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SOFTWARE Open Access

pROC: an open-source package for R and S+ to
analyze and compare ROC curves
Xavier Robin1*, Natacha Turck1, Alexandre Hainard1, Natalia Tiberti1, Frédérique Lisacek2, Jean-Charles Sanchez1

and Markus Müller2*

Abstract

Background: Receiver operating characteristic (ROC) curves are useful tools to evaluate classifiers in biomedical
and bioinformatics applications. However, conclusions are often reached through inconsistent use or insufficient
statistical analysis. To support researchers in their ROC curves analysis we developed pROC, a package for R and S+
that contains a set of tools displaying, analyzing, smoothing and comparing ROC curves in a user-friendly, object-
oriented and flexible interface.

Results: With data previously imported into the R or S+ environment, the pROC package builds ROC curves and
includes functions for computing confidence intervals, statistical tests for comparing total or partial area under the
curve or the operating points of different classifiers, and methods for smoothing ROC curves. Intermediary and final
results are visualised in user-friendly interfaces. A case study based on published clinical and biomarker data shows
how to perform a typical ROC analysis with pROC.

Conclusions: pROC is a package for R and S+ specifically dedicated to ROC analysis. It proposes multiple statistical
tests to compare ROC curves, and in particular partial areas under the curve, allowing proper ROC interpretation.
pROC is available in two versions: in the R programming language or with a graphical user interface in the S+
statistical software. It is accessible at http://expasy.org/tools/pROC/ under the GNU General Public License. It is also
distributed through the CRAN and CSAN public repositories, facilitating its installation.

Background
A ROC plot displays the performance of a binary classi-
fication method with continuous or discrete ordinal out-
put. It shows the sensitivity (the proportion of correctly
classified positive observations) and specificity (the pro-
portion of correctly classified negative observations) as
the output threshold is moved over the range of all pos-
sible values. ROC curves do not depend on class prob-
abilities, facilitating their interpretation and comparison
across different data sets. Originally invented for the
detection of radar signals, they were soon applied to
psychology [1] and medical fields such as radiology [2].
They are now commonly used in medical decision mak-
ing, bioinformatics [3], data mining and machine

learning, evaluating biomarker performances or compar-
ing scoring methods [2,4].
In the ROC context, the area under the curve (AUC)

measures the performance of a classifier and is fre-
quently applied for method comparison. A higher AUC
means a better classification. However, comparison
between AUCs is often performed without a proper sta-
tistical analysis partially due to the lack of relevant,
accessible and easy-to-use tools providing such tests.
Small differences in AUCs can be significant if ROC
curves are strongly correlated, and without statistical
testing two AUCs can be incorrectly labelled as similar.
In contrast a larger difference can be non significant in
small samples, as shown by Hanczar et al. [5], who also
provide an analytical expression for the variance of
AUC’s as a function of the sample size. We recently
identified this lack of proper statistical comparison as a
potential cause for the poor acceptance of biomarkers as
diagnostic tools in medical applications [6]. Evaluating a
classifier by means of total AUC is not suitable when
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the performance assessment only takes place in high
specificity or high sensitivity regions [6]. To account for
these cases, the partial AUC (pAUC) was introduced as
a local comparative approach that focuses only on a
portion of the ROC curve [7-9].
Software for ROC analysis already exists. A previous

review [10] compared eight ROC programs and found
that there is a need for a tool performing valid and stan-
dardized statistical tests with good data import and plot
functions.
The R [11] and S+ (TIBCO Spotfire S+ 8.2, 2010, Palo

