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Résumé 
 

Neisseria meningitidis est encore une cause importante de maladies invasives chez les enfants. 
En Angleterre, le vaccin polysaccharidique conjugué contre le sérogroupe C fait partie du plan de 
vaccination de routine. Chez les enfants de moins d’une année, 3 doses de vaccin induisent une 
montée importante des anticorps bactéricides, qui ne persistent cependant pas au-delà d’une année. 

Les cellules B mémoires semblent essentielles pour protéger ces jeunes enfants primo-immunisés 
comme nourrissons. Dans cette étude, j’ai évalué la persistance dans le sang des plasmocytes 
producteurs d’anticorps et des cellules mémoires spécifiques chez des enfants de 12 mois primo-
immunisés à 2, 3, et 4 mois. Les résultats montrent que ces cellules, généralement non détectables, 
réapparaissent à jour 6 (plasmocytes) ou 8 (cellules B mémoires) après une dose de rappel de vaccin 
conjugué. Ces données permettent de mieux comprendre la participation de l’immunité mémoire à 
la protection contre les infections invasives à N.meningitidis. 
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Chapter 1: Introduction au travail  

1.1 Epidémiologie 
 

La méningite bactérienne est encore aujourd’hui une cause importante de maladie invasive chez 
les enfants. Elle est causée par différents groupes de bactéries encapsulées, telles que Neisseria 
meningitidis, Hemophilus influenzae et Streptococcus pneumoniae. N. meningitidis est la seule 
capable de générer des épidémies de méningite.  

N.  meningitidis est l’une des principales causes de méningite bactérienne et de septicémie chez 
les enfants, en particulier entre 6 et 24 mois. Son taux d’incidence, entre les épidémies et dans les 
pays industrialisés, varie entre 1 et 3/100 000 habitants, avec un taux de fatalité de 10%. Dans les 
pays en voie de développement l’incidence dans les années non épidémiques est de 30/100000 
habitants, 10 fois plus élevées que dans les pays industrialisés. Pendant les épidémies, le taux 
d’attaque peut atteindre 1000/ 100000 habitants avec un taux de fatalité entre 10 et 15% [1, 2]. 
Entre 10 et 20% des survivants développent des séquelles permanentes comme l’épilepsie, un retard 
mental ou un déficit neural sensoriel.  

N. meningitidis est entouré d’une capsule polysaccharidique, qui est un facteur majeur de 
virulence. Les méningocoques sont classés en sérogroupes, sérotypes et séro sous-types sur la base 
de différences antigéniques portant respectivement sur leurs polysaccharides capsulaires et sur leurs 
protéines de membrane externe. Des 12 sérogroupes existants, la plus grande partie des infections 
est causée par les sérogroupes A, B, C, W135. 
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Figure 1: Structure de la paroi de N. meningitidis 

 
Le sérogroupe A cause des épidémies à large échelle dans les pays en voie de développement 

mais reste rare en Europe et en Amérique du Nord. Il est la cause majeure des méningites 
épidémiques et endémiques dans l’Afrique sub-saharienne. Les trois quarts des cas touchent les 
jeunes de moins de 15 ans. Les épidémies à sérogroupe A surviennent tous les 5-12 ans, durent 2-3 
ans, avec des pics en mars et avril, à la fin de la saison sèche, et disparaissent pendant la saison des 
pluies. 

Le sérogroupe B est la cause la plus importante de méningite endémique dans les pays 
industrialisés, responsables de 30-40% des cas en Amérique du Nord et 30-80% des cas en Europe. 
Le reste des cas est causés par le sérogroupe C en Europe et C et Y en Amérique du Nord [1, 2]. 
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1.2 Immunité 
 

La protection contre les méningocoques repose sur la présence d’anticorps bactéricides induits 
par le portage de souches apparentées, non pathogènes. L’acquisition lente et progressive de ces 
anticorps explique la vulnérabilité particulière des enfants. Des anticorps bactéricides peuvent 
également être induits par la vaccination. Il existe actuellement 2 types de vaccins : les vaccins 
polysaccharidiques et les vaccins conjugués. 
 

Vaccins polysaccharidiques contre les méningocoques 

Une immunité à court terme contre les infections à méningocoques des sérogroupes A, C, Y et 
W135 peut être obtenue par des vaccins à base de préparations polysaccharidiques.  

Le vaccin confère une protection de courte durée (maximum 3 ans) et est très peu 
immunogénique chez les enfants de moins de 18 mois, qui constituent 25% de tous les cas.   

La situation épidémiologique de certains pays, comme l’Angleterre, l’Irelande, l’Espagne, la 
Hollande, la Belgique, l’Australie, le Canada, et le sud de la France au début des années 90, qui ont 
connu une augmentation de l’incidence des maladies méningococciques associée à de nouveaux 
clones du sérogroupe C, a justifié l’instauration de campagnes de vaccination systématique contre le 
sérogroupe C. Le vaccin contenant la capsule polysaccharidique pure du méningocoque du 
sérogroupe C (un antigène T-indépendant), a d’abord été utilisé dans ces campagnes, mais il 
n’induisait pas de protection chez les enfants, ni de mémoire immunologique.  

L’ontogenèse de la réponse immunitaire aux polysaccharides est encore mal comprise. C’est un 
processus tardif qui n’est terminé que vers l’âge de 24 mois. Au contraire, la production d’anticorps 
contre les antigènes protéiques est effective dès les premiers mois de vie, avec des taux d’anticorps 
contre les antigènes des vaccins contre le tétanos ou la diphtérie, qui après plusieurs doses de vaccin 
avoisinent les valeurs adultes mêmes chez les jeunes enfants. Les processus connus, caractérisant la 
maturation différée de la réponse immunitaire aux antigènes polysaccharidiques par rapport aux 
antigènes protéiques sont [3] un taux réduit de l’expression du récepteur au complément CD21/CR2 
sur les lymphocytes B des enfants, une limitation de la production des anticorps spécifiques contre 
les antigènes polysaccharidiques (IgG2) pendant les 2 premières années de vie, une faible activité 
du complément limitant le dépôt de C3d sur les polysaccharides, et l’immaturité de la zone 
marginale de la rate. 

 
Vaccins polysaccharidiques conjugués contre les méningocoques 

Pour améliorer les réponses vaccinales, la capsule polysaccharidique a été conjuguée à une 
protéine porteuse, devenant ainsi un antigène T-dépendant capable d’induire une réponse immune 
dès l’enfance et de produire une immunité mémoire. 

Le vaccin méningococcique du sérogoupe C conjugué induit des anticorps anti-
polysaccharidiques spécifiques qui semblent corréler avec la protection contre la maladie. Le 
corrélat de protection est un taux géométrique moyen de l’activité bactéricide sérique ≥ 8 utilisant le 
complément du lapin et ≥ 4 utilisant le complément humain [4].  

La protection à long terme induite par les vaccins polysaccharidiques conjugués résulte de 
facteurs divers, tels que la réduction de la circulation des bactéries liée au phénomène de l’immunité 
de groupe (« herd immunity »), la persistance des anticorps anticapsulaires dans le sérum, la 
mémoire immunologique qui est caractérisée par l’induction d’une réponse sérologique secondaire 
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rapide lors de la nouvelle rencontre avec l’antigène spécifique. 

Des études de surveillance de la persistance de la protection vaccinale, réalisées après 
l’introduction du vaccin conjugué contre le sérogroupe C en Angleterre, ont suggéré que l’efficacité 
du vaccin était excellente (>90%) pendant un an. Cependant cette efficacité est faible déjà une 
année après une immunisation primaire réalisée (avec une série de 3 doses) pendant la première 
année de vie, ou après un peu plus d’une année pour les enfants plus âgés ayant reçu une seule dose 
de vaccin dans leur seconde ou troisième année de vie [5, 6]. D’autres études ont également 
rapporté une chute rapide de la protection sérologique et du taux d’anticorps bactéricide, malgré la 
persistance d’un priming immunologique dans une période de temps similaire [6, 7]. 

Malgré la chute rapide du taux des anticorps sériques dans le sang, la mémoire sérologique - 
définie par le développement rapide d’un taux élevé d’anticorps de haute affinité après une dose de 
rappel de polysaccharides - peut être observée jusqu’à plusieurs années après une primo-
immunisation. 

Cette mémoire immunologique a été considérée critique pour une protection prolongée et pour 
cette raison, la preuve d’une mémoire immunologique est un pré-requis régulateur pour 
l’enregistrement des vaccins conjugués. 

 

1.3 Contribution des anticorps et de l’immunité mémoire à la protection 
 

La compréhension des contributions relatives de la persistance des anticorps et de la mémoire 
immunologique, pour la protection à long terme induite par les vaccins polysaccharidiques 
conjugués est essentielle pour améliorer le choix des formules et des calendriers vaccinaux. 

Des études sur l’efficacité du vaccin conjugué anti-Hib ont démontré que certains enfants 
développaient des infections à H. influenzae  malgré une mémoire immunologique évidente, par la 
production rapide des anticorps spécifiques lors d’une maladie invasive à H. influenzae, indiquant 
que la mémoire immunologique n’était pas suffisante pour la protection à long terme de certains 
individus [8, 9]. 

Différentes études sur la cinétique de la montée des plasmocytes et des anticorps après une 
rencontre secondaire avec un antigène ont démontré que lors d’une réponse immune secondaire, les 
plasmocytes mettaient environ quatre jours avant d’apparaître dans le sang. De ces observations, on 
comprend que lorsqu’un individu primo-immunisé acquiert une souche invasive de N. meningitidis, 
la protection apportée par les anticorps nécessite quelques jours, alors que le méningocoque peut 
envahir le sang et la maladie se développer en quelques heures seulement. Dès lors, la protection 
doit dépendre avant tout des mécanismes de l’immunité innée plutôt que des mécanismes de 
l’immunité mémoire.  

Les processus cellulaires qui se cachent derrière ces observations ne sont pas bien définis chez 
l’homme et ont très peu été étudié chez l’enfant. Les anticorps sont produits par les plasmocytes qui 
ont migrés des centres germinaux à la moelle osseuse après une stimulation antigénique naturelle ou 
par un vaccin. Les plasmocytes peuvent survivre jusqu’à plusieurs mois dans des « niches » 
spécifiques de la moelle osseuse et continuent à sécréter des anticorps pendant une durée de temps 
variable selon les études. Les cellules B mémoires sont produites après une stimulation antigénique 
T-dépendante, qui induit une réaction des centres germinaux. Elles circulent ensuite entre le sang et 
les organes lymphoïdes secondaires jusqu’à nouvelle rencontre avec l’antigène, où elles se 
différencient rapidement en plasmocytes, capable de sécréter des anticorps de haute affinité pour 
neutraliser le pathogène. Nous sommes capables de détecter les plasmocytes brièvement dans le 
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sang périphérique après immunisation avec des vaccins [10], cependant il n’est pas clair si le taux 
basal des anticorps est produit exclusivement par les  plasmocytes à longue durée de vie localisés 
dans les niches de survie de la moelle osseuse, ou si les plasmocytes sont régulièrement remplacés 
par le turn over des cellules B mémoires.  

Chez l’humain, les cellules B mémoires peuvent être détectées dans le sang périphérique jusqu’à 
plusieurs mois à années après l’administration de certains vaccins [11-13] et elles sont considérées 
comme source de base de la réponse immune secondaire à un antigène et de la persistance des 
anticorps [14-16]. Cependant pour tout antigène vaccinal il demeure incertain comment la réponse 
des cellules B mémoires dans le sang périphérique reflète la persistance des anticorps ou le priming 
[16]. Les cellules B mémoires apparaissent après les vaccinations et une sélection de clones de 
cellules B à haute affinité apparaît après des semaines à mois dans le pool mémoire. Il demeure 
incertain si la magnitude de la réponse des cellules B mémoires après une immunisation reflète 
l’importance et la durée de protection, ou si il y a une relation directe entre le nombre des cellules B 
mémoires produites pendant le priming, et la magnitude, la vitesse et la qualité de la réponse à la 
dose de rappel, une année plus tard. 

Les cellules B mémoires ne sécrètent pas d’anticorps, et il est difficile de mesurer les cellules B 
mémoires spécifiques à des antigènes sans premièrement induire leur activation et différenciation en 
plasmocytes. Les analyses de laboratoire consistent dès lors en une stimulation polyclonale des 
cellules B mémoires durant un certain nombre de jours, en utilisant des combinaisons variées de 
mitogènes, pour induire leur différenciation en cellules productrices d’anticorps. Par la suite, il est 
possible d’identifier les cellules productrices d’anticorps spécifiques d’un antigène par la méthode 
ELISpot (enzyme linked immunospot assay).    

 
Le but de ce travail est donc : 

- de revoir la littérature et de résumer les connaissances actuelles concernant les méningocoques, 
leur pathogenèse, les maladies qu’ils provoquent, l’immunité qu’ils induisent, celle qu’il est 
possible d’induire au moyen des vaccins récemment devenus disponibles, les limitations des 
réponses vaccinales des jeunes enfants et les problèmes que cela pose, quant au choix des 
calendriers de vaccination en particulier; 

- d’investiguer la persistance des plasmocytes producteurs d’anticorps et des cellules B 
mémoires spécifiques des méningocoques du sérogroupe C, chez des enfants âgés d’une année 
ayant été primo-immunisés à l’âge de 2, 3 et 4 mois avec un vaccin conjuguant les 
polysaccharidiques méningococciques du sérogroupe C à la protéine porteuse CRM197 ;  

- d’étudier la cinétique de la réponse immune secondaire des plasmocytes et des cellules B 
mémoire réactivées après une dose de rappel du vaccin conjugué, et d’observer comment les 
cellules induites par la dose de rappel persistent dans le sang, jusqu’à un mois après immunisation.      
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Chapter 2: Literature review 
 

2.1 Neisseria meningitidis 

2.1.1 Structure and classification 
Neisseria meningitidis is an aerobic, Gram-negative coccus, typically arranged in pairs 

(diplocococci). The structure is typical of Gram-negative bacteria, with a thin peptidoglycan layer 
sandwiched between an inner cytoplasmic membrane and an outer membrane.  

