Archive ouverte UNIGE https://archive-ouverte.unige.ch **Article scientifique** Article 2020 **Accepted version** **Open Access** This is an author manuscript post-peer-reviewing (accepted version) of the original publication. The layout of the published version may differ . Enantiopure encaged Verkade's superbases: Synthesis, chiroptical properties, and use as chiral derivatizing agent Yang, Jian; Chatelet, Bastien; Hérault, Damien; Dufaud, Véronique; Robert, Vincent; Grass, Stéphane; Lacour, Jérôme; Vanthuyne, Nicolas; Jean, Marion; Albalat, Muriel; Dutasta, Jean-Pierre; Martinez, Alexandre # How to cite YANG, Jian et al. Enantiopure encaged Verkade's superbases: Synthesis, chiroptical properties, and use as chiral derivatizing agent. In: Chirality, 2020, vol. 32, n° 2, p. 139–146. doi: 10.1002/chir.23156 This publication URL: https://archive-ouverte.unige.ch/unige:129075 Publication DOI: 10.1002/chir.23156 © This document is protected by copyright. Please refer to copyright holder(s) for terms of use. # Enantiopure Encaged Verkade's Superbases: Synthesis, Chiroptical Properties, and Use as Chiral Derivatizing Agent Jian Yang,^[a] Bastien Chatelet,^[a] Damien Hérault,^[a] Véronique Dufaud,^[b] Vincent Robert,^[c] Stéphane Grass,^[d] Jérôme Lacour,^[d] Nicolas Vanthuyne,^[a] Marion Jean,^[a] Muriel Albalat,^[a] Jean-Pierre Dutasta^[e] and Alexandre Martinez*^[a] **Abstract:** Verkade's superbases, entrapped in the cavity of enantiopure hemicryptophane cages have been synthesized with enantiomeric excess (ee) superior to 98%. Their absolute configuration has been determined by using electronic circular dichroism (ECD) spectroscopy. These enantiopure encaged superbases turned out to be efficient chiral derivatizing agents for chiral azides, underlining that the chirality of the cycloveratrylene (CTV) macrocycle induces different magnetic and chemical environments around the phosphazide functions. Keywords: Verkade's superbase, enantiopure cages, chiral derivatizing agent, ECD. ### INTRODUCTION Pro-azaphosphatranes 1 (Chart 1), also named Verkade's superbases, were discovered in 1989 by J. G. Verkade.1 These species are highly basic with a pK_a around 32 in CH₃CN.² with In contrast phosphazene (Schwesinger's bases), protonation occurs on phosphorus atom of the pro-azaphosphatrane. The high p K_a value was attributed to the high stability of its conjugated acid, the azaphosphatrane cation. Pro-azaphosphatranes have been extensively used as basic and nucleophilic catalysts in many transformations, providing high yields of the desired compounds under mild conditions while avoiding most of the side reactions encountered with other systems.3,4 New aspects of pro-azaphosphatranes have recently been developed. J. G. Verkade reported their use as ligands for palladium-catalyzed reactions, for instance in Suzuki coupling or Hartwig-Buchwald reaction.⁵ J.Y. Yang et al. nicely pursued this study by complexing other metals like Ni and Rh to pro-azaphosphatranes and investigated the stereoelectronic properties of this ligand.⁶ In link with this research, our group described the synthesis and structures of Verkade's superbase-gold complexes.7 Another elegant application of Verkade superbases is their use as Lewis base to create "reversed frustrated Lewis acid/base" or true frustrated Lewis pairs (FLP) systems.8,9 Alternatively, our group studied the behavior of Verkade's superbases in the confined space of hemicryptophanes, 10 which are chiral host molecules built from a cyclotriveratrylene unit bound to another C_3 -symmetry group. ¹¹ The confinement was found to simultaneously increase the thermodynamic basicity of