subjects 4 and 5 where the ankle was within the first slices of the dataset.

While the results for Subjects 4 and 5 still lie in a sufficient range for initialization, Subject 3 has

a large error. We show the results for every subject using these parameters in Table 5.3.

Table 5.3 – Histogram matching results for the ankle joint using the tissue labels.

Subject 1 2 3 4 5
Error (slices) 5 3 25 10 11
Error (mm) 7.5 4.5 37.5 15 16.5

Initially, we have implemented the histogram matching in ECMA script, embedded in a web
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page while using the HTML5 canvas element for visualisation. An example of that GUI can be

seen in Figure 5.8. However, insufficient garbage collection during the exhaustive exploration of

the parameter space has required the to a language with more control over memory allocations

(C++). The implementation in C++ also allowed an integration in our DMFramework to make

this feature available for the automated processing and segmentation pipeline.

Figure 5.8 – Screenshot of the user interface of the initial histogram matcher interface. Three canvas
(HTML5) elements present the histograms to the user. The top left histogram (a) is the fixed one with
muscle (red), tissue (green) and air (blue). The top right (b) is the moving histograms. In the bottom his-
togram (c), we can see the result of the registration. The initial moving histogram (red) has been aligned
(blue) to the fixed histogram (green).

5.3.2 Bone Placement

Using the location of the joints, we can scale the models of the bones based on their length

and place them along the superior-inferior axis. However, they are not properly located in the

transverse plane yet. Tibia and femur show similar tubular structures, with both of them having

a long shaft. Our approach is to locate this shaft in the MR images and to use it for the aligning

of the meshes. In the following, we will describe the process using the femur as an example.

In the multi-channel image data from the mDixon scans, the in-phase scans show clear low

intensities along the femoral shaft. To identify them in individual slices, we first remove the

areas labelled as air. The raw muscle label also labels the cortical bone. Therefore, we can extract

the low-intensity values inside the raw muscle label. We then filter it for the largest connected

component to get the cut through the femoral shaft. This segment S f is an approximation of the

shaft, excluding the bone marrow. Finally, we calculate the centroid of Cf for the given slice.

The concrete placement of the subjects in the scanner leaves a small range of rotation for the

bone, e.g. through different angles of the knee joint or rotation of the feet. To find a the correct

placement of the mesh, we need at least three different points to align. The main idea is to take
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the centroid of the femoral shaft in the image data Cf and the centroid of the femoral shaft in

the mesh Cm (which can be easily calculated through a cut) and to align them. This principle is

shown in Figure 5.9. We use the slice at the centre of the model on the superior-inferior axis and

two slices 1�5 of model length inferior and superior to it. We align both sets of centroids using the

centre point and optimise the rotation to match the remaining centroids best.

fixed

rotating

rotating

a)
b)

c)

d)

e)

Figure 5.9 – To align the femur model in the transverse plane, we extract three slices from the image data
(a) and the mesh (e). From these, we extract the centroid of the femoral shaft (b,d). We overlay the middle
centroids and optimise rotations to match the others (c). The resulting transformation is applied to the
mesh.

We then use our deformable model framework DMFramework for the exact segmentation. In the

mDixon in-phase image, the bone is easily visible. Therefore, it is sufficient to use this single-

channel image and a robust gradient force to generate the bone segment.

Finally, we have used the centroid-based method for placing bones within the transverse plane.

We present it on Subject 1 and compare it to a manual segmentation of the femur. The models

have a mean distance of 4.27mm with a minimum of < 0.1 mm and a maximum of 16.79 mm. The

RMS is 5.48mm. This is a very good approximation; the remaining error will be removed during

the actual segmentation task. The target and aligned femur can be seen in Figure 5.10. Further

comparison has revealed an SDC of 0.72.

5.4 Registration of Muscle Atlas using Bone Location

Information

For the initial placement of the muscle models, we use the femur. We can register the segmented

femur with the template femur. The resulting transformation from template space to model space

can then be applied to the template muscle models.

We are using an atlas based on the UltimateHuman 2 model and focus on the thigh. We apply

2. http://www.cgcharacter.com/ultimatehuman.html, based on MRI data
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Min distance: 0.002357 mm
Max distance: 16.793808 mm
Mean distance: 4.266479 mm
RMS: 5.484455 mm

0 mm 16 mm

a) b) c)

Figure 5.10 – Evaluation of the femur alignment. The target (a) and aligned model (b) have been compared
to show the distances from the surface of each other (c). Low distances are shown in red, medium in yellow
and green and high distances in blue.

the automatic segmentation tools for the femur of Schmid et al. [SKMT11]. We then use the

segmented femur for registration. First, the centroid of the femur in the atlas is translated to

the centroid of the image femur. Then, we perform a best neighbour registration between both

femur models. We restrict translation to 5cm per axis in total, rotations to 20°, and scaling to a

range of 70-130%. The registration converges after 50 to 100 steps. The resulting transformation is

combined with the initial translation and applied to the muscle meshes of the atlas. This process

is illustrated in Figure 5.11.

5.5 Label-based Muscle Mesh Correction

The muscle labels can be used to register a muscle mesh atlas. For this, a given collection of

muscle meshes (e.g. from prior segmentation, or other sources like the Visible Human Project

[Ack98]) is transformed into image space so that it maximises overlap with the muscle volumes

in the image. These atlases, also known as templates, are pre-registered in a first coarse step,

followed by the fine corrections.

Often the actual circumference of the lower limbs differs from person to person, based on body

weight and the amount of exercise. The muscle meshes, registered only based on the femur,

are not adapted to that. They either stick out of the leg or fall short. Therefore, we propose the

following method to correct the meshes by using the muscle labelling we previously created as

a guide for correction. As an input, we use the air image, the muscle labels, the femur model

and muscle meshes. The main idea is to slice-wise cast rays circularly from the centre of the

femur and to correct the outermost muscle mesh contact to align with the outermost muscle

label contact. This is done on every transversal slice along the femur.

In each slice, we first calculate the convex hull of the femur. Figure 5.12 shows that the shape of
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Figure 5.11 – Volumetric muscle models can be registered to the labelled muscle images. An initial corre-
spondence is established using the previously segmented femur. The transformation gained from this step
can be used to transform the muscle template model as well. After this step, the muscle labels can be used
for corrections, e.g. for different circumferences of the thigh and different stages of physical training.

the femur can be very irregular, especially near the condyles and the femoral head. Our approach

requires that the rays do not cross, which is only guaranteed on convex shapes. We are using

36 rays, every 10°, as can be seen in Figure 5.14. We always consider two consecutive rays at

one time. The following explanations are shown in Figure 5.13, where they can be retraced more

visually. The first ray hits the femur surface in A; the second ray hits it in B. The outermost atlas

mesh point for the first ray lies in C and in D for the second ray. The vectors �a = �AC and �b = �BD

follow the rays. Let the mesh vertex inside the area between �a and �b be X. We can define the

position of X with respect to �a and �b. Let �g be defined as �BA. We now define the �h that traverses

X to be parallel to �g. Let S be the intersection between �a and �h and let T be the intersection

between �b and �h. We can now define �h as �TS.

The points S, T, and X can be expressed relatively to the vectors they lie on. Their scalars s, t,

and h1 and h2 are defined as

s = �AS�
��a� , t = �BT�

��b� , h1 = �XS�
��h� , h2 = �XT�

��h� .

When we follow both rays for the contact with the outermost labelled mesh, we find the points

C′ and D′. We then define the vectors �a′ = �AC′ and �b′ = �BD′. Using the scaling factors s and t, we

can define S′ and T′:
S′ = A + s ⋅ �a′, T′ = B + t ⋅ �b′, �h′ = �T′S′
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Chapter 5. Model Initialisation

Figure 5.12 – The irregular shape of the femur (a) has many concave areas in the transversal cuts (b) along
the superior-inferior axis. On these cuts, we can calculate the convex hull (c).

Finally, we can use the scaling factor h1 or h2 to find X′:
X′ = T′ + h2 ⋅ �h′ = S′ − h1 ⋅ �h′

We repeat this for all mesh vertices inside the circular segment, and then we proceed with the

following segment. We apply this to all slices along the femur to retrieve the correction for all

meshes in the muscle mesh atlas.

For rays facing the other leg, the outermost labelled muscle point may be falsely attributed to the

other leg. To prevent this, we stop the search along the rays once air is encountered for the first

time. This approach has shown problems when the fat of both thighs touches. Also, there is no air

region in the pelvis, resulting in false corrections. Therefore, we slice-wise sample the transverse

centroids along thigh and calf. If we take their average and connect them longitudinally, we get a

line along which we can position a sagittal plane to stop the rays. This effectively separates both

legs.

5.5.1 Evaluation and Results

To evaluate the outcome of correction, we run a visual comparison and we analyse the overlap of

muscle label and mesh before and after correction. The results of the visual comparison can be
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5.5 Label-based Muscle Mesh Correction

Figure 5.13 – To correct the muscle mesh atlas we divide the femur (A, B) into circular segments limited by�a and �b. The outermost points along them of the muscle mesh are C, D and in the muscle labels, it is C′, D′.
We use these points to calculate the correction X′ for a point X.

found in Figure 5.15 (a, b, with hidden skin layer and c, d, with skin layer). In comparison with

only the muscle mesh, the uncorrected version shows large displacements of the template outside

of the muscle tissue. This is mainly visible on surface muscles as they are closer to the boundaries

and more sensitive to anatomical differences between the subjects. However, this displacement

also affects deep muscles, although it is not visible here. Depending on the variations between

template and subject, the differences can be large. This is clearly visible in the comparison with

the skin surface included.

In Figure 5.16, we have evaluated several muscles of the thigh, before (labelled as O, original) and

after (labelled as C, corrected) the muscle label based mesh correction. We also list the difference.

The evaluation has been carried out on Subject 3. From our results, we can see that deep muscles

like the addictor brevis, the adductor magnus or the pectineus are already almost fully covered

by the muscle label. After the correction, these values remain high and there little to no change.

For the surface muscles, large changes can be observed. As seen in Figure 5.16, muscles like

biceps femoris, rectus femoris and gluteus maximus (40% are lying outside the imaged volume)

benefit from the correction. They show vast improvements in overlap, with up to additional 30%

of their volume included. In particular, the sartorius muscles with its thin size which wraps

around the leg on the surface benefits, with an overlap increase from 50% before correction

to 90% after successful correction. The results presented so far were acquired in Subject 3. We

evaluated the other subjects to ensure similar correction results between the different anatomies

in the subjects. As the main differences were shown in the surface muscles, we present a selection

of them in Table 5.4 for each subject. These results support the findings in Subject 3 and show

that the approach can be applied to subjects of different sizes, weight and physical fitness.

In our tests, we have used a default number of 36 rays per slices, or every 10°. The output depends

on this, as the actual muscle contour is assumed to be linear between to rays. In Figure 5.17a, we

illustrate two example in which this assumption is violated. The presence of concave or convex
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Chapter 5. Model Initialisation

Figure 5.14 – The muscle mesh atlas correction is performed on circular sectors of the image. First, the
convex hull of the femur is calculated (white). Then rays are cast from the centroid of the hull. The blue
rays go to the outermost muscle tissue; the orange rays stop at the outermost muscle mesh vertex.

shapes can explain the difference from the 100% overlap that could be initially expected. We have

evaluated different configurations of rays, 18, 36, 72 and finally 144 rays (every 20°, 10°, 5°, and

2.5°). The results are plotted in Figure 5.17. Our results show that only 18 rays already give an

improvement in overlap, whereas more than 36 rays only provide little additional improvement.

The difference between 72 and 144 rays is minimal. However, the calculation is very efficient

and additional rays only produce a little overhead. Therefore, a total of 72 rays seems a good

selection.

In our proposed method, we only perform correction on individual slices. If mesh elements span

among multiple slices, the slices in between are not taken into consideration. While it would

be possible to perform a correction along the axes, the resulting output is sufficient for the
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5.5 Label-based Muscle Mesh Correction

Figure 5.15 – Visual comparison of the muscle mesh adaption. A) and b) show the muscle tissue; c) and d)
add a (semi-transparent) tissue layer. A) and c) show the state before correction - the blue muscle meshes
clearly are not fully inside the muscle tissue. B) and d) show the results after correction; the muscles meshes
are now within the labels.
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Figure 5.16 – Evaluation of muscle mesh correction for several muscles. The graph shows the overlap of
the original mesh (O) with the muscle label, the overlap after the correction (C) and the difference (diff). A
perfect overlap is 1.0; this evaluation has been performed on Subject 3.

initialization step.

In conclusion, we have found that our proposed muscle label based mesh correction shows

good results. We have shown a visual comparison that underlines the correction of misplaced

muscles. A comparison of overlap between muscle labels and corrected meshes has found that

deep muscles already show a good overlap, whereas surface muscles initially have a bad overlap.

The overlap improves vastly using our correction technique. Nonetheless does our methods not

produce a full overlap in all cases. This can be attributed to spikes and a low sampling rate

during correction. However, this step is followed by the actual segmentation that will correct

these problems. In pursuit of a fully automated segmentation pipeline, we can control for errors

in the initial placement during this step. If bad values for overlap of deep muscles are found, this

could trigger a manual inspection as this is unexpected.
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Chapter 5. Model Initialisation

Table 5.4 – Muscle mesh correction of surface muscles among the subjects.

Muscle Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
before after before after before after before after before after

biceps femoris 69% 90% 90% 97% 73% 93% 94% 97% 51% 98%
gluteus maximus 50% 81% 53% 88% 34% 64% 58% 83% 22% 84%

rectus femoris 81% 94% 86% 99% 79% 99% 96% 99% 42% 99%
sartorius 57% 78% 81% 93% 45% 88% 82% 93% 55% 95%
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Figure 5.17 – The number of rays used for muscle mesh correction can improve the overlap with the muscle
labels. The graph (left) shows the overlap for different totals of rays used (18, 36, 72 144). The figures on the
right illustrate the effect of too few rays on the transversal (top) and sagittal (bottom) plane.

5.6 Conclusion

Deformable model segmentation requires proper initialisation, meaning that initial models have

to be placed close to their approximate location. We investigate a slice-based histogram to identify

the position of joints in the subjects. Using these positions, we can scale the models for femur and

tibia. We identify the shaft of the bones in the transverse plane to get a proper placement. Then,

we register a template of the leg, including muscles, using the femur as a reference. Throughout

the population, the diameter of the leg varies, due to the amount of fat and training, resulting

in changing amounts of muscle volume. By exploiting the previously created muscle labels, we

correct the template to fit within the subject’s leg.
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Image Segmentation
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6.1 Motivation

Based on our discussion of segmentation techniques in Chapter 2, we have decided to use a

deformable model approach for the segmentation. We present a framework that implements the

core components and discuss the use of existing libraries to extend functionality. Our proposed

framework relies on libraries like VTK, ITK, Bullet Physics and OpenMesh. Lua scripting allows

controlling these components from external scripts. A specialised image manager handles the

multi-channel images and custom forces access them during the segmentation process. Section

6.2 describes these core components of this framework. In Section 6.3, we describe our approach

to evaluation. We present the tools and metrics for manual segmentation and then compare our

DMFramework results to this ground-truth. To overcome system dependencies, we propose a

web-based viewer for 3D multi-channel image data and segments and discuss a mesh streaming

approach during segmentation. This work is presented in Section 6.4.

