
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Chapitre d'actes 2019 Accepted version Open Access

This is an author manuscript post-peer-reviewing (accepted version) of the original publication. The layout of

the published version may differ .

Hardware TOTP tokens with time synchronization

Huseynov, Emin; Seigneur, Jean-Marc

How to cite

HUSEYNOV, Emin, SEIGNEUR, Jean-Marc. Hardware TOTP tokens with time synchronization. In: 2019

IEEE 13th International Conference on Application of Information and Communication Technologies

(AICT). Baku, Azerbaijan. [s.l.] : [s.n.], 2019. doi: 10.1109/AICT47866.2019.8981762

This publication URL: https://archive-ouverte.unige.ch/unige:125190

Publication DOI: 10.1109/AICT47866.2019.8981762

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:125190
https://doi.org/10.1109/AICT47866.2019.8981762

Hardware TOTP tokens with time synchronization
Emin Huseynov

Faculté des Sciences de la Société

University of Geneva

 Geneva, Switzerland

emin@huseynov.com

Jean-Marc Seigneur

CUI, ISS & Medi@LAB, Faculté des Sciences de la Société

University of Geneva

Geneva, Switzerland

seigneuj@gmail.com

Abstract— Although many users nowadays prefer to use mobile

applications for TOTP, there are still use cases for separate/isolated

standalone hardware TOTP devices. For various technical

restrictions, such as the accuracy limits of oscillators used in real-

time clock chips, classic TOTP hardware tokens have a natural

tendency to introduce time-drift after some period. This paper

describes an innovative product allowing to overcome this

disadvantage by introducing a new category of programmable TOTP

hardware tokens allowing adjusting the system hardware clock.

Index Terms— digital identification, identity management,

authentication, authorization, privacy, context-based authentication,

strong security, one-time password, TOTP, time drift.

I. INTRODUCTION

As per the RFC, the TOTP-based authentication

mechanisms [1] expect hardware tokens to have real-time

clocking capacity by implanting an oscillator in the device. A

token’s clock drift requires to be considered and adjusted

respectively by the server. The protocol's recommendation also

suggests the server to implement “look-ahead” and “look-

behind” steps for resynchronization when an adequate amount

of clock skews have occurred on the hardware token.

 While this is not as significant when mobile authenticator

apps are used for the second factor, the system clock devices

used in TOTP hardware tokens have a general bent to begin to

time-drift after a certain amount of time. This a recognized

weakness of most oscillator-based real-time clock (RTC) chips,

also mentioned in the RFC 6238#6 [1], and consequently, the

authentication systems must be able to automatically adjust the

potential time-drift with TOTP tokens to minimize any

possible influence on the users' authentication process, which

may eventually lead to access being denied for this reason.

While the majority of the systems with two-factor

authentication can follow this RFC recommendation, there are

still multiple implementations where this aspect is ignored.

In this paper, we review the potential issues that can be

caused by the time drift effect of hardware tokens (section II).

Later, in section IV, we propose a solution to compensate the

time drift and in section V we analyze the security risks of

implementing the time sync as well as the mitigation methods.

Section VI reviews the implementation of a hardware token

with time sync feature. We conclude the paper in Section VII.

II. PROBLEM STATEMENT

The issue of time-drift is not as important when the second

factor is based on mobile applications running on smartphones,

the time synchronization takes place via the Internet or cellular

networks [2]. This is probably the reason why there are several

popular services that ignore the TOTP RFC recommendation

of automatically adjusting the time drift.

However, there are still use cases for preferring standalone

hardware tokens over mobile app-based authenticators. These

use cases include, but not limited to:

- Users not possessing a corporate smartphone, or not

willing to use their personal devices for authentication

- Policies or conditions are not allowing to use

smartphones on-premises (i.e. for military bases,

intelligence service offices or other locations with

higher security standards on carried electronic devices)

- Enterprises considering applications running on

smartphones insecure due to the risks of viruses,

device compromisation or similar.

With hardware tokens, the potential side-effects of time

drifts and its significance are different. The common time

drift for modern TOTP hardware tokens statistically

averages to 2 minutes per year or even more. [3]

After a couple of years, numerous tokens will introduce

a time drift falling outside of the global synchronization

window. While the accuracy of RTC chips has not changed

a lot for the last 20 years, the battery capacity of modern

tokens is now higher, making the tokens good enough to

work for over 5 years, which means that after its 4th year,

even though the battery is still good to allow using the

token for another year, the token cannot be re-enrolled to a

different authentication system as its time drift would be

almost 10 minutes and very few systems would support

such big disparity. This allows saying that RFC 6238 №6

is an absolute requirement for authentication mechanisms if

they want to leverage hardware tokens as one of their

second-factor contexts. Unfortunately, many systems are

ignoring this recommendation, for example, Cisco Duo

[6]:

“TOTP token drift and resynchronization are not

supported. As a result, imported TOTP tokens may not

work for authentication with Duo Security, or may fail to

work for authentication after a variable period of time.”