the pro-azaphosphatrane and decrease the rate of proton transfer. When tested as catalyst in a Diels-Alder basico-catalyzed reaction, the encaged Verkade's superbase led to an improvement of the diastereoselectivity, when compared to its model compound that is devoid of cavity. ¹² The endohedral functionalization of the cage also allowed building FLP system benefiting from the strong isolation of the Lewis basic and acid partners induced by the cavity. ¹³ **Chart 1** Structure of Verkade's superbases (PMB = *p*-methoxybenzyl). Herein, we wish to report on the synthesis of the first Verkade's superbase encaged in enantiopure covalent cages. The absolute configuration was assigned by ECD spectroscopy, and these encapsulated pro-azaphosphatranes were found to act as efficient chiral derivatizing agents for chiral azides. ### **MATERIALS AND METHODS** ### General All commercial reagents and starting materials were used directly as received without further purification. All dry solvents were purified prior to use through standard procedures or obtained from a solvent drying system (MB-SPS-800). All the reactions were carried out under an atmosphere of argon, unless otherwise noted. Flash column chromatography was performed using silica gel 60 (230-400 mesh). Thin-layer chromatography a. Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France E-mail: alexandre.martinez@centrale-marseille.fr b. Laboratoire de Chimie, Catalyse, Polymères, Procédés CNRS, UMR 5265, Université Claude Bernard Lyon1, CPE Lyon 43 Bd du 11 novembre 1918, 69616, Villeurbanne cedex, France. ^c Laboratoire de Chimie Quantique Institut de Chimie, UMR CNRS 7177, Université de Strasbourg, 4, rue Blaise Pascal, F-67070 Strasbourg, France.. ^d Department of Organic Chemistry, Quai Ernest Ansermet 30, University of Geneva, CH-1211, Geneva 4, Switzerland e-Laboratoire de Chimie École Normale Supérieure de Lyon, CNRS, UCBL 46, Allée d'Italie, F-69364 Lyon, France was performed on aluminum-coated plates with silica gel 60 F₂₅₄ and was visualized with a UV lamp or by staining with potassium permanganate. NMR spectra were recorded at either 300 or 400 MHz on BRUKER Avance III nanobay spectrometers. Chemical shifts δ are reported in ppm and coupling constants J in Hz. ECD and UV spectra were measured on a JASCO J-815 spectrometer equipped with a JASCO Peltier cell holder PTC-423 to maintain the temperature at 25.0 \pm 0.2 °C. High-resolution mass spectra (HRMS) were performed at Spectropole Analysis of Aix Marseille University. Enantiopure hemicryptophanes (P)-2 and (M)-2 were synthesized according to our previous reported procedure.14 Synthesis of enantiopure caged azaphosphatranes (P)-3 and In an ice-bath cooled round-bottom flask, bis(dimethylamino)chlorophosphine (0.154 mL, 1.0 mmol, 1.0 equiv) was dissolved in acetonitrile (6 mL), to which a solution of hemicryptophane (P)-2 or (M)-2 (952 mg, 1 mmol, 1.0 equiv) in acetonitrile (15 mL) was then added drop-wise. The reaction mixture was vigorously stirred at 0 °C for 0.5 h. The mixture was then brought to room temperature overnight. The solvent was then removed under vacuum and the residue was purified on silica gel by flash chromatography (CH₂Cl₂/MeOH; 15/2) to give pure azaphosphatrane (P)-3 or (M)-3 as a white solid (884 mg, 87%). ¹H NMR (400 MHz, CDCl₃) δ 7.32 (s, 3H), 6.97 (s, 3H), 6.15 (d, J = 8.27 Hz, 6H), 6.01 (d, J = 8.27 Hz), 4.82-4.93 (m, 3H), 4.89 (d, J = 13.6 Hz, 3H), 4.45 (d, ${}^{1}J_{P-H} = 491$ Hz, 1H, P-H), 4.42-4.19 (m, 9H), 3.87-3.74 (m, 3H), 3.64 (d, J = 13.5 Hz, 3H), 3.57 (s, 9H), 3.36 - 3.47 (m, 3H), 3.31-3.17 (m, 9H), 2.68 - 2.76(m, 3H); 13 C NMR (400 MHz, CDCl₃) δ 158.27, 147.20, 146.45, 132.03, 131.71, 131.31, 129.01, 114.95, 114.61, 112.74, 70.23, $65.65,\ 55.12,\ 50.38,\ 47.63,\ 42.54,\ 36.80;\ ^{31}P\ NMR\ (121\ MHz,$ CDCl₃) δ -31.98. These data are consistent with those reported in the literature. 