The outer membrane contains lipooligosaccharide (LOS), which is composed of lipid A and a 
core oligosaccharide, but lacks the O-antigen polysaccharide found in most Gram-negative rods. 

The organism is encapsulated with polysaccharide and antigenic differences in the 
polysaccharide capsule is the basis for serogrouping the bacterium. The structure of the 
oligasaccharide capsule of the serogroup A meningococci is composed of N-acetyl mannosamine-1-
phosphate, whereas the serogroup B, C, Y and W135 capsules are composed of N-acetyl 
neuraminic acid (NANA). The serogroup B NANA is a2-8 linked and serogroup C is a2-9 linked. 
The serogroup Y capsule is modified with glucose and the serogroup W135 capsule with galactose. 

Traditionally, meningococcal strains have been classified by serological typing based on 
antigenic variation of the capsular polysaccharide, identifying the sergroup; the PorB outer-
membrane protein (OMP), identifying the serotype; the PorA OMP, identifying the serosubtype and 
the lipopolysaccacharide (LPS), giving the immunotype [17]. Each of these characteristics can be 
determined using antisera and monoclonal antibodies.  

Molecular methods of classification include multilocus enzyme electrophorese (MLEE), that 
assesses the electrophoretic mobility of various, relatively conserved, cytoplasmic enzymes. 
Meningococci sharing identical MLEE profiles are identified as an electrophoretic type (ET). 
Alternatively at a genomic level, DNA multilocus sequence typing (MLST) assesses fragments of 
genes that code for cytoplasmic enzymes. 

N. meningitidis has been divided into 13 serogroups: A, B, C, D, 29E, H, I, K, L, W135, X, Y 
and Z. Strains from patients with invasive disease are encapsulated and five of these serogroups (A, 
B, C, W135 and Y) cause more than 90% of the invasive disease worldwide. In contrast, 
approximately 50% of the strains isolated from carriers lack capsule and therefore cannot be 
serogrouped [18]. Meningococci without capsules may possess the genes for capsule synthesis since 
capsule production in meningococcal strains can switch on and off at a high frequency [19]. 
Alternatively, the capsular operon may be absent - capsule null strains do not have the capacity to 
produce a polysaccharide capsule [18]. 

Population genetic studies using MLEE [20] have shown that the majority of invasive N. 
meningitidis strains worldwide belong to a limited number of clonal complexes, of which ET-5 and 
ET-37 complexes have played an important role in the northern hemisphere during the last two to 
three decades [21].  

Later MLEE has been replaced by MLST, as the reference standard for characterisation of 
meningococci [22]. 

Genetic recombination takes place between meningococci, resulting in the emergence of new 
strains [23].  

 



2.1.2 Epidemiology 
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Figure 2: Worldwide serogroup distribution (2006) 

 
Endemic meningococcal disease occurs worldwide, and epidemics are common in developing 

countries. Epidemics of meningococcal disease (MD) occur after the introduction of a new, virulent 
strain into an immunologically naïve population. Pandemics of disease have not been seen in 
developed countries since World War II.  

Of the 12 serogroups, almost all infections are caused by serogroups A, B, C, Y, and W135. 
Serogroup A and W135 are epidemic in Sub-Saharan Africa. W135 has been associated with the 
annual Hajj pilgrimage. Serogroup Y is prevalent in USA. In Europe and the Americas, serogroups 
B, C, and Y predominate.  

The incidence of MD varies from 1-3/100000 in most industrialized nations to 10-25/100000 in 
some resource poor countries. However, an incidence of 1000/100000 may be reached during 
severe epidemics in sub-Saharan Africa. These different attack rates reflect the different pathogenic 
properties of N. meningitidis strains and different socioeconomic, environmental, and climatic 
conditions. The case fatality rate (CFR) is also variable, between 5-10% in industrialized countries 
and 10-15% in developing countries. 

In the late 90s, surveillance of meningococcal infection in Europe reported overall incidence of 
meningococcal disease of 1/100000 population. Northern European countries had a higher 
incidence of disease and an increasing predominance of serogroup C cases. Also, the age group 
tended to shift from younger children to teenagers. The CFR was 8.3% and the most common 
serosubtypes were B and C [24]. 

Following the introduction of a systematic MenC immunisation campaign in November 1999, 
surveillance of meningococcal disease in England, Wales and Northern Ireland indicated a fall in 
the incidence of MD from 9.2 to 8.0 per 100000 population with a decrease of cases caused by 
serogroup C and an increase of cases caused by serogroups B and W135. Between these 2 periods, 
the overall CFR was 5.8%, being higher for serogroup C (13.5%) than B (5.8%) [25]. 
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2.1.4 Meningococcal carriage 
Meningococci are obligate commensals in man and colonize the nasopharyngeal mucosa without 

affecting the host, a phenomenon known as carriage [26] 

Humans are the only natural carriers of N. meningitidis. Exposure to N. meningitidis occurs by 
aerosol spread and mostly results in asymptomatic nasopharyngeal carriage. Studies of 
asymptomatic carriage of N. meningitidis have shown a carriage rate of about 1% of the human 
population [27] with variation in its prevalence, from less than 1% to almost 40% (in 20-to24-year-
old males) [28]. Around 10% of adults and up to 30% of teenagers carry this bacterium at any one 
time [29, 30]. Carriage is less common in infants and young children [28]. Infants more commonly 
carry Neisseria lactamica, a related but non-pathogenic organism. Also, infants acquire immunity to 
the meningococcus through repeated exposure to cross-reactive antigens present on this organism 
and other commensal bacteria.  

The carriage rates are highest for school-age children, young adults, for lower socioeconomic 
populations (caused by person-to-person spread in crowded areas), and under conditions where 
people from different regions are brought together, such as military recruits, pilgrims, boarding-
school students, or prisoners. Colonisation is also increased among active and passive smokers [28]. 

Carriage does not vary with the season, even though disease is most common during winter. The 
duration of the carrier state varies; it may be chronic, lasting for several months, intermittent or 
transient [29] and may be strain specific. Carriage is typically transient, with clearance occurring 
after specific antibodies develop.  

Studies of the clones in asymptomatic carriers and in patients with meningococcal diseases have 
shown that hyperinvasive meningococci, like the ST-11 complex, were almost only found in 
meningococci causing disease and were very rare in carried meningococci [31]. 

The cause of progression from carriage to invasive disease in some individuals is unclear but it 
may depend on both the host and the organism. 

 

2.1.5 Virulence factors 
N. meningitidis possesses several surface located or secreted molecules which influence 

adhesion, invasion and survival of the bacteria in human host. The capsule is thought to protect the 
meingococcus from dessication during transmission between hosts and also from antibody-mediated 
phagocytosis in the bloodstream. The pili and Opacity associated proteins mediate adherence to and 
invasion of host cells. The Porin proteins are outer membrane proteins, encoded by two genes: porA 
and porB which allow the bacteria to acquire nutrients from the host environment, by forming pores 
or channels in the outer membrane. Antigenic variation or changes in expression of genes encoding 
outer membrane molecules also mediates meningococcal resistance against host immune defences. 



 
 

Table 1:  Virulence factors in N. meningitidis 
 

2.1.5 Pathogenesis  
There are a number of conditions necessary for invasive disease; exposure to a pathogenic strain, 

colonisation of the naso-oropharyngeal mucosa, passage through that mucosa, and survival of the 
meningococcus in the bloodstream [32]. These processes are influenced by bacterial properties, 
climatic and social conditions, preceding or concomitant viral infections, and the immune status of 
the patient [2]. 

2.1.5.1 Colonization of the naso-oropharyngeal mucosa 

Colonization occurs on the exterior surface of the mucosal cell and subsequently, intra- or 
subepithelially. Local or systemic immune status influenced by concurrent viral infections or 
damage to the integrity of the mucosae, perhaps by active or passive smoking or preceding, may 
also influence colonisation. 

Pili are the major adhesins that permit the attachment of the bacteria to mucosal cells. A 
membrane cofactor (CD46), which is expressed on all human cells except erythrocytes, has been 
identified as a receptor for neisseria type IV pili [33]. Adhesion of meningococci to host cells leads 
to a transient up-regulation of PilC production and down-regulation of capsule synthesis [34] and 
removal of sialic acid from LOS , which seems essential for meningococcal interaction with host 
cells [26]. After initial attachment mediated by pili, closer binding to the host cell occurs via the 
class 5 OMPs Opa and Opc [2]. 
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2.1.5.2 Invasion or penetration of the naso-oropharyngeal mucosa 

Meningococci pass through the mucosal epithelium via phagocytic vacuoles as a result of 
endocytosis. During invasion, several bacterial factors change the metabolism of the mucosal cell. 
PorB moves into host cell membranes and affect the maturation of phagosomes [35] and IgA1 
proteases inactivate specific IgA1 [36]. 

 

2.1.5.3 Survival of the meningococcus in the bloodstream 

Meningococci can survive and proliferate in the bloodstream via bacterial virulence factors or 
deficit of the host defence.  For example, the bacteria acquire iron from human transferrin by 
transferrin binding proteins [37]. The polysaccharide capsule protects against complement-mediated 
bacteriolysis and phagocytosis [38].  

Host defence after meningococcal invasion depends on humoral and cellular responses of the 
innate and adaptive immune systems. Specific complement-fixing antibodies provide entire 
protection. However, because production of antibodies takes at least 1 week after colonization, the 
initial defence depends on the innate immune system [2]. Early innate defence are complement-
mediated bacteriolysis and opsonophagocytosis [2]. 

In healthy people, the incidence of MD is reciprocally related to the titre of specific antibodies, 
with the highest incidence of disease occurring from 6 months, after which maternal antibodies 
have waned, to 24 months of age [4, 39]. 

Throughout life, specific antibodies are induced by the repeated and intermittent carriage of 
different meningococci and N. lactamica. Certain enteric bacteria have a capsule that is structurally 
and immunologically identical to the capsular polysaccharide of meningococci (for example the 
capsule from E.Coli K1 is identical to the serogroup B capsule). Theses bacteria participate in the 
defence against meningococci by the induction of cross-reacting antibodies [40]. 

In conclusion, growth of the meningococcus in the blood-stream can occur when intravascular 
killing is impaired, either because of special properties of the meningococcus  or because of a naïve 
or defective immune system of the host (for example deficit in one of the terminal complement 
factors or variants of mannose binding lectin) [2]. 

 

2.1.6 Markers of immunogenicity in protection against meningococcal disease 
The original correlate of protection was established by using a Serum Bactericidal antibody 

Assay (SBA) with human complement (hSBA). The SBA titre represents a measure of bacterial 
killing by functional antibody and is expressed as a dilutional factor, with titres ≥ 1:4 predicting 
protection [4]. Today, because of a greater availability and degree of standardization, human 
complement has been replaced by rabbit complement [41] and a rSBA titre ≥ 1:8 predicts 
protection. rSBA titres < 1:8 predict susceptibility and for licensing MenC vaccine, rSBA titre 
should be more than 1:16. Protection correlates with an rSBA ≥ 1:128 [41]. 
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Figure 3: Serum bactericidal antibody assay 

 
The importance of serum bactericidal antibodies in protection against group C meningococcal 

disease was first demonstrated during an epidemic among military recruits in the 1960s. Group C 
bactericidal antibodies were present in baseline sera of about 82% of the recruits. The subjects with 
detectable bactericidal antibodies in serum became carriers of the epidemic strain but did not 
develop MD, while all cases of disease occurred in the 18% of individuals whose baseline sera 
lacked bactericidal activity (hSBA titres < 1:4) [4, 39] 

The approach adopted in the 1960s by Goldschneider et al. was the individual based correlate of 
protection. They measured pre-exposure antibody levels in all vaccinated subjects and looked at the 
relation of these levels to whether the subjects subsequently develop MD, to identify a threshold 
level in the individual that predicts protection.  

In a vaccine efficacy trial, a population-based correlate of protection is used. It looks at the level 
of antibody acquired by the majority of vaccinated individuals and not acquired by the majority of 
unvaccinated individuals to establish a cut off of antibody level to predict protection. The rSBA cut-
offs ≥ 1:16 have been established in the UK using this approach in a vaccinated population [41]. 

The presence of SBA is a reliable marker of protection against MD but the absence of SBA does 
not necessary imply susceptibility. A mechanism responsible for protective activity in the absence 
of SBA is the persistence of anticapsular antibodies at concentrations that are insufficient to elicit 
bactericidal activity but that are sufficient to confer protection via opsonophagocytosis [42]. The 
presence of immunologic memory is also important, as illustrated both by the response to a 
polysaccharide challenge and by the maturation of antibody avidity in the months following 
primary immunisation [43]. 

 

2.1.7 Meningococcal diseases 

2.1.7.1 Clinical manifestations 
Different disease manifestations can develop after meningococci have reached the blood stream; 

transitional asymptomatic bacteraemia, focal infection of the central nervous system, joint, bone or 
heart, septic shock (meningococcemia), or purpura fulminans (fulminant meningococcal sepsis) [2].  
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Sepsis (severe infection with evidence of systemic response, characterised by tachycardia, 
tachypnoea, hyperthermia or hypothermia) progresses into sepsis syndrome (sepsis plus evidence of 
altered end-organs perfusion with at least one of the following: acute changes in mental status, 
oliguria, elevated lactate and hypoxaemia) and finally into septic shock (sepsis syndrome with 
hypotension requiring fluid resuscitation and/or vasopressor support) [44]. 

The two principal manifestations of MD are rapid onset meningitis or severe sepsis 
(meningococcemia). The mortality rates are very high, and range from 4-40%. Meningitis has a 
mortality rate of 4-6%, and septic shock of up to 40%. [45]. 10-20% of survivors develop 
permanent sequelae, such as deafness, mental retardation, and amputation [46]. Rare manifestations 
of MD are septic arthritis, pneumonia, purulent pericarditis, conjunctivitis, otititis, sinusitis, and 
urethritis. A rare syndrome, chronic meningococcemia, may present as fever, rash, joint aches and 
headache during several weeks [46]. 

