

Archive ouverte UNIGE

_ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ _ _ _ _

https://archive-ouverte.unige.ch

Article scientifique	Commentaire	2016	Accepted version	Open Access
-------------------------	-------------	------	------------------	----------------

This is an author manuscript post-peer-reviewing (accepted version) of the original publication. The layout of the published version may differ .

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Difficulty of Comparing the Multiple Heterogeneous Approaches: Comment to Transcranial Direct Current Stimulation in Epilepsy

_ _ _ _ _ _ _ _ _ _ _

Gschwind, Markus; van Mierlo, Pieter

How to cite

GSCHWIND, Markus, VAN MIERLO, Pieter. Difficulty of Comparing the Multiple Heterogeneous Approaches: Comment to Transcranial Direct Current Stimulation in Epilepsy. In: Brain stimulation, 2016, vol. 9, n° 3, p. 459–461. doi: 10.1016/j.brs.2016.03.003

This publication URL:https://archive-ouverte.unige.ch/unige:173460Publication DOI:10.1016/j.brs.2016.03.003

© The author(s). This work is licensed under a Other Open Access license <u>https://www.unige.ch/biblio/aou/fr/guide/info/references/licences/</u>

Difficulty of comparing the multiple heterogeneous approaches: Comment to Transcranial Direct Current Stimulation in Epilepsy

Markus Gschwind (1,2); Pieter van Mierlo (3)

 (1) Department of Neurology, University Hospital Geneva, Geneva, Switzerland
 (2) Functional Brain Mapping Laboratory, Department of Neuroscience, Biotech Campus, University of Geneva, Geneva, Switzerland
 (3) Medical Image and Signal Processing Group, Electronics and Information Systems Department, Ghent University, Ghent, Belgium

Author's address:

Unité d'EEG et d'exploration de l'épilepsie & Laboratoire de cartographie cérébrale Service de Neurologie, Hôpitaux Universitaires de Genève (HUG) Rue Gabrielle-Perret-Gentil 4, 1211 Genève, Switzerland Phone: +41-79-5533793; Fax +41-22-3728340 Email: markus.gschwind@gmail.com

Words: 368

Figures: 0

Tables: 2

Keywords: transcranial direct current stimulation; tDCS; electrical charge

Comment to:

San-Juan D, Morales-Quezada L, Orozco Garduno AJ, et al. Transcranial Direct Current Stimulation in Epilepsy. Brain Stimul 2015;8:455-64.

Dear Editor,

We read with pleasure the paper of San-Juan and coworkers [1] published recently in *Brain Stimulation.* This review has provided a step forward in the direction of the use of this promising technique also in a therapeutic setting with patients suffering from epilepsy. At present, the technical approaches of transcranial direct current stimulation (tDCS) are still very heterogeneous. Nearly every study uses different patient categories, different stimulation protocols, different electrode sizes, stimulation sites and different stimulation current strength, so that comparison between the different studies is limited. It is therefore highly useful to compare all studies, and to provide standardizable measures in order to judge stimulation effects across them.

San-Juan and coworkers have calculated for every study the applied current density and the total electrical charge during stimulation. However, their calculation of the electrical charge is based on an incorrect formula. In the paragraph *Data extraction* (p.456), they define electrical charge as "Q = I / t", and in both Table 1 and Table 2, they report values of some hundred nanoCoulombs (nC). For example, for the study of Fregni et al. 2006, they report I = 1 mA, Q = 833 nC during a total of 20 min stimulation. So they effectively calculated 0.001 A / (20 * 60 sec) = 8.333e-7 = 833.333e-9 Coulomb. They did the like for every reported value of Q. Just above the formula "Q = I / t", they also refer to Brunoni et al., 2011 [2]. But those authors defined correctly Q = I * t, which is consistent with the definition in physics of the electrical current as the flow rate of electrical charge per time (I = Q / t = Ampere = Coulomb per second). Calculating electrical charge using this correct formula in the same example of Freqni et al 2006 in Table 1, results in Q = 1 mA * 20 min = 0.001 * (20 * 60 sec) = 1.2

Coulomb.

In summary, all values of Q in Table 1 and Table 2 are unfortunately calculated by an incorrect formula and therefore incorrect in values, and 9 orders of magnitude. We think that in the journal *Brain stimulation*, which is the first address to look for valid reference values in the context of brain stimulation techniques, these wrong values should be corrected (see **Table 1 and Table 2 corrected**).

References

- San-Juan D, Morales-Quezada L, Orozco Garduno AJ, et al. Transcranial Direct Current Stimulation in Epilepsy. *Brain Stimul* 2015;8:455-64.
- Brunoni AR, Amadera J, Berbel B, et al. A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. *Int J Neuropsychopharmacol* 2011;**14**:1133-45.