15 (+)-(P)-3: $[\alpha]_D^{25}$ = + 73 (c 0.1, CH₂Cl₂) (-)-(M)-3: $[\alpha]_D^{25} = -74$ (c 0.1, CH₂Cl₂) Synthesis of enantiopure caged proazaphosphatranes (P)-4 and (M)-4. Under an atmosphere of argon, in a flame-dried Schlenk flask, azaphosphatrane (P)-3 or (M)-3 (350 mg, 0.35 mmol, 1.0 equiv) was dissolved in dried THF (2 mL), t-BuOK (98 mg, 0.875 mmol, 2.5 equiv) was then added, and the reaction mixture was stirred at room temperature for 2 h. The solvent was removed under vacuum, and toluene (5 mL) was added. The reaction mixture was stirred for another 0.5 h, and then the suspension was filtered under argon through a two-necked fritted glass funnel. The filtrate was recovered and the solvent was removed under vacuum to give enantiopure proazaphosphatrane (P)-4 or (M)-4 as a white solid (200 mg, 58%). ¹H NMR (300 MHz, Toluene- d_8) δ 7.31 (s, 3H), 7.04 (d, J = 6.6 Hz, 6H), 6.91 (s, 3H), 6.73 (d, J = 8.5 Hz, 6H), 4.80 (d, J = 13.6 Hz, 3H), 4.27 -4.11 (m, 12H), 4.10 - 3.93 (m, 6H), 3.84 - 3.71 (m, 3H), 3.69 (s, 4.11 (m, 12H)), 4.10 - 3.93 (m, 6H), 3.84 - 3.71 (m, 3H), 3.69 (s, 4.11 (m, 4.10 4.19H), 3.60 (d, J = 13.2 Hz, 3H), 3.15 - 2.99 (m, 3H), 2.99 - 2.90(m, 6H), 2.88 - 2.74 (m, 3H); ³¹P NMR (121 MHz, Toluene- d_8) δ 121.29; ¹³C NMR (400 MHz, CDCl₃) δ 157.35, 149.68, 147.27, 134.13, 133.57, 132.03, 128.56, 118.57, 115.13, 114.82, 68.78, 67.26, 54.83, 54.41, 52.42, 48.83, 36.15. These data are in agreement with those reported in the literature for the racemic mixture.10 (+)-(*P*)-**4**: $[\alpha]_D^{25}$ = + 78 (*c* 0.1, CH₂Cl₂) (-)-(*M*)-**4**: $[\alpha]_D^{25}$ = - 76 (*c* 0.1, CH₂Cl₂) Procedure for the synthesis of 2-azido-1-isopropyl-4-methylcyclohexane (6).¹⁶ **2-isopropyl-5-methylcyclohexyl methanesulfonate.** To a solution of racemic menthol (12.8 mmol) in dichloromethane (50 mL) was added NE $_{\rm 3}$ (2.7 mL, 19 mmol). The mixture was stirred for 1 h, then it was brought to 0 °C, and a solution of methanesulfonyl chloride (MsCl) (1.5 mL, 19 mmol) in dichloromethane was added dropwise. Then the reaction mixture was warmed to room temperature and kept stirring for another 2 hours until the reaction completed monitored by TLC. The reaction was quenched with saturated NH₄Cl solution (50 mL). The mixture was extracted by dichloromethane (3 × 50 mL). Organic phases were collected and dried over anhydrous Na₂SO₄, filtered and concentrated to give the crude product which was purified by silica gel column chromatography (petroleum ether: ethyl acetate = 20:1) to give pure 2-isopropyl-5-methylcyclohexyl methanesulfonate as a colorless oil, 2.85 g, 95% yield. ¹H NMR (400 MHz, CDCl₃) δ 4.57 (td, J = 10.9, 4.6 Hz, 1H), 3.02 (s, 3H), 2.37 - 2.21 (m, 1H), 2.14 - 2.02 (m, 1H), 1.79 - 1.65 (m, 2H), 1.58 - 1.38 (m, 2H), 1.36 - 1.20 (m, 1H), 1.16 - 1.01 (m, 1H), 0.95 (dd, J = 6.8, 3.4 Hz, 6H), 0.93 - 0.87(m, 1H), 0.85 (d, J = 6.9 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 83.37, 77.21, 47.46, 42.25, 39.11, 33.78, 31.64, 25.83, 23.15, $21.83,\, 20.79,\, 15.70.