Segmentation of complex structures is often a multi-tiered process. First, a coarse model is used,

which has low computational costs and allows fast adaptation. Through multiple stages, the

model is refined and adapts to fine structures in the image. This refinement comes with an

increase in computational cost and reduces the number of possible steps. This pyramid approach

is one-way, and it is not possible to return to a more coarse model, e.g. when problems are only

found at a fine level. We propose a method to overcome this by running all resolutions in parallel.

The models are coupled with forces and allow the switching between resolutions at any time.

We discuss our method and the used forces and synchronisation techniques in Section 6.5.

6.2 Deformable Model Framework Implementation

In this section, we introduce the design and implementation of our Deformable Model frame-

work DMFramework that we propose for the segmentation of the individual muscles. First, we

discuss the main parts of deformable models in general. Then, we present our design and de-

scribe implementation details. This includes meshes, image data handling, physics, forces and

approaches to parallelisation.

6.2.1 Main Components of Deformable Models

We have selected Deformable Models (DM) for segmentation in this work. DMs provide reliable

performance even in areas with little image information. Furthermore, they can carry an initial

shape that can limit the possible changes of the model. A full discussion of the properties of

DMs, related and detailed justification of our choice can be found in Sections 2.9.3 and 2.13.

Our thorough review of related work, e.g. from Bredno et al. [BLS03], has revealed the DMs are

commonly divided into components. We have identified the following main components of DMs:

— Meshes, that model the anatomical structures

— Forces, that will be applied to the meshes
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6.2 Deformable Model Framework Implementation

— Images, that provide input to the forces

— Physical simulation, that applies the forces to the mesh

— Output, to provide user feedback

In the next section, we will describe how we have addressed these main components. However,

there are additional things to consider which we briefly discuss next.

Time and costs limit the amount of image data that can be acquired. While the core parts of the

leg are fully acquired, a cut at the hip has to be made. This results in some of the muscle heads

lying outside the volume. Proper boundary conditions are needed to handle these muscles. Abort

criteria can be defined to limit the processing time. The deformable model process is iterative.

Towards the end, the model converges and undergoes only small changes. These changes, at

some point, fall below the voxel size and the calculation can be considered complete.

Clinical systems need to be very focused and should minimise user interaction. However, in our

research environment, flexibility to test and develop new approaches is crucial. Therefore, we

propose to include support for scripting. This way, different program flows can be evaluated and

platform extension is easier. These scripts can also be narrowed down based on user interaction,

giving more flexibility in targeted audiences. Many components of DMFramework also can be

applied more generic and, therefore, can help during image processing and model initialization.

Finally, a thorough evaluation of the results is needed. Depending on the data set, user and

application, the ground-truth to compare the segmentation results with may be provided in

different formats. While our segmentation generates meshes, many clinical experts annotate the

medical image data directly so that labelled voxel data is generated. In our DMFramework,

we provide methods for mesh-to-mesh and label-to-label comparison. We also provide access

to techniques to convert between both representations. In Section 6.3.2, we present evaluation

metrics.

6.2.2 Structure and Components of the DMFramework

Our DMFramework has a layered structure to connect its components which are group by func-

tionality and need to communicate. In this section, we will this structure in details and we will

present and motivate our decisions for the individual components.

6.2.2.1 Meshes

We use meshes to represent the anatomical structures that we segment. These 3D representations

not only represent the shape and structure, e.g. topology, but can also be used to carry additional

information like labels, textures, and weights. Meshes can be represented in different ways, e.g.

as simplex meshes or as triangle or quad meshes. In our applications, we have found triangle

meshes to be useful. They show great flexibility and a wide support in existing libraries. Also,

visualisation pipelines are usually optimised for triangle rendering.

Other than expressing a geometry, a mesh library should support loading from and saving to dif-
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ferent formats. Models can stem from different sources, e.g. medical professionals or designers.

They use vastly different tools and create different file formats. A wide support allows a better

integration in a wide range of scenarios.

The internal representation of meshes in a library can be important for the performance. Opti-

misations often benefit one group of applications and hinder another. For example, the half-edge

representation allows fast polygon traversal but increases memory consumption. The Laplacian

smoothing as another example requires the processing of the neighbourhood of vertices in the

mesh. To work efficiently, several algorithms for mesh processing are often needed, like decima-

tion to create lower-resolution version, smoothing or spatial access structures like trees.

Table 6.1 – Comparison of different mesh libraries by features, license, and last update.

Library License Changed Algorithms
Trimesh2 1 GPL recent subdivision, smoothing, curvature estima-

tion, triangle stripping, various other sim-
ple manipulations

OpenMesh 2 LGPLv3 recent smoothing, decimation, user-defined-
attributes

Halfedge Mesh Lib 3 unknown 1999 -
VCGLib 4 GPL recent many
GTS 5 LGPL 2006 Delaunay Triangulations, geometric refine-

ment, coarsening, bounding boxes, kd-
trees

CGAL 6 (L)GPL /
commercial

recent several

Based on these requirements, we have evaluated a number of libraries. An overview of our

findings can be found in Table 6.1. As a result, we have selected OpenMesh [BSBK02]. It offers

support for a range of file formats and good control of the underlying data structures. Several

algorithms for decimation are provided. The library is actively maintained and receives constant

updates. The documentation is extensive.

6.2.2.2 Forces

We apply multiple forces to our models to transform them into their desired shape. These forces

are divided into internal and external forces. Internal forces are applied through material prop-

erties by the physical simulation. External forces are based other inputs, for example the image

data. Some of these external forces have been presented in Section 2.9.5.

Several forces are required for satisfactory results. For internal forces, we use the shape preserv-

ing properties of the Bullet soft body implementation. We also apply Laplacian smoothing. To

ensure a constant movement, we have added a small balloon force.

1. http://gfx.cs.princeton.edu/proj/trimesh2/
2. http://www.openmesh.org/introduction/
3. http://www.cs.sunysb.edu/~gu/software/MeshLib/index.html
4. http://vcg.sourceforge.net/index.php/Main_Page
5. http://gts.sourceforge.net/index.html
6. http://www.cgal.org/
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6.2 Deformable Model Framework Implementation

In the previous sections, we have presented strategies for the robust segmentation of air and

bones. Both have shown good results. Therefore, we can consider these valid and can assume that

muscle must not enter air nor bone volume. We model them as rigid bodies with infinite mass

as shown in Figure 6.1 for our simulation. They cannot be penetrated by the models. This also

means that they cannot be deformed by other models and can be neither translated nor rotated

through, for example, high impacts. Together, bone and air are used to exclude the models from

prohibited, anatomically impossible regions.

Figure 6.1 – Air and bones are modelled as rigid and fixed objects. They cannot be penetrated by the muscle
models and prevent them from reaching unrealistic or impossible positions.

The muscle labels give an additional indication for the models. However, unlike bone and air,

they cannot be considered rigid. While the labelling has shown good results, the proper labelling

near the joints is challenging due to the many different types of tissues (see also Section 4.4) and

fine structures. Therefore, we only use the muscle labels as an indication and pull the models to

stay inside the muscle labels. For this, we pre-calculate a vector image where the vector values

point towards the nearest muscle labelled voxels. The principle is shown in Figure 6.2.

Figure 6.2 – Working principle of the muscle label force. Out the muscle labels (non-red), pre-calculated
vector point towards the muscle label. Additionally, the distance to the next muscle label is stored for
weighing.

Generating the pre-calculated image for muscle label force is a process that requires multiple
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steps. First, we extract the boundary of the muscle label image. For the non-muscle voxels on

the boundary, we calculate a vector pointing towards the muscle labels. For this, we traverse the

N26 neighbourhood of the voxel. For each neighbour, that is part of the muscle label, we add

a vector pointing towards it. The resulting vector then points towards the average muscle label

location, as shown in Figure 6.3a. We normalise the vector and store it together with the distance

to the muscle label (in this case, the distance is always one). In the special case of a non-muscle

voxel surrounded by muscle voxels, the resulting vector will be zero (see Figure 6.3b). This can

be neglected since this should not happen using our muscle labelling technique. Furthermore, a

single voxel within the muscle label will not have a significant impact on the results.

After this first step, the voxels on the boundary of the muscle tissue contain vectors that points

towards the muscle tissues as shown in Figure 6.3c. Next, we identify the boundary of the bound-

ary and calculate the new vectors using the previously calculated vectors (see Figure 6.3d). We

repeat this process until all voxels outside the muscle label have been processed. All voxels within

the muscle label get a zero vector assigned.

a) b)

c)
d)

Figure 6.3 – Pre-calculation process for the muscle force. The initial labels are created based on the direction
to the surrounding muscle labels (a). A special case is an isolated voxel inside the muscle label which carries
a zero vector (b). After the first step, the boundary of the muscle label contains vectors pointing towards
the muscle label (c). This process is iteratively repeated until all voxels are processed.

However, we have found that is iterative process is very time-consuming. It requires many traver-

sals of the full data set. This means high memory access costs, resulting in a calculation that can

take several minutes. Therefore, we propose to use the signed distance proposed by Maurer and

Raghavan [MR03]. Their calculation can be performed in seconds and better suits our require-

ments. Next, we traverse the signed distance image and introduce zero-distances for muscle

tissue and calculate local gradient vector. Figure 6.4 shows the vector field and the distance map

for cut through the thigh.

Finally, we apply gradient-based image forces based on individual and combined channels in

our image data. Forces and channels can be weighted. The balance is important to target the

correct image features; inter-muscular fat should be targeted for a good segmentation, whereas

intra-muscular fat is misleading and should be avoided.

6.2.2.3 Image handling

The medical image data is the single most important input for the image segmentation. Our

choice for a library needs to fulfil the requirements not only from a segmentation point of view
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but also for the processing steps described in the previous chapters.

Image data from many sources and processing tools can come in a large number of formats, like

Dicom, MetaImage, NII, or even a stack of single 2D images. We need our image library to be

able to load and save in a large number of formats to reduce the need for additional tools and

intermediate file formats. This makes processing easier, faster and also eliminates a potential

source of errors.

The image library should also support a large number of image filters for tasks like stitching (re-

alised through pasting, resizing and interpolation) and more complex ones like noise reduction

and even bias field correction. Other parts of the processing pipeline need support for filters like

thresholding, erosion, dilation, multiplication and addition.

For the evaluation, we need to translate from the mesh to a label image. During the initialisation

the inverse process can be required. Therefore, support for rasterisation/voxelisation and mesh

reconstruction (e.g. marching cubes [LC87]) is needed. We want to calculate similarity measures

between labelled voxel images. The library should have support for this or at least offer the

means for a custom implementation.

We have shown in Section 5.3 that the histograms of air and muscle label images can be used

for the initialisation. Therefore, the image processing library should have support for calculat-

ing these histograms. For the visualisation, the export of individual slices from the data sets is

required.

In our review of available solutions, we have found that the Insight Segmentation and Regis-

tration Toolkit (ITK) [YAL+02] offers many filters for image manipulation and supports load-

ing images of many different formats, e.g. DICOM, MetaImage. It is well-established and used

worldwide by a large number of researchers and healthcare product developers. It is actively

maintained and well-tested. While the heavy use of templates in the documentation examples

are a high entry barrier, the gained flexibility outweighs this.

b)a)

Figure 6.4 – Final pre-calculation process for the muscle force. The resulting vectors point towards muscle
tissue (a) and the distance map (b) are shown for a cut through the thigh.
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6.2.2.4 Physical simulation

The meshes and forces are combined during the physical simulation. During this step, the forces

are applied to vertices of the meshes. While it would be possible to apply forces also to edges

and faces, we have found that the use of only vertices keeps the code clean and is sufficiently

powerful. The forces are used to deform the mesh towards its desired, anatomical shape. The

deformation is subject to not only the forces but also the properties of the mesh. In the physical

simulation, meshes can be either soft or rigid. Rigid meshes may be translated and rotated but

cannot change their form. Fixed meshes are rigid and free from rotation or translation. For

deformable models, soft meshes are used. This meshes can be deformed but are bound to certain

specific properties that regulate the deformation and the influence of the force. Their properties

include, but are not limited to:

— Mass of the object represented by the mesh [0,+inf]

— Linear stiffness coefficient [0,1]

— Area/Angular stiffness coefficient [0,1]

— Volume stiffness coefficient [0,1]

— Damping coefficient [0,1]

— Drag coefficient [0,+inf]

— Lift coefficient [0,+inf]

— Pressure coefficient [-inf,+inf]

— Volume conversation coefficient [0,+inf]

— Dynamic friction coefficient [0,1]

— Pose matching coefficient [0,1]

— Rigid contacts hardness [0,1]

— Kinetic contacts hardness [0,1]

— Soft contacts hardness [0,1]

Neighbouring anatomical structures are in contact with each other. There is no empty space

between them. They must also not inter-penetrate or self-penetrate. These are strict requirements

for the validity of the results. Therefore, an important part of the physical simulation is the

avoidance of these penetrations. This is realised through the process of collision detection and

response. The above-listed properties control the reaction on two colliding meshes. This way,

it is possible to have a larger muscle pushing a smaller one away. We can also define a strong

response upon contact with rigid objects.

In our implementation, we consider the bones and the air rigid objects with an infinite mass. This

ensures that they cannot be deformed (since we already know their exact shape, we do not need

them to deform) or translated or rotated (the exact position is also already known). These rigid

structures limit the range of motion for muscles and reduce the space for possible solutions.

The simulated deformation and the application and integration of forces is a continuous process.

However, to be able to simulate it on computers, it has to be discrete. Therefore, the process is

split into small time segments that are considered to be constant within. Our chosen simulation
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engine , the Bullet physics library, assumes a simulation step to be 1/60th of a second. If we

integrate larger times, they will be broken down into multiples of the base steps to ensure realistic

results for force integration and collision response.

6.2.2.5 Output

Direct feedback is needed for the development phase and the application phase in clinical envi-

ronments. The users need to able to assess the current progress of the segmentation and must

be given the option to intervene, e.g. in a stalling process, to correct the initialisation in complex

cases or to influence the segmentation through interactive forces.

We have designed a visualisation for Windows using the Visual ToolKit (VTK) [ABB+01]. It allows

the 3D displaying of slices of the volumetric image data and the meshes. An additional 2D view

allows seeing the slices with overlaid cuts of the meshes.

Figure 6.5 – Visualisation of a femur model and a slice of the data set in 3D (left) and 2D (right) using VTK.
In 2D, an outline of the femur model at the selected slice is shown.

While the visualisation using VTK offers a good first feedback, the options for more visual ap-

pealing output are limited (see Figure 6.5). The programming interface for interaction is not

well-documented and requires a lot of supporting code. VTK is a large library that comes with

many side-effects that require much work for integration into healthcare products, for example,

all operations have to be run on the main thread. Therefore, we propose a different additional in-

terface. We have integrated an interface that allows the streaming of meshes to arbitrary receivers.

This could be web-based applications (see Section 6.4.2) or engines like Unity 7, for example. This

allows to leverage the power of other systems and avoids the implementation of niche features

in our DMFramework. Another advantage is the possibility to create output that is specifically

tailored to the target environment. A developer system requires different information than a

radiologist’s station.