In patients with a low level of bacteraemia, meningococci are cleared spontaneously. This 
transient meningococcemia is characterized by a short febrile flu-like episode. 

 

2.1.7.2 Systemic inflammation response 
The role of the systemic inflammatory response in patients with MD is to neutralize the bacteria 

and their toxic products, but it can also overreact and provoke serious tissue damage to the host. 
Three pathways characterize the intravascular inflammatory response. The first is the complement 
system, which contributes to phagocytosis of the bacteria, and induces the inflammatory reaction 
via C3a and C5a. The second is the coagulation and fibrinolysis pathway. Both pathways are 
stimulated in MD and result in prothrombotic state. The third is the inflammatory response 
mediated by different cytokines and chemokines, among which tumor necrosis factor (TNF) α and 
interleukin (IL) 1β have a central role [45]. 
 
Pro-inflammatory mediators 

During growth and lysis of meningococci, endotoxin is released as vesicular outer membrane 
structures (blebs) consisting of up to 50% of LOS, and OMPs, lipids, and capsular polysaccharides 
[47, 48] The level of cytokine produced in response to endotoxin varies among individuals. 

The principal proinflammatory cytokines produced are TNF-α and IL-1β, which act by different 
mechanisms; induction of other cytokines, activation of neutrophils and leukocytes, increased 
adherence of PMN and monocytes to endothelium, generation of prostaglandins and production of 
nitric oxide. The release of other mediators (IL-6, IL-8, IL-12 and IFN-α, GM-CSF, IL-10 and IFN-
γ) is triggered by LPS, TNF-α, and IL-1β [49]. In general cytokine levels correlate with disease 
severity and risk of death [50]. 

 
Complement 

The complement system plays a key factor in defense against the meningococcus, by lysis of the 
bacteria, increase of phagocytosis by monocytes or Polymorphonuclear leucocytes (PMNs) or 
neutralization of endotoxin [51]. In the early stage of invasive disease, complement is activated 
principally through the alternative pathway and partly by the classical or mannose- binding lectin 
pathway. The degree of complement activation correlates with the severity of shock [52].  
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Endothelial damage and capillary leakage 
Hypovolemia seems to be the most important event creating shock and results from increases in 

vascular permeability. The immune response induced by meningococci in the bloodstream provokes 
a major increase of permeablility of the endothelium in all vascular beds via circulating mediators 
of inflammation (TNF-α, IL-1, IL-8, PAF, leukotrienes, thromboxane etc.) and the adherence of 
neutrophils and platelets. Increased vascular permeability leads to profound interstitial edema with 
diffuse parenchymal cell damage and hypovolemia. [44].  

The hallmark of invasive meningococcal disease are skin hemorrhages. Microscopically, these 
lesions are characterized by endothelial damage and haemorrhages around small vessels that contain 
microthrombi. These lesions reflect the vasculitis induced by endotoxin and cytokine. Clinically, 
they are the visual manifestations of disseminated intravascular coagulation (DIC) and consumption 
coagulopathy. Even if DIC affects all organs, the adrenals are more vulnerable. Adrenal 
haemorrhages, diagnosed post-mortem as Waterhouse-Friederich syndrome, can provoke a 
transitory adrenal insufficiency. 

2.1.7.3 Meningitis 
The mechanisms by which meningococci invade the meninges and pass across the blood-brain 

barrier are poorly understood. Once present in the subarachnoid space, as humoral and cellular host 
defence are absent, meningococci proliferate in an uncontrolled way. Liberation of endotoxin 
provokes the activation of pro-inflammatory cytokines, which increase the permeability of the 
blood-brain barrier and contribute to the development of clinical manifestation of meningitis. 

The major difference between sepsis and meningitis is that in meningitis the inflammatory 
response is localized in an extravascular compartment where factors of the complement and 
coagulation systems are absent.  

While meningococcal sepsis is the most devastating form of sepsis, meningococcal meningitis 
has a low rate of mortality and neurological sequelae compared to other types of bacterial 
meningitis. 8-20% of survivors suffer from neurological sequelae, varying from sensorineural 
deafness, mental retardation, spasticity, and/or seizures to concentration disturbances.  

Since the skull cannot expand, cerebral oedema results in increased intracranial pressure, 
impeded cerebral perfusion and can lead to brain stem herniation. The 1-5% mortality rate 
associated with meningococcal meningitis is mostly caused by this rapidly fatal complication. 
 

2.1.7.4 Fulminant meningococcal sepsis 
Within a few hours, fulminant meningococcal sepsis (FMS) may develop without signs of 

meningitis; this condition is characterised by high concentrations of endotoxin and cytokines in 
plasma. FMS is characterized by shock and DIC. Shock results from decreased vascular tone and 
hypovolaemia from capillary leak. The mortality rate of FMS is high and varies from 20-80% in 
different studies. Clinical deterioration is rapid and half of the patients who die will do so within 24 
hours after the first clinical manifestation. 

 

2.1.7 Diagnosis 
Microscopy 

Gram stain of cerebrospinal fluid is sensitive and specific but is of limited value for blood 
specimens, because most patients have too few organisms in their blood (except those with 



overwhelming sepsis). Diagnosis in patients with FMS is also possible with a Gram stain of a skin 
lesion biopsy specimen. In patients with meningococcal meningitis, skin lesions rarely reveal the 
bacteria and only CSF samples are positive. Positive result of Gram stain can provide evidence of 
infection, even if cultures are negative [53]. 
 

 
 

Figure 4: Gram stain of CSF showing N.meningitidis 
 
Culture methods 

N. meningitidis is generally present in large numbers in CSF, blood, and sputum. Culture is 
definitive, but the organism is difficult to grow since it dies rapidly when exposed to cold or dry 
conditions. Cultures become positive after 12 to 24 hours. When the patient is already under 
antibiotic therapy, only cultures of skin biopsy specimens will reveal the bacteria. Definitive 
identification of N. meningitidis from the different Neisseria species is based on the mode of 
oxidation of carbon-hydrates. Various carbonhydrates (glucose, maltose, lactose, and sucrose) are 
added to different culture medium and as different members of Neisseria produce acid from 
different carbonhydrate, the production of acid from oxidation of glucose and maltose will allow the 
identification of N. meningitidis [53, 54] 
 
Oxidase test 

The oxidase test determines the presence of cytochrome oxidase in the organism. This test is 
rapid but has a lower specificity, as other members of the genus Neisseria or unrelated bacterial 
species may also give a positive reaction [54]. 
 
Serological assays 

Antisera for the principal disease-causing serogroups of N. meningitidis are available. 
Agglutination will occur with the serogroup corresponding to the antisera. A negative control is 
performed with saline and no agglutination with any of the antisera or the saline would define the 
strain as non groupable. Several commercial diagnostic kits are available for rapid latex 
agglutination serology assays. These tests may be less sensitive and require enough specimens to 
give reliable results [54]. 
 
Nucleic Acid Amplification  

Polymerase chain reaction (PCR) assays to detect meningococcal DNA in blood or cerebrospinal 
fluid (CSF) are becoming very useful but their costs remain higher than traditional culture methods. 
PCR assays are rapid, simple, and unaffected by prior antibiotic administration, as only the presence 
of genomic DNA is necessary for detection. Sensitivity and specificity of PCR assays are high 
(91%), however false-positive results can occur due to contamination (assay design is therefore of 
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paramount importance) and false negative results can be seen with presence of inhibitor in CSF. 
PCR assays allowing determination of capsular status are also available [55, 56]. 
 

2.1.8 Monitoring and Treatment 
During the first few hours, patients should be monitored closely because shock may develop 

after the start of antibiotic treatment. The early signs of shock development are low diastolic blood 
pressure, delayed capillary refill, cold extremities, and tachycardia. 

The progression of DIC can be monitored by the change in the number and size of skin lesions 
and by the platelet count. 

General agreements concerning therapy are: 
- Early recognition. 
- Early start of parenteral antibiotic therapy, which should not be delayed by diagnostic 
procedures. 
- Repeated prognostic evaluations. 
- Rapid fluid resuscitation, start of mechanical ventilation, and transfer to an intensive care 
unit for patients with poor prognostic signs or shock (Table 2). 

 
the extremes of age 
a short period between onset of disease and admission 
the absence of meningitis 
progressive or diffuse skin lesions 
shock (characterized by slow capillary refill, cold acra, hypotension, or metabolic acidosis) 
the absence of leucocytosis, the presence of thrombocytopenia, DIC, and hypofibrinogenemia 
a normal C-reactive protein concentration in serum or moderately elevated 

 
Table 2: Indicators of FMS and a poor prognosis 
 

However, treatment of shock and the use of glucorticoid, fresh-frozen plasma, plasma exchange, 
and other immunomodulating or adjuvant therapies all are subject to debate.  

Normally, penicillin is used in the treatment of meningococcal disease and in occasional cases, a 
broad-spectrum cephalosporin or chloramphenicol can be used. 

There is no way to eradicate carriage of N. meningitidis. For this reason, efforts have been 
concentrated on the prophylactic treatment of close contacts of diseased patients and on the 
induction of immunity to the five serogroups most commonly associated with disease. 

Sulfonamides and penicillin are ineffective in eliminating the carrier state, chemoprophylaxis for 
contact is with rifampicin, ciprofloxacin, or ceftriaxone. 

 
 
2.2 Review of the Immune system  

2.2.1 Innate immunity 
Innate or natural immunity is the first mechanism of defence against microbes. Components of 

natural immunity, which include physical and chemical barriers, complement proteins and various 
phagocytes and natural killer cells, are in place before infection and are stimulated by structures 



 25

shared by groups of microbes. Innate immunity does not induce memory. 

Marginal zone (MZ) B cells also contribute to innate immunity. MZ B cells are a distinct subset 
of B cells that respond mainly to polysaccharides and produce IgM. Macrophages located in the MZ 
of lymphoid follicles in the spleen are particularly efficient at trapping polysaccharides which 
persist for prolonged periods on their surface and are recognized by MZ B cells [57]. MZ B cells 
express high levels of CD21 that help them to attach to complement coated polysaccharides [58]. 
MZ B cells have been functionally linked to immune responses against T-independent antigens 
because the spleen appears to be essential in these responses [59]. Patients having undergone a 
splenectomy have an increased susceptibility to encapsulated bacteria and in children younger than 
two years, the immune response against encapsulated bacteria is not effective because their 
marginal zone is immature.  

It has been observed that generation of somatic mutations in splenic MZ B cells does not seem to 
require exposure to the antigen, because mutations are already present in very young infants. It has 
been proposed that MZ B cells in humans appear first as naïve non-mutated B cells, but then rapidly 
diversify by somatic mutation, either in response to environmental antigens or by a spontaneous 
developmental process [57, 60]. In contrast to rodents, human MZ B cells appear to re-circulate, 
accounting for 10 to 30% of the B-cell pool in blood and in spleen and contain mutated 
immunoglobulin genes. It is believed that immune responses to TI antigens do not generate immune 
memory or affinity maturation and protection only lasts for approximately 6 months. MZ B cells 
can switch after activation and differentiate rapidly into plasma cells that last for a few months, 
representing an immediate line of defence without the characteristics of immune memory. 

Natural antibodies might be considered as a component of innate immunity. They are made in 
response to TI-antigens and are apparently produced without requiring exposure to antigens. Most 
natural antibodies are low affinity anti-carbohydrate antibodies, that could be produced by MZ B 
cells and/or B-1 peritoneal B cells (stimulated by bacteria that colonise the gastrointestinal tract) 
[61]. Plasma cells of the B1 lineage produce antibodies that bind with low affinities to multiple 
antigens, often microbial structures shared by a variety of pathogens [62]. These antibodies are 
usually of the IgM, IgA, or IgG3 subclass. Prenatal induction of natural antibody secretion 
contributes to the innate component of serum antibody levels, which seems to be maintained 
throughout life. Two mechanisms are thought to drive B1 lymphocytes to differentiate into plasma 
cells, stimulation by microbial antigens and /or mitogens of the gut flora and stimulation by 
autoantigens. The postulation of the continuous activation of B1 cells by bacterial antigens, 
mitogens and autoantigens imply that plasma cells of the B1 lineage should be short-lived and 
constantly replaced by newly formed plasma cells [63]. 

2.2.2 Adaptive immunity  
Adaptive immunity is characterised by a higher specificity, the induction of memory and the 

ability to respond more vigorously to repeated exposure to the same antigen. Adaptive immunity is 
composed of humoral immunity and cell-mediated immunity. We distinguish two types of antigens: 
T-dependent (TD) antigens which are principally protein antigens and require the contribution of T 
helper (TH) cells to activate B cells and T-independent (TI) antigens, which are non protein 
antigens, such as polysaccharides and lipids and activate B cells in the absence of TH cells but 
which are unable to induce immunological memory. Antibodies produced in the absence of T cell 
help are of low affinity and consist mainly of IgM with limited isotype switching to some IgG 
subtypes.  

The most important TI antigens are polysaccharides, glycolipids, and nucleic acids. These 
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antigens cannot be processed and presented with MHC molecules, and therefore cannot be 
recognized by TH cells. Most TI antigens are polyvalent, in that they are composed of multiple 
identical antigenic epitopes that cross-link multiple membrane immunoglobulins (Ig) molecules on 
a B cell, leading to activation without T cell help. In addition many polysaccharides activate the 
complement system by the alternative pathway, generating C3d which binds to the antigen and 
provides another signal for B cell activation. 

TI antigens can be divided into two classes, TI-1 or TI-2 [64].  

TI-1 antigens, such as bacterial lipopolysaccharide, are potent B-cell mitogens and produce a 
non-specific, polyclonal activation of B cells. At high concentrations these molecules induce the 
proliferation and differentiation of most B cells in the absence of specific antigen binding to surface 
immunoglobulin. At low concentrations, only B cells specific for the TI-1 antigen bind to it and 
become activated. TI-2 antigens consist of highly repetitive structures such as capsular 
polysaccharides from bacteria. Unlike TI-1 antigens, these antigens can only activate mature B cells 
because immature B cells are inactivated by repetitive epitopes. This could explain why infants do 
not make antibodies efficiently against polysaccharide antigens, as most of their B cells are 
immature. The molecular mechanism of the immune response to TI-2 antigens is not completely 
understood. It is known that certain subjects do not respond well to TI-2 antigens, such as asplenic 
patients, HIV seropositive patients, children (<2 years of age) and the elderly (adults >65 years of 
age) [65]. 