But even in the case, the time drift adjustment is correctly

handled, a token that is not utilized very frequently is

anticipated to drift even further ahead of the synchronization

range that an authentication system may tolerate. Besides,

businesses are hesitant to retain a big stock of physical tokens:

a token that is not used at all will have its battery nearly at its

full capacity, but the inaccuracy of the RTC chip will not

permit even enrolling it, which makes before-mentioned

expenses to be entirely wasted.

While TOTP as an authentication mechanism is secure

enough and incredibly easy to realize, the problem outlined

above is regarded as one of the main limitations when it comes

to using hardware tokens.

III. REVIEW OF EXISTING SOLUTIONS

An academic review, as well as market research, were

conducted at the time of writing and no commercial solutions

nor concepts addressing this issue were identified. A

preliminary version of this paper was published in 2018 by the

authors to serve as a proof of novelty [7].

Programmable hardware tokens exist for a few years now

and the main concept is based on the possibility of transferring

a shared secret (seed) via contactless protocols such as NFC [4]

but without the possibility of adjusting the system clock of the

devices.

Examples of such programmable hardware tokens are

Protectimus Slim Mini [8] and HyperSecu Edge.

The same concept is widely used in a few devices in many

industries [5].

IV. PROPOSED SOLUTION

To address the issue above we are proposing a solution that

would allow syncing the clock of hardware tokens using a

special API via NFC protocol. The proposed device will

contain a processing chip with hardware clock control feature

which will accept a timestamp value transferred as a part of

SDK API argument. The seed will be stored to a write-only

accessible memory segment to ensure the security of the shared

secret: the API will only allow writing the seed and will never

allow reading the seed.

A schematic illustration of the device is shown in Figure 1.

Figure 1. Programmable hardware token

The procedure of transmitting the current timestamp as well

as the seed to be used for generating one-time passwords using

TOTP algorithm will be done via NFC using standard NFC

transmitter modules, such as the NFC chip in modern Android

phones or laptops running under Windows. A wide range of

ready libraries exist under different platforms (for example for

Android [10]) allowing to rapidly develop prototype apps. As

described later in Section V, an Android application and a

Windows application is to be developed. The application will

send and receive specially formed commands over NFC to

perform operations defined in the API.

V. SECURITY ANALYSIS

This section analyzes the security aspects of the proposed

solution in the context of a classic two-factor authentication,

where the first factor is static (i.e. username and password) and

the second factor is dynamically changing – where the

changing counter is time-based, namely, with Time-based One-

Time passwords (TOTP) algorithm.

Adjusting the time on a hardware token is not as simplistic

as setting a wristwatch: there is a possible security danger if it

is only the system time of the RTC chip that is being modified.

The replay attack can be described this way: assume a user

currently under a targeted attack initiative and the intruder can

physically reach the hardware token, yet for a short time. If

only the RTC modification is allowed, the attackers can set the

clock to a future time and record a significant amount of OTP

codes. This can be considered as a partial compromisation of

the second factor and is almost equal to attackers getting access

to token's seed. With this list of OTP codes obtained, the

attackers only require the first factor, e.g. the password, which

is much more straightforward to obtain (i.e. via a phishing

attack or a keylogger installed) and subsequently, when the

time of validity of the OTP codes arrives, all factors become

compromised. To solve the TOTP code replay attack described

above, we propose the time sync procedure to be combined

with resetting the seed of the token. So, the system time of an

RTC chip will automatically erase the stored seed and

therefore, eliminate the code replay attack vector.

The fact that the seed can only be set and never read from

our programmable tokens will make sure the seed is only

accessible by the authentication server. Therefore,

unauthorized access to the time adjustment of the hardware

tokens will not result in the replay attack. Contrary to this, if

the time setting is set by a legitimate user (i.e. the

administrator), the seed set together with the correct time value

will also be set at the authentication server, or vice-versa, a

new seed will be requested to be generated by the

authentication server to be written to the token together with

time synchronization.

Meantime, we would still like to mention that the chance of

before-mentioned attack type is insignificant and can be

accomplished only if all of the following circumstances are

satisfied:

• The username and the password of the user being

attacked have already been compromised

• Attackers can physically access the hardware

device serving as the second authentication factor

• They can connect to the device via NFC for a

significant amount of time. This time is required

to adjust the RTC clock, set it to a future time and

generate a list of OTP codes.

Those requirements are almost impossible to be satisfied

and can be matched to a condition where a hardware token is

stolen.