7. https://unity3d.com/
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6.2.2.6 Implementation

Based on the components and features defined in the previous section, we have designed our

DMFramework to rely on well-tested components. Our segmentation framework is based on

existing frameworks and structured into layers. We use VTK [ABB+01], ITK [YAL+02], OpenMesh

[BSBK02], the Bullet physics library 8 and scripting using Lua [IdFFdF96]. We have paid special

attention to be as platform independent as possible. Our DMFramework runs on MS Windows,

Apple OS X and Linux.

Lua scripting

Model management

Forces

Image handling

Models

Simulation

Visuali-
zation

Hardware

Figure 6.6 – The DMFramework architecture has been designed multi-layered. The basic components can
rely different hardware and OS types. Custom components are used for model and force management. All
parts can be scripted using the Lua language.

Besides existing libraries, we have contributed additional parts. The self-written image manager

allows loading multiple data sets, for example from an mDixon sequence. It acts as a central

storage for image data, data is loaded just once but can be accessed everywhere. This reduces

memory consumption. Forces are loaded and managed using a self-written component.

The visualisation routines are based on the Visualisation Toolkit (VTK). The physical calculation

of the forces is achieved using the Bullet physics engine. It offers well-tested code and highly

configurable deformable soft-bodies. It also already contains methods for collision detection and

response. The model manager, also self-written, allows to load multiple models and to connect

them to different forces. It allows inside-outside testing of the model and many transforms like

translation and scaling. It also supports mesh decimation to create reduced versions. For some

8. http://bulletphysics.org/
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of its functionality, we rely on the OpenMesh framework, which has been selected after a com-

prehensive search. All the described components are scriptable using the language Lua. Figure

6.6 shows the components of the framework.

While the core of the framework is developed in C and C++, we provide Lua bindings for fast

iterations and easy testing of new concepts. The main loop of the segmentation process is shown

below. Prior to that code snippet, the images and models have been loaded, and the simula-

tion has been initialised. In the loop, we first calculate the forces that are to be applied to the

model, and then we integrate them using the simulation environment. Finally, the visualisation

is updated.

Listing 6.1 – Main loop for deformable model calculation

for i =1 ,1000 do
i f i %60*2 == 0 then

print ( ( i /60 ) *2 , " seconds simulated " )
end
modelMan : CalcForces ( )
sim : performSimulationStep (0 .016666 )
visu : addModel ( model , 1 .0 , 0 .0 , 0 . 0 )

end

A list of exposed Lua functionality can be found in the Appendix D.2. Our contributions to the

framework have been developed in C++. It covers over 110 files and more than 15000 lines of

codes. Additional contributions are the Lua scuipts that combine the exposed functionality into

applications or task in image processing and segmentation.

6.2.2.7 Parallelisation

Modern CPUs have large number of cores that allow parallel processing of data. Increasing

the performance of individual cores has proven to be not economical since higher frequencies

lead to increased power draw and heat generation. This problem can be addressed by splitting

problems into smaller tasks that can be processed in parallel by multiple cores. This approach

is taken even further by GPGPUs that combine a large number of reduced functionality cores

with high bandwidth memory. To use CPUs and GPGPUs, different programming concepts are

needed. There exist frameworks to bridge both platforms, like OpenCL 9.

We have selected the components to be capable of using the underlying hardware at its best.

The physics simulation library Bullet physics has been chosen since its pipeline also is available

as OpenCL version which can exploit not only multi-core CPUs but also many-core GPGPUs.

Similarly, ITK has been chosen not only because of the large number of supported file formats

and filters but also because of its OpenCL support.

Image data sets can vary largely in size and can become very big, especially in multi-channel

images. Therefore, we have designed the multi-threaded version of our framework to share the

9. https://www.khronos.org/opencl/
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Figure 6.7 – The Deformable Model framework used in this work has a layered architecture. Its single-
process version (left) has several components (scripting, visualisation, model manager) which have been
omitted in the presentation of the multi-threaded version (right side).

image data between the threads. Since all image operations are read-only, we do not need addi-

tional locking or access control. The image manager forms the shared foundation for the threads

as seen in Figure 6.7. It is possible to run multiple independent simulations in parallel. In this

case, each thread receives a different model and, therefore, needs its own model manager. To

avoid interference, every model also uses its own simulation environment. Each thread that is

created and started is assigned a unique ID accessible from the per-thread Lua scripting envi-

ronment.

6.3 Evaluation

For the evaluation of our results, we use a ground-truth which represents the segmentation that

is achievable through humans. While manual segmentation introduces some error sources of

their own (such as dependency on individuals, limited visibility in image data, and experience),

it is accepted as the standard for evaluation of medical image segmentation approaches. We will

describe our experiences with this manual segmentation in the next section. Afterwards, we will

discuss how to compare the manual and automatic segmentation results. We will discuss several

metrics and evaluation approaches.

6.3.1 Manual Segmentation

In this section, we will describe how we have created the manual segmentation that will be used

as a ground-truth for the evaluation. We begin by giving an overview different software tools

for manual medical image segmentation and will discuss the three most promising candidates

in more detail. We then discuss how the generated data has to be post-processed and present the

required time for this process.
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There exists a large number of software tools for medical image segmentation. They differ not

only in their features but also in their licences and the availability of their sources (open or

closed source). We have tested several tools, including Seg3D, TurtleSeg, YaDiV, 3D Slicer and

MITK (Medical Image ToolKit). These candidates are compared in Table 6.2. We have discarded

MITK and 3D slicer as they had complicated user interfaces and/or problems in loading our

image format.

Table 6.2 – Comparison of medical image segmentation software tools.

References Open source License Platforms
YaDiV [FBW11] open 10 t.b.d. Windows, OS X, Linux

Seg3D 2 [CIB13] open MIT Windows, OS X, Linux
Turtleseg [HYML05, THA11] closed commercial Windows

Slicer [FBKC+12] open BSD style Windows, OS X, Linux
Mitk [WVW+04] open BSD style Windows, OS X, Linux

The three remaining tools, TurtleSeg, Seg3D, and YaDiV, showed some interesting features, that

lead us to further investigate them. Detailed results can be found in the following sections.

TurtleSeg

TurtleSeg 11 [HYML05, THA11] is an interactive tool that generates a 3D segmentation from a

small number of contoured slices generated with minimal user guidance (or so intended). It was

originally developed by the Medical Image Analysis Lab (MIAL) at the Simon Fraser University,

Canada and the Biomedical Signal and Image Computing Laboratory (BiSICL) at the University

of British Columbia, Canada, now it is a proprietary software owned by Oxipita Inc. A free test

licence can be requested. The system requires the user to outline the desired structure on a few

slices and tries to extrapolate from them. The system learns from the user input and proposes

new slices that provide a larger increase in segmentation accuracy. The outlines, called contours,

are generated using the Livewire algorithm, which follows gradients between support points.

The user interface, as shown in Figure 6.8, shows 2D slices for outlining, a 3D rendering of the

segment and only a few other elements, as the tool is fully focussed on the Livewire approach,

which is the main strength of the tool.

The tool can automatically connect contours from different planes and slices and notifies the user

in case it is not possible and allows the user to ignore this or to fix the contours manually. The

tool generates additional fixed points on the contour that causes subsequent changes to contours

to be more complex. The live wiring tool calculates differences of intensities and thus produces a

smooth curve of the selected area. In areas where there is no sufficient gradient due to a lack of

border contours, such as segmenting separate muscles of a muscle group, the Livewire tool had

additional polygon functions (direct line connection between two points) and a free hand option

(wired in direct relation to the motion of the mouse).

However, some major drawbacks were observed during evaluation. With a growing number of

10. Currently, still closed source, open source soon, the source code was available to the author.
11. http://www.turtleseg.org/
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Figure 6.8 – TurtleSeg presents a very focused user interface. Next to the visualisation of the image data are
only a limited number of controls that are required for the Livewire control.

contours, the time for processing increased too fast, resulting in up to 30 minutes for a single

muscle. Especially edits in later stages become very time-consuming and often a restart from

scratch takes less time. During the loading of complex data sets, the software froze and no

cancelling was possible. A large number of contours also increased the probability of crashes.

Finally, the spotlight functionality did not propose helpful slices for the segmentation of long

tubular structures, like muscles, and might be more useful for internal organs.

Seg3D

Seg3D 12 is a free volume segmentation and processing tool developed by the NIH 13 Center for

Integrative Biomedical Computing at the University of Utah Scientific Computing and Imaging

(SCI) Institute, USA [CIB13]. It provides a flexible interface for medical image data processing,

including filtering and segmentation. Seg3D supports multiple biomedical image formats, runs

in 64 bit and has a clean interface as shown in Figure 6.9. It possible to show several projections

of the image data in parallel. The interface always shows the list of all segments, allowing fast

access and switching. Segments can be hidden or shown in a semi-transparent rendering. Also,

the colour can be set. Finally, it is possible to load multiple images at the same time, e.g. different

channels (fat and opposed-phase). This enables the user to switch between the channels to find

12. http://www.sci.utah.edu/cibc-software/seg3d.html
13. National Institute of Health, USA
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the optimal contours for accurate processing.

Figure 6.9 – User interface of Seg3D with a leg data set and several segments.

Polylines are the Seg3D equivalent to the Live Wiring found in TurtleSeg. However, they are

restricted to straight lines between two selected points, resulting in rather rigid appearances in

the 3D reconstructions. This collides with the continuous and round nature of most anatomical

structures and results in small segmentation errors.

A beneficial function of the polyline tool is that it remains in the data set at the selected area when

scrolling through the image slices which allows a faster processing of slice by slice. Only minor

adjustments are needed in neighbouring slices; this reduces the time per slice in comparison

to TurtleSeg, where the polyline was not transferred between slices. Sometimes the polyline

function showed errors and misplaced fixed points on other polylines.

Unlike Seg3D, TurtleSeg supports interpolation between slices and does not require the process-

ing for every single slice. Nonetheless, we have used external extrapolation techniques which we

discuss in Section 6.3.1.2.

Seg3D provides a paint brush tool for manual segmentation. It allows making corrections to the

results from the polylines and to segment finer structures with more details. Up two segments

can be selected as masks to prevent overlap between segments. However, with a large number

of structures in the leg, a higher number would be more appropriate. The paint brush function

works fairly simple and easy. To add an area to the segment, a user can use the left mouse

button, the right button to remove it and the scroll wheel can be used to adjust the size of the

paint brush. Mouse-based translation and zooming can be used through the shift button in paint

brush mode.

YaDiV
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YaDiV 14, short for Yet Another DIcom Viewer, is an open platform for 3D visualisation and seg-

mentation of medical image data by Welfenlab, Leibniz University Hanover, Germany [FBW11]. It

supports a small number of different medical image formats, multiple segmentation approaches

(such as paint brush, range, region, level sets, and atlas), 2D and 3D visualisation, and segment

visualisation. The user interface is clean, see Figure 6.10, but many important functions are hid-

den in sub-menus. YaDiV is considered a platform for academical research and development. It

will be released later as open source. However, we had access to the source and had the possibil-

ity to extend it using its APIs.

Figure 6.10 – The main user interface of YaDiV. The main functions can be accessed in the panel below the
two main visualisations.

Dealing with a large number of segments, we have found the paint brush to be the most promis-

ing approach. Unlike the other tools, YaDiV offers two different brush shapes (square and cir-

cle), both in several sizes. Another interesting feature is the possibility to limit the paint brush

to a certain intensity difference from the centre pixel of the brush. This makes it more robust

and easier to use when segmenting along a steep gradient or edge and reducing the need for

time-consuming, detailed corrections. During the segmentation, the list of segments is always

accessible. It is also possible to perform operations on the segments, like adding or subtracting

14. http://welfenlab.de/yadiv.html
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segments.

However, the lack of keyboard shortcuts made the process very time-consuming. Switching the

view or slice using the keyboard could improve this. The biggest problems are the number of

steps needed switch the brush size and the lack of a shortcut for switching the brush for adding

to deleting mode. It would be possible to make these changes in the source, but overall, other

tools seemed more optimised for the task.

6.3.1.1 Conclusions on Manual Segmentation Tools

In conclusion, the presented tools all have their advantages and disadvantages. TurtleSeg presents

a very helpful Livewire approach, but is not adapted to muscles and consumes an increasing cal-

culation time. Also, the lack of stability is an issue. We are confident that this will be addressed

in a future version. However, at the time of use, we had to decide against TurtleSeg. YaDiV is

a flexible platform with many features. It allows a wide range of extensions and use histogram

based limitations on the paint brush. The more complex than necessary user interaction and the

resulting additionally needed time, forced us to exclude YaDiV. However, an inspection of the

source code showed that the extensibility would allow an integration of features like keyboard

shortcuts, but this is beyond the scope of this work. Finally, we have chosen Seg3D as the most

efficient software tool during the evaluation. However, it would benefit from Livewire function-

ality. The lack of extrapolation and the long time required per slices, lead to the decision to skip

several slices in areas with only little changes (middle of the thigh) and more slices near the

joints where the anatomy is more complex.

6.3.1.2 Post-processing of the Segmented Data

The evaluation data has been segmented manually. However, this is not free from error and

requires some post-processing steps. First, we need to remove areas of accidental overlap in the

data sets. Then, we need to fill the slices that were skipped to speed up the segmentation process.

Finally, we have to convert the data into the required formats.

Sometimes, segments accidentally overlap after segmentation. This results from the manual work

and cannot be fully avoided. However, during post-processing, we clean up this overlap by us-

ing the following approach: First, we identify the overlapping areas and remove them in both

segments. We then, for each pixel in the boundary, determine the majority segment in the direct

neighbourhood and assign the pixel correspondingly. We repeat this iteratively until all pixels

are assigned to a segment. The whole process is shown in Figure 6.11.

We use the algorithm proposed Raya and Udapa [RU90] to fill the skipped slices. They use

distance maps from cross-sectional boundaries and use them for interpolation. The algorithm

allows reconstructing missing slices with high accuracy which can be seen in Figure 6.12. Boydev

et al. [BPD+12] have integrated this algorithm in ITK. We use their implementation.
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a) b) c) d)

Figure 6.11 – Our proposed method to clean up small overlaps in segments (a). First, the overlapping pixels
are removed (b). Then, the boundary pixels are assigned to the majority of their neighbours (c). This is
repeated iteratively until the hole is closed (d).

Figure 6.12 – Interpolation of missing slices: Initial object (a), removed slices (b) and interpolated recon-
struction (c). Source: Boydev et al. [BPD+12], CC-BY

6.3.1.3 Required Time

The manual segmentation process is very time-consuming. It depends on several factors:

— Experience of the user More experience allows a faster identification of anatomical struc-

tures.

— Number of slices to be segmented Higher resolution data sets with more slices require

more time.

— Number muscles to be segmented If only few muscles need to be segmented, the overall

time can be reduced.

— Complexity of the anatomy The anatomy varies in complexity, especially the higher com-

plexity near the joints leads to a longer segmentation time.

— Resolution of the data set With higher resolutions, more details become visible that can

help with identification of structures. However, it also results in more image elements that

need to be labelled.

— One or both legs needed Based on the application, it might be sufficient to segment only

one leg which can reduce the overall needed time greatly.

— Development of fatigue in long segmentation session The segmentation process requires

a large amount of attention causing fatigue in large data sets. This either leads to longer

segmentation time per slice or a higher rate of mistakes.