 

2.2.3 Secondary immune response and memory immunity 
Immunological memory is the ability of the immune system to respond more rapidly with high 

avidity switched antibodies, to a second challenge with the same organism or vaccine than to the 
first challenge. The induction of a secondary antibody response after revaccination with the same 
antigen is named immunological priming. Like immunological memory, immunological priming 
can only be induced by T-dependent antigens. 

Primary and secondary antibody responses to protein antigens differ qualitatively and 
quantitatively. Primary responses result from the activation of naïve B cells whereas secondary 
responses are due to stimulation of expanded clones of memory B cells. Therefore, the secondary 
response occurs more rapidly and large amounts of antibodies are produced. Heavy chain isotype 
switching and affinity maturation also increases with repeated exposure to protein antigens. 
Antibodies are produced within 10-14 days after vaccination in the primary immune response and 
within 4-6 days in the secondary immune response [66, 67]. The primary immune response requires 
the presence of an antigen, optimally with adjuvant (for protein antigens), but secondary immune 
responses can be induced with lower doses of antigens, and possibly without adjuvant. 

 

2.2.4 Long term protective immunity 
In the absence of antigen, memory B cells carrying somatically mutated Ig genes survive in 

secondary lymphoid organs, such as the lymph nodes and spleen, in the absence of Ag and mediate 
secondary immune responses upon re-challenge. About 40% of all circulating human B cells are 
memory B cells. Plasma cells are terminally differentiated non-dividing cells that home to the 
spleen and bone marrow and are the main source of antibodies which they secrete at a high rate. 
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Lymphocyte recirculation and migration to particular tissues, depends on cell surface adhesion 
molecules on lymphocytes, endothelial cells, the extra-cellular matrix and chemokines produced in 
the endothelium and in tissues. Survival of plasma cells is dependent on signals provided in a 
limited number of survival niches situated in the bone marrow. Stromal cells found in the bone 
marrow provide these signals and protect plasma cells from apoptosis. The number of these survival 
niches seems to be limited because the frequencies of plasma cells in bone marrow are constant at 
about 0.5% throughout life and in different species [63]. 

Long-lasting specific antibody responses come from antibodies produced by ASCs differentiated 
from long-lived memory B cells upon re-exposure to a pathogen and by long lived plasma cells 
homing in bone marrow survival niches [68]. 

The presence of pre-existing neutralising and/or opsonising antibody is the only way to prevent 
an infection and is the most important protective mechanism against many viral and most microbial 
infections. Following the introduction of routine Hib or MenC immunisation in infants, it was clear 
that some individuals with low or undetectable antibody concentrations were still protected against 
disease and this protection was attributed to herd immunity and priming [67]. However, occasional 
failures of protection have been reported in primed individuals with low baseline antibody level [5, 
7], demonstrating that low or undetectable levels of specific antibody may leave an individual 
susceptible to rapid invasion before the primed response develops.  

 

The T-dependent activation of memory B cells progress in a cascade of cellular development: 
[14] (Figure 5) that includes 5 phases : 

- Phase I: MHC-II complexes presented on activated antigen presenting cells (APCs) are critical 
for effective TH cell selection, clonal expansion, and effector TH cell function development. 

- Phase II: Cognate effector TH cell-B cell interactions then promote the development of either 
short-lived plasma cells (PCs) or germinal centres (GCs). 

- Phase III: These GCs expand, diversify, and select high-affinity antigen-specific B cells for 
entry into the long-lived memory B cell compartment. 

- Phase IV: Upon antigen re-challenge, memory B cells rapidly proliferate and differentiate into 
PCs under the cognate control of memory TH cells. 

 



 
 

Figure 5: TH cell-regulated B cell memory development [14] 
 
 
2.3 Antimicrobial Vaccines 

The immunisation of a subject can prevent or diminish the serious symptoms of disease by 
blocking the spread of a pathogen at its target organ or at the site of infection. The immunisation of 
a population, like individual immunity, also stops the spread of the infectious agent by reducing the 
number of susceptible hosts: herd immunity. Active immunisation is characterised by the induction 
of an immune response. It can be stimulated after contact with an environmental pathogen (natural 
immunisation) or through exposure to microbes, or their antigens contained in vaccines (artificial 
immunisation). Active immunisation has the potential to induce memory immunity. Therefore, with 
each re-exposure to the pathogen, the immune response is faster and more effective in neutralizing 
the microbe and increased serum antibody level. Classical vaccines can be subdivided into two 
groups including live vaccines, or inactivated-subunit-killed vaccines (Figure 6). These groups 
differ in the way they stimulate the immune system. 
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Figure 6: Types of active vaccines 
 

2.3.1 Killed or inactivated vaccines 
Inactivated or killed vaccines require a large amount of antigen to produce an antibody response. 

These vaccines are produced by inactivation of the pathogen either by chemical (e.g. formalin) or 
heat, or by purification or synthesis of the components of subunits of the infectious agents. They are 
usually administered with an adjuvant. Inactivated vaccines are used against bacteria and viruses 
that cannot be attenuated, or that can cause recurrent infection, or have oncogenic potential. 
Peptides representing part of an antigen can also be used as a vaccine. Their advantage is that the 
product is chemically defined, stable, safe, and contains only B cell and T cell specific epitopes. 
However, it is difficult to manufacture peptides with exact conformational epitopes and once in the 
body, peptides are very sensitive to proteolysis. Further, peptides are poor immunogens and induce 
only weak humoral and cellular responses [69]. 

Inactivated vaccines are generally safe, except in people who are allergic to products contained 
in the vaccine. For example, many antiviral vaccines are produced in eggs and therefore cannot be 
given to people who are allergic to eggs. The disadvantages of inactivated vaccines are that they 
only induce humoral immunity and they do not stimulate cell-mediated immunity and therefore are 
not able to generate memory immunity. As a result they require frequent booster immunisations and 
these vaccines cannot stimulate a local IgA response. However, with inactivated vaccines, there is 
no risk of reversion to the wild type infectious agent. 
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2.3.2 Live vaccines 
Live vaccines are prepared using organisms that are limited in their capacity to replicate (e.g., 

avirulent or attenuated organisms). Live vaccines are very useful for protection against enveloped 
viruses, because they stimulate cell-mediated immune responses. Immunisation with a live vaccine 
mimics natural infection and therefore induces humoral, cellular, and memory immune responses. 
However, there are 3 major problems with these vaccines: the vaccine may still be dangerous for 
immuno-suppressed subjects or pregnant women who do not have the immune potency to combat 
even a weak infection. Further, the vaccine may revert to a virulent form, and the viability of the 
vaccine is difficult to maintain. 

Live viral vaccines can be created with less virulent (attenuated) mutants of the wild-type virus 
or with viruses from other species that share antigenic determinants. Using genetic engineering, 
there is also the possibility to create vaccines with viruses that lack the virulence properties. Wild-
type viruses are attenuated by growth in embryonated eggs or in tissue culture, at no physiologic 
temperatures (32°C to 34°C) and away from the selective pressure of the immune system. These 
conditions select mutant strains that are less virulent because they grow poorly at 37°C 
(temperature-sensitive strains and cold adaptive strains), cannot proliferate in human cells (host-
range mutants), and cannot resist immune defences. 

 
2.3.3 Future vaccines 

Molecular techniques are being used to develop new vaccines. By genetic engineering, new live 
vaccines can be generated by the induction of mutations to delete or inactivate genes encoding 
virulence factors. These new techniques appear to be more reliable than random attenuation of the 
virus by passage through tissue culture. Hybrid virus vaccines can be formed when genes from 
infectious agents that cannot be easily attenuated can be inserted into safe viruses. A defective 
infectious single-cycle (DISC) virus vaccine is formed by a virus with a deletion of an essential 
gene that is grown in a tissue culture cell that expresses the defective gene. 

In DNA vaccines, the genes coding for a protein that express an important B- and T-cell-specific 
viral or bacterial epitopes, is inserted to a plasmid, permitting to the protein to be expressed in 
eukaryotic cells. Plasmid DNA is injected into muscle or skin, then taken up by dendritic cells, 
where the cDNA is transcribed and the immunogenic protein expressed, permitting the induction of 
a cell-mediated and humoral immune response. Attenuated viruses or bacteria, such as E.Coli may 
be used as vectors containing the plasmid.  

Reverse vaccinology, which utilises genomic sequence data, is a new approach for the 
development of vaccines against the meningococcus [70] 

 

2.3.4 Vaccine against T-independent antigens: encapsulated bacteria 
Multi-serotype, polysaccharide-based vaccines have been used for more than 15 years against S. 

pneumoniae and N. meningitidis. These vaccines are able to protect against encapsulated bacteria by 
inducing complement-mediated bactericidal antibody and opsonophagocytosis [65]. The plain 
polysaccharide pneumococcal or meningococcal vaccines prevent invasive disease in immune-
competent adults but not in children younger than two years of age. They do not induce high 
affinity antibody production or memory B cell formation because of the TI-2 nature of these 
vaccines. To resolve the problems associated with the TI nature of PS antigens, conjugate vaccines 
have been developed to convert the TI-2 immune response to a TD immune response. Other 
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strategies, namely anti-idiotypic antibodies, bacteriophage display libraries or DNA vaccines are 
being studying [65]. 

 

Conjugate vaccines 

Conjugate vaccines are composed of purified capsular polysaccharide or oligosaccharide 
antigens covalently linked to a carrier protein, changing the polysaccharide to a TD antigen and 
increasing its immunogenicity. It is postulated that PS-specific B cells internalize the PS-carrier and 
that proteolysis of the carrier protein generate peptides that are presented in association with MHC-
II molecules [71]. There is therefore an activation of T-cells and a germinal centre reaction, able to 
generate PS-specific plasma cells and memory B cells [72]. 

The first conjugate vaccine introduced for use in humans was against Haemophilus influenzae 
type B (Hib) in 1990 [73]. It induced an important fall of Hib disease that was attributed both to 
direct protection and to its capacity to reduce colonization of the nasopharynx by the bacteria. 
Therefore, it also reduced transmission in non-immunized subjects [74]. 

Vaccines against Streptococcus pneumoniae are complicated by the fact that there are over 90 
different serotypes, each with a distinct capsular polysaccharide, and the fact that anti-capsular 
antibodies are serotype specific and therefore do not cross-react with other serotypes. However, a 
small number of serotypes cause the majority of pneumococcal disease. The first pneumococcal 
conjugate vaccine was licensed in humans in 1999 and this conjugate vaccine included seven 
serotypes: 4, 6B, 9V, 14, 18C, 19F and 23F, and was conjugated to the mutant diphtheria toxoid 
protein CRM197. The pneumococcal conjugate vaccine induced priming and subsequent boosting 
with the plain polysaccharide vaccine was able to generate high avidity IgG antibody responses 
[75]. Further, the pneumococcal conjugate vaccine reduces carriage of vaccine serotypes [76]. 

Conjugate vaccines exist for particular serogroups of meningococci and these are detailed below.  
Other conjugate vaccines are being developed against Group B Streptococci, Salmonella Typhi, 
Escherichia Coli, Shigella sonnei and Shigella flexneri. 

 

 
2.4 Factors that diminish the vaccine efficacy in very young infants 
 

With the exception of BCG, all infant vaccines require several doses to induce protection when 
they are administered before 6 months of life. This delayed induction of immune protection by 
vaccine is directly linked to the progressive maturation of their immune system [3]. 

2.4.1 Deficiencies of neonatal B cell responses to T-dependant antigens 
In early life, studies in mice have demonstrated limited induction of the germinal centre, that was 

associated with a slow maturation of follicular dendritic cell (FDC) networks [77]. 

The reduced neonatal responses to TD antigens appear to be caused by the lack of an appropriate 
anatomical microenvironment for T-B cell interaction [63].  

Even if T and B cells and white pulp of the spleen appear very early in human foetal 
development, the phenotype of the cells in the marginal zone remain immature until about two years 
old [78]. Lymphotoxin α (LT-α), LT-β and tumour necrosis factor have been identified as important 
signalling molecules for the development of the microarchitecture of secondary lymphoid organs 
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and for the formation of FDC networks [79]. Furthermore, B cells have been identified as the cells 
responsible for inducing the FDC network by secreting membrane LT [79]. The formation of GCs 
seems to depend on the interaction of B cells, T cells, FDC, and other APCs [80]. Molecules 
participating in the development of GCs include intercellular signalling proteins CD40 and CD40L, 
CD19, CD28, and B7-2. These molecules act at the level of the B cell/T cell interactions which are 
required for the maturation of B cells into GC cells.  

Splenic B cells of neonatal mice are unable to upregulate expression of MHCII after BCR 
ligation, although this response is induced by IL4 or CD40 ligation. Therefore, neonatal B cells 
seem to give a weaker signal to T cells via their TCR, which is probably too low to activate T cells. 
In consequence, there is no induction of CD40 ligand (CD40L) and no functional T-B cell 
interaction can occur [81]. Also, there is no induction of the expression of B7.2 (CD86) on neonatal 
B cells, by BCR ligation and neonatal B cells are unable to give the costimulatory signals to T cells 
via CD28 [81].  

In conclusion, neonatal B cells appear to be ineffective APCs. Furthermore in neonatal mice, 
macrophages and DCs are rare in the spleen and do not acquire antigen processing and presentation 
capacity until later in life. 

 
2.4.2 Poor response to T-independent antigens 

In infants and toddlers, antibody responses to most bacterial capsular polysaccharides are weak.  