VI. IMPLEMENTATION

Hardware TOTP tokens with time sync have been

manufactured based on the algorithms and specifications

provided by the authors of this paper by a number of factories.

The final product1 is shown in Figure 2

Figure 2 . C301 TOTP hardware token

The time synchronization feature is implemented via a

special API which allows communicating with the device via

NFC protocol. Schematic visualization of the process is shown

in Figure 3.

 Figure 3. API Flowchart visualization

1 As the product is already at its commercialization phase the exact

chip models and implementation methods are not disclosed as a part

of this paper.

 As described in V, API will automatically launch an empty

seed burning process if the time of the device is set to be

modified in order to avoid any potential risk of a replay attack.

The API implemented will consist of the following

functions:

ReadSnAndTime char* pszR ea derName, char* pSn, int*

pSnLen, char* pTime, int* pTimeLen)

Function : gets the serial number and current time from

the token;

SetTime (char* pszReaderName, char* custom key , char*

pszTime)

Function : sets the time of the token; pszTime [in]: time to

set to the token, the format should be

“yyyy/mm/dd/hh/mm/” – in UTC Timezone

BurnSeed (char* pszR ea derName, char* custom key ,

hexSeed int nSeedLen)

Function: burns a seed to the token; hexSeed [in]: the seed

value, it should be hexadecimal format; nSeedLen[in]:

length of hexSeed, it should be less than 32 bytes.

A Windows and Android applications to serve as a graphical

user interface to the above-mentioned API have also been

developed.

Figure 3. NFC Burner applications for Windows and Android

The main use case of the programmable hardware tokens is

serving as a drop-in replacement of mobile authenticator apps.

Therefore, the Android app has an additional feature for

scanning the QR code shown for creating TOTP profile with

such mobile apps (for example Google Authenticator). The QR

code will then be parsed to extract the seed to be used for

burning into the hardware token.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have analyzed the problem of a time drift

occurred in modern TOTP hardware tokens and reviewed the

solution and its real-life implementation. A security analysis of

the potential replay attack utilizing the time sync was carried

out and the commercial implementation in two different

methods were studied as follows.

a) unrestricted time sync

where time can be set keeping the current seed; and

b) restricted time sync

 where setting the time will automatically clear the seed for

security purposes to avoid the risk of a replay attack.

This product can be used as drop-in replacement of mobile

authenticator apps in cases where only one TOTP profile is

needed; for most of the users, there are usually multiple TOTP

profiles needed (i.e. one per service or authentication server

etc.) . This means that multiple hardware tokens would have to

be enrolled and used by users, which is quite inconvinienct. A

device capable to hold multiple TOTP profiles/seeds would be

a solution to this. Such a device, multi-profile TOTP hardware

token, is currently being researched and will soon be presented

as a separate academic work.

VIII. REFERENCES

[1] J. Rydell, P. Mingliang and M. Salah, TOTP: Time-Based

One-Time Password Algorithm, IETF, 2011.

[2] B. Sterzbach, "GPS-based clock synchronization in a

mobile, distributed real-time system," Real-Time Systems

, vol. 1, no. 12, pp. 63-75, 1997.

[3] C. A. Latha and H. L. Shashidhara, "Clock

synchronization in distributed systems," in 5th

International Conference on Industrial and Information

Systems, 2010.

[4] TOKEN2, "Programmable hardware tokens," 2018.

[Online]. Available:

https://www.token2.com/shop/category/programmable-

tokens. [Accessed 15 05 2019].

[5] M. Bhattacharyya, W. Gruenwald and B. Dusch, "A

RFID/NFC based Programmable SOC for biomedical

applications," in 2014 International SoC Design

Conference (ISOCC), IEEE, 2014.

[6] Duo, "Does Duo support HOTP or TOTP tokens?," Duo,

01 01 2018. [Online]. Available:

https://help.duo.com/s/article/2112?language=en_US.

[Accessed 15 05 2019].

[7] TOKEN2, "Time drift: a major downside of TOTP

hardware tokens" Medium, 07 12 2018. [Online].

Available: https://medium.com/@token2/time-drift-a-

major-downside-of-totp-hardware-tokens-c164c2ec9252

[Accessed 15 07 2019].

[8] Protectimus.com. Protectimus Slim NFC - Programmable

Hardware OTP Token. ,2019. [Online] Available at:

https://www.protectimus.com/slim-mini/ [Accessed 24

Jul. 2019].

[9] "Edge", Hypersecu.com, 2019. [Online]. Available:

https://hypersecu.com/edge. [Accessed: 24- Jul- 2019].

[10] Coskun, V., Ok, K., & Ozdenizci, B. (2013). Professional

NFC application development for android. John Wiley &

Sons.