Based on these factors, we have experienced a segmentation time per slice and leg of three to five

minutes. Given an average sized subject, we have around 550 slices. If we focus on the thigh, this

results in 275 slices. We can segment only one out five slices. This gives a total of 55 slices. For 3,

4, and 5 minutes per slice the total segmentation time would be 165, 220, and 275 minutes. These

approximations are higher in the initial data sets. They double when both thighs are needed. The
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total number of slices for manual segmentation is actually higher due to the complex anatomy

near the joints (hip, knee).

Barnoiun et al. [BBBV+13] have evaluated the outcome of manual segmentation study on the

quadriceps in MR images. They have found an excellent reliability and therefore propose their

methods to be applicable for future work. Other approaches try to evaluate (smaller) segmenta-

tion and annotation results through crowd sourcing, like Maier-Hein et al. [MHKR+15] or propose

evaluation methods that work without ground truth, like Kohlberger et al. [KSA+12].

6.3.2 Label-based Evaluation Metrics

The evaluation of segmentation results is done by comparing it to a ground-truth, e.g. acquired

by manual segmentation or through other established, verified segmentation tools. There exist

many different approaches to compare different segments. Simply comparing the volume is not

sufficient, all metrics should include the actual overlap. A common approach, the Jaccard index,

uses the union overlap. In 1945, Sørenson and Dice [Dic45] had proposed their mean overlap

coefficient: Sørenson-Dice coefficient (SDC), which has been adopted as standard in medical

image segmentation evaluation when label images are used. An SDC of 0 expresses disjunct

segments, a value of 1 expresses identity. For two segments S and T, the formula is the following:

SDC(S, T) = 2
�S ∩ T�
�S�+ �T�

S
T

S \ T T \ SS ∩ T

S T∩

Figure 6.13 – Union (∩), Intersection (∪) and Relative Complement (�) for two segments S and T.

The relation between the union (∩), intersection (∪) and relative complement( � ) for the two

segments S and T is shown in Figure 6.13. Other measures to quantify the error include the False

Negative Error (FNE) and the False Positive Error (FPE):

FNE(S, T) = �T�S��T� FPE(S, T) = �S�T��S�
We use the ITK implementation of these and additional metrics from Tustison et al. [TG09a].

6.3.3 Results

We use our DMFramework to evaluate the actual segmentation part by comparing the outcome

of our segmentation approach to single-channel forces and a manually segmented ground-truth.

The comparison is made using the Sørenson-Dice coefficient as overlap measure. We use the

previously processed data sets and have configured our DMFramework with a small growing

force, Laplacian smoothing, a gradient based image force and our muscle label force.
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We selected one of the main groups of muscles in the thigh, the quadriceps, for this experiment.

The quadriceps are composed of rectus femoris (RF), vastus lateralis (VL), vastus intermedius

(VI), and vastus medialis (VM). First, we have segmented RF, VM, VI and VL using only a single

channel (either II , IW , IF, IO, or IT). We present the results in Table 6.3. In both data sets, we can

observe the highest results in the water image and we found the VL to be the hardest muscle to

segment.

Table 6.3 – Single channel results for RF, VM, VI, and VL in both subjects.

In-phase Water Fat Opposed-phase T1/TSE
Subject 1 RF 0.78 0.85 0.72 0.79 -

VM 0.78 0.81 0.76 0.79 -
VI 0.76 0.78 0.72 0.77 -
VL 0.68 0.74 0.71 0.71 -

Subject 2 RF 0.76 0.81 0.71 0.76 0.74
VM 0.79 0.83 0.78 0.81 0.79
VI 0.75 0.79 0.72 0.75 0.72
VL 0.70 0.71 0.71 0.72 0.72

To test the opportunities of multi-channel images, we have repeated the segmentation of RF, VM,

VI, and VL in our two subjects. This time, we have configured multiple image forces per muscle

that operate on different channels. Together, they should combine information from the different

channels. We have tested several combinations; the results can be found in Table 6.4. They show

that IF and IW are important contributors to the results. We can also see that more channels lead

to better results. However, the single water channel has shown better results for Subject 1 than a

combination of channels.

Table 6.4 – Multi-channel combination results for RF, VM, VI, and VL in both subjects.

RF VM VI VL
Subject 1 IF + IW 0.74 0.80 0.77 0.74

IF + IW + IO 0.83 0.80 0.76 0.74
IF + II + IO 0.81 0.78 0.77 0.71
IF + IW + II + IO 0.82 0.79 0.78 0.72

Subject 2 IF + IW 0.71 0.77 0.76 0.72
IF + IW + IO 0.84 0.82 0.76 0.72
IF + II + IO 0.81 0.81 0.75 0.72
IF + IW + II + IO 0.84 0.81 0.75 0.75

This experiment compares the use of single- and different-multi-channel configurations. We have

found that the use of multi-channel image data can lead to better results. The selection of chan-

nels and the combination and weighting plays an important role. Individual channels can give

misleading input. The fat channels, for example, show the inter-muscular fat which can be used

to detect the muscle boundaries. However, depending on the amount of physical activity and

age in the subject, larger amounts of intra-muscular fat might be present. This can indicate false

boundaries and can be compensated by the additional use of other channels.
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In general, we have found that the results improve with an increase in channel number. However,

additional channels increase the force calculation times (mostly through memory access costs).

The fat and opposed-phase channels contribute to good results whereas the use of the in-phase

channels shows no or only small improvements. This is contrary to the observation of the single

channel segmentation where the in-phase channel has created better results than the fat chan-

nel. In comparison to the related works, we found that models without ASMs like ours do not

reach the accuracy of models that employ prior knowledge like statistical shape information or

intensity profiles. With a large data base of subjects, future work should study the impact of

multi-channel image data on these statistical approaches.

6.4 Webviewer for Remote and Multiplatform Viewing and

Interaction

The direct visualisation of the deformable model segmentation is important during development

and adoption of the segmentation process as discussed in Section 6.2.2.5. The proposed inter-

face for output allows the easy integration of new visualisation approaches and extends our

DMFramework with flexibility for visualisation and output.

6.4.1 Webviewer

We propose a web-based viewer for image data and streamed models to demonstrate the flex-

ibility of our DMFramework. It can be seen in Figure 6.14. The viewer is fully implemented in

ECMA Script and HTML5. It leverages from the Canvas element [Wha11] for the 2D rendering

of image slices and uses WebGL (Khronos group, [Mar11]) and the THREE.js 15 library for 3D

rendering. We use WebSockets (RFC 6455, [SA11]) for the communication with DMFramework

to retrieve information about the environment (loaded data sets, models being processed). The

main functionality lies in the transfer and rendering of large image data sets, windowing of im-

age intensities, and the overlaying of additional information (e.g. meshes and cuts). The interface

provides access to the data sets of our five subjects and allows the easy switching between them

as well as the selection of different channels. Haehn et al. [HRA+14] have proposed the X ToolKit

which provides image loading and rendering functionality. However, their proposed implemen-

tation seems targeted at smaller data sets and becomes unusablely slow with our high-resolution

multi-channel data sets. Therefore, we have optimised our implementation for large data sets.

Other works target browsing large databases, like Shen et al. [SMZ+14] . They propose a method

transfer image data in tiles. However, this requires a complex server setup.

Using ECMA Script and HTML allows us to target different platforms (such different OSes,

and mobile platforms) and the easy adaptation of the user interface depending on the use case.

Many new output devices (Hololens, Oculus) also support the displaying of websites and offer

libraries for easy integration into the rendering process. The Webviewer also allows the simple

15. http://threejs.org/
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Figure 6.14 – Our proposed Webviewer. On the left, three different subjects and their data sets can be
selected (a). Next to it, a 2D rendering of slices and models (b) is provided to control the 3D rendering on
the right side (c).

integration of new interaction concepts, for example LeapMotion (hand tracking) and Myo (EMG

arm tracking) provide ECMA Script access to the device data.

We use the canvas element for rendering (2D) slices of our image data. To achieve better per-

formance, we use an off-screen canvas to capture the original slice with applied windowing

information. Extraction and windowing from the image stack is a fast background task. The visi-

ble area of the slice can be controlled by the mouse and can be moved and zoomed. We store the

transformation of the slice and apply it when we copy from the off-screen canvas to the visible

canvas. Afterwards, we render additional annotations like markers, model cuts or text. WebGL

and THREE.js provide the foundation for the 3D rendering of the scene. We render the visible

slices using the off-screen (2D) canvases as textures. We use white lighting, show the bounding

box of the image data and apply a trackball controller for navigation. We use triangle meshes to

display the models from the DMFramework. They are supplied using the streaming technique

described in the next section.

6.4.2 Model Streaming

While the image data is static and can be windowed locally without server contribution, the

models are constantly changing throughout the simulation process. Prior work on this field has

been proposed by Tang et al. [TRGP10] who have demonstrated a collaborative streaming for 3D

shape deformations. Han et al. [HNS+10] and Nijdam et al. [NKHMT12] have demonstrated a

client-server 3D data streaming system and have demonstrated it on a medical use case. Both

approaches require the integration of their specialised software libraries. We propose a transfer

built on standards like JSON and WebSockets. The feasibility of WebSockets for streaming has

been demonstrated by Wessels et al. [WPJR11] although their work is more focussed on the

streaming of server-side rendered image data.
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The process of geometry streaming falls into two parts. In case of our DMFramework, the ge-

ometry of models currently does not change. Therefore, we split the streaming into a one-time

transmission of the geometry (faces and initial vertex information) and a continuous stream

of updated vertices. This reduces the requires bandwidth, since the face information has to be

transmitted only once.

Depending on the number of models and their resolution, the required bandwidth can be large

and may saturate the network connection. Within our DMFramework the vertices are repre-

sented by double precision floating point number for a maximum accuracy. This is not required

for other applications; many visualisation frameworks only use single precision floating point

numbers without any visible reductions. In our application, the dimension of the working space

is defined by the image data set. While we could place models with sub-voxel accuracy, this is not

required for their visualisation. Based on the dimensions of our image data, a vertex-component

could be reduced to 10 bits. However, for convenience, we choose the representation as short

integer (2 bytes). The number of bytes to represent the vertex has a large influence on the require

bandwidth. In Table 6.5, we present the data for a single model made of 1024 vertices with five

updates per second. In real applications, the number of models is higher and the number vertices

also is often higher, whereas our tests have shown that fewer than five updates per seconds still

can satisfy the user requirements, two to three updates seem sufficient.

Table 6.5 – Data types and required bandwidth for different scenarios for geometry streaming of mesh with
1024 vertices and five updates per second.

Use case Data type Data type size Total size Data/s Bandwidth/s
simulation double 8 byte 24kB 120kB 960 kBit

visualisation float 4 byte 12kB 60kB 480 kBit
image grid short 2 byte 8kB 40kB 240 kBit
economic bits 10 bit 3.75kB 18.75kB 150 kBit

We have the designed the communication protocol between client and server to focussed on the

task. Once the clients connect, they can request information on the existing meshes (name, size,

assigned colour where available). Next, they can switch to the geometry channel (a WebSocket

can offer multiple channels) to retrieve the geometry. Finally, they open the channel named after

the models to receive the stream of vertices. A simplified version of this process is presented in

Figure 6.15.

The current implementation shows opportunities for future work. An important question if the

streaming of vertices would benefit from compression or if the additional overhead and delay

would reduce the user experience. Based on the user focus, models could be streamed with

different levels of detail. For now, the image is loaded fully before being displayed. A more

advanced implementation could use streaming techniques like IIP protocol proposed by Husz

et al. [HBH+12]. For the interaction with the models, interaction techniques like the ones surveyed

by Olabarriaga et al. [OS01] could be implemented.

129



Chapter 6. Image Segmentation

Client 1 Server Geomtery Model 1 Model 2

info

{m1,m2,m3}

info geo m1

info geo m2

geo m1

geo m2

sub m1

sub m2

m1

m2

m1

m1

m2

Figure 6.15 – Communication between the server and a client for the streaming of mesh data. First, the
client requests information about the available meshes (info message). The client then request the geometry
for the meshes of interest. After receiving the geometry, the client connects to the mesh channels to receive
mesh updates once they occur on the server.

6.5 Multi-Resolution Mesh Coupling

Magnetic resonance imaging (MRI) is widely used and creates higher and higher resolutions

that result in larger data sets which require specialised processing. A common technique is the

pyramid approach [AA84]. Several levels of detail are created by sub-sampling the input. Using

a factor of two, a 2D image would quadruple at each level. With these levels, processing can be

performed from coarse to fine, getting the main parts of the structure correctly outlined before

working on details. This technique is commonly used in image registration [AA84]. In this case,

This section was previously published as:
M. Becker, N. Nijdam, and N. Magnenat-Thalmann, “Coupling strategies for multi-resolution deformable meshes: expanding the
pyramid approach beyond its one-way nature,” in Int. J. Comput. Assist. Radiol. Surg., vol. 11, no. 5, pp. 695-705, May 2016.
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the parameters are adjusted for each level.

We propose a deformable model segmentation approach that works on multiple levels of detail

in parallel. The meshes for each layer are synchronised with each other, breaking the serial

structure of the pyramid approach. This changes the interaction pattern. The serial approach

requires a scale based correction - influence points and corrections have to be set (and the mesh

evolved) before switching to the next level of detail. Using our approach, the user can work

location based, e.g. when segmenting the femur, focus on the femoral head first and work on the

condyles later. This way, the user can switch between multiple levels of detail and can go to a

coarser model without losing fine details previously created. The different meshes are deformed

independently of each other (except for some form of synchronisation) and can be distributed

across multiple cores or machines. We are therefore able to exploit multi-core machines even

with algorithms that are not optimised for this.

Bogovic et al. [BPB13] describe a framework that allows the parallel segmentation of multiple,

coupled objects. They demonstrate the feasibility of their level set based approach, with brain

structures. In contrast, Changizi et al. [CH10] show a probabilistic multi-shape presentation. Their

approach handles multiple related meshes and can be used to improve statistical models.

Edwards et al. [EWS+10] discuss the mesh consistency during parallel modifications. Lachat et

al. [LDP14] present a method for the parallel re-meshing of distributed meshes. The work by

Sumengen et al. [SEYB08] demonstrates a multi-resolution representation of an FEM model that

can be deformed in a distributed environments. They subdivide the mesh and every client is

simulating a part, the results are then shared with the other clients. On the client side it is then

possible to generate representation at multiple resolutions. Also Tang et al. [TRGP10] demonstrate

the distribution of mesh distributions through collaborative environments.

We have chosen deformable models for their flexibility and their well-established use in med-

ical image segmentation. Furthermore, interaction methods have been defined for them. Some

work has been done on parallel mesh access and distribution, and on the generation of multiple

resolution representations. Nonetheless, an approach for coupled multi-resolution meshes that

allows interaction is still missing.

6.5.1 Concept of Coupled Meshes

The coupling of multiple meshes is a complex process. We will discuss several approaches and

their advantages and disadvantages. Since the meshes have different resolutions and are cal-

culated independently from each other, some form of synchronisation has to be implemented.

Lastly, we look at approaches for interactive segmentation and how they can be implemented

with our multi-resolution approach.