^{16}$ 2-azido-1-isopropyl-4-methylcyclohexane (6).16 To a solution of racemic 2-isopropyl-5-methylcyclohexyl methanesulfonate (13.3 mmol) in DMF (50 mL) was added NaN_3 (80 mmol). The mixture was stirred at 80 °C for 48 h. And then DMF was evaporated under vacuum, 100 mL of water was added, and the mixture was extracted by dichloromethane (3 × 50 mL). Organic phases were collected and dried over anhydrous Na₂SO₄, filtered and concentrated to give the crude product which was purified by silica gel column chromatography (petroleum ether: ethyl acetate = 10:1) to give pure 2-azido-1-isopropyl-4methylcyclohexane (6) as a colorless oil, 603 mg, 25% yield. ¹H NMR (400 MHz, CDCl₃) δ 3.99 (q, J = 3.3 Hz, 1H), 2.08 – 1.98 (m, 1H), 1.80 - 1.63 (m, 3H), 1.60 - 1.46 (m, 1H), 1.31 - 1.11 (m, 1H), 1.80 - 1.63 (m, 1H), 1.80 - 1.63 (m, 1H), 1.80 - 1.81 1.81 - 1.81 (m, 1H), 1H)2H), 0.99 - 0.82 (m, 11H). ¹³C NMR (101 MHz, CDCl₃) δ 60.54, 47.39, 38.95, 34.85, 29.48, 26.51, 24.89, 22.14, 20.86, 20.64. HRMS (ESI-TOF) m/z: calcd for $C_{10}H_{19}N_3Ag^+$ [M+Ag]⁺, 288.0624; found 288.0623.16 Procedure for the synthesis of (1-azido-2-methoxyethyl)benzene (7).¹⁷ 2-methoxy-1-phenylethan-1-ol. To a solution of 2-methoxy-1phenylethan-1-one (10 mmol) in 50 mL methanol was added gradually NaBH₄ (20 mmol) at 0 °C, then reaction mixture was brought to room temperature and kept stirring for another 2 hours until the reaction completed monitored by TLC. Then solvent was removed under vacuum, 50 mL water was added and extracted by EtOAc (3 × 50 mL). Organic phases were collected and dried over anhydrous Na₂SO₄, filtered and concentrated to give the crude product which was purified by silica gel column chromatography (petroleum ether: ethyl acetate = 5:1) to give pure 2-methoxy-1-phenylethan-1-ol as a colorless oil, 1.3g, 86% yield. 1 H NMR (400 MHz, CDCl₃) δ 7.49 – 7.24 (m, 5H), 4.92 (dd, J = 8.9, 2.8 Hz, 1H), 3.69 - 3.36 (m, 5H), 3.04 -2.88 (m, 1H). 13 C NMR (101 MHz, CDCl₃) δ 140.34, 128.38, 127.81, 126.14, 78.22, 72.63, 59.00. HRMS (ESI-TOF) m/z: calcd for C₉H₁₂O₂Na⁺ [M+Na]⁺, 175.0730; found 175.0731.¹⁷ (1-bromo-2-methoxyethyl)benzene. To a solution of 2-methoxy-1-phenylethan-1-ol (6.6 mmol) in 50 mL chloroform was added gradually PBr $_3$ (10 mmol) at 0 °C, then reaction mixture was brought to room temperature and kept stirring for another 2 hours until the reaction completed monitored by TLC. Then the reaction was quenched by adding saturated K_2CO_3 (50 mL). The mixture was extracted by chloroform (3 × 50 mL). Organic phases were collected and dried over anhydrous Na_2SO_4 , filtered and concentrated to give the crude product which was purified by silica gel column chromatography (petroleum ether: ethyl acetate = 10:1) to give pure (1-bromo-2-methoxyethyl)benzene as a colorless oil, 965 mg, 68% yield. 1H NMR (300 MHz, CDCl₃) δ 7.39 – 7.13 (m, 5H), 4.98 (t, J = 7.0 Hz, 1H), 3.92 – 3.71 (m, 2H), 3.30 (s, 3H). ^{13}C NMR (75 MHz, CDCl₃) δ 139.11, 128.75, 128.71, 127.84, 76.86, 58.97, 51.64. HRMS (ESI-TOF) m/z: calcd for $C_9H_{15}NOBr^+$ [M+NH₄]+, 232.0332; found 232.0330. 17 (1-azido-2-methoxyethyl)benzene (7). To a solution of (1-bromo-2-methoxyethyl)benzene (6.53 mmol) in 50 mL DMF was added gradually NaN₃ (9.8 mmol), then the reaction mixture was heated at 80 °C overnight until the reaction completed monitored by TLC. Then 100 mL of water was added and extracted by chloroform (3 × 50 mL). Organic phases were collected and dried over anhydrous Na₂SO₄, filtered and concentrated to give the crude product which was purified by silica gel column chromatography (petroleum ether: ethyl acetate = 20:1) to give pure (1-azido-2-methoxyethyl)benzene (7) as a colorless oil, 856 mg, 74% yield. ¹H NMR (300 MHz, CDCl₃) δ 7.39 – 7.20 (m, 5H), 4.62 (t, J = 6.4 Hz, 1H), 3.53 (d, J = 6.7 Hz, 2H), 3.34 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 136.71, 128.78, 128.48, 127.05, 76.45, 65.14, 59.11. HRMS (ESI-TOF) m/z: calcd for $C_9H_{11}N_3ONa^+$ [M+Na] $^+$, 200.0794; found 200.0794. ¹⁷ General procedure for reactions of enantiopure caged proazaphosphatrane (M)-4 with chiral azides 6 and 7. Under an atmosphere of argon, to a solution of (M)-4 (0.05 mmol) in toluene in a flame-dried Schlenk tube was added azide compound 6 or 7 (0.05 mmol). The mixture was stirred at 50 °C overnight. The solvent was evaporated under vacuum and the residue was dissolved in CDCl₃ for NMR analysis. 