Alto, CA) statistical environments provide an extensible
framework upon which software can be built. No ROC
tool is implemented in S+ yet while four R packages
computing ROC curves are available:
1) ROCR [12] provides tools computing the perfor-

mance of predictions by means of precision/recall plots,
lift charts, cost curves as well as ROC plots and AUCs.
Confidence intervals (CI) are supported for ROC analy-
sis but the user must supply the bootstrapped curves.
2) The verification package [13] is not specifically

aimed at ROC analysis; nonetheless it can plot ROC
curves, compute the AUC and smooth a ROC curve
with the binomial model. A Wilcoxon test for a single
ROC curve is also implemented, but no test comparing
two ROC curves is included.
3) Bioconductor includes the ROC package [14] which

can only compute the AUC and plot the ROC curve.
4) Pcvsuite [15] is an advanced package for ROC

curves which features advanced functions such as cov-
ariate adjustment and ROC regression. It was originally
designed for Stata and ported to R. It is not available on
the CRAN (comprehensive R archive network), but can
be downloaded for Windows and MacOS from http://
labs.fhcrc.org/pepe/dabs/rocbasic.html.
Table 1 summarizes the differences between these

packages. Only pcvsuite enables the statistical comparison

between two ROC curves. Pcvsuite, ROCR and ROC can
compute AUC or pAUC, but the pAUC can only be
defined as a portion of specificity.
The pROC package was designed in order to facilitate

ROC curve analysis and apply proper statistical tests for
their comparison. It provides a consistent and user-
friendly set of functions building and plotting a ROC
curve, several methods smoothing the curve, computing
the full or partial AUC over any range of specificity or
sensitivity, as well as computing and visualizing various
CIs. It includes tests for the statistical comparison of two
ROC curves as well as their AUCs and pAUCs. The soft-
ware comes with an extensive documentation and relies
on the underlying R and S+ systems for data input and
plots. Finally, a graphical user interface (GUI) was devel-
oped for S+ for users unfamiliar with programming.

Implementation
AUC and pAUC
In pROC, the ROC curves are empirical curves in the
sensitivity and specificity space. AUCs are computed
with trapezoids [4]. The method is extended for pAUCs
by ignoring trapezoids outside the partial range and
adding partial trapezoids with linear interpolation when
necessary. The pAUC region can be defined either as a
portion of specificity, as originally described by McClish
[7], or as a portion of sensitivity, as proposed later by
Jiang et al. [8]. Any section of the curve pAUC(t0, t1)
can be analyzed, and not only portions anchored at
100% specificity or 100% sensitivity. Optionally, pAUC
can be standardized with the formula by McClish [7]:

1
2

(
1 +

pAUC − min
max − min

)
, (1)

where min is the pAUC over the same region of the
diagonal ROC curve, and max is the pAUC over the

Table 1 Features of the R packages for ROC anaylsis

Package name ROCR Verification ROC (Bioconductor) pcvsuite pROC

Smoothing No Yes No Yes Yes

Partial AUC Only
SP1

No Only SP1 Only SP SP and SE

Confidence intervals Partial2 Partial3 No Partial4 Yes

Plotting Confidence
Intervals

Yes Yes No Yes Yes

Statistical tests No AUC (one
sample)

No AUC, pAUC, SP AUC, pAUC, SP, SE,
ROC

Available on CRAN Yes Yes No, http://www.bioconductor.
org/

No, http://labs.fhcrc.org/pepe/
dabs/

Yes

1Partial AUC only between 100% and a specified cutoff of specificity.
2Bootstrapped ROC curves must be computed by the user.
3Only threshold averaging.
4Only at a given specificity or inverse ROC.
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same region of the perfect ROC curve. The result is a
standardized pAUC which is always 1 for a perfect ROC
curve and 0.5 for a non-discriminant ROC curve, what-
ever the partial region defined.

Comparison
Two ROC curves are “paired” (or sometimes termed
“correlated” in the literature) if they derive from multi-
ple measurements on the same sample. Several tests
exist to compare paired [16-22] or unpaired [23] ROC
curves. The comparison can be based on AUC
[16-19,21], ROC shape [20,22,23], a given specificity [15]
or confidence bands [3,24]. Several tests are implemen-
ted in pROC. Three of them are implemented without
modification from the literature [17,20,23], and the
others are based on the bootstrap percentile method.
The bootstrap test to compare AUC or pAUC in

pROC implements the method originally described by
Hanley and McNeil [16]. They define Z as