For a given mesh M, its sub-versions for n levels are M1, M2, ..., Mn. It is given that always

M1 ⊇ M2 ⊇ ... ⊇ Mn. A vertex V may be called Vi within the mesh Mi. This relation can be seen in

Figure 6.16.
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15 vertices23 vertices37 vertices

50ms / step 25ms / step 10ms / step

a) b) c)
Figure 6.16 – Concept of the coupled models. An initial model M1 (a) is decimated (b,c) to models M2, M3
with fewer vertices. This reduces the calculation time per simulation step. Interaction is done through mag-
nets and anti-magnets. Magnets (orange) are passed up to finer levels; anti-magnets are only propagated to
more coarse levels.

6.5.2 Coupling

The meshes M1, ..., Mn have to be coupled so that changes in one mesh propagate to the others. In

the following section, we discuss three different techniques: naive direct vertex copying, position

averaging and finally spring forces between meshes.

— Direct Vertex Position Copying

A simple approach to couple the meshes is direct vertex copying. It can be done from

coarse to fine or from fine to coarse. In either case, either M1 or Mn are favoured, since

M1 ⊇ ... ⊇ Mn. Therefore any changes in the meshes M2, ..., Mn−1 are discarded. This

renders them useless and reduces the actual pyramid to two levels: M1 and Mn.

— Vertex Position Averaging

A more practical approach is to average the vertices across the models. The new average

vertex Vnew is calculated using weights wi:

Vnew = 1
n

n�
i=1

wiVi

with weights wi so that

n�
i=1

wi = 1
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Using this approach, the position of the new vertex is the same for all meshes. The weight-

ing can be used to increase the impact of certain meshes, e.g. higher resolutions. It is pos-

sible to adjust the weight dynamically, starting with high weight for the coarse model at

the beginning and transfer the weight continuously to the finer models. Another possi-

bility is to give the user control over the weights, either directly or through a generalised

interface. In some applications, it can be useful to set the weights depending on the region.

The femoral shaft, for example, has few details of importance so the coarse mesh could

be favoured. The femoral head, on the other hand, has many detailed structures of high

importance so that the finer meshes would be given more weight.

— Spring Force Coupling

The last approach we propose, uses the (weighted) average of the position of the vertices

on the different meshes as described above and places a force between the actual vertices

and the average position. This Hookean spring force is defined as follow:

Fspring(Vj) = 1
n − 1

n�
i=1,i≠j

wi(Vj −Vi)
Also, with this approach weights (wi) can be used.

6.5.3 Synchronisation

The simulation of the deformation runs at different speeds, depending on the mesh resolution.

Therefore, there must be a synchronisation between different models. It must be avoided that

meshes are modified while forces are being calculated on their basis. We have developed different

strategies, as shown in Figure 6.17, which we will present here. All are based on a central force

(the sync force), that handles the synchronisation. After each simulation step, the models provide

a new copy of their changed vertices. The main segmentation only has to be extended by that call.

During the calculation of the forces, the sync force is queried. This call will be delayed internally

until all models are in sync. The actual segmentation thread, therefore, is not aware of the other

threads.

Figure 6.17 – Comparison of the different synchronisation approaches with three models over time. The PSU
strategy (a) causes a high amount of waiting time (grey) for the lower resolution models for synchronisation.
The SU strategy (b), when carefully tuned, reduces these waiting times. The PU strategy (c) performs
updates (arrows) in a unsynchronised manner, fully removing waiting times.
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— Per Step Updates Strategy

The per step update strategy (PSU) ensures that all threads are always at the same iteration

step. This is achieved by blocking the threads at the beginning of the force calculation until

all of them have updated their meshes.

— Scaled Updates Strategy

The scaled update strategy (SU) is based on a per-thread cost estimation. While in the

PSU strategy all models were synchronised with each other after every step, this strategy

defines the number of steps per thread depending on the complexity of the model. Using

a good estimation, waiting times can be reduced in comparison to the PSU strategy. A

possible configuration for three threads would be the following: The first thread with a

full resolution model is allowed to do one step, the second thread with a half-resolution

model two steps, and the third with one third-resolution model can do three steps. In

cases where the calculation scales linearly with the resolution, that configuration reduces

waiting times.

— Partial Updates Strategy

The partial updates strategy (PU) largely reduces the synchronisation overhead. Model

updates are stored immediately, and forces are calculated directly upon request. Locking

is only used to ensure that no forces are being calculated while the meshes are updated.

This approach allows the best performance but, depending on the thread scheduling,

models can run apart massively.

6.5.4 Interactive Segmentation

There exist many styles of interaction with deforming meshes. After careful evaluation, we have

selected to implement springs and volcanos, which have been presented in Section 2.9.5.3. They

are also known as magnets and anti-magnets. Magnets are designed to attract the mesh; anti-

magnets are supposed to push the mesh away.

A magnet at the position P only interacts with the closest vertex Vi of the mesh. Using the scaling

factor amagnet, they are defined as:

Fmagnet(Vi) = amagnet(P −Vi)
Anti-magnets are designed to affect only near proximity, given by a radius. A vertex Vi inside this

radius, having the distance r to the anti-magnet, receives the following force, scaled by aantimagnet:

Fantimagnet(Vi) = aantimagnet
r
�r�3

Magnets and anti-magnets are set/defined by the user on a specific level. Nonetheless, they

should also influence the meshes at other resolutions. To reduce side-effects and unwanted be-

haviour, we have evaluated the semantics of the operations and defined the following rules:

1. Magnets are only passed down to more detailed levels. Magnets show the closest vertex
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where to move to. While this is desirable at all levels, on more coarse levels, they will

attach to a different vertex and can cause major, unwanted corrections.

2. Opposite to this, anti-magnets are only passed up to more coarse levels. When using anti-

magnets, the user usually wants to correct a segmentation mistake and to push the model

away from certain structures. This is a larger operation that works more efficiently on a

coarse mesh. Nevertheless, the more detailed models also benefit from this, since they are

coupled to the coarse models.

6.5.5 Implementation

The task of running multiple meshes in parallel and coupling their vertices requires careful

synchronisation. It can be divided into two parts, the actual synchronisation using primitives

like mutexes and the integration into the scripts.

Listing 6.2 – Modified main loop for multi-threaded deformable model calculation.

modelSyncForce : reg i s te rThread ( threadID , model , i n d i c e s )
for i =1 ,1000 do

i f i %60*2 == 0 then
print ( threadID , " : " , ( i /60 ) *2 ,

" seconds simulated " )
end
modelMan : CalcForces ( )
modelSyncForce : c a l c F o r c e s

( threadID , femur )
sim : performSimulationStep (0 .016666 )
modelSyncForce : updateThread

( threadID , femur )
visu : addModel ( femur , threadID )

end

We have modified the main loop of the deformable model simulation to include calls to our

force that performs the coupling (modelSyncForce). This force is implemented as a singleton

and is accessible from all threads. Every thread initially has to register to this force, as seen on

this first line of the source below. Threads register with their ID, their model and the vertex

index mapping they use. The different resolutions of the meshes are created by decimation of

the initial high-resolution mesh. All meshes share some vertices. To identify them, all vertices

are mapped to the indices of the initial model. Since the modelSyncForce is calculated across

threads, it is called separately from the model manager. Its parameters are the threadID and

the model. After a simulation step is completed, the new vertices model are updated in the

modelSyncForce. Depending on the synchronisation strategy, the execution can be interrupted in

either the calculation or the update phase.

We have carefully selected the components of our single-threaded version framework to support

different platforms, including Microsoft Windows, Apple OS X and Linux. For the multi-threaded

version, we have selected boost’s threads and synchronisation primitives because it allowed us
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to keep the cross-platform compatibility. In the next section, we will describe how we have used

mutexes to implement the three synchronisation strategies described in Section 6.5.3.

6.5.5.1 Per Step Update Strategy (PSU)

The per step strategy requires synchronisation at two points: The forces can only be calculated

once all models have been updated, and the updates can only be done once all forces have been

calculated. The corresponding sample code is shown in Listing 6.3.

Listing 6.3 – Usage of mutexes for locking in the per step update strategy.

mutex canUpdate ;
mutex canCalcula te ;
map<Key , bool> threadUpdated ;
map<Key , bool> threadCalculated ;

void update ( threadID , model ) {
while ( ! canUpdate . t r y _ l o c k ( ) ) {

y i e l d ( ) ;
}
canUpdate . unlock ( ) ;
threadCalculated [ threadID ] = f a l s e ;
/ / copy v e r t i c e s h e r e
threadUpdated [ threadID ] = t rue ;
i f ( a l l_updated ) {

canUpdate . lock ( ) ;
canCalcula te . unlock ( ) ;

}
}

void c a l c u l a t e ( threadID , model ) {
while ( ! canCalcula te . t r y _ l o c k ( ) ) {

y i e l d ( ) ;
}
canCalcula te . unlock ( ) ;
threadUpdated [ threadID ] = f a l s e ;
/ / c a l c u l a t e f o r c e h e r e
threadCalculated [ threadID ] = t rue ;
i f ( a l l _ c a l c u l a t e d ) {

canCalcula te . lock ( ) ;
canUpdate . unlock ( ) ;

}
}

6.5.5.2 Scaled Updates Strategy (SU)

The scaled updates strategy resembles the per step update strategy, but some threads are entitled

to more steps before sync (between sync it follows the partial update strategy). It is important

that the last update is not called before all threads have reached it. In our implementation, we

use a mutex per thread to block the (last) update until all threads have performed the required

number of iterations. The sample code is presented in Listing 6.4.
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Listing 6.4 – Usage of mutexes for locking in the scaled update strategy.

map<Key , int > s c a l i n g F a c t o r ;
map<Key , int > threadCalculated ;
map<Key , mutex> threadUpdated ;

void updateThread ( threadID , model ) {
i f ( ( threadCalculated [ threadID ] >= ( s c a l i n g _ f a c t o r [ threadID ] ) ) ) {

while ( ! updateLocks [ threadID ]−> t r y _ l o c k ( ) ) {
y i e l d ( ) ;

}
}
/ / copy v e r t i c e s h e r e

}

void c a l c F o r c e s ( Key threadID ) {
/ / c a l c u l a t e f o r c e h e r e
threadCalculated [ threadID ]++;
i f ( a l l _ c a l c u l a t e d ) {

/ / r e s e t up da t e c o u n t s
for ( Key k : threadCalculated ) {

threadCalculated [ k ] = 0 ;
updateLocks [ k]−> unlock ( ) ;

}
}

}

6.5.5.3 Partial Update Strategy (PU)

The Partial Update Strategy provides locking for concurrent access to the vertices, but it does not

perform any synchronisation. If threads are stalled, it is possible that the other threads continue

to run and scatter. The basic locking of access to the vertices is shown in Listing 6.5.

Listing 6.5 – Usage of mutexes for locking in the partial update strategy.

mutex vertexLock ;

void update ( threadID , model ) {
vertexLock . lock ( ) ;
/ / copy v e r t i c e s h e r e

vertexLock . unlock ( ) ;
}

void c a l c u l a t e ( threadID , model ) {
vertexLock . lock ( ) ;
/ / c a l c u l a t e f o r c e h e r e

vertexLock . unlock ( ) ;
}
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6.5.6 Evaluation and Results

We have tested our approach in different scenarios. We describe the data sets and medical field

used for evaluation and evaluate the effect of the synchronisation overhead. The goal is to seg-

ment the femur in our data sets. We have evaluated three femur models, from low to high reso-

lution. The low-resolution mode had 344, the medium model had 1850 and the high-resolution

model had 37010 vertices. Having these large variations in size, allows us to estimate the share

of the time used for locking as well as the overall robustness.

6.5.6.1 Deformable Model Configuration

We have used our deformable framework as described in Section 6.5.5. It has been configured

with multiple forces: Laplacian smoothing and a constant growing force. We exploit the image

data by using a gradient-based image force. For the coupling force, we have chosen the spring

force, since it fits our requirements best.

Starting with the selected (high, medium, and low-resolution) model, we have created reduced

versions of them. With n models, model Mi , i = 1..n only has 1�i times the vertices of the initial

model. We have used the built-in decimators of OpenMesh, in this case with collapse priority

based on error quadrics. The effect of the decimation at different levels on our femur model are

shown in Figure 6.18.

Figure 6.18 – The effect of the decimation on the model of the femur. The original model (left) is reduced
to fewer vertices while preserving shape features like the femoral head and the condyles.

6.5.6.2 Synchronisation Evaluation

The synchronisation is the bottleneck of the whole calculation. The independent segmentation

processes have to be coordinated following a specific strategy like the ones described in Section

6.5.5. In this section, we evaluate the three approaches on the impact of locking. We have used

our femur model with three different resolutions and have run our framework with six threads

per model. During the segmentation, we have measured the average times for updating the mesh
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and calculating the forces. Furthermore, we have measured the time that was spent waiting for

locks in these parts. The results are listed in Table 6.6 for the low-, medium- and high-resolution

model.

The first result we found is that the partial update strategy always is the fastest. In the calculation

time, it can be seen that the time linearly grows with model size (as indicated by the different

threads). For the per step update strategy, the first thread has the shortest lock time. This can be

explained by the fact that it requires the longest calculation and, therefore, the other threads al-

ready have reached the synchronisation point. With growing model size, the differences between

the strategies become more visible. While, in the low-resolution model, the difference between

PU, SU and PSU is in the area of ms, it grows at medium resolution. At high resolution, PU takes

7-11 ms, PSU between 30 and 115ms, and SU between 29 and 70 seconds. The locking time per

thread increases with the resolution for PSU strategy. It can be seen that PU causes the least time

waiting for locks.

6.5.6.3 Discussion

The total calculation duration is sensitive to the model resolution. This can be seen from the

timing data independent of the synchronisation strategy. The overall computation time (ignoring

the locks) goes down with the resolution as expected.

Looking at the strategies, we found the partial update strategy to be the fastest. This is achieved

by reducing the dependencies between the threads. The only locking is around updating and

force calculation for memory safety, but there are no global synchronisation approaches. This is

supported by the data that shows that the PU strategy has the shortest lock times. For the lower

resolution threads, we can see a higher share of locking time. Since these threads are simulated

faster, they reach the locks earlier. Furthermore, the higher resolution threads take longer for

updating and force calculation and, therefore, block the locks longer.

The PSU strategy shows that the thread with the highest resolution spends the shortest time

waiting for locks. Since this thread, by pure resolution, always takes the longest time to simulate,

all other threads are waiting already when the locking point is reached.

The SU strategy is very sensitive to the proper selection of the scaling. We can see the expected

timing results, all in the same region, for low- and medium-resolution model, but not for the

high-resolution model. The large variation in values (19 s to 70 s) indicates that the scaling

factors are not chosen well.

Overall, we found the PU strategy the most beneficial. It enabled a fast coupling with only

very little synchronisation overhead. The behaviour follows user expectation and does not block

interaction with the model through long locking times.
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Chapter 6. Image Segmentation

6.6 Conclusion

The extraction of musculoskeletal structures from medical images is a complex task. Deformable

models are a strong tool for medical image segmentation and parallelisation shows opportuni-

ties to increase the efficiency. In this chapter, we have described our proposed techniques and

algorithms for these challenges.

We have presented our DMFramework, an implementation of a deformable model framework.