Acknowledgement

MG is supported by the Swiss National Science Foundation, grant number 33CM30_124115/2SPUM. PvM is supported by the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 660230.

Table 1

Summary the safety and efficacy of animals studies using tDCs in epilepsy models.

Author (year)	Type and design of article	Animal	No. of total sample	Age (months)	Sex (% males)	I = current; dosage (A)/ J = current density (A/m ²) Q = electrical charge (C)	Montage	Model of epilepsy/ type of epilepsy	Type and size of electrodes	Frequency and duration of session	Adverse effects	Outcome
Liebetanz et al. (2006) [29]	Original Experimental	Rats	65	2	100	$I_{max} = 100 \ \mu A$ $I_{min} = 200 \ \mu A$ $J_{max} = 57.142 \ A/m^2$ $J_{min} = 28.571 \ A/m^2$ $Q_{max, 15 \ min} = 222 \ \mu C$ $Q_{max, 30 \ min} = 111 \ \mu C$ $Q_{max, 60 \ min} = 56 \ \mu C$ $Q_{min, 15 \ min} = 56 \ \mu C$ $Q_{min, 60 \ min} = 28 \ \mu C$	2 mm left and 2 mm anterior to the bregma	<i>In vivo</i> ramp model	$(a = 3.5 \times 10^{-6} \text{ m}^2)$	 4 sessions (50 Hz, 2 ms pulse train) separated by one week 1. Cathodal tDCS for 30 and for 60 min, anodal tDCS for 60 min, and again 60 min of cathodal tDCS. 2. Cathodal tDCS for 15 and for 30 min, anodal tDCS for 30 min, and again cathodal tDCS for 30 min. 	None	After tDCS, the threshold for localized seizure activity was determined repeatedly for 120 min at intervals of 15 min. The anticonvulsive effect induced by cathodal tDCS depends on stimulation duration and current strength and may be associated with the induction of alterations of cortical excitability that outlast the
Kamida et al. (2011) [31]	Original Experimental	Rats	18	0.7	100	$I = 200 \ \mu A$ $J = 57.142 \ A/m^2$ $Q = 111_k \ nC$	1.5 mm to the right and 2 mm anterior to the bregma	In vivo pilocarpine- induced status epilepticus	2.1-mm inner diameter and 3.5 mm ³ $(a = 3.5 \times 10^{-6} \text{ m}^2)$	2 weeks; 30 min	?	Actual stimulation. Neuroprotective effects on the immature rat hippocampus, including reduced sprouting and subsequent improvements in cognitive performance. The convulsions were reduced 21% in the postnatal day 55.

200ein et al. (2013) [32]	Unginal Experimental	Kats	26	6	$h_{III} = 100 \ \mu A$ $I_{III} = 150 \ \mu A$ $J_{I.II} = 28.571 \ A/m^2$ $J_{III} = 42.857 \ A/m^2$ $Q_{I.II} = 28 \ \text{nC}$ $Q_{III} = 42 \ \text{nC}$	ine active EEG electrode was placed on the motor cortex of the right hemisphere with two wires as ground and reference on top of the cerebellum	<i>in vivo</i> genetic model of absence epilepsy	Inpolar EEG recording electrode and inner diameter of 2.1 mm and a contact area of 3.5 mm ² $(a = 3.5 \times 10^{-6} \text{ m}^2)$	I. To rats received 4 series of 15 min cathodal and anodal stimulation of 100 μ A with an interval of 1 h and 45 min in counter balanced order. II. 8 rats received 4 sessions of 15 min of cathodal stimulation of 100 μ A III. 8 rats, similar protocol to II, except 150 μ A	None	 Neither anodal nor cathodal stimulation had significant long-lasting aftereffects on the number or on the mean duration of SWDs in the 1-h 45-min post-stimulation intervals. II and III. The number of SWDs was reduced on the stimulation day compared to baseline and increase (II) or decrease (III) in the mean duration of SWDs from baseline in 1-h 45 min post-stimulation. There were no significant differences for the number and mean duration of SWDs between the baseline day and post- stimulation
											Bilateral cathodal tDCS, has short lasting antiepileptic effects on the numbers of SWDs and longer lasting (1-h 45-min) intensity dependent effects on the mean duration of the spike and slow-waves discharges.

SWDs: spike and slow-wave discharges.

Table 2
Summary the human studies of the safety and efficacy using tDCS in epileptic patients.