Z =
θ1 − θ2

sd (θ1 − θ2)
, (2)

where θ1 and θ2 are the two (partial) AUCs. Unlike Han-
ley and McNeil, we compute sd(θ1 - θ2) with N (defaults to
2000) bootstrap replicates. In each replicate r, the original
measurements are resampled with replacement; both new
ROC curves corresponding to this new sample are built,
the resampled AUCs θ1,r and θ2,r and their difference Dr =
θ1,r - θ2,r are computed. Finally, we compute sd(θ1 - θ2) =
sd(D). As Z approximately follows a normal distribution,
one or two-tailed p-values are calculated accordingly. This
bootstrap test is very flexible and can be applied to AUC,
pAUC and smoothed ROC curves.
Bootstrap is stratified by default; in this case the same

number of case and control observations than in the original
sample will be selected in each bootstrap replicate. Stratifica-
tion can be disabled and observations will be resampled
regardless of their class labels. Repeats for the bootstrap and
progress bars are handled by the plyr package [25].
The second method to compare AUCs implemented

in pROC was developed by DeLong et al. [17] based on
U-statistics theory and asymptotic normality. As this
test does not require bootstrapping, it runs significantly
faster, but it cannot handle pAUC or smoothed ROC
curves. For both tests, since the variance depends on the
covariance of the ROC curves (Equation 3), strongly
correlated ROC curves can have similar AUC values and
still be significantly different.

var (θ1 − θ2) = var (θ1) + var (θ2) − 2 cov (θ1, θ2) (3)

Venkatraman and Begg [20] and Venkatraman [23]
introduced tests to compare two actual ROC curves as

opposed to their respective AUCs. Their method evalu-
ates the integrated absolute difference between the two
ROC curves, and a permutation distribution is generated
to compute the statistical significance of this difference.
As the measurements leading to the two ROC curves
may be performed on different scales, they are not gen-
erally exchangeable between two samples. Therefore, the
permutations are based on ranks, and ranks are recom-
puted as described in [20] to break the ties generated by
the permutation.
Finally a test based on bootstrap is implemented to

compare the ROC curve at a given level of specificity or
sensitivity as proposed by Pepe et al. [15]. It works
similar to the (p)AUC test, but instead of computing the
(p)AUC at each iteration, the sensitivity (or specificity)
corresponding to the given specificity (or respectively
sensitivity) is computed. This test is equivalent to a
pAUC test with a very small pAUC range.

Confidence intervals
CIs are computed with Delong’s method [17] for AUCs
and with bootstrap for pAUCs [26]. The CIs of the
thresholds or the sensitivity and specificity values are
computed with bootstrap resampling and the averaging
methods described by Fawcett [4]. In all bootstrap CIs,
patients are resampled and the modified curve is built
before the statistics of interest is computed. As in the
bootstrap comparison test, the resampling is done in a
stratified manner by default.

Smoothing
Several methods to smooth a ROC curve are also imple-
mented. Binormal smoothing relies on the assumption
that there exists a monotone transformation to make
both case and control values normally distributed [2].
Under this condition a simple linear relationship (Equa-
tion 4) holds between the normal quantile function (�)
values of sensitivities and specificities. In our implemen-
tation, a linear regression between all quantile values
defines a and b, which then define the smoothed curve.

φ−1(SE) = a + bφ−1(SP) (4)

This is different from the method described by Metz
et al. [27] who use maximum likelihood estimation of a
and b. Binormal smoothing was previously shown to be
robust and to provide good fits in many situations even
when the deviation from basic assumptions is quite
strong [28]. For continuous data we also include meth-
ods for kernel (density) smoothing [29], or to fit various
known distributions to the class densities with fitdistr in
the MASS package [30]. If a user would like to run a
custom smoothing algorithm that is optimized for the
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analysed data, then pROC also accepts class densities or
the customized smoothing function as input. CI and sta-
tistical tests of smoothed AUCs are done with bootstrap.