It combines the main components of DMs: meshes, forces, images, simulation and output in a

scriptable, layered architecture. The components have been selected from widely adopted, estab-

lished open libraries and attention has been paid to the possibilities for parallelisation.

Visualisation is an important way to give the user feedback. In our DMFramework we have

included a VTK-based rendering of the output. To gain more flexibility and for easier updating,

we propose a web-based viewer for medical image data and our deformable models. The viewer

has been designed to deal with our large data sets. We also propose to stream updates of the

meshes and have presented our approach.

Finally, we have proposed a way to increase the efficiency during interactive segmentation by

running multiple meshes of different resolutions. This resembles the pyramid approach. How-

ever, it is possible to switch between the different levels of the pyramid at any time. This allows

more flexibility and to change to the coarse model without having to restart.

In summary, we have contributed methods for working with multi-channel MR image data. We

have presented a deformable model framework that is optimised for the efficient handling of

multi-channel data and provides special forces. We have proposed a web-based viewer for our

data sets and the streaming of meshes that allows more flexibility. Finally, we have explored how

the traditional pyramid approach can be expanded to coupled multi-resolution models.
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Chapter 7. Conclusions

7.1 Motivation

In this work, we have presented techniques for the efficient extraction of musculoskeletal struc-

tures from multi-channel MR images.We have discussed the image acquisition and the following

processing. We proposed a segmentation using deformable models and have introduced sev-

eral approaches for the initialisation. Finally, we have evaluated the possibility to increase the

efficiency by using coupled multi-resolution models.

In this section, we will first demonstrate two applications for the proposed work. We continue

by presenting our contributions and their benefits. Finally, we will discuss the limitations of our

contributions and give an overview of possible future work.

7.2 Applications

There are many different possible applications for the reconstructed anatomical models that re-

sult from this work. In this section, we will present two examples that demonstrate the benefit

that they can provide. The first example shows how digital patients can be recreated; the sec-

ond example presents a concrete application on how understanding the muscle shape and the

corresponding action line can be used to calculate a personalised pennation angle.

7.2.1 Digital Patients

The number of image acquisitions is constantly growing and the resolutions are increasing. The

resulting enormous amount of data requires automatic processing to be applicable to clinical

decision making. Beyond a large variety of imaging modalities, many other data sources like

gait data, and EMGs are acquired. For a more comprehensive integration of this data, the digital

patient is a concept for the fusion of this data. This data can be acquired from several scales, from

cellular to organ scale. Following the integration, the digital patient can then be used to simulate

mechanical and physiological conditions under which articulations perform movements without

putting the real patient in hazard. An overview of possible components from multiple sources

and their integration can be found in Figure 7.1.

The full study can be found in:

H. F. Choi, A. Chincisan, M. Becker, and N. Magnenat-Thalmann, “Multimodal com-

position of the digital patient: a strategy for the knee articulation,” in Vis. Comput.,

vol. 30, no. 6, pp. 1–11, May 2014.

7.2.2 Pennation Angle Measurements

Gait analysis methods rely on the simulation of muscle forces. These simulations commonly use

scaled generic models. The forces are influenced by the muscle line of action, the fibre length and

the pennation angle (PA). The PA describes the angle between the fibre orientation and muscle

line of action. It determines the maximum forces and the range of motion. Using our 3D muscle
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7.2 Applications

Figure 7.1 – Data sources (a), modelling approaches (b) and simulations (c) for the digital patient.

reconstruction, the fibre orientation and muscle line of action were calculated and the subject-

specific PA was derived from them. It was then used for the neuro-muscular simulation, the

different stages are shown in Figure 7.2. In an evaluation with three subjects, a variation of the PA

between subject-specific and generic model was shown. This resulted in a significant difference

in moments and muscle forces of the quadriceps, underlining the importance of subject-specific

anatomy and more personalised approaches.

Figure 7.2 – MRI data and our segmentation are used to create subject-specific models (a-f). These are used
to calculate the subject-specific pennation angle (g-i) which improves the neuro-muscular simulation (j).

The full study can be found in:

A. Chincisan, K. Tecante, M. Becker, N. Magnenat-Thalmann, C. Hurschler, and H.F.

Choi, “A Computational Approach to Calculate Personalized Pennation Angle based
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on MRI: Effect on Gait Analysis,” in Int. J. Comput. Assist. Radiol. Surg., vol. 11, no. 5,

pp. 683-693, May 2016.

7.3 Discussion

In this thesis, we have addressed the extraction of musculoskeletal structures from MR images.

MSDs are a common problem of the ageing population. To better understand these diseases,

knowing the morphology of the involved anatomical structures can help to explain some of the

origins. Medical imaging is used to acquire the data sets; we use multi-channel MRI. However,

the required higher resolution and the total number of scans nowadays requires algorithmic sup-

port and processing to limit the time a radiologist needs for image analysis and interpretation.

Therefore, we propose a system that combines image acquisition, processing and the segmenta-

tion of musculoskeletal structures. All these steps should be implemented efficiently. The scope

of our work is the human leg. We can divide the work into three major objectives:

1. Development of an imaging protocol

Development of an MR image acquisition protocol to seamlessly cover the full leg. This

includes the selection and parametrisation of MR sequences as well as the physical setup

of the needed coils. In a last step, the acquired individual and partially overlapping images

have to be combined into a continuous data set.

2. Processing and advanced tissue labelling

For the labelling, the main objective is the identification of different tissue types (bones,

muscles, fat) and surrounding air.

3. Multi-channel image segmentation

The segmentation process has been realised with deformable models, which can carry

knowledge about the structures. The focus lies on the segmentation of muscles in the hu-

man thigh. By using multiple inputs from the acquisition coming from different sequences,

the multi-channel image data will be used for robust segmentation. These multi-channel

inputs consist of mDixon and T1 weighted images.

All of these steps have been addressed while taking efficiency into account. This not only gives

a faster process in general but is necessary with multi-channel data that is multiple times larger

than single-channel data. Finally, an efficient implementation increases the applicability for clin-

ical environments.

In the next sections, we will first discuss our contributions and then their limitations as well as

future work.

7.4 Contributions and Benefits

In this section, we will discuss our contributions and their benefits. We will follow the main

structure of our methods as outlined in this work.
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Multi-channel Image Acquisition

The imaging parameters are important to generate high-quality data sets that can be used for all

the following steps. We have tested several sequences and propose to use mDixon and T1/TSE.

These generate multi-channel data during a single acquisition and, therefore, offer more infor-

mation. The total acquisition duration and the SNR are criteria for the acceptance of the protocol.

We propose to use a body coil for signal amplification. It reduces the time needed and increases

SNR. Since the coil does not cover the full limb, we have to move it. To avoid deformations and

movements, we have developed a coil support that allows moving the coil independently from

the subject.

Image Processing Pipeline with Air and Muscle Labelling

The acquired image data requires processing to be usable for further segmentation steps. We

have proposed a pipeline for processing. First, we have to stitch the individual stacks from the

scanner. Next, we have proposed a technique based on morphological operations to identify air

in the image data. This allows use to mask it during processing, resulting in shorter calculation

times. It also allows cropping the data sets. This is even more important in multi-channel data like

ours. Due to imaging constraints, our data sets are affected by the scanner bias field and carry

noise. We use state of the art methods, to reduce these artefacts. Next, we have demonstrated

the use of the air mask and the fat image to identify muscle tissue and have discussed the

effects of intramuscular fat. These processing steps can be used for clinical applications, like

direct feedback for radiologists during acquisition or as initialization for advanced segmentation

techniques. Since powerful GPGPUs are usually installed for CT and MR reconstruction, we

propose to use them for fast air and muscle labelling.

Robust and Efficient Initialisation

For successful deformable model based segmentation, the initial models, e.g. from a template,

have to be placed close to their final position. After evaluating several approaches, we have

decided to contribute a novel three-level initialisation process. First, we use slice-wise histograms

of air and muscle tissue. These histograms are aligned with a template. The characteristics of the

muscle tissue distribution and total diameter of the leg from the air image, allow the identification

of the slices of hip joint, knee joint, and ankle. Next, we use the muscle label and the in-phase

image to locate the femoral shaft. With the location of the shaft and the hip and knee joint, the

femur model can be placed. We then use our DMFramework for the segmentation. The process to

register the muscle models is based on a generic template. First, we register the template femur

with the segmented femur. We then apply the resulting transformation to the muscle models

to place them around the segmented femur. Finally, we use ray based technique to ensure that

models lie within the muscle labels. This is needed because of different muscle volumes between

subjects, e.g. from different levels of activity.

Multi-channel Image Segmentation

Based on our study of the related work, we have found deformable models to be a robust ap-

proach for image segmentation. We propose a deformable model framework called DMFrame-

work. For its design, we have surveyed different approaches and have identified core compo-
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nents. We rely on well-established frameworks, like ITK and VTK, for the components. This

allows us to focus our work and to rely on the experience of the community. All components

have been connected in a layered architecture. Special attention has been paid to ensure that all

computationally intensive tasks can be parallelised and run on GPGPU systems through OpenCL

support. The functionality of our DMFramework is exposed to Lua scripting. This allows us to

quickly reconfigure the setup. We have added forces specialised on our use case. In particular, we

exploit the muscle labels and the multiple channels of the mDixon images. Finally, we propose

an web-based viewer for medical image data with geometry streaming for the visualisation of

the deformable models.

Efficient Coupling of Multi-resolution Models

The pyramid approach is commonly in large data sets. It allows to perform the calculation on

reduced data sets that progressively increase in resolution up to the full resolution. We propose

deformable models that operate on multiple levels in parallel. We have discussed approaches

for the coupling through vertex propagation, averaging and springs. We have investigated the

synchronisation of the parallel models and introduced three locking approaches. On the imple-

mentation side, we have shown how our DMFramework can be transformed into a multi-model

framework.

7.5 Limitations and Future Work

As discussed in the previous section, we have proposed several new contributions to efficient

medical image processing. Like all work in progress, there are some limitations and opportunities

for future work.

A challenge for future research is the development of more general approaches. Although very

sophisticated and robust, deformable model applications are tuned to specific organs and well-

defined image conditions. Knowledge-based models, for example, have to be trained with a

large database of examples and image forces like the intensity profiles have to be recreated if

imaging sequences are modified. Depending on the chosen approach, the initialisation can be

a critical task. Speed and robustness still can be improved. Besides these general directions, we

have identified the following limitations and possibilities for future work of our contributions.

Image Acquisition

Our image acquisition protocol still requires a long time with respect to typical acquisition times

in clinical environments. This is an obstacle towards integration into healthcare processes. This

could be addressed by evaluating the need for the T1 image data. In our applications, it was

mainly required for supporting the manual comparison; further work could be made to eliminate

its need for the automated segmentation. This could significantly reduce acquisition times as the

T1/TSE sequence requires five minutes per stack.

Our coil support system is currently only a prototype that is not ready for wide-spread use. Fur-

ther work is needed to make it more durable and steady. It should also use faster locking systems

for the traverse support. A series of preformed supports could be used to better accommodate
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patient of different sizes.

Image Data Processing

Currently, our stitching method can generate an error of half the slice thickness. With our high

resolution data sets, this is acceptable. However, for lower resolutions it can be a problem. Careful

consideration is needed to balance the loss of accuracy with the loss of quality from interpolating

a full stack.

The air labelling has shown strong results. In subjects with thicker thighs, they sometimes are

connected in the air labels. Future work could focus on removing this source of error. While the

air allows cropping the data sets to reduce the overall file size, the bounding volume is deter-

mined by the dimension of the hip. However, with high memory pressure and large resolution,

it could be beneficial to use a hierarchical storage tree, like an Octree, that allows the removal of

air on a finer grid. This method would be beneficial below the hip, especially towards the ankles.

Our work on muscle labelling has been focused on the lower limb. It would be interesting to

see the performance of our method on full-body mDixon scans. In particular, the area of the

abdomen with its many different types of tissues could be a challenge. Furthermore, a larger

study with a larger variation in subjects that allows statistical analysis, should be performed. For

now, our method is specialised on mDixon images, since it exploits their multiple channels. A

future research question would be the evaluation on how it can be adapted to other sequences

that produce fat saturated images or other multi-channel image sequences. A way to improve

the results would be to work on the segmentation and removal of veins and arteries. Further

investigations of the joint area are possible to improve the local results. Our results currently

identify if a tissue is a muscle or not. Future work could identify muscle groups.

Our GPGPU implementation has shown the possible gains in speed. We have found that CCL

shows room for improvement and propose a joint solution which uses the CPU for CLL. Cur-

rently, the computationally expensive denoising has not been included. Future work should

focus on the integration of the NLM algorithm; it has been shown to be possible by Cuomo

et al. [CDP14] in 2D applications. Another topic would be porting the bias field estimation to a

parallel approach.

Model Initialisation

While the histogram based joint localisation has shown good results for hip and knee joint, the

ankle has a lower accuracy. Future work should focus on optimisations for the ankle. Another

question is the applicability of the proposed method to other limbs like the arms. They show

similar anatomical compositions for muscles and a similar placement of bones and joints. Finally,

the extension to the abdomen could be considered using the spine as reference, potentially with

additional input from the ribs.

As discussed before, the muscle labelling is not fully accurate near the joints. Therefore, the mus-

cle label based muscle mesh correction also shows some problems. Possible approaches would

be an extension to tendons, e.g. visible with other sequences, or to rely on a small, local atlas.
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Multi-channel Image Segmentation

The multi-channel image segmentation has to deal with the complex anatomy and little informa-

tion from the image data. The accuracy of the results is limited, but could be improved through

the use of Active Shape Models to support the muscle models in low information areas, e.g.

boundary between vastus medialis and vastus intermedius. Another option would be to learn

intensity profiles to exploit the image data beyond gradients. For these statistical approaches,

more data sets would be needed. Future work should study the impact different resolutions and

how different sequences could provide additional input.

The influence of the level of activities and development of the muscles as well the kind of sports

performed could lead to different accuracies during the segmentation process. The amount of

fat seems play an important role; little fat makes muscle boundaries less visible, too much fat

accumulates inside the muscles, leading to false boundary signals. This requires further studying

for confirmation and better understanding.

Multi-Resolution Mesh Coupling

For the future, calculation across multiple machines and collaborative interactions seem promis-

ing. To better understand the impact on users, a comprehensive user study should follow. For

now, we have only tested our proposed method on a single machine. An interesting outlook

would be to extend it to a multi-machine approach. Possible scenarios would be off-site vs on-

site: A coarse simulation running locally allows smooth interaction whereas a more powerful

remote server runs the fine simulation on the same data. Similarly, the coarse simulation could

be run on a phone or tablet computer while the fine model is simulated in the hospital data

centre or the cloud.

With model synchronisation already in place, another outlook would be collaborative interaction

with the model. A distributed group of users could work in parallel on the model, if desired at

different scales, and place interaction points. That way, additional knowledge could be included

for critical parts of the segmentation process, e.g. in an image region with artefacts or unclear

model boundaries.

150



Appendix A

List of Publications

Most of the material presented in this thesis previously appeared in the following publications.