Some polysaccharide antigens can activate the complement cascade by the alternative pathway. The 
role of complement for protection against encapsulated bacteria is essential, and seems to act by 
directing the marginal zone B cells or APCs toward the antigens on the surface of the bacteria or by 
increasing B cell activation by inducing co-ligation of the BCR and CD21 [81]. However, there is a 
reduced expression of CD21/CR2 complement receptor on infant B cells, that impairs B-cell 
activation [82]. Furthermore, human neonates have low levels of C3, which only attain adult levels 
after one year of life [83]. These two limitations, with a low production of IgG2 antibody [84] and 
the immaturity of the splenic marginal zone [78] contribute to the poor response to T-independent 
antigen during the first two years of life. 

It has also been demonstrated that the complement component C3 is important for the IgG 
response and for generation of GCs [85]. Therefore, low levels of C3 in neonates might contribute 
to the reduced induction of isotype switching and memory immunity that are observed in their 
response to TD and TI antigens [81]. 

 

2.4.3 Antibody production is of short duration 
Several studies on early immunisation in the first year of life have shown that antibodies are 

induced but do not last, even if high titres have been produced after repeated doses of vaccine [5]. 
Recent studies in murine models suggest that this could be linked to the fact that bone-marrow 
homing of long-lived plasma cells is lower in early life [86]. Several studies have observed that 
plasma cells are produced in early life and exit the lymph node to enter the bone marrow, but that 
once in the bone marrow they die rapidly because of limited functionality of the BM surviving 
niches [86, 87]. Activation of plasma cells in bone marrow niches are dependent on stromal cells, 
which express adhesion molecules including CXCL-12, V-CAM-1 and BAFF and secrete different 
cytokines [88]. 
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2.4.4 Qualitative differences in antibody responses 
Qualitative differences characterise early life antibody responses compared to those generated 

later in life. IgG and IgA responses to viral and bacterial infections are very low in the first year of 
life. As a result, immunisation during the first year of life can increase IgG antibody response [3]. 
Furthermore, there is a predominance of IgM, caused by defective isotype-switching, due to limited 
T cell help. However, IgG rather than IgM antibodies are generated after vaccination, suggesting 
that repeated doses of vaccine are able to induce enough T cell help to activate B cell isotype 
switching. This switch is characterized by high levels of IgG1 and IgG3 antibodies, and low levels 
of IgG2 [84]. 
 

2.4.5 Interference of persisting maternal antibodies  
Maternal antibodies also contribute to the reduced antibody response to vaccine in infants.   

Mat-abs are able to inhibit the replication of live vaccine and to hide epitopes of inactivated 
vaccines impairing their recognition by B-cells. The infant response is also influenced by the “ratio 
Mat-ab/ag”. The effects of maternal antibody on the infant response to live and inactivated vaccines 
are influenced by the levels of these antibodies present at immunisation and the use of different 
vaccines in mothers and infants [89, 90]. 

Studies in mice and human infants have demonstrated that T cell responses and priming are not 
inhibited by Mat-ab [89] and therefore repeated doses of vaccine will induce infant antibody 
responses as soon as the Mat-ab titre is below  the infant response threshold [90]. They have shown 
that high levels Mat-ab specific for the carrier protein, inhibit antibody responses to the carrier 
protein but do not interfere with T-cell helper responses and with the antibody response to 
polysaccharides [89]. 

Infant T cell responses are less affected by Mat-ab than B-cell responses. It is known that the 
introduction of a vaccine in a recipient with pre-existing passive antibodies induces formation of 
immune complexes of antigen-antibody. When a vaccine is introduced in a child who has pre-
existing Mat-ab, these will bind to specific B-cell epitopes on the vaccine antigens and will impair 
the recognition of these epitopes by infant B cells. These antigen-antibody immune complexes will 
be taken and processed by infant APC and peptide will be presented on the surface of APC, 
inducing CD4/CD8 priming, despite the inhibition of B-cell responses.  

The development of novel antigen delivery systems, such as biodegradable polymer 
microspheres or DNA vaccines, could prevent the inhibition of infant antibody responses by Mat-ab 
by prolonging immune stimulation. This could occur either by a progressive release of the vaccine 
antigen or by a continuing synthesis of the immunogenic antigen, allowing the Ma-ab to decrease 
and infant B cells to bind to the newly released or formed antigen. 

2.4.6 Suboptimal T cell responses 
It has been observed in several studies in mice that early life murine T-cells develop 

preferentially towards the TH2 pathway, i.e they respond better to viral/protein antigen. Studies on 
the in vitro maturation of T cells of umbilical cord blood have suggested that the TH2 bias of the 
neonatal response was not due to intrinsic properties of neonatal T cells [91]. The activation and 
maturation of neonatal CD4+T cells depends on the CD28-mediated co-signal, which influences the 
response to IL-12. High levels of stimulation by CD28 favour the production of type 1 cytokines 
such as IL-2, IFN-γ and TNFβ, but diminishes the production of type 2 cytokines, such as IL-4 and 



 34

IL-13, by neonatal T cells.  

Adkins et al. has suggested that neonatal T cells exposed to the antigen under particular 
conditions are able to generate adult-like TH1 responses. In mice this is associated with high levels 
of co-stimulatory signals, use of strong TH1-promoting agents and the reduction of infectious doses 
[92]. Other studies have demonstrated that both TH1 and TH2 cells were primarily generated in the 
neonate in lymph nodes, but differences with adults concerned kinetics of cytokine production and 
responses to adjuvant [93]. Neonates appear to be able to generate adult-like primary TH1 
responses but the maintenance of TH1 cells seems impaired in early life and secondary immune 
response is therefore dominated by  TH2 cells [93].  

Clinical observations of disease caused by intracellular pathogens in early life suggest that both 
innate (NK cells, IL-12, IFN-γ production) and adaptive (CD8 T cells, CD4 TH1 cells) immunity, 
responsible for pathogen clearance and for elimination of infected cells, are impaired [3]. It has also 
been proposed that the weak T-cell responses could be due to the low number of T cells in the 
neonatal spleen compared with lymph nodes, where T-cell maturation seems to be faster [93]. 

 

 

2.5 Application to Meningococcal serogroup C (MenC) glycoconjugate 
vaccine 

2.5.1 Meningococcal vaccines 

2.5.1.1 MenC/MenA vaccines 
The first meningococcal vaccines to be developed were the meningococcal plain polysaccharides 

against serogroups A and C in the late 1960’s. These were immunogenic in adults and used in 
outbreak control but were poorly immunogenic in infants less than 2 years old and did not induce 
immunological memory (T cell independent response) [94]. Meningococcal conjugate vaccines 
were developed throughout the 1980s and the first human trials were conducted in 1991 [95] using 
meningococcal A and C capsular oligosaccharides conjugated to the mutant diphtheria toxoid 
protein CRM197 (MenAC). This conjugate vaccine generated T cell helper responses, and was 
therefore able to induce isotype switching, affinity maturation and immune memory [96, 97].  

2.5.1.2 MenC conjugate vaccine 
The emergence of the ST11 clone bearing the C serogroup capsule concentrated efforts on the 

development of a serogroup C conjugate vaccine. A monovalent MenC-Crm197 glycoconjugate 
vaccine (MenCV) was therefore developed and in 1999, the UK was the first country to introduce 
MenC into its immunisation schedule where it was offered to all people younger than 18 years. 

2.5.1.3 MenB vaccines 
Serogroup B N. meningitidis causes around 50% of meningococcal disease cases worldwide 

[98], and is the only serogroup whose infection cannot be prevented by CPS (capsular 
polysaccharide) -based vaccines. Serogroup B CPS is a polymer of α(2-8)-linked N-acetyl-
neuraminic acid, which is also present in human tissues, such as the neural cell adhesion molecule 
involved in cell-to-cell adhesion [98]. An attempt to produce a conjugated vaccine using group B 
capsular PS, was developed by replacing the N-acetyl groups of the sialic acid residues with N-
propionyl groups. However, the antibodies induced by this vaccine had no functional activity [99]. 
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Therefore, because of the risk of induction of autoimmunity and because of the lack of 
immunogenicity, commercial development of PS-based group B vaccines was abandoned.  

Alternative approaches have focused on other antigens, such as those present in the outer 
membrane vesicles (OMVs). Native OMVs consist of intact outer membrane and contain OMPs and 
LOS. One of the OMPs, PorA, was identified as a major inducer of serum bactericidal antibodies. 
This protein is expressed by almost all meningococci. However, there are a large number of PorA 
proteins which elicit variant specific antibodies that do not confer protection against meningococci 
with heterologous PorA variants[100]. 

Other OMPs, such as the transferring-binding protein [101], PorB, Opa, etc., are also being 
explored as possible meningococcal vaccine candidates. The successful development of a broadly 
protective Group B vaccine may come as a consequence of the sequencing of the meningococcal 
genome which will certainly contribute to develop a highly effective Group B vaccine, by helping 
to identify new potential antigens to be included in vaccine candidates [102].  

 

2.5.1.4 Quadrivalent (group A, C, Y, W-135) vaccines 

The quadrivalent plain polysaccharide vaccine (PSV-4) (GSK and Sanofi-Pasteur) has long been 
used for travellers over two years old in epidemic or endemics areas, and for professionals working 
with suspensions of meningococci. However, this vaccine is poorly immunogenic in young infants 
and children less than 2 years old and does not induce immunological memory. A quadrivalent 
polysaccharide meningococcal vaccine conjugated to diphtheria toxoid (MCV-4) (Sanofi Pasteur) 
has been developed and has been licensed in the US since January 2005 for use in adolescents and 
adults. Comparison of MCV-4 and PSV-4 demonstrated that they were both highly immunogenic 
and induced a greater increase in serum bactericidal antibody to the 4 serogroups. However, a three-
year follow-up study reported that persistence of SBA and booster responses to MCV-4 was only 
observed in participants previously vaccinated with MCV-4 but not in those who had previously 
received PSV-4 [103]. Another study in the US tested the MCV-4 vaccine in infants, receiving 3 
doses at 2, 4 and 6 months of age. In this study MCV-4 was only modestly immunogenic in infants 
(after the third dose, between 54 and 92% of infants had an rSBA titre of ≥1 in 8, depending on the 
serogroup and dosage given). Further, GMTs of rSBA against all serogroups elicited titres lower 
than those reported after a primary series of other conjugate C and AC meningococcal vaccines 
conjugated to CRM197 and adjuvanted with AlOH4. However, it appeared to induce priming in most 
infants, given three doses in infancy [104]. Quadrivalent conjugate vaccines are also being 
developed by Novartis vaccines and Glaxosmithkline biologicals. 

2.5.2 Immunisation campaigns with MenC glycoconjugate vaccine  
In the early 1990s, an increase in incidence rates and reported outbreaks due to serogroup C 

meningococci in some industrialised countries (North America, Canada, Spain, England and Wales, 
Scotland and Ireland, etc.) led to immunisation campaigns with MenC glycoconjugate vaccine in 
the UK and many other countries. The UK was the first country in 1999 to introduce MenC 
glycoconjugate vaccine and, immunisation was offered to all people younger than 18 years. The 
uptake rate was more than 70%. The UK used a three dose regimen in infants with the primary 
immunisation schedule at 2, 3, and 4 months, a two-dose regimen in toddlers (5-11 months age 
group) in a catch up campaign and a single dose in older children and adolescents (1-17 years) [6]. 

The UK vaccination schedule in 2005 was 3 doses of MenC glycoconjugate vaccine at 2, 3 and 4 



months with a booster dose between 20 and 24 months old.  

In 2006, this schedule has been modified as follows:  

 

Birth 1 month 2 months 3 months 4 months 12 months 13 months 3-5y 11-12y 13-18y
DTaP-IPV-
Hib

DTaP-IPV-
Hib

DTaP-IPV-
Hib Hib-MenC dTaP-IPV dT-IPV

MenC MenC

MMR MMR

Pnc7 Pnc7 PnC7  
 

Table 3: New UK vaccination schedule since 2006 [105] 
 

Ireland and Spain introduced MenC immunisation in 2000 with incorporation into their routine 
2, 4, and 6 months schedule. The Netherlands, Belgium, and Australia introduced a single dose of 
MenC into the routine schedule at 12-14 months in 2002-2003. In Canada, the primary 
immunisation regimen varies from province to province; in Saskatchewan, only high-risk 
individuals are immunised; in Alberta, all infants are immunised at 2, 4, and 6 months of age; in the 
rest of the provinces, there is a 12-month single dose regimen. British Columbia did not introduced 
MenC with a mass immunisation campaign but added MenC to the routine immunisation schedule 
to coincide with pre-existing immunisations at either year 6 (age 11-12 years) or year 9 (age 14-15 
years) [6]. Other countries, such as France, introduced MenC only in regions with higher incidence. 
In Switzerland, MenC is not obligatory, but is a complementary recommended vaccine. It should be 
administered at 12 months (1 dose) and between 11 and 15 years of age (1 dose). MenC is 
particularly recommended for high-risk groups, i.e. persons with underlying conditions as asplenia, 
immunodeficiency, diabetes, etc. It is also recommended for military recruits or close contacts to a 
suspected case of meningococcal infection  
 

2.5.3 Effect of Menc introduction 

2.5.3.1 Herd immunity and carriage after MenC introduction 
A study by the UK Meningococcal Carriage Group [106] aimed to establish whether the mass 

immunisation campaign could result in herd immunity. They compared meningococcal carriage in 
students before vaccination (in 1999) with that of students of the same age, 1 year after mass 
vaccination. It was shown that carriage of serogroup C meningococci was reduced by 66%, 
indicating that the vaccine induced sufficient mucosal immunity to inhibit carriage of meningococci 
expressing the serogroup C polysaccharide [106]. A herd immunity effect has also been 
demonstrated by a 67% reduction in serogroup C MD for unvaccinated children when comparing 
1998/1999 with 2001/2002 [107]. It is not known how long herd immunity will last and whether the 
reduction in nasopharyngeal carriage may eventually result in an increased individual susceptibility 
to serogroup C invasive meningococcal disease because of a lack of natural boosting of 
immunological memory through reduced carriage in older adolescents [106]. 
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2.5.3.2 Efficacy of MenC vaccine 
Since the introduction of MenC in the UK in 1999, a marked decreased in the incidence of group 

C meningococcal disease has followed. The efficacy of the vaccine was approximately > 90% in all 
groups targeted for immunisation [43]. In all other countries where MenC was introduced the 
incidence had also fallen: in Ireland, by 96%; in Spain by 58%, in Belgium 55% and in Netherlands 
by 73% [6]. The effectiveness of glycoconjugate vaccines such as MenC is determined by the 
association of functional antibody titre, memory immunity and herd immunity. Functional antibody 
titre, measured by SBA, is the only validated correlate of protection from invasive meningococcal 
disease [108]. Immunological memory and herd immunity have been invoked to predict persistence 
of vaccine effectiveness despite waning SBA [6]. Presence of immunological memory can be 
demonstrated by characteristics of secondary immune response after challenge with plain 
polysaccharide vaccine. Low incidence of diseases in age groups with low SBA titres, implied that 
protection is due to this memory response or herd immunity [6]. 
 