Author (year)	Type and design of article	No. of total sample	Age (year [mean ± SD or range])	Sex (% females)	I = current; dosage(A)/J = currentdensity (A/m2)/Q = electricalcharge (C)	Montage	Model of epilepsy/type of epilepsy	Type and size of electrodes	Frequency and duration of session	Adverse effects	JADDAD Outcor	ne
Fregni et al. (2006) [9]	Experimental randomized sham controlled non blinded	19	24.16 ± 7.9	42	I = 1 mA J = 0.285 A/m ² Q = 833 nC	Cathodal stimulation over the epileptogenic focus according to EEG baseline	Focal refractory epilepsy due to cortical dysplasia	Sponge electrode 35 cm ² $(a = 3.5 \times 10^{-3} \text{ m}^2)$	Single session; 20 min	Itching (3 active and 1 sham groups)	3 A signi redu in ti of e disc was (me how clin redu of s was in 3 of fe	ificant uction he number pileptiform harges found an 64.3%), vever, not ical uction eizure a seen 0 days ollow-up,
San Juan et al. (2011) [10]	Case report, experimental non controlled neither blinded	2	23	0	$\begin{split} I_{min} &= 1 \text{ mA} \\ I_{max} &= 2 \text{ mA} \\ J_{min} &= 203.018 \text{ A/m}^2 \\ J_{max} &= 406.091 \text{ A/m}^2 \\ Q_{min} &= 69 \text{ nC} \\ Q_{max} &= 139 \text{ nC} \end{split}$	C3, F2	Rasmussen's encephalitis	Subdermal needle 12 mm in length and 0.4 mm in diameter $(a = 4.925 \times 10^{-6} \text{ m}^2)^*$ *calculating only surface area	60 min in four sessions (on days 0, 7, 30, and 60)	None	1 One pa was free othe pati 50% seiz freq redu with of fe	atient seizure and er ent with of ure uuency uuction hin 6 month ollow-up.
Varga et al. (2011) [11]	Experimental double blinded sham-controlled crossover	5	6-11 8.5 ± 2.5	40	I = 1 mA J = 0.4 A/m ² Q = 833 nC	Determined by visualizing a 3D voltage- map of the focal epileptiform discharge	Continuous spikes and waves syndrome during slow sleep	Sponge electrode 25 cm ² $(a = 2.5 \times 10^{-3} \text{ m}^2)$	20 min	None	2 Cathoo not spik any afte stin sess ever in t and seco	dal tDCS did reduce the ce-index in of the patients r 2 days of nulation sion in the ning; sham he first night tDCs in the pad night
Yook et al. (2011) [12]	Case report Experimental	1	11	100	I = 2 mA $J = 0.8 \text{ A/m}^2$ $Q_{20 \text{ min}} = \frac{1.667}{\mu} \mu C$ $Q_{5 \text{ days}} = \frac{8.333}{\mu} \mu C$ $Q_{2 \text{ weeks}} = \frac{16.667}{\mu} \mu C$	Midpoint between P4 and T4	Bilateral perisylvian syndrome	Sponge electrode 25 cm ² $(a = 2.5 \times 10^{-3} \text{ m}^2)$	5 days a week, during 2 weeks. Repeating procedure after 2 months; 20 min	None	0 During moi trea pati six s an e clin imp afte inte pati one atta two	the first two ths after timent; the ent had only seizures, with evident ical rovement, r the second rvention the ent had just seizure ck over months.

Faria Paula et al. (2012) [33]	Cross-over controlled trial	2	11 and 7	0	I = 1 mA/J = 0.285 A/m ² Q = 556 nC	Based in 10-10 International system positions in a cap (mostly C5-C6)	Drug-refractory Continuous Spike-Wave Discharges During Slow Sleep	Sponge electrode 35 cm ² $(a = 3.5 \times 10^{-3} \text{ m}^2)$	Once weekly, to three afternoon sessions of 30 min each.	None	1	Cathodal tDCS is safe and well-tolerated in patients with refractory epilepsy. They found a large reduction in inter-ictal epileptiform EEG discharges in C5 (mean 32.1%) during and after the tDCS (10 min).
Auvichayapat et al. (2013) [13]	Experimental randomized controlled with sham unblinded	36	6–15	28	I = 1 mA $J = 0.285 \text{ A/m}^2$ $Q = 833_{A} \text{ nC}$	Based in the international 10-20 EEG system (mostly C3-F3)	Focal refractory epilepsy with different etiologies	Sponge electrode 35 cm ² $(a = 2.5 \times 10^{-3} \text{ m}^2)$	Single session; 20 min	One patient (2.7%) developed a transient (<2 h) erythematou rash with no pruritus or pain unde the reference electrode	2 s	Cathodal tDCS can suppress epileptiform discharges in 57.6% for 48 h, but the effect of a single session on EEG abnormalities was not sustained for 4 weeks. A statistical reduction in the frequency of seizures was found (4.8%) in the post-hoc analysis.