17 ### **RESULTS AND DISCUSSION** # Synthesis of enantiomerically pure encaged Verkade's superbases The synthesis of the first enantiopure hemicryptophanes was described in 2005 by J. Crassous and J.-P. Dutasta, 18 and more recently we reported a convenient large-scale synthesis of these supramolecular structures. 14 Enantiopure hemicryptophanes (P)-2 and (M)-2 were thus synthesized in four steps following our previous reported procedure (Scheme S1, Supporting Information).¹⁴ The corresponding azaphosphatranes (P)-3 and (M)-3 were then obtained by reaction of respectively (P)-2 and (M)-2 with (Me₂N)₂PCI in acetonitrile at room temperature overnight (Scheme 1). Our previously reported synthesis of the two enantiomers (P)-3 and (M)-3 is of limited utility here due to the tedious optical resolution of the racemate 3 by chiral HPLC. Chromatography on these species required a solvent mixture in the mobile phase that degraded the stationary phase, leading to very low product recovery from the process. 15 In the present report, we chose to resolve the racemate of the key CTV intermediate 5 (Scheme 1 and Scheme S1), which can be effectively done on a large-scale. In this manner, enriched (P)-3 and (M)-3 can be obtained at the hundred mg scale. As CTV units can racemize before the ring closure of the cage (the energy barrier of racemization of CTV compound being around 112kJ.mol⁻¹ at 298 K), 14 the enantiomeric purity of these compounds was checked by adding chiral hexacoordinated phosphorus **TRISPHAT** (Tris(tetrachlorobenzenediolato)phosphate(V) anion, 1).15,19 This anion presents a right-handed or left-handed propeller geometry of Δ or Λ configurations respectively, and is a useful chiral solvating agent (CSA) for the NMR discrimination of enantiomers of chiral cationic and certain neutral organometallic species. In a typical experiment, 1.0 equivalent of [cinchonidinium][Δ -TRISPHAT] was added to a solution of [(M)-3][Cl⁻], [(P)-3][Cl⁻] or rac-3 in CDCl₃. The resulting ³¹P NMR spectra displayed respectively one signal at -30.82 ppm, one signal at -31.63 ppm and two signals at -30.74 and -31.63 ppm (Figure 1), giving rise to an enantiomeric excess (ee) superior to 98% for both enantiomers [(-)-(P)-3][Cl⁻] and [(+)-(M)-3][Cl⁻]. Azaphosphatranes (M)-3 and (P)-3 were then deprotonated with t-BuOK in THF, affording the enantiopure encaged Verkade's superbases (M)-4 and (P)-4 with 58% yield (Scheme 1). It can be highlighted that the synthesis of a Verkade's superbase, confined in an enantiopure cavity is, to the best of our knowledge unprecedented. **Scheme 1** (a) Synthesis of enantiomerically pure encaged Verkade's superbases (*P*)-**4** and (*M*)-**4.** (b) the CTV **5** that has been resolved on gram scale.¹⁴ **Figure 1** ³¹P NMR spectra (CDCl₃, 298 K, 121.5 MHz) of hemicryptophane *rac-***3** and the enantiomers (–)-(P)-**3** and (+)-(M)-**3** in the presence of 1 equiv. of [cinchonidinium] [Δ -TRISPHAT]. ## Assignment of the absolute configuration The ECD spectra of both enantiomers of **4** were recorded in CH_2CI_2 at 293 K (Figure 2). As previously observed with cyclotriveratrylene, cryptophane, and hemicryptophane derivatives, the 1L_a band of the spectra (230 to 270 nm) is poorly sensitive to substituents and allows for the assignment of the absolute configuration of