2.5.3.3 Duration of immunity 
Trotter et al. assessed surveillance data from the 4 years since introduction of the MenC vaccine 

programme in the UK. They reported that vaccine effectiveness was maintained in children 
vaccinated in the catch-up campaign (aged 5 months to 18 years), but for children vaccinated in the 
routine infant immunisation programme, the effectiveness of the vaccine fell to low levels after only 
1 year (table 4). 
 

 
 

Table 4: Effectiveness of MenC vaccine in UK (1) [5] 
 

A study by Snape et al. reported that SBA titres wane rapidly, and were below the protective titre 
of 1 in 8 between 2-4 years after immunisation, depending on the age and on the schedule (Table 5). 
In the first year after routine infant immunisation at 2, 3 and 4 months vaccine effectiveness had 
fallen to 93%. More than 1 year after the single-dose regimen employed for 1-2 year olds children, 
vaccine effectiveness had fallen to 61% and for all other age groups immunised effectiveness 
remained above 80%. 
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Table 5: Effectiveness of MenC vaccine in UK (2)[6] 
 

The decrease in efficacy is particularly alarming in infants and toddlers, the age groups at highest 
risk of MD and in whom peak titres of bactericidal antibodies in serum (1 month after vaccination) 
had waned to low or undetectable levels by 7 to 9 months after vaccination [43]. 
 

2.5.3.4 Potential negative effects of MenC introduction 

Capsule switching, the change from one capsular polysaccharide to another is well known in 
Neisseria meningitidis [109]. There are major concerns that introduction of MenC could apply 
selective evolutionary pressure on the hyperinvasive ST11 clone to switch to another serogroup, 
potentially B [110]. Further, there is also the theory of serogroup replacement, i.e. that another 
meningococcal serogroup could fill the ecological niche left by the reduction in carriage of 
serogroup C meningococcus. To date, there was no increase in the incidence of serogroup B 
meningococci bearing the ST11, following vaccine introduction in the UK (see also chapter 2.1.4). 

The other concern was that introduction of the MenC vaccine might induce a reduction of MenC 
carriage and lead to reduced natural immune boosting. Recent studies in the UK reported that only 
10 to 30% of sera from unimmunised adults were positive for serogroup C bactericidal antibodies. 
Therefore, a decrease in levels of serum bactericidal antibodies in adults might explain the apparent 
increase in the rate of meningococcal disease, because of a decrease of acquisition of maternal 
antibodies transplacentally [42]. The risk of invasive disease in a vaccinated population is 
determined by the complex interactions between vaccine-induced and natural immunity, carriage 
and herd effects. 
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2.5.4 Optimal MenC schedule 

2.5.4.1 Reduced two dose MenC schedule 
All MenC vaccines in the UK are now licensed as a 2-dose schedule in infants from 2 months of 

age with an interval of at least 2 months between doses. Studies with MenC vaccine on a 3-dose 
schedule did not show a higher induction of antibody titres with the third dose compared to the 
second dose [111-113]. However, post vaccination antibody titres following one dose of MenC 
vaccine were significantly lower than 2 doses of MenC vaccine [114], suggesting that two doses of 
MenC vaccine in the first year of life induced higher protection than only one dose. 

2.5.4.2 Why not only a single dose in the second year of life? 
In Switzerland and in other coutries with low MenC incidence, the recommended schedule is a 

single dose of MenC in the second year of life in contrast to the UK recommendation of primary 
immunisation in the first year of life with a booster in the second year. In fact, the two dose 
schedule provides no significant benefit compared to a single dose of MenC in the second year of 
life alone [105].  

The higher effectiveness of MenC in infants immunised at age 5-11 months compared with those 
immunised at 2-4 months suggests that the age at which the final dose is given rather than a booster 
dose might be important. [5] As with Hib vaccine, the protection induced by MenC vaccination is 
age dependent, and infants vaccinated at older ages seem to acquire greater protection and for 
longer duration [5]. These findings suggest that accelerated schedules are not optimal for conjugate 
vaccines. Furthermore, even if immunisation before 1 year of life with MenC primes for memory 4 
years after primary immunisation, it does not seem to be sufficient to provide long-term protection. 
Delaying the primary immunisation to 1 year of life will leave infants below this age unprotected, 
even if this is an age of relatively low incidence of MD. Further, immunisation in the first year of 
life has the advantage to prime for following booster doses. 

2.5.4.3 Interaction between vaccines when administered in combinations or simultaneously during 
infant immunisation  

It has been demonstrated that MenC vaccine co-administered with DTaP-Hib and PC vaccine 
elicited lower antibody levels than when MenC was given separately from PCV vaccine [114]. 
Interactions between co-administered vaccines have been found among vaccines conjugated to the 
same carrier proteins (MenC-CRM197, PCV-CRM197) and also to different carrier proteins (PCV-
CRM197, Hib-TT). 

 

2.5.4.4 Why adolescents should be included in the immunisation campaign ? 
It has been shown that adolescents were the predominant carriers of serogroup C meningococci. 

Therefore, their inclusion in the catch up campaign seems essential to generate herd immunity. A 
possible schedule is a dose of MenC given at 12-18 months of age and another one at 12 years of 
age, as was recently introduced in Switzerland. These doses of MenC would provide an increase in 
bactericidal activity at 1 year of age and just before the period of adolescence, which are two 
periods of high incidence of MD. Without booster doses of MenC vaccine after early childhood 
immunisation, teenagers would be very susceptible to MD, with their bactericidal antibody titre 
being lower than protective threshold. 
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Chapter 3: Determination of memory response to MenC conjugate 
vaccine in children of one year of age, after priming at 2, 3 and 4 
months 
 

3.1 Rationale 
 

Although the MenC conjugate vaccine has been shown to be effective, there are unanswered 
questions around its ability to provide protection against disease in the long term. The antibody 
level against MenC polysaccharide falls after vaccination and it has been proposed that any 
continuing protection is in part due to the presence of immunological memory, known to be induced 
by conjugate vaccines. However, recent vaccine failures for both MenC and Hib conjugate vaccines 
have raised questions about the ability of immunological memory to provide protection against 
disease. Due to these concerns, a booster dose of vaccine against both Hib and MenC at one year of 
age has been introduced to the routine immunisation schedule for children in the UK. 

The generation and measurement of immunological memory is poorly understood. One way to 
assess immunological memory is to repeatedly measure antibody and the response to further 
vaccine doses at progressively longer intervals from vaccination. Quantifying the number of plasma 
and memory B cells produced by vaccination is also an important step towards understanding the 
development of long-term protection for a particular vaccine. Assessment of the characteristics of 
the B cell response will help to improve understanding of the generation of sustained immunity and 
B cell memory. The number of antigen-specific B cells prior to and following administration of 
MenC vaccine can be measured by the Enzyme-Linked-Immuno-Spot-Assay (ELISpot) technique 

 

The objectives of this clinical study are thus : 
- To establish whether MenC-specific memory B cells and plasma cells persist in the blood 
in children of one year of age, following primary immunisation with MenC vaccine at 2, 3 
and 4 months of age. 

- To establish the kinetics with which MenC-specific plasma cells and memory B cells 
increase in the blood of healthy children after a booster dose of MenC vaccine. 

- To compare the results of MenC-specific B cells with B cells specific for other antigens, 
such as CRM197 (a mutant of diphtheria toxoid used as carrier protein in MenC vaccine), 
diphtheria toxoid, Hib, and tetanus toxoid. 

 

3.2 Study design 
Subjects: 

This was a phase IV, open-label study to investigate the B cell memory immune response to the 
C polysaccharide component of a MenC vaccine. A total of 33 healthy children of at least 12 
months of age to which the vaccine had been administered after priming with meningococcal C 
conjugate vaccine at 2, 3 and 4 months of age were recruited. These children were recruited from a 
cohort of 72 subjects who participated in a previous study in Oxfordshire (study M14P5, Eudract 
number 2004-004962-33), assessing the B cell response to the C polysaccharide component of a 
MenC vaccine during routine infant immunization schedule (at 2,3 and 4 months of age). 
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Information and consent: 

Informed consent was obtained from the parents and the protocol approved by the Research 
Ethics Committees of Oxfordshire (approval number CO6/Q1604/N41) and from the clinical trials 
regulations of Novartis vaccine (Eudract number 2006-000732-28). 

Vaccine administration 

After consent by the parents, participants received a dose of serogroup C meningococcal 
polysaccharide conjugate vaccine (0.5 ml) (Menjugate), by intramuscular injection into the antero-
lateral thigh. The 0.5 ml dose contained 10 μg of the polysaccharide and 10 μg of the conjugate 
CRM197 and was adsorbed on aluminium phosphate. At the same time, but in the other anterolateral 
thigh, a dose of Hib conjugate vaccine (Hiberix) was administered following the new routine 
immunization schedule of UK since 2006 [105]. Each 0.5 ml dose of the Hib conjugate vaccine 
contained 10 μg of purified Hib capsular polysaccharide covalently bound to approximately 30 μg 
tetanus toxoid. 

Samples 

A blood sample was obtained from each child prior to the vaccination and at day 30 after the 
vaccination. The 33 children were enrolled into 5 groups to allow investigation of the kinetics of the 
antibody, plasma cell and memory cell response between day 2 and day 9. Blood from children 
allocated into the different subgroups were obtained on either day 2, day 4, day 6, day 8 or day 9. 
There were a total of 3 blood draws for any one child (Table 6). 

 
Group (subjects) Visit 6 Visit 7 Visit 8 

1( 5) Day 0 Day 2 Day 30 
2 (7) Day 0 Day 4 Day 30 
3 (6) Day 0 Day 6 Day 30 
4 (7) Day 0 Day 8 Day 30 

5 (6) Day 0 Day 9 Day 30 
 

Table 6: Schedule of visits for blood sampling 
 

The total volume of blood sample was maximum 6 ml. From the 6 ml of blood, 5 ml was 
decanted to a heparinised container for B cell studies by ELISpot and 1 ml of blood (clotted sample) 
was decanted for antibody studies by ELISA and SBA. If the total volume of blood was less than 6 
ml, the availability of samples for B cell studies was the priority for each visit, except visit 8 (30 
days after immunisation). This was because the SBA and ELISA assay were deemed to be more 
important to assess whether the child was protected or not after the booster dose of MenC-conjugate 
vaccine. 

 
3.3 Materials and Methods 

3.3.1 Preparation of PBMCs for culture or for ex vivo ELISpot 
Reagents 

- RPMI-1640 Hepes modification 500 ml (Sigma-Aldrich, England) 

- Penicillin (5000 units)/ Streptomycin (5 mg) in 100 ml (Sigma-Aldrich, England) 
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- L-Glutamine (200 mM) in100 ml (Sigma-Aldrich, England) 

- Lymphoprep (Axis-Shield Diagnostics, Norway) 

- Foetal Calf Serum (FCS) (500 ml heat inactivated at 56°C for 30 minutes + frozen in 50 ml 
aliquots at –20°C) (Sigma Aldrich, England) 

- Complete medium (RPMI (500 ml) + penicillin/streptomycin (5 ml) and L-Glutamine (5 ml)) + 

10% FCS (450 ml medium + 50 ml FCS.) 

 

Process 

A maximum volume of 5 ml of heparinised blood from children was available for the separation 
of PBMCs. The blood was diluted 1:2 in Complete medium. The PBMCs were then separated by 
density gradient centrifugation over Lymphoprep, which was added into a new universal tube at 
half the volume of the diluted whole blood. The diluted whole blood was then slowly layered on top 
of the lymphoprep without mixing the layers. The layered blood was then centrifuged at 2200 rpm 
for 30 minutes with the brake off. The buffy coat layer of PBMCs was transferred into a fresh 
universal tube taking care not to transfer any lymphoprep. PBMCs were then washed once in 
Complete medium and three times with 10% FCS. 

After the final wash, cells were resuspended into 1 ml of 10% FCS for counting by adding 50 μl 
of cells to 50 μl trypan blue + 50 μl PBS. The cells in a 10 μl volume of this mix were counted 
using a haemocytometer with a central 5x5 RBC grid and counting 5 squares within this grid. The 
number of cells obtained was then multiplied by 5 (allowing for number in total RBC grid), then by 
3 (allowing for the cell dilution), and then by 104   (allowing for the depth of the haemocytometer). 
This gave the total number of cells/ml. The result was divided by the number of cells required / ml, 
which for cell culture and ex vivo ELISpot was 2x106, which gave the final volume in ml of cell 
suspension.  