Results and Discussion
We first evaluate the accuracy of the ROC comparison
tests. Results in Additional File 1 show that all unpaired
tests give uniform p-values under a null hypothesis (Addi-
tional Files 1 and 2) and that there is a very good correla-
tion between DeLong’s and bootstrap tests (Additional Files
1 and 3). The relation between Venkatraman’s and the
other tests is also investigated (Additional Files 1 and 4).
We now present how to perform a typical ROC analy-

sis with pROC. In a recent study [31], we analyzed the
level of several biomarkers in the blood of patients at
hospital admission after aneurysmal subarachnoid hae-
morrhage (aSAH) to predict the 6-month outcome. The
141 patients collected were classified according to their
outcome with a standard neurological scale, the Glasgow
outcome scale (GOS). The biomarker performances
were compared with the well established neurological
scale of the World Federation of Neurological Surgeons
(WFNS), also obtained at admission.

Case study on clinical aSAH data
The purpose of the case presented here is to identify
patients at risk of poor post-aSAH outcome, as they
require specific healthcare management; therefore the
clinical test must be highly specific. Detailed results of
the study are reported in [31]. We only outline the fea-
tures relevant to the ROC analysis.
ROC curves were generated in pROC for five biomar-

kers (H-FABP, S100b, Troponin I, NKDA and UFD-1)
and three clinical factors (WFNS, Modified Fisher score
and age).
AUC and pAUC
Since we are interested in a clinical test with a high spe-
cificity, we focused on partial AUC between 90% and
100% specificity.
The best pAUC is obtained by WFNS, with 3.1%, clo-

sely followed by S100b with 3.0% (Figure 1). A perfect
clinical test within the same region corresponds to a
pAUC of 10%, while a ROC curve without any discrimi-
nation power would yield only 0.5%. In the case of
WFNS, we computed a standardized pAUC of 63.7%
with McClish’s formula (Equation 1). Of these 63.9%,
50% are due to the small portion (0.5% non-standardized)
of the ROC curve below the identity line, and the remain-
ing 13.9% are made of the larger part (2.6% non-standar-
dized) above the curve. In the R version of pROC, the
standardized pAUC of WFNS can be computed with:
roc(response = aSAH$outcome, predictor =

aSAH$wfns, partial.auc = c(100, 90), par-
tial.auc.correct = TRUE, percent = TRUE)

In the rest of this paper, we report only not standar-
dized pAUCs.
CI
Given the pAUC of WFNS, it makes sense to compute a
95% CI of the pAUC to assess the variability of the mea-
sure. In this case, we performed 10000 bootstrap repli-
cates and obtained the 1.6-5.0% interval. In our
experience, 10000 replicates give a fair estimate of the
second significant digit. A lower number of replicates
(for example 2000, the default) gives a good estimate of
the first significant digit only. Other confidence intervals
can be computed. The threshold with the point farthest
to the diagonal line in the specified region was deter-
mined with pROC to be 4.5 with the coords function. A
rectangular confidence interval can be computed and
the bounds are 89.0-98.9 in specificity and 26.0-54.0 in
sensitivity (Figure 1). If the variability of sensitivity at
90% specificity is considered more relevant than at a
specific threshold, the interval of sensitivity is computed
as 32.8-68.8. As shown in Figure 1 for S100b, a CI
shape can be obtained by simply computing the CI’s of
the sensitivities over several constantly spaced levels of
specificity, and these CI bounds are then joined to gen-
erate the shape. The following R code calculates the
confidence shape:
plot(x = roc(response = aSAH$outcome,

predictor = aSAH$s100, percent = TRUE, ci =

Figure 1 ROC curves of WFNS and S100b. ROC curves of WFNS
(blue) and S100b (green). The black bars are the confidence
intervals of WFNS for the threshold 4.5 and the light green area is
the confidence interval shape of S100b. The vertical light grey
shape corresponds to the pAUC region. The pAUC of both empirical
curves is printed in the middle of the plot, with the p-value of the
difference computed by a bootstrap test on the right.
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TRUE, of = “se”, sp = seq(0, 100, 5)), ci.
type="shape”)
The confidence intervals of a threshold or of a prede-