the CTV moiety. A characteristic positive-negative bisignate (from low to high energies) is observed in the ECD spectrum of (+)-**4** at around 250 nm, which can be attributed to the *P* configuration, whereas the *M* configuration was assigned to the (–)-**4** enantiomer, which exhibits a negative-positive bisignate (Figure 2). **Figure 2** ECD spectra of enantiomerically pure encaged Verkade's superbases (+)-(P)-**4** (red) and (-)-(M)-**4** (green) in CH₂Cl₂ at 293 K. # Use of enantiopure encaged Verkade's superbase as chiral derivatizing agent for chiral azides In 2000, J. G. Verkade demonstrated that enantiopure proazaphosphatranes could be used as chiral derivatizing agents for chiral azides.¹⁷ As a follow-up of this work, we thus carried out the reaction of the enantiopure encapsulated Verkade's superbase (M)-4 with two different racemic chiral azides rac-6 or rac-7, in toluene at 50 °C overnight to afford the corresponding encapsulated phosphazide diastereomers (1S,2R,5S)-(M)-8 and (1R,2S,5R)-(M)-8 and (S)-(M)-9 and (R)-(M)-9 (Scheme 3). An excellent diastereomeric peak separation of around 98 Hz was observed in the ¹H-decoupled ³¹P NMR spectra of both species (Figure 3), allowing for an accurate quantitative determination of the diastereomeric ratios. If the ³¹P NMR revealed only two sets of signals, the ¹H NMR was much more complicated, probably because of the expected C_1 symmetry of each diastereomer (Figures S12 and S14). Although no diastereomeric ratio was reached when the azides derivatives were used in excess, these results underline that once covalently bound to the phosphorus of the encaged Verkade's superbase, the two enantiomers of a chiral molecule are in strongly different magnetic and chemical environments even if the inherently chiral CTV unit is remote from the phosphorus center. Scheme 3 Synthesis of encapsulated phosphazides 8 and 9. **Figure 3** ¹H-decoupled ³¹P NMR spectra (CDCl₃, 298 K, 162 MHz) of encaged phosphazides (a) **8** and (b) **9**. ### Conclusions In conclusion, we have described the unprecedented synthesis of enantiopure encaged Verkade's superbases. Our synthetic pathway provides the desired compounds in six steps from vanillyl alcohol with an overall yield of 6%. The assignment of the absolute configuration has been achieved by comparison of ECD spectra of enantiopure (*M*)-4 and (*P*)-4 with other CTV derivatives. Moreover, these compounds could act as efficient chiral derivatizing agents when reacting with racemic azides, leading to encapsulated chiral phosphazides. # **Supporting information** Additional supporting information, including ¹H, ¹³C, ³¹P NMR of **3**, **4**; ¹H, ¹³C NMR of **6**, **7**, ¹H, ³¹P NMR of **8** and **9**; UV and CD spectra of **2**, **3** and **4** can be found in the online version of this article at the publisher's website. ### **REFERENCES AND NOTES** - 1 (a) Lensink C, Xi SK, Daniels LM, Verkade JG. The Unusually Robust Phosphorus-Hydrogen Bond in the Novel Cation [cyclic] HP(NMeCH₂CH₂)₃N+. *J Am Chem Soc.* 1989;111(9):3478-3479. (b) Laramay MAH, Verkade JG. The" anomalous" basicity of P(NHCH₂CH₂)₃N relative to P(NMeCH₂CH₂)₃N and P(NBzCH₂CH₂)₃N: a chemical consequence of orbital charge balance? *J Am Chem Soc.* 1990;112(25):9421-9422. - 2 Kisanga PB, Verkade JG, Schwesinger R. pK_a Measurements of P(RNCH₂CH₃)₃N. *J Org Chem.* 2000;65(17):5431-5432. - 3 For a review see: Verkade JG, Kisanga PB. Proazaphosphatranes: a Synthesis Methodology Trip from their Discovery to Vitamin A. *Tetrahedron*. 