 
3.3.2 Activation of memory B cells during 5 days for memory B cell ELISpot 
Description of the assay 

The ELISpot assay allows quantitation of antigen-specific memory B cells in human blood. This 
assay requires a 6-day polyclonal stimulation of PBMC to drive memory B cells to differentiate into 
antibody secreting cells (ASC) in vitro. A number of mitogens can be used to activate memory B 
cells in vitro. For example CpG-ODN induces IL-2 production, IL-2 receptor expression and thus 
activation and proliferation of immune cells via TLR9 and TLR4. IL2 also allows non-cognate T 
cell help. Pokeweed mitogen (PWM) and Stapylococcus aureus cowan strain (SAC) are polyclonal 
activators and activate all lymphocytes. SAC acts via B cell receptor (BCR) and T cell receptor 
(TCR) triggering. In a study by Bernasconi et al. it was observed that activation of naïve B cells 
was dependent on BCR signalling by anti-IgG and that they were unresponsive to T cell help and 
CpG. In addition, human memory B cells proliferated with bystander T cell help, when stimulated 
with CpG or IL2 and polyclonal activators without need for BCR triggering by addition of anti-Ig. 
In conclusion, in the absence of specific Ag only memory B cells proliferate and differentiate to 
ASCs in response to polyclonal stimuli derived from microbes or activated T cells [13]. Further it 
was found by Crotty et al. that PWM combined with SAC and a CpG oligonucleotide was the 
optimal combination identified. [115]. 
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Reagents 

- 10%FCS 

- PWM (10mg)) reconstituted to 1mg/ml (Sigma-Aldrich, England) 

- CpG-2006 TCG-TCG-TTT-TGT-CGT-TTT-GTC-GTT (200µg)) re-constituted in 1ml of distilled 
water (Invitrogen, England) 

- SAC (Calbiochem, England) 

- 96 well, round bottom, cell culture treated, sterile cell culture plates (Fisher, England) 

Process 

PBMCs prepared from peripheral blood were re-suspended in 10% FCS at a final concentration 
of 2x106 PBMC/ml and added to 96-well round bottomed culture plates in 100 μl/well. Stimulated 
medium, containing 1/5000 SAC, 1/6000 or 83 ng/ml PWM and 1/40 or 2.5 μg/ml CpG-2006 was 
added to the cells in 100 μl/well. The cells were incubated at 37°C in 5% CO2 for 5.5 days. 

 
3.3.3 Determination of antigen-specific-plasma cells and memory B-cells by ELISpot 
Description of the assay 

ELISpot assay permit to quantify antigen-specific memory B cells and plasma cells in human 
blood. The ELISpot assay can be performed either directly from blood (ex vivo) to assess Ag-
specific plasma cells or after 6-day polyclonal stimulation of the PBMCs to assess Ag-specific 
memory B cells. The 6 day culture allows the detection of memory B cells that have differentiated 
into ASCs in vitro and allows detection of specific B-cells at a single-cell level.  

Materials  

- 10%FCS 

- Purified tetanus toxoid (Statens seruminstitut, Denmark) 

- Purified diphtheria toxoid (Statens seruminstitut, Denmark) 

- Purified CRM197 toxoid (Novartis vaccine, Italy) 

- Methylated human serum albumin (mHSA) (NIBSC, England 

- Serogroup C meningococcal polysaccharide (NIBSC, England 

- Goat-anti-human immunoglobulins (Caltag laboratories, Burlingame, USA) 

- ELISpot plates (96-well PVDF membrane) (Millipore, England) 

- Alkaline phosphatase conjugates: Goat-anti-human IgG (Calbiochem, England) 

- Alkaline phosphatase substrate kit (Bio-Rad, England) 

- Tween20 (VWR International, England) 

- EDTA (Ethylenediaminetetraacetic acid di-sodium salt dehydrate) (Sigma-Aldrich, England) 

- PBS tablets (Sigma-Aldrich, england) 

- NaCl (sodium chloride) (Sigma-Aldrich, England) 

- KH2PO4 (potassium dihydrogen orthophosphate) (Sigma-Aldrich, England) 



- Na2HPO4-7H2O (di-sodium hydrogen phosphate-heptahydrate) (Sigma-Aldrich, England) 

- KCl (potassium chloride) (Sigma-Aldrich, England) 

- 10xPBS (phosphate buffered saline)  : NaCl (80 g), KH2PO4 (3.14 g), Na2HPO4-7H2O (20.6 g), 
KCl (1.6 g) were dissolved into distilled water (1L). The pH was then adjusted to 7.2 before the 
solution was autoclaved. Following sterilization, the solution was stored at room temperature. 

- 1xPBS (phosphate buffered saline)  :10xPBS (100 ml) was added to distilled water (900 ml), 
and then the pH was corrected to 7.2. 

- Wash buffer (PBS-Tween 0.25): Tween20 (2.5 ml) was added to 1X PBS (1L), at pH corrected 
to 7.2. 

- Cell wash buffer (PBS-EDTA+0.05% FCS) : A total of 5 PBS tablets and EDTA (0.744 g) were 
dissolved into distilled water (1L). The pH was then adjusted to 7.2 before the solution was 
autoclaved. Following sterilization, FCS (5 ml) was added to give a final concentration of this 
reagent of 0.05%. This solution was stored at 4˚C. 

 
Process 

3.3.3.1 Preparation of ELISpot plates 

MultiScreenTM-IP 96 well filter plates were coated with either 5 μg/ml serogroup C 
meningococcal polysaccharide conjugated to methylated human albumin (5 μg/ml), CRM197 (10 
μg/ml), diphtheria toxoid (10 μg/ml), tetanus toxoid (5 μg/ml), Hib polysaccharide (2 μg/ ml), or 
goat anti-human Ig (10 μg/ml) in sterile PBS (100 μl/well). PBS alone was added to the antigen-
blank wells. The ELISpot plates were then stored at 4°C until use. 

Just before the cell suspension was added, pre-coated ELISpot plates were washed and blocked 
with 10% FCS (200 μl/well) for at least 30 minutes. 

 

Subject 1 2 3 4 5 6 7 8 9 10 11 12
A Menc Menc Menc Menc Menc Menc Menc Menc Menc Menc Hib Hib
B Crm Crm Diph Diph Tet Tet Ig 1:10 Ig 1:100 PBS PBS
C Menc Menc Menc Menc Menc Menc Menc Menc Menc Menc Hib Hib
D Crm Crm Diph Diph Tet Tet Ig 1:10 Ig 1:100 PBS PBS
E Menc Menc Menc Menc Menc Menc Menc Menc Menc Menc Hib Hib
F Crm Crm Diph Diph Tet Tet Ig 1:10 Ig 1:100 PBS PBS
G Menc Menc Menc Menc Menc Menc Menc Menc Menc Menc Hib Hib
H Crm Crm Diph Diph Tet Tet Ig 1:10 Ig 1:100 PBS PBS

 
Table 7: ELISpot plate layout (1) 
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Subject Subject Subject
1 2 3 4 5 6 7 8 9 10 11 12

menc Hib Diph Ig menc Hib Diph Ig menc Hib Diph Ig
menc Hib Diph  1:10 menc Hib Diph  1:10 menc Hib Diph  1:10
menc Hib Diph menc Hib Diph menc Hib Diph
menc Hib Diph Ig menc Hib Diph Ig menc Hib Diph Ig
menc crm Tet 1:100 menc crm Tet 1:100 menc crm Tet 1:100
menc crm Tet menc crm Tet menc crm Tet
menc crm Tet PBS menc crm Tet PBS menc crm Tet PBS
menc crm Tet PBS menc crm Tet PBS menc crm Tet PBS

 
Table 8: ELISpot plate layout (2) 

 

3.3.3.2 Detection of plasma cells 

PBMCs prepared from peripheral blood were washed 3 times with 10% FCS and re-suspended to 
a final concentration of 2x106 PBMCs/ml. 100 μl/well of the suspension was added to ELISpot 
plates pre-coated, and incubated overnight at 37°C in 5% CO2. Cells and supernatants were then 
discarded from the plate before washing four times with 200μl/well PBS-Tween 0.25, and once 
with a 5 minutes incubation with PBS. IgG-Alkaline phosphatase conjugate at a concentration of 
1:5000 (100 μl/well) was added to the plate and incubated for 4 hours at room temperature. Wells 
were then washed four times in PBS-Tween 0.25 and three times in dH20 before 50μl/well of 
substrate solution (substrate buffer 1/25, in dH2O, with 50 μl of each of solutions A and B per 5 ml 
of dH2O) was added. The plates were developed, allowing spots to be observed and the reaction 
was stopped using dH2O (200 μl/well) without allowing the background to darken. Finally, the 
plates were washed four times with dH2O (200 μl per well) before the plates were dried in drying 
oven.  

3.3.3.3 Detection of memory B-cells 

After 5.5 days of culture, the cells were re-suspended and washed three times in PBS-
EDTA/FCS (0.05%). Then the cultured cells were plated into pre-coated ELISpot plates at 2x105 
cells /well and then incubated and developed as for the ex-vivo ELISpot (see above). 

3.3.3.4 Calculation of memory B cell frequencies 

Following development, plates were read on an ELISpot reader ELR02 (AID) and ELISpot 
software, version 3.2.3 (Cadama Medical Ltd, Stourbridge, UK). Spot-forming cells were counted 
and confirmed by visual inspection. Identical settings were used for all plates and antigens and the 
operator was blinded to which sample was being counted. 
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The number of replicates depended on PBMC yield, which varied, so varying numbers of 
cultures were analyzed per donor, and donors with the most cells had more replicates of B-cell 
assays for each antigens tested. The mean number of spots was calculated for each antigen from the 
replicates. Between 4 and 20 replicates were obtained for MenC. Between 2 and 8 replicates were 
obtained for diphtheria toxoid, CRM197, tetanus toxoid and Hib. Anti-immunoglobulin assays were 
undertaken in 2 dilutions (1:10 and 1:100) with between 2 and 6 replicates per dilution. There were 
1-6 replicates of the PBS control. For the culture B cell ELISpot samples were excluded from the 
analysis when less than 700 IgG secreting cells were detected per 2x105 cultured lymphocytes. This 
was to exclude assays with failure of memory B cell activation in culture. 
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3.3.3.5 Statistical analysis 

Data was analysed using SPSS version 14.0 and represented as box plots, with median values, 
25th-75th-percentile values, error bars (including all values within 1.5 times the interquartile range of 
the box), and values falling outside of the error bars indicating by a dot. Within-group comparisons 
of B cell numbers at varying time points were made using the Wilcoxon signed ranks test for 
unpaired data. A value of P ≤ 0.05 was considered statistically significant and was indicated on the 
output graphics by an ** for P ≤ 0.05 and *** for P ≤ 0.01. 

 
3.4 Results 

Between May 10, 2006 and August 10, 2006, all 33 children completed the phase IV study. 
Samples from 27 children were obtained at visit 6, 31 at visit 7, and 29 at visit 8. For memory B cell 
assessment, samples were excluded because less than 700 IgG secreting cells were observed or due 
to culture contamination and therefore at V6 21 samples were available for analysis and at V7 and 
V8 23 samples were available for analysis. 

The V7 sample was prioritized for use in the ex vivo ELISpot assay, whereas the V6 and V8 
samples were prioritised for assessment of memory B cells by the cultured B cell ELISpot method. 
Ex vivo ELISpot was performed on these samples only if there were sufficient cells available after 
cultured ELISpot. 

3.4.1 Persistence of IgG-specific memory B cells and plasma cells specific for MenC 
and for other antigens prior to vaccination 

At one year of age, antigen-specific memory B cells for MenC, CRM197, Hib and tetanus toxoid 
were infrequently detected in peripheral blood of infants previously primed with these antigens 
(Figure 7). Diphtheria toxoid-memory B cells were detectable with a median frequency of 3 ASCs 
per 2x105 cultured lymphocytes. 

Prior to vaccination, only 9/21 children had detectable MenC-specific memory B-cells. Of these, 
8 had 1 ASC per 2x105 cultured lymphocytes and 1 had 2 ASCs per 2x105 cultured lymphocytes. 
The median of the persistence of MenC-specific memory B cells was 0. By comparing the 
persistence of memory B cells specific for other antigens : 16/20 children had detectable CRM197-
specific memory B cells with a median of 1 ASC per 2x105 cultured lymphocytes; all children had 
detectable diphtheria toxoid-specific memory B cells with a median of 3 ASCs per 2x105 cultured 
lymphocytes; 3/11 children had detectable Hib-specific memory B cells with a median of 0 ASC 
per 2x105 cultured lymphocytes; and 6/11 children had detectable tetanus toxoid-specific memory B 
cells with a median of 1 ASC per 2x105 cultured PBMCs. 

 
Prior to vaccination, there were no antigen-specific plasma cells detected in peripheral blood. 

Frequency was between 0 and 1 ASC per 2x105 PBMCs for all antigens and in all children (Figure 
8). 

 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Persistence of Ag-specific IgG memory B cells prior to vaccination 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Persistence of Ag-specific IgG plasma cells prior to vaccination. 
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3.4.2 Kinetics of the response of Menc-specific plasma cells after a booster dose of 
MenC- and Hib- conjugate vaccines, and in comparison to other antigens. 

 
Before immunization, there were no MenC-plasma cells detected in peripheral blood in the 22 

children tested, except for one child who had 1 MenC-ASC per 2x105 PBMCs (Figure 8 and 9). 
Following immunisation, the first response in relation to baseline was seen by day 4, with a median 
of 1 MenC-ASC per 2x105 PBMCs (Figure 9). Peak plasma cell responses were seen at day 6, with 
a median of 22.5 MenC-ASCs per 2x105 PBMCs (p ≤ 0.01 between D0-D6), followed by a rapid 
decline in the frequency of MenC-plasma cells already by day 8 and day 9 (median of 4 and 2 ASCs 
per 2x105 PBMCs). There were no more MenC-plasma cells at day 30. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9: Kinetics of the response of MenC-specific IgG plasma cells after MenC- and Hib-
conjugate vaccines. 
 

Plasma cell responses specific for other antigens were also assessed for comparison with the 
MenC-plasma cell response. However, all other antigens tested were also contained or related to the 
vaccines administered at day 0; CRM197 was used as carrier antigen in the MenCV. Tetanus toxoid 
was used as carrier antigen in the Hib-conjugate vaccine. Diphtheria toxoid-specific immune cells 
were also stimulated, as CRM197 is a mutant protein derived from diphtheria toxoid. The magnitude 
and rate of decline in frequency was variable between individuals and for each antigen, while the 
peak response occurred consistently on day 6, (except for Hib-ASCs, where the peak was seen by 
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day 8-9, but the samples number were very low for day 6 and day 9) (Figure 10). The difference 
between baseline frequency and peak frequency at day 6 was statistically significant for CRM197-, 
diphtheria toxoid-, tetanus toxoid- specific ASCs (p ≤ 0.05 between D0-D6). For all the antigens 
tested, there were almost no detectable specific plasma cells at day 30 post vaccination (median 
between 0 and 1 ASC per 2x105 PBMCs for all antigens). 