Peer-reviewed Journals

– M. Becker, and N. Magnenat-Thalmann, “Muscle Tissue Labeling of Human Lower Limb in
Multi-Channel mDixon MR Imaging: Concepts and Applications,” in Computational Biology and
Bioinformatics, IEEE/ACM Transactions on, 2015, online. Impact Factor: 1.438

– M. Becker, N. Nijdam, and N. Magnenat-Thalmann, “Coupling strategies for multi-resolution de-
formable meshes: expanding the pyramid approach beyond its one-way nature,” in Int. J. Comput.
Assist. Radiol. Surg., vol. 11, no. 5, pp. 695-705, May 2016. Impact Factor: 1.827

– A. Chincisan, K. Tecante, M. Becker, N. Magnenat-Thalmann, C. Hurschler, and H.F. Choi, “A
Computational Approach to Calculate Personalized Pennation Angle based on MRI: Effect on
Gait Analysis,” in Int. J. Comput. Assist. Radiol. Surg., vol. 11, no. 5, pp. 683-693, May 2016. Impact
Factor: 1.827

– M. E. H. Wagner, N.-C. Gellrich, K.-I. Friese, M. Becker, F.-E. Wolter, J. T. Lichtenstein, M. Stoetzer,
M. Rana, and H. Essig, “Model-based segmentation in orbital volume measurement with cone
beam computed tomography and evaluation against current concepts,” in Int. J. Comput. Assist.
Radiol. Surg., vol. 11, no. 1, pp 1-9, January 2016. Impact Factor: 1.827

– H. F. Choi, A. Chincisan, M. Becker, and N. Magnenat-Thalmann, “Multimodal composition of
the digital patient: a strategy for the knee articulation,” in Vis. Comput., vol. 30, no. 6, pp. 1–11,
May 2014. Impact Factor: 0.957

Peer-reviewed Conferences

– M. Becker, and N. Magnenat-Thalmann, "Muscle tissue labeling of human lower extremities in
multi-channel mDixon MR imaging: Concepts and applications," in Bioinformatics and Biomedicine
(BIBM), 2014 IEEE International Conference on, pp.279,284, 2-5 Nov. 2014, Best Overall Paper
Award.

– D. García, B. M. A. Delattre, S. Trombella, S. Lynch, M. Becker, H. F. Choi, and O. Ratib, “Open
framework for management and processing of multi-modality and multidimensional imaging
data for analysis and modeling muscular function,” Proc. SPIE 9036, Medical Imaging 2014:
Image-Guided Procedures, Robotic Interventions, and Modeling, 90361W (March 12, 2014).

151



Appendix A. List of Publications

– L. Assassi, M. Becker, and N. Magnenat-Thalmann, “Dynamic Skin Deformation based on Biome-
chanical Modeling,” in 25th Annual Conference on Computer Animation and Social Agents (CASA
2012) May 9-11, 2012 Nanyang Technological University, Singapore.

International symposiums and workshops

– M. Becker, K.-I. Friese, F.-E. Wolter, N.-C. Gellrich, and H. Essig, “Development of a Reliable
Method for Orbit Segmentation & Measuring,” in 2015 IEEE International Symposium on Medical
Measurements and Applications (MeMeA 2015), 2015, pp. 285–290.

Book Chapters

– M. Becker, and N. Magnenat-Thalmann, “Deformable Models in Medical Image Segmentation,”
in 3D Multiscale Physiological Human, 1st ed. N. Magnenat-Thalmann, O. Ratib, and H. F. Choi,
Eds. Springer-Verlag London, 2014.

152



Appendix B

Acronyms, Glossary and Technical

Details

B.1 Acronyms

Acronyms used throughout the thesis and their definition:

AAM: Active Appearance Model
ACL: Anterior Cruciate Ligament
AI: Affine Invariant
ArBB: Array Building Blocks
ASSD: Average Symmetric Surface Distance
ASM: Active Shape Model
AWS: Amazon Web Services
CAD: Computer-Aided Diagnosis
CBCT: Cone Beam CT
CT: Computed Tomography
DM: Deformable Model
EIT: Electrical Impedance Tomography
EM: Expectation Maximisation
EU: European Union
FCM: Fuzzy C-Means
FDM: Finite Difference Method
FEM: Finite Element Method
FNE: False Negative Error
FPE: False Positive Error
GDM: Geometrically Deformable Model
GIS: Geographical Information Systems
GPL: GNU Public Licence
GPU: Graphical Processing Unit
GPGPU: General Purpose Graphical Processing Unit
GUI: Graphical User Interface
GVF: Gradient Vector Field
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HMM: Hidden Markov Model
HU: Hounsfield units
HUG: University Hospitals of Geneva
ID: Identifier
IP: Intensity Profile
IRT: Infrared Thermography
IT: Information Technology
ITK: Insight ToolKit
ITN: Initial Training Network
LCL: Lateral Collateral Ligament
LUA: Lua scripting language
LET: Label Equivalence Tree
MCL: Medial Collateral Ligament
mDixon: Modified Dixon
MR: Magnetic Resonance
MRF: Markov Random Field
MRI: Magnetic Resonance Imaging
MSD: Musculoskeletal Disease
MSH: MultiScaleHuman
MSSD: Maximum Symmetric Surface Distance
NIH: National Institutes of Health
NLM: Non-Linear Means
NPP: nVidia Performance Primitives
OS: Operating System
PA: Pennation Angle
PCA: Principal Component Analysis
PCL: Posterior Cruciate Ligament
PDE: Partial Differential Equation
PDM: Point Distribution Model
PET: Positron Emission Tomography
PSU: Per Step Update Strategy
PU: Partial Update Strategy
RAM: Random Access Memory
RF: Radio-Frequency
RGB: Red, Green, Blue
RMS: Root Mean Square error
SDC: Sørensen Dice Coefficient
SIAS: Superior-Inferior Axis Scaling
SIAT: Superior-Inferior Axis Translation
SM: Streaming Multiprocessors
SNR: Signal-to-Noise-Ratio
SSM: Statistical Shape Model
SU: Scaled Update Strategy
SVS: Slice Volume Scaling
TBB: Thread Building Blocks
TE: Echo Time
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TPS: Thin Plate Spine
TR: Repetition Time
TSE: Turbo Spin Echo
UML: Unified Markup Language
US: Ultrasound
VTK: Visual ToolKit
WHO: World Health Organisation
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C.1 Medical Nomenclature

Over the last centuries, major advances have been made in medicine. Cooperation is one of the important
steps leading to it. Knowledge transfer has been done using books and now is extended via networks.
To be able to apply results achieved by others correctly, a common language is required. Physicians need
exact descriptions and have therefore created their own terminology.

C.1.1 Directional Terms

The terms for anatomical directions are applicable to human and animals as well. We will describe the
interpretation for the human body. The following list includes the most common directional terms that
are used in this work. The definitions are taken from Stedman’s Medical Dictionary [Ste90] and are
illustrated in Figure C.1.

Superior
Situated above or directed up. Cranial; in human anatomy, situated nearer the vertex of the head
in relation to a specific reference point; opposite of inferior.

Inferior
Situated below or directed downward. In human anatomy, situated nearer the soles of the feet in
relation to a specific reference point; opposite of superior.

Posterior
Dorsal; dorsalis; posticus; in human anatomy, denoting the back surface of the body. Often used
to indicate the position of one structure relative to another, i.e., nearer the back of the body.

Anterior
Ventral; ventralis; in human anatomy, denoting the front surface of the body; often used to in-
dicate the position of one structure relative to another, i.e., situated nearer the front part of the
body.

Medial
Relating to the middle or centre; nearer to the median or midsaggittal plane.

Lateral
On the side. Farther from the median or midsaggittal plane.

Left (Lateral)
Left from the perspective of the body.
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Right (Lateral)
Right from the perspective of the body.

Proximal
Proximalis; nearest the trunk or the point of origin, said of part of a limb, or and artery or a
nerve, etc., so situated.

Distal
Distalis. Situated away from the centre of the body, or from the point of origin; specifically applied
to the extremity or distant part of a limb or organ.

Dorsal
Tergal; pertaining to the back or any dorsum. In human anatomy, posterior.

Ventral
Pertaining to the belly or to any venter. Anterior.

Figure C.1 – Anatomical directional terms. Source: CC-BY 3.0, Blausen.com staff. "Blausen gallery 2014". Wikiversity
Journal of Medicine. DOI:10.15347/wjm/2014.010.

C.1.2 Anatomical Axes

Besides the anatomical directions, the human body can be described along three axes. The superior-
inferior axis goes from the superior end (the head) to the inferior end (the feet) of the human body. The
antero-posterior axis connects the front of the body, anterior, and the back, posterior. The third axis can
be described either by the uncommon left-right axis or by the medio-lateral axis that has its reference
in the middle of the body and points laterally to left and to the right. The axes are also shown in Figure
C.1.
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C.1.3 Planes

In medical images and anatomical descriptions, three reference planes are used. The normal of the
sagittal plane points along the medio-lateral axis. The coronal (or frontal) plane divides the body into an
anterior and posterior part. The transverse plane is perpendicular to the other planes and divides the
body into a superior and an inferior part. Figure C.2 shows the different planes.

Figure C.2 – Planes through the human body: frontal (a), transversal (b) and sagittal (c) plane.

C.2 Anatomy

The knee is the most complex joint in the human body. It is made up of four bones, thirteen muscles,
and several different kinds of soft tissue. To define the nomenclature and anatomical context for this
work, we will a short overview in this section. A more detailed explanation can be found in [Sta05]. We
start with the bones of thigh and calf, and continue with their muscles. We will discuss the function and
structure of the knee joint and describe the patella and several kinds of soft tissue: tendons, ligaments,
cartilage and menisci.

C.2.1 Bones of Thigh and Calf

Thigh and calf consist of three main bones: Femur, tibia, and fibula. Their main articulation is the knee
joint. At its superior end, the femur is connected to hip through the hip joint. The inferior end of tibia
and fibula are connected to the ankle for articulation of the foot. The three bones carry the body weight
during gait and other movements. They are all long bones 1 with a shaft and two extremities at the ends.
They have an outer shell of compact bone and cancellous bone inside the extremities as well as bone
marrow inside the shaft.

C.2.1.1 Femur

The femur, also known as thigh bone, is the only bone in the thigh. It is the longest, strongest, and most
heavy bone in the human. Anthropological studies have found the length of the femur usually is 26% of
a person’s total height. It consists of the body, shaped like a shaft, and the upper and lower extremity.
Its strength is crucial since it carries the body weight and has attachments for the muscles used in gait.
The femur and its lower and upper extremity can be seen in Figure C.3.

1. Other types of bones are: short, flat, irregular, and sesamoid.
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Figure C.3 – Femur. Source: Henry Gray (1918) Anatomy of the Human Body

The upper extremity of the femur consists of the femoral head and neck, and the greater and lesser
trochanter. The head is located proximal, round, and projecting medially on its short neck. It articulates
with the acetabulum, forming the hip joint. The neck connects the head to femoral body. The hip joint
capsule attaches between head and neck. The vastus lateralis attaches to the greater trochanter of the
upper extremity.

The body of the femur, the shaft, is long, slender, and almost cylindrical. It is bowed forward. The
linea aspera, a ridge on the posterior side supports the strength of the bone. The vastus intermedius is
attached to most of the anterior surface.

The lower extremity at the distal end of the femur is more massive than the head. It has two condyles
(cylindrical shapes). The patella is located anterior of the condyles. The lower extremity has the cruciate
ligaments attached and it articulates together with tibia and patella, therefore forming the knee joint.

C.2.1.2 Tibia and Fibula

The tibia, also known as shin bone, is the larger of the two bones in the calf and second largest in the
body (after femur). Is made up by its body and two extremities. Tibia and fibula and their extremities
are shown in Figure C.4.

The upper extremity is defined by the tibial plateau, which is formed by the flattened condyles. It provides
a bed for the femoral condyles to move on. In its middle is the eminentia intercondylaris, an elevation that
divides the plateau into lateral and medial part.
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Figure C.4 – Tibia and Fibula. Source: Henry Gray (1918) Anatomy of the Human Body

The plateau is delineated anterior and posterior by the Area intercondylaris anterior and Area intercondy-
laris posterior. Furthermore, it provides attachment points for the cruciate ligaments and and the liga-
ments of the menisci. Located superior of the plateau is the infra-patellar adipoid.

The ligamentum patellae is connected at the Tuberositas tibae, this is supported by the raw and bumpy
surface of the tibia at that location. The body of the tibia is a shaft that is defined by an anterior rim
margo anterior with direct bone-skin-contact. The shaft is shaped triangular, and its surfaces are divided
into medial, lateral and posterior surface. The lower tibial extremity forms the ankle joint together with
fibula and talus.

The fibula, or calf bone, is a bone located lateral of the tibia. It is smaller than the tibia. Its upper
extremity is placed towards the back of head of tibia, whereas the lower extremity inclines forward.
Although closely located, the fibula is not part of the knee joint. It does not carry a significant amount
of weight, but it provides stability to the ankle and offers attachment points for several muscles.

Tibia and fibula are connected through two joints. The superior tibiofibular joint connects the fibular head
and the lateral condyle of fibula and the inferior tibiofibular joint connects tibia and fibula superior of the
ankle.
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C.2.2 Knee Joint

The knee joint is a hinge type synovial joint between thigh and calf. It is the largest and most complex
joint in the human body. Located between femur, tibia, and patella, it carries the full body weight. Its
main task is flexion and extension of the leg, it also allows small internal and external rotation. Due to
its heavy usage in everyday tasks, it is prone to abrasive wear. Osteoarthritis developed over time affects
the cartilage. Acute injuries also pose a risk.

Femur, tibia, and patella form the joint, the fibula is not a part of it. The bones are connected through
ligaments to increase the stability but also to limit the range of possible motions. Especially the anterior
and posterior cruciate ligaments are important for stability and coordination. The articulation areas are
covered with cartilage to prevent painful, abrasive bone-to-bone contact. The half-moon-shaped menisci
provide additional protection and damping. The joint has a capsule that is filled with synovial fluid.

In the following sections, we will describe important components of the joint: patella, tendons, liga-
ments, cartilage and menisci. An overview of the joint anatomy can be found in Figure C.5.

Quadriceps
tendon

Patella (normally
in center of knee)

Medial collateral
ligament

Meniscus

Patellar tendon
(Ligament)

Quadriceps
muscles

Femur

Articular
cartilage

Lateral condyle
Posterior cruciate
ligament
Anterior cruciate
ligament
Lateral collateral
ligament

Fibula

Tibia

Figure C.5 – Knee joint with tendons, ligaments, and cartilage (public domain).

C.2.3 Patella

The patella, also known as knee cap, is a bony structure, located at the anterior part of the knee joint. It
is designed to protect the knee joint from frontal forces. It also allows the quadriceps femoris to improve
their efficiency since it proves to be a strong lever.
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The patella can be divided into two faces, facies anterior and facies posterior. The facies anterior is covered
by the quadriceps femoris-tendon. It has a convex surface and numerous rough, longitudinal striae.
Anterior of it is the bursa subcutanea prepatellaris. The facies posterior is covered by very thick joint
cartilage, designed to manage multiple body weight loads. It is divided by a rim into two parts and has
a smooth oval surface. Above it lies the suprapatellar adipoid.

The apex of the patella is pointed and gives attachment to ligamentum patellae. During the articulation
of the limb, the patella follows the femur.