2003;40(59):7819-7858. - For more recent examples: (a) Wadhwa K, Verkade JG. P(i-PrNCH₂CH₂)₃N: Efficient Catalyst for Synthesizing β-Hydroxyesters and α , β -Unsaturated Esters using α -Trimethylsilylethylacetate (TMSEA). J Org 2009;74(11):4368-4371. (b) Raders SM, Verkade JG. An Electron-rich Proazaphosphatrane for Trimerization Isocyanurates. to Org 2010;75(15):5308-5311. (c) Yang J, Chatelet B, Ziarelli F, Dufaud V, Hérault D, Martinez A. Verkade's Superbase as an Organocatalyst for the Strecker Reaction. Eur J Org Chem. 2018;2018(45):6328-6332. - 5 (a) Kingston JV, Verkade JG. Synthesis and Characterization of R₂PNP(iBuNCH₂CH₂)₃N: A New Bulky Electron-Rich Phosphine for Efficient Pd-Assisted Suzuki-Miyaura Cross-Coupling Reactions. *J Org Chem.* 2007;72(8):2816-2822. (b) Urgaonkar S, Xu JH, Verkade JG. Application of a New Bicyclic Triaminophosphine Ligand in Pd-Catalyzed Buchwald-Hartwig Amination Reactions of Aryl Chlorides, Bromides, and Iodides.S. Urgaonkar. *J Org Chem.* 2003;68(22):8416-8423. - (a) Thammavongsy Z, Khosrowabadi Kotyk JF, Tsay C, Yang JY. Flexibility is Key: Synthesis of a Tripyridylamine (TPA) Congener with a Phosphorus Apical Donor and to Coordination Cobalt (II). Inorg 2015;54(23):11505-11510. (b) Thammavongsy Z, Ivy MK, Ziller JW, Yang JY. Electronic and Steric Tolman Parameters for Proazaphosphatranes, the Superbase Core of the tri (pyridylmethyl) azaphosphatrane (TPAP) Ligand. Dalton Trans. 2016;45(24):9853-9859. Thammavongsy Z, Cunningham DW, Sutthirat N, Eisenhart RJ, Ziller JW, Yang JY. Adaptable Ligand Donor Strength: Tracking Transannular Bond Interactions in tris (2-pyridylmethyl)-azaphosphatrane (TPAP). Dalton Trans. 2018;47(39):14101-14110. - 7 Chatelet B, Nava P, Clavier H, Martinez A. Synthesis of Gold (I) Complexes Bearing Verkade's Superbases. Eur J Inorg Chem. 2017;2017(37):4311-4316. - 8 (a) Mummadi S, Unruh DK, Zhao J, Li S, Krempner C. "Inverse" Frustrated Lewis Pairs—activation of Dihydrogen with Organosuperbases and Moderate to Weak Lewis Acids. J Am Chem Soc. 2016;138(10):3286-3289. (b) - Mummadi, S, Kenefake D, Diaz R, Unruh DK, Krempner C. Interactions of Verkade's Superbase with Strong Lewis Acids: From Labile Mono-and Binuclear Lewis Acid–Base Complexes to Phosphenium Cations. *Inorg Chem.* 2017;56(17):10748-10759. - 9 (a) Johnstone TC, Wee GN, Stephan DW. Accessing Frustrated Lewis Pair Chemistry from a Spectroscopically Stable and Classical Lewis Acid-Base Adduct. *Angew Chem Int Ed.* 2018;57(20):5881-5884. (b) Johnstone TC, Briceno-Strocchia AI, Stephan DW. Frustrated Lewis Pair Oxidation Permits Synthesis of a Fluoroazaphosphatrane, [FP(MeNCH₂CH₂)₃N]+. *Inorg Chem.* 2018;57(24):15299-15304. - 10 (a) Raytchev PD, Martinez A, Gornitzka H, Dutasta JP. Encaging the Verkade's Superbases: Thermodynamic and Kinetic consequences. J Am Chem Soc. 2011;133(7):2157-2159. (b) Chatelet B, Gornitzka H, Dufaud V, Jeanneau E, Dutasta JP, Martinez A. Superbases in Confined Space: Control of the Basicity and Reactivity of the Proton Transfer. J Am Chem Soc. 2013;135(49):18659-18664. - 11 Canceill J, Collet A, Gabard J, Kotzyba-Hibert F, Lehn JM. Speleands. Macropolycyclic Receptor Cages Based on Binding and Shaping Subunits. Synthesis and Properties of Macrocycle Cyclotriveratrylene Combinations. Preliminary communication. Helv Chim Acta. 1982;65(6):1894-1897. (b) Zhang D, Martinez A, Dutasta JP. Emergence of Hemicryptophanes: from Synthesis to Applications for Recognition, Molecular Machines, and Supramolecular Catalysis. Chem Rev. 2017;117(6):4900-4942. - 12 Chatelet B, Dufaud V, Dutasta JP, Martinez A. Catalytic Activity of an Encaged Verkade's Superbase in a Base Catalyzed Diels–Alder reaction. *J Org Chem.