fined level of sensitivity or specificity answer different
questions. For instance, it would be wrong to compute
the CI of the threshold 4.5 and report only the CI
bound of sensitivity without reporting the CI bound of
specificity as well. Similarly, determining the sensitivity
and specificity of the cut-off 4.5 and then computing
both CIs separately would also be inaccurate.
Statistical comparison
The second best pAUC is that of S100b with 3.0%. The
difference to WFNS is very small and the bootstrap test
of pROC indicates that it is not significant (p = 0.8, Fig-
ure 1). Surprisingly, a Venkatraman’s test (over the total
ROC curve) indicates a difference in the shape of the
ROC curves (p = 0.004), and indeed a test evaluating
pAUCs in the high sensitivity region (90-100% sensitiv-
ity) would highlight a significant difference (p = 0.005,
pAUC = 4.3 and 1.4 for WFNS and S100b respectively).
However, since we are not interested in the high sensi-
tivity region of the AUC there is no significant differ-
ence between WFNS and S100b.
In pROC pairwise comparison of ROC curves is

implemented. Multiple testing is not accounted for and
in the event of running several tests, the user is
reminded that as with any statistical test, multiple tests
should be performed with care, and if necessary appro-
priate corrections should be applied [32].
The bootstrap test can be performed with the follow-

ing code in R:
roc.test(response = aSAH$outcome, predic-

tor1 = aSAH$wfns, predictor2 = aSAH$s100,
partial.auc = c(100, 90), percent = TRUE)
Smoothing
Whether or not to smooth a ROC curve is a difficult
choice. It can be useful in ROC curves with only few
points, in which the trapezoidal rule consistently under-
estimates the true AUC [17]. This is the case with most
clinical scores, such as the WFNS shown in Figure 2
where three smoothing methods available in pROC are
plotted: (i) normal distribution fitting, (ii) density and
(iii) binormal. In our case study:
(i) The normal fitting (red) gives a significantly lower

AUC estimate (Δ = -5.1, p = 0.0006, Bootstrap test).
This difference is due to the non-normality of WFNS.
Distribution fitting can be very powerful when there is a
clear knowledge of the underlying distributions, but
should be avoided in other contexts.
(ii) The density (green) smoothing also produces a

lower (Δ = -1.5, p = 6*10-7) AUC. It is interesting to note
that even with a smaller difference in AUCs, the p-value
can be more significant due to a higher covariance.

(iii) The binormal smoothing (blue) gives a slightly
but not significantly higher AUC than the empirical
ROC curve (Δ = +2.4, p = 0.3). It is probably the best
of the 3 smoothing estimates in this case (as mentioned
earlier we were expecting a higher AUC as the empiri-
cal AUC of WFNS was underestimated). For compari-
son, Additional File 5 displays both our implementation
of binormal smoothing with the one implemented in
pcvsuite [15].
Figure 3 shows how to create a plot with multiple

smoothed curves with pROC in S+. One loads the
pROC library within S+, selects the new ROC curve
item in the Statistics menu, selects the data on which
the analysis is to be performed, and then moves to the
Smoothing tab to set parameters for smoothing.
Conclusion
In this case study we showed how pROC could be run
for ROC analysis. The main conclusion drawn from this
analysis is that none of the measured biomarkers can
predict the patient outcome better than the neurological
score (WFNS).

Installation and usage
R
pROC can be installed in R by issuing the following
command in the prompt:
install.packages("pROC”)
Loading the package:
library(pROC)

Figure 2 ROC curve of WFNS and smoothing. Empirical ROC
curve of WFNS is shown in grey with three smoothing methods:
binormal (blue), density (green) and normal distribution fit (red).
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Getting help:
?pROC

S+
pROC is available from the File menu, item Find
Packages.... It can be loaded from the File menu, item
Load Library....
In addition to the command line functions, a GUI is

then available in the Statistics menu. It features one
window for univariate ROC curves (which contains
options for smoothing, pAUC, CIs and plotting) and
two windows for paired and unpaired tests of two ROC
curves. In addition a specific help file for the GUI is
available from the same menu.