C.2.4 Tendons

Tendons are fibrous tissue that connect muscles to bones. They are made of collagen fibres. Tendons
usually have the shape of bands and have their name because their capability to tolerate tension. Many
muscles have their tendons attached near the knee joint to enable its articulation, mainly flexion and
extension. The most prominent tendon is the quadriceps tendons which connects the quadriceps muscle
and the patella. The patellar tendon, connecting patella and tibia, is actually not a tendon but a ligament.

C.2.5 Ligaments

Ligaments are fibrous tissue that connect bones to each other and are made of collagen fibers. They
give stability, limit the range of motion and guide the force of muscles. Under tension, they can be
stretched, but later return to their original shape. Ligament injuries and ruptures can be left untouched
or surgically repaired, depending on their importance for joint stability.

Several ligaments play an important role in the stabilisation of the knee joint. They can be divided into
tibiofemoral and patellofemoral ligaments.

The tibiofemoral ligaments consist of the cruciate and the collateral ligaments. The cruciate ligaments
are formed by the Ligamentum cruciatum anterious (ACL) and the Ligamentum crutiatum posterious (PCL).
They connect femur and tibia, crossing each other like an X. The ACL is lateral, the PCL is medial.
Together they stabilise the tibia relative to the femur and prevent it from slipping forward or backward.
The Ligamentum collaterale tibiale or medial collateral ligament (MCL) is located on the medial side of the
knee joint and connects femur and tibia. It is not very flexible and more prone to injury. The principal
duty is to prevent medial directed forces that cause the valgus deformity. The Ligamentum collaterale
fibulare or lateral collateral ligament (LCL) is the lateral counterpart of the MCL. It connects femur and
fibula.

The patellofemoral ligaments include the Ligamentum patellae, which connects the patella to the tibial
tuberosity. It is a continuation of the quadriceps femoris and is also known as anterior or patellar
ligament. Below this ligament lies a large intrapatellar pad of fat.

These ligaments and their location inside the knee joint can be seen in Figure C.5.

C.2.6 Cartilage

Cartilage is a connective tissue, it can be of three different types: elastic, hyaline, and fibro-cartilage. It
is less hard than bone, but stiffer and less flexible than muscle tissue. It is formed by an extracellular
matrix of collagen fibres. Cartilage shows viscoelastic properties. Articular cartilage (at an articulation,
e.g. joint) prevents bone-to-bone contact that could damage the bone. The reduced friction makes it easy
for bones to slide in joints.

162



C.2 Anatomy

In case of the knee joint, the cartilage can be divided into articular cartilage (hyaline cartilage) and menisci
(fibrous cartilage, see next section). The articular cartilage covers the condyles of femur and tibia. The
femoral cartilage is a single entity that covers the articulate surfaces of both condyles and the surface in
front of the patella. The tibial cartilage covers the superior articular surface of the tibia which is divided
into the separate lateral and medial facet.

C.2.7 Menisci

The menisci are part of the fibrous cartilage. They are located between femur and tibia. They can be
divided into meniscus medialis and lateralis which are half-moon-shaped. They are attached through
ligaments to tibia and femur.

The menisci provide structural integrity during tension and torsion of the knee joint. Although they only
partly divide femur and tibia, menisci play an important role in the distribution of the body weight in
the joint. They also bridge the gap between the uneven, curved contact surfaces of the articulation.
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C.3 MRI information sheets
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C.4 MRI consent form

C.4 MRI consent form

  1/1 
  

Evaluation of leg muscular activity using Magnetic Resonance Imaging  and 11C-acetate Positron 
Emission Tomography (PET/MRI). Pilot study. Version 1.3 (24.07.2013) 

 
DEPARTEMENT D’IMAGERIE ET DES SCIENCES D’INFORMATION 
MEDICALE  
Service de Médecine Nucléaire 

 
Evaluation of leg muscular activity using Magnetic Resonance Imaging and 11C-
acetate Positron Emission Tomography (PET/MRI). Pilot study. [Evaluation de 
l'activité de la musculature de la jambe par imagerie par résonance magnétique  
et tomographie à émission de positons (PET/IRM) avec 11C-acétate. Etude pilote] 
Détail de l’examen: examen IRM. 

 
Formulaire de consentement éclairé 

Version 1.3 du 24.07.2013 
 

- Le médecin signataire m’a informé(e) oralement et par écrit des buts de l'étude 
précitée, de son déroulement, des effets attendus, des risques et inconvénients 
possibles. 

- J’ai lu et compris le formulaire d'information au patient version 1.4 du 24.07.2013 pour 
l'étude susnommée. J'ai reçu des réponses satisfaisantes aux questions concernant 
ma participation à cette étude. Je peux garder le dossier d’information du patient et je 
reçois une copie de ma déclaration écrite de consentement. 

- J’ai eu suffisamment de temps pour réfléchir avant de prendre ma décision. 
- Je sais qu’une assurance couvre les dommages qui pourraient survenir dans cette 

étude. 
- J’accepte le fait que les spécialistes responsables travaillant pour les représentants 

des autorités Swissmedic et OFSP et de la commission d’éthique aient un droit de 
regard sur les données originales me concernant pour procéder à des vérifications, 
ces informations restant toutefois strictement confidentielles. Je suis d’accord que les 
données récoltées durant cette étude puissent être utilisées pour des publications 
scientifiques à condition de respecter l’anonymat. 

- En cas de découvertes fortuites qui pourraient contribuer à la prevention, au 
diagnostic et au traiement de maladies existantes ou peut-être futures, je donne mon 
consentement à: ! être informé(e) directement de ces résultats ! ne pas être 
informé(e), ou ! laisser a votre médecin traitant le soin de décider de ce qu’il convient 
de faire. 

- Je participe volontairement à cette étude. Je peux à tout moment retirer mon accord 
de participation à cette étude sans avoir à donner de raisons. Aucun inconvénient pour 
mon suivi médical ultérieur ne doit découler de cette décision. 

- Je sais que les exigences et restrictions mentionnées dans le formulaire d’information 
du patient doivent être respectées durant l’étude. Dans l’intérêt de ma santé, 
l’investigateur peut à tout moment décider de m’exclure de l’étude.  

- Je consens à participer,  
Date :   ..................................................... 
Nom, Prénom du patient :  Signature du patient : 
 
.................................................................. ......................................................... 
Date :   ..................................................... 
Nom du médecin investigateur :   Signature du médecin investigateur 
 
.................................................................. ......................................................... 
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D.1 Other Deformable Models

In this section, we will give a short overview of other types of deformable models that fall outside
the classification described so far. We will discuss deformable Fourier models, the modal analysis and
deformable superquadrics.

D.1.1 Deformable Fourier Models

In 1992, Staib and Duncan [SD92] have proposed to use a Fourier representation for deformable contours
and surfaces. In the following, we will take a look at a closed Fourier contour, described as:

X(s) = �����
X(s)
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����� (D.1)

with the Fourier coefficients a0, c0, ai , bi , ci , di. They are defined as

a0 = 1
2p

1

�
0

X(s) ds, ak = 1
p

1∫
0

X(s) cos 2pks ds,

bk = 1
p

1∫
0

X(s) sin 2pks ds (D.2)

A smooth representation can be obtained by truncating the series. The shape translation is defined by
the coefficients a0 and c0. The subsequent terms follow the parametric form of an ellipse and can be
mapped to the standard properties of an ellipse [SKBG96]. The parameters follow scale ordering, with
low indices for global properties and high indices describing local deformations.

To incorporate prior knowledge, Staib and Duncan [SD92] use a Bayesian approach. A prior probability
approach is defined by manual delineation and the consequent parametrisation of Fourier coefficients
using a converted ellipse parameter set. This way, a mean and variance can be calculated for each
parameter.
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D.1.2 Deformable Models Using Modal Analysis

Modal analysis has been introduced by Pentland and Horowitz [HP91]. Deformable models using it,
are similar to deformable Fourier models but their base functions and nominal values are derived from
templates. The objects consist of finite elements, stacked in the vector X. Displacements are stored in
U, so that the new state after a deformation step is given by X +U. They are constrained using the
following differential equation

M
d2U
dt2 +C

dU
dt
+KU = f (D.3)

with M as mass, C as damping and K as stiffness matrix. The vector f contains the external forces and
f and U are defined as functions of time.

D.1.3 Deformable Superquadrics

To incorporate local and global shape features, Terzopoulos and Metaxas [TM91] have proposed de-
formable superquadrics. These deformable models use a superquadric surface. While global deforma-
tions have a large influence on the global shape characteristics, local deformations capture the details.
Local and global deformations are being performed in parallel. The closed surface x(u) in parametric
coordinates u = [v, w] is expressed as:

x(u) = c + Rp(u) (D.4)

with c a translation vector and R a rotation matrix. The model shape is expressed by p(u) and is
the sum of the reference shape s(u) and the local deformations d(u). Superquadrics are a popular
extension to quadrics and can model many shapes with few parameters. Examples for superquadrics
are superellipsoids, which are described in [BCA98].

D.2 Functionality exposed to Lua scripting

Large parts of the functionality of our DMFramework are exposed to Lua scripting. We have identified
five main categories:

1. Image Processing

2. Simulation

3. Models

4. Forces

5. Comparison

These categories are grouped in namespaces and described in the following sections. We have focussed
on the main features, omitting minor functionality.

D.2.1 Image processing

Image processing is a crucial step for medical image segmentation. We rely on the ITK library and
extend it to our needs. We expose our needed functionality for flexible processing. For segmentation
tasks, the main class is the Image Manager. It supports centralised loading of images. Since the images
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are static and not modified during the actual segmentation process, multiple models, forces and even
simulation environments can share the images and reduce the required memory. The image manager
provides access to individual slices and supports the calculation of gradients.

We also provide the ImageLoader and ImageWriter to support a large range of image formats like
MetaImage, NII, etc for loading and saving. We have extended the loader to also allow the loading of
Dicom files from directories and have a rudimentary support for saving Dicom files. The functionality is
provided for integer as well as floating point images. Finally, methods for creating new (empty) images
of arbitrary sizes, e.g. for processing or stitching results, are available.

We have made the following custom filters available:

— RemoveDuplicateSlicesFilter::removeDuplicateSlices (Image, NumberOfDuplicateSlices): Remove
duplicate slices that are a by-product of the mDixon scans.

— ImageStitchingFilter::StitchImages (Image1, Image2): Stitches two images using their offsets and
interpolates overlapping volumes.

— DivideLegsInAirImage::divide (AirImage, left): Creates a mask for either the left or the right leg
from an AirImage.

Other filters are wrappers and shown below:

— ImageAddFilter::addImages (Image1, Image2): Adds two images.
— BinaryThresholdFilter::thresholdImage (Image, Threshold): Performs a binary thresholding in Im-

age.
— ConnectedComponentsFilter::findConnectedComponentsWithMinSize (Image, MinSize): Finds

connected components of a minimal size (MinSize) in Image.
— BinaryErosionFilter::erodeImage (Image): Performs an erosion on the binary Image.
— BinaryDilationFilter::dilateImage (Image): Performs a dilation on the binary Image.
— PasteImageFilter::pasteImage (Source, Target, Offset, Size): Pastes the source image or parts into

the target the target image.
— InvertIntensityImageFilter::invert (Image, MaxIntensity): Invert the intensity in Image. Uses the

maxIntensity value to remove the need for an additional scan of Image.
— CropImageFilter::cropImage (Image, Size, Offset): Crops an image to the desired sub-image.
— ImageToModelFilter::CreateModelFromImage (Image, Label): Creates a 3D model from a Label

in Image using the marching cubes approach.
— MultiplyImageFilter::multiplyImage (Image, Factor): Multiplies Image with a factor.
— BiasFieldImageFilter::getBiasFieldForImage (Image, Mask): Estimates the MR Bias field for Im-

age. The mask can be supplied to reduce the calculation in areas like air which reduces the
calculation time.

D.2.2 Simulation

The simulation class capsules and configures the simulation environment. There can be several instances
of the simulation class in parallel for different simulation environments, e.g. for multi-resolution mesh
coupling.

— setupSimulation (): Sets up the simulation environment and configures it.
— tearDownSimulation (): Tears down the simulation environment and frees resources.
— performSimulationStep (stepSize): Performs a simulation step of the indicated length. Default

values is 1�60s. Longer steps might be broken down into smaller steps to ensure continuity.
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— addModel (Model, Key): Adds a model to the simulation environment. The model can be identi-
fied by the key.

— addStaticPlane (center, orientation): Adds a static plane to the simulation environment.
— createModelFromOpenMesh (Mesh): Creates a simulation model from an OpenMesh mesh.
— kDP: The damping coefficient used for simulation.
— kDF: The dynamic friction coefficient used for simulation.
— kDG: The drag coefficient used for simulation.

D.2.3 Models

The Model Manager keeps track of the models in a simulation environment. It is the place for calculating
forces and supports decimation. Model Managers cannot be shared between simulation environments.

— AddFrom(DefmFile|OpenMesh|VTK|VTP) (Filename, Key): Loads a model and stores it under
the Key.

— CalcForces (): Calculates the forces for all models.
— UpdateNormals (): Updates the normals of all models, e.g. after a transform call.
— RemoveAllModels (): Removes all models from the Model Manager.
— DecimateModel (Key): Decimates the model Key to the specified number of vertices.

The Model class encapsulates the geometry and the forces of a model.

— AddForce (Force): Adds a force to the model.
— RemoveAllForces (): Removes all forces from the model.
— ResetOutsidePointForces (): Set the force to zero for all vertices outside the image volume.
— Save(OpenMesh|VTK|VTP) (Filename): Saves the model to a file.
— Transform (Matrix4x4): Transforms the model using the supplied matrix that can express trans-

lation, rotation and scaling.

D.2.4 Forces

All forces share a common base class that defines a method used by the simulation for force calculation.
Aside from that, there are no limitations. Some of the forces are the following:

— GrowingForce: This force creates a constant pull along the normals.
— LaplacianSmoothingForce: This force applies Laplacian smoothing.
— SimpleImageForce: The image gradient of a single image is used in this force.
— FourImageImageForce: This forces uses the weighted gradients of up to four images.
— InfluencePointForce: Influence points can be used to pull the model to or away from a point.

This force implements this behaviour.
— MuscleLabelForce: This force uses a vector field to pull the models to stay within muscle tissue

provided from our labelling technique.

D.2.5 Comparison

For the comparison, we use a special image type: LabelImages. All label image metrics are encapsulated
in the LabelImageMetrics class which is realised as a singleton. It offers several metrics for image to
image comparison, below we have list some of the provided methods. The LabelImageMetrics class is a
wrapper for the corresponding ITK functionality.

— LoadLabelImage (Filename): Loads a label image from a file.
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— SaveLabeLimage (Filename, Image): Saves a label image to a file.
— GetFalseNegativeError (Image1, Image2, Label): Calculate the false negative error for Label in two

images (Image1, Image2).
— GetFalsePositiveError (Image1, Image2, Label): Calculate the false positive error for Label in two

images (Image1, Image2).
— GetTargetOverlap (Image1, Image2, Label): Calculate the overlap of Label in two images (Image1,

Image2).
— GetJaccardCoefficient (Image1, Image2, Label): Determines the Jaccard-Coefficient for Label in two

images (Image1, Image2).
— GetDiceCoefficient (Image1, Image2, Label):Determines the Dice-Coefficient for Label in two im-

ages (Image1, Image2).
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