* 2014;79(18):8684-8688. - 13 Yang J, Chatelet B, Dufaud V, Hérault D, Michaud-Chevallier S, Robert V, Dutasta JP, Martinez A. Endohedral Functionalized Cage as a Tool to Create Frustrated Lewis Pairs. *Angew Chem Int Ed.* 2018;57(43):14212-14215. - 14 Lefevre S, Zhang D, Godart E, Jean M, Vanthuyne N, Mulatier JC, Dutasta JP, Guy L, Martinez A. Large-scale Synthesis of Enantiopure Molecular Cages: Chiroptical and Recognition Properties. Chem Eur J. 2016;22(6):2068-2074. - 15 Payet E, Dimitrov-Raytchev P, Chatelet B, Guy L, Grass S, Lacour J, Dutasta JP, Martinez A. Absolute Configuration and Enantiodifferentiation of a Hemicryptophane Incorporating an Azaphosphatrane Moiety. Chirality. 2012;24(12):1077-1081. - 16 Marques CS, Burke AJ. Enantioselective Rhodium (I)-Catalyzed Additions of Arylboronic Acids to N-1,2,3-Triazole-Isatin Derivatives: Accessing N-(1,2,3-Triazolmethyl)-3-hydroxy-3-aryloxindoles. ChemCatChem. 2016;8(22):3518-3526. - 17 Liu X, Ilankumaran P, Guzei IA, Verkade JG. P[(S,S,S)-PhHMeCNCH₂CH₂]₃N: a New Chiral ³¹P and ¹H NMR Spectroscopic Reagent for the Direct Determination of *ee* Values of Chiral Azides. *J Org Chem.* 2000;65(3):701-706. - 18 Gautier A, Mulatier, JC, Crassous J, Dutasta JP. Chiral Trialkanolamine-based Hemicryptophanes: Synthesis and Oxovanadium Complex. *Org Lett.* 2005;7(7):1207-1210. - 19 (a) Lacour J, Ginglinger C, Grivet C, Bernardinelli G. Synthesis and Resolution of the Configurationally Stable tris(tetrachlorobenzenediolato)phosphate(V) Ion. Angew Chem Int Ed. 1997;36(6):608-610. (b) Lacour J, Hebbe-Viton V. Recent Developments in Chiral Anion Mediated Asymmetric Chemistry. Chem Soc Rev. 2003;32(6):373-382. (c) Lacour J, Moraleda D. Chiral Anion-Mediated Asymmetric Ion Pairing Chemistry. Chem Commun. 2009;(46):7073-7089. (d) Ginglinger C, Jeannerat D, Lacour J, Jugé S, Uziel J. ¹H and ³¹P NMR Determination of the Enantiomeric Purity of Quaternary Phosphonium Cations Using TRISPHAT as Chiral Shift Agent. Tetrahedron Lett. 1998;39(41):7495-7498. (e) Planas JG, Prim D, Rose E, Rose-Munch F, Monchaud D, Lacour J. TRISPHAT Anion. An Efficient NMR Chiral Shift for Cationic Tricarbonyl Manganese Counterion Complexes with Planar Chirality. Organometallics. 2001;20(19):4107-4110. (f) Maury O, Lacour J, Bozec HL. Diastereoselective Homochiral Self-Assembly Between Anions and Cation in Solution. Eur J Inorg Chem. 2001;2001(1):201-204. (h) Monchaud D, Lacour J, Coudret C, Fraysse S. TRISPHAT Salts. Efficient NMR Chiral Shift and Resolving Agents for Substituted Cyclometallated Ruthenium bis(diimine) Complexes. J Organomet Chem. 2001;624(1-2):388-391. (i) Hebbe V, - Londez A, Goujon-Ginglinger C, Meyer F, Uziel J, Jugé S, Lacour J. NMR Enantiodifferentiation of Triphenylphosphonium Salts by Chiral Hexacoordinated Phosphate Anions. *Tetrahedron Lett.* 2003;44(12):2467-2471. (j) Jodry JJ, Frantz R, Lacour J. Supramolecular Stereocontrol of Octahedral Metal-centered Chirality. *Inorg Chem.* 2004;43(11):3329-3331. (k) Chow HS, Constable EC, Frantz R, Housecroft CE, Lacour J, Neuburger M, Rappoport D, Schaffner, S. Conformationally-locked Metallomacrocycles—Prototypes for a Novel Type of Axial Chirality. *New J Chem.* 2009;33(2):376-385. - 20 (a) Collet A, Gabard J, Jacques J, Cesario M, Guilhem J, Pascard C. Synthesis and Absolute Configuration of Chiral (C₃) Cyclotriveratrylene Derivatives. Crystal Structure of (M)-(-)-2,7,12-triethoxy-3,8,13-tris-[(R)-1-methoxycarbonylethoxy]-10,15-dihydro-5*H*-tribenzo [a,d,g]-cyclononene. *J Chem Soc Perkin 1*. 1981;1630-1638. (b) Canceill J, Collet A, Gabard J, Gottarelli G, Spada GP. Exciton Approach to the Optical Activity of C₃-cyclotriveratrylene Derivatives. *J Am Chem Soc*. 1985;107(5):1299-1308. ### **Graphical Abstract**