Functions and methods
A summary of the functions available to the user in the
command line version of pROC is shown in Table 2.
Table 3 shows the list of the methods provided for plot-
ting and printing.

Conclusions
The pROC package is a powerful set of tools analyzing
and comparing ROC curves in R and S+. Unlike existing
packages such as ROCR or verification, it is solely dedi-
cated to ROC analysis, but provides in our knowledge
the most complete set of statistical tests and plots for
ROC curves. As shown in the case study reported here,

Figure 3 Screenshot of pROC in S+ for smoothing WFNS ROC curve. Top left: the General tab, where data is entered. Top right: the details
about smoothing. Bottom left: the details for the plot. Checking the box “Add to existing plot” allows drawing several curves on a plot. Bottom
right: the result in the standard S+ plot device.
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pROC features the computation of AUC and pAUC, var-
ious kinds of confidence intervals, several smoothing
methods, and the comparison of two paired or unpaired
ROC curves. We believe that pROC should provide
researchers, especially in the biomarker community,
with the necessary tools to better interpret their results
in biomarker classification studies.
pROC is available in two versions for R and S+. A thor-

ough documentation with numerous examples is provided
in the standard R format. For users unfamiliar with pro-
gramming, a graphical user interface is provided for S+.

Availability and requirements
• Project name: pROC
• Project home page: http://expasy.org/tools/pROC/
• Operating system(s): Platform independent
• Programming language: R and S+
• Other requirements: R ≥ 2.10.0 or S+ ≥ 8.1.1
• License: GNU GPL
• Any restrictions to use by non-academics: none

Additional material

Additional file 1: Assessment of the ROC comparison tests. We
evaluate the uniformity of the tests under the null hypothesis (ROC
curves are not different), and the correlation between the different tests.

Additional file 2: Histograms of the frequency of 600 test p-values
under the null hypothesis (ROC curves are not different). A:

DeLong’s paired test, B: DeLong’s unpaired test, C: bootstrap paired test
(with 10000 replicates), D: bootstrap unpaired test (with 10000 replicates)
and E: Venkatraman’s test (with 10000 permutations).

Additional file 3: Correlations between DeLong and bootstrap
paired tests. X axis: DeLong’s test; Y-axis: bootstrap test with number of
bootstrap replicates. A: 10, B: 100, C: 1000 and D: 10000.

Additional file 4: Correlation between DeLong and Venkatraman’s
test. X axis: DeLong’s test; Y-axis: Venkatraman’s test with 10000
permutations.

Additional file 5: Binormal smoothing. Binormal smoothing with
pcvsuite (green, solid) and pROC (black, dashed).

List of abbreviations
aSAH: aneurysmal subarachnoid haemorrhage; AUC: area under the curve; CI:
confidence interval; CRAN: comprehensive R archive network; CSAN:
comprehensive S-PLUS archive network; pAUC: partial area under the curve;
ROC: receiver operating characteristic.
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Table 2 Functions provided in pROC

are.
paired

Determines if two ROC curves are possibly paired

auc Computes the area under the ROC curve

ci Computes the confidence interval of a ROC curve

ci.auc Computes the confidence interval of the AUC

ci.se Computes the confidence interval of sensitivities at given
specificities

ci.sp Computes the confidence interval of specificities at given
sensitivities

ci.
thresholds

Computes the confidence interval of thresholds

coords Returns the coordinates (sensitivities, specificities,
thresholds) of a ROC curve

roc Builds a ROC curve

roc.test Compares the AUC of two correlated ROC curves

smooth Smoothes a ROC curve

Table 3 Methods provided by pROC for standard
functions

lines ROC curves (roc) and smoothed ROC curves (smooth.roc)

plot ROC curves (roc), smoothed ROC curves (smooth.roc) and
confidence intervals (ci.se, ci.sp, ci.thresholds)

print All pROC objects (auc, ci.auc, ci.se, ci.sp, ci.thresholds, roc,
smooth.roc)
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