The magnitude of response was greater for diphtheria toxoid- specific plasma cells, compared to 
CRM197- specific plasma cells, with a median at day 6 of 20.5 diphtheria toxoid-ASCs per 2x105 
PBMCs and 9 CRM197-specific ASCs per 2x105 PBMCs (Figure 10).  
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Figure 10: Kinetics of the response of CRM197-, diphtheria toxoid-, Hib-, tetanus toxoid- 
specific IgG plasma cells after booster dose of MenC- and Hib- conjugate vaccines. 

 



NB: There was only one subject at D9 for Hib and tetanus toxoid, and this subject was the same 
subject represented by the * at Day 9 on the Figure 11. This individual, therefore, responded 
particularly well to the booster dose of MenC- and Hib- conjugate vaccines. 
 

There were no detectable change in the frequency of total-IgG plasma cell after immunization 
with MenC- and Hib- conjugate vaccines (Figure 11). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11: Kinetics of the response of total IgG-plasma cells after booster dose of MenC- and 

Hib- conjugate vaccines. 
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3.4.3 Kinetic of the response of Menc-specific memory B cells after booster dose of 
MenC- and Hib- conjugate vaccines, and in comparison to other antigens 

Prior to vaccination, 9/21 children had detectable MenC-memory B cells (1/21 had 2 memory cells 
and the 8 others had 1 memory cell per 2x105 cultured lymphocytes), but the median frequency before 
vaccination was 0 MenC-memory cells per 2x105 cultured lymphocytes (Figure 7 and 12). 

The first response above baseline was seen by day 8 for MenC-memory B cells, varying from 1 to 
154 MenC-memory B cells and with a median of 8 MenC-memory B cells per 2x105 cultured 
lymphocytes and by day 9 between 1 and 80 MenC-memory B cells with a median of 3 MenC-
memory B cells per 2x105 cultured lymphocytes (Figure 12). The difference of MenC-specific memory 
B cells per 2x105 cultured lymphocytes between D0 and D8 was statistically significant (p ≤ 0.05 
between D0-D8). 

At one month after the booster dose of MenCV, MenC-memory B cells were still detected in 
blood. There were between 0 and 74 cells with a median of 4 MenC-memory B cells per 2x105 
cultured lymphocytes. The level at D30 after immunisation was statistically different from baseline 
level (p ≤ 0.01 between D0-D30) (Figure 12). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12: Kinetics of the response of MenC-specific IgG memory B cell response after 
booster dose of MenC- and Hib- conjugate vaccines 
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Memory-B cell responses specific for other antigens were also assessed for comparison (Figure 
13). For Hib and tetanus toxoid, the number of subjects for the kinetics analysis were very low (in 
particular D4, D6 and D9) and for this reason, only baseline frequency at D0 and D30 and 
frequency at peak (D8), were used for comparison with other Ag-specific memory B cell frequency. 
For each antigen, the peak response of memory B cells appeared consistently on day 8, but the 
difference between D0 and D8 was not significantly different, except for Hib (p = 0.2 for CRM197, p 
= 0.068 for diphtheria toxoid, p = 0.001 for Hib and p = 0.17 for tetanus toxoid) (Figure 13). 

Post-day 8, antigen-specific memory cells declined variably, but for all antigens memory-B cells 
at day 30 post immunization were still significantly higher than baseline (p ≤ 0.001 for CRM197, 
diphtheria toxoid and Hib,  ≤ 0.05 for tetanus toxoid) (Figure 13).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13: Kinetics of the response of CRM197-, diphtheria toxoid-, Hib-, tetanus toxoid- 
specific IgG memory B cells after booster dose of MenC- and Hib- conjugate vaccines 
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When comparing memory B cell frequency at day 8 and at day 30 post-immunisation, there 
appeared to be a difference between polysaccharide antigens and protein antigens. MenC and Hib-
specific memory B cells seemed to decline after the peak, and were seen at lower levels at day 30 
than at day 8 whereas diphtheria toxoid-, CRM197-, and tetanus toxoid- memory B cells appeared to 
remain at the same level at day 30 as at day 8. However for all antigen-specific memory B cells, the 
frequencies between D8 and D30 were not statistically different (p = 0.92 for MenC, p = 0.86 for 
CRM197, p = 0.97 for diphtheria toxoid, p = 0.29 for Hib and p = 0.92 for tetanus toxoid) 

At 1 month after immunisation, the number of children with detectable MenC-specific memory 
B cells was 20/22 with a median frequency of 4 ASCs per 2x105 cultured lymphocytes. The median 
for the other antigen-specific memory B cells were in the same range. The median of diphtheria 
toxoid-memory B cells was higher whereas the median of Hib-memory B cells was particularly low 
with 1 memory B cell per 2x105 cultured lymphocytes. Memory B cells specific to all antigens 
however, were still significantly higher compared to the baseline level (p ≤ 0.01 between D0-D30 
for MenC-, CRM197, diphtheria toxoid and Hib and = 0.015 for tetanus toxoid) (Figure 13 and 14). 

As for plasma cells response, diphtheria toxoid-specific memory cells were much higher than 
CRM197-specific memory B cells for all the time points (Figure 13). 

There was a high variation in the frequency of total-IgG memory B cells after immunization, but 
total IgG-memory B cell frequencies were not statistically different between day 0 and day 9 (p = 
0.621) and between day 0 and day 30 (p = 0.224) (Figure 14). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14: Kinetics of the response of total IgG memory B cells after booster dose of MenC- 
and Hib- conjugate vaccines 
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3.5 Discussion 

3.5.1 Persistence of IgG-specific memory B cells for MenC and for other antigens 
prior to immunisation and kinetics of memory B cell response following 
immunisation 

In this study of children previously primed with MenCV at 2, 3 and 4 months of age, MenC-
memory B cells could not be detected in the blood by one year of age, as reflected by a median of 0 
memory cells per 2x105 cultured lymphocytes (Figure 7). Persistence of memory B cells specific for 
other protein or polysaccharide antigens before vaccination was also low, with a median of between 
0 and 1 memory B cells per 2x105 cultured lymphocytes for all antigens except diphtheria toxoid (3 
memory cells) (Figure 7). This detectable frequency of diphtheria toxoid- and tetanus toxoid-
specific memory B cells in children prior to immunisation was, in general, lower than their 
frequencies in primed adults studies in either our laboratory or in other studies. However in our 
laboratory, in some adults who had their last dose of diphtheria toxoid and tetanus toxoid 
immunisation more than 10 years previously, the frequency of memory B cells specific for these 
antigens were comparable to the values observed in children during the present study. Further, when 
memory B cell frequencies before immunisation were expressed as a percentage of total IgG-
memory B cells, there were a median frequency of 0.06% of CRM197-, 0.13% of diptheria toxoid-, 
0.01% of tetanus toxoid–specific memory B cells per total IgG-memory B cells (data not shown). 
These frequencies of memory B cells specific for diphtheria toxoid and tetanus toxoid in primed 
children were comparable although among the lower values of diphtheria toxoid- and tetanus 
toxoid- specific memory B cell frequency previously described in adults (between 0.01% and 1% of 
total IgG memory B cells) [11, 12].  

 

Following immunisation, memory B cells appeared rapidly in blood, were detected from day 8 
and persisted by 1 month. At 1 month following immunisation with MenC- and Hib-conjugate 
vaccines, frequencies of memory B cells expressed as a percentage of total IgG-memory B cells 
were: 0.29% for MenC, 0.24% for CRM197, 0.67% for diphtheria toxoid, 0.05% for Hib and 0.16% 
for tetanus toxoid. This memory B cell kinetics was the same for all antigens assessed and was 
comparable to previous studies using a variety of vaccine antigens in primed individuals;  

Nanan et al. [11] assessed frequencies of specific IgG-memory B cells after booster 
immunisation with diphtheria and tetanus toxoid in already primed persons (Figures 15, 16). They 
demonstrated that the total number of diphtheria-specific-B cells increased from day 0 to 12 and 
then gradually declined on day 90. Further, from day 0 to 90 after diphtheria immunisation, 
frequencies of tetanus-specific memory B cells remained unchanged. 

 

 



 
 

Figure 15: Secondary immune response after a booster dose of diphtheria vaccine: 
diphtheria- (filled squares) and TT-specific (open squares) memory B-cells expressed in 

percent of total-IgG-secreting cells (1 donor) [11] 
 

 
 
Figure 16: Diphtheria- and TT- specific memory B-cells during the first 90 days after booster 
dose of diphtheria toxoid vaccine (expressed as % of total IgG-secreting cells) (13 donors) [11] 

 
Crotty et al. [12] described kinetics of memory B cells after smallpox vaccination as follows: 

specific memory B cells initially declined post-immunisation, but then reached a plateau ~10-fold 
lower than the peak and were maintained for >50years after vaccination at a frequency of ~0.1% of 
total circulating IgG+ B cells (Figure 17).  

 
 

Figure 17: Longevity of smallpox vaccine-specific B cell memory [12] 
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These findings support the idea that following immunisation, memory B cells migrate out of 
circulation and home in secondary lymphoid organs, ready to mediate secondary immune response 
upon rechallenge. The time period over which memory B cells disappeared from peripheral blood 
varied in comparison to published studies with regards to the antigen under investigation and the 
age of the subjects. 

It appears that memory cells are kept in circulation for a short period following antigen exposure, 
perhaps with the function of protecting against endemic disease [12] or because of cellular 
competition (or programmed cell death) making space for new memory B cells in secondary 
lymphoid organs [12].  

 These observations suggest that although MenC-specific memory B cells were not detectable in 
the blood of one year old children primed with MenCV at 2, 3, and 4 months of age, MenC-memory 
B cells may persist after priming and home to lymph nodes ready to rapidly differentiate and 
proliferate upon re-challenge with the antigen. 

Memory cells, which appeared in the first week following immunisation in primed subjects, 
might be re-circulating memory B cells from previous priming rather than newly formed memory 
cells. The newly formed memory B cells might appear much later after newly stimulated naïve B 
cells have proliferated in germinal centres and differentiated into memory B cells.  

In another study by Kelly et al. involving subjects primed with the MenCV and then vaccinated 
with either a plain polysaccharide or another dose of MenCV, it was found that only the conjugate 
vaccine was able to induce a significant increase of the frequency of MenC-memory B cells after 
immunisation, and these cells already appeared in blood by day 6-7 after the immunisation with a 
booster dose of MenCV [10]. According to these observations, it appears that MenCV but not plain 
polysaccharide vaccine induces the appearance of memory B cells in the blood of primed subjects 
rapidly after immunisation. It can therefore be tentatively concluded that the conjugate vaccine 
might induce a germinal centre reaction and that the memory B cells that appear rapidly after 
immunisation are newly formed. However, it could also be that conjugate vaccines induce the 
proliferation of previously formed memory B cells and their escape from lymph nodes, induced by 
an unknown signal, after new exposure to the antigen.  

It has also been proposed that memory B cells found in the circulation should be representative 
of the entire B cell pool, because memory B cells continuously re-circulate through the blood and 
secondary lymphoid organs for years after immunisation, allowing them to encounter and react with 
antigens at these sites [11]. However in our study, and other studies of previously primed subjects, 
the frequency of memory B cells specific for the vaccine antigen consistently increased rapidly 
following immunisation. If memory B cell frequency prior to immunisation is representative of the 
size of the entire pool of these cells, the increase in their frequency following immunisation should 
account for newly generated memory B cells or rapid proliferation of previously formed memory B 
cells. Whether this is the case remains unclear. 

It has been suggested that there are two main categories of mechanisms involved in persisting 
activation of memory B cells: Ag-dependent and Ag-independent. In the Ag-dependent model, the 
Ag can persist on follicular DCs, or can be constantly generated from proliferating pathogen or 
periodic re-exposure to the pathogen can also stimulates the immune system [16]. In the Ag-
independent model, several examples have shown that immune memory can persist for years 
following immunisation in the absence of antigen [12]. The Ag-independent mechanism postulates 
that memory B cells proliferate and differentiate to plasma cells in vitro in response to polyclonal 
stimuli of two types [13]. One type of stimulus is derived from microbial products, such as 
lipopolysacharide or unmethylated single-stranded DNA motifs (CpG oligonucleotides), which 



stimulate B cells via TLR4 and TLR9. The other type of stimulus is due to T cell activation by third 
party antigens, which stimulates B cells in a noncognate fashion via CD40 ligand and cytokine 
production (IL15), referred as bystander T cell help. Therefore during an antigen-specific response, 
the increased availability of activated T cells results in an increased production of all plasma cells 
[13]. However in several studies [11] there were no observed changes in the frequency of memory 
B cells specific for recall antigens following immunisation with an antigen. 

 
3.5.2 Persistence of plasma cells specific for MenC and for other antigens prior to 

vaccination and kinetics of plasma cell response following immunisation 
 

In this study, there were no antigen-specific plasma cells detectable in blood before 
immunisation for all antigens. The median frequency of total IgG-plasma cells was 700 per 2x105 
PBMCs, suggesting that the frequency of antigen-specific plasma cells was too low to be detected 
in blood (i.e lower than 1/700 or 0.14% of total IgG-plasma cells). The first appearance of plasma 
cells above baseline was seen at day 4 with a peak at day 6, followed by a rapid decline in the 
frequency to day 8-9. The plasma cell kinetics was the same for all antigen (all of which were 
included in the vaccines) and similar to previous studies using a variety of vaccine antigens in 
primed individuals [13, 68]. 

The kinetics of the plasma cell response after different antigen exposures have been considered 
previously: Traggiai et al. [116] analyzed the kinetics of specific plasma cells and serum IgG after a 
booster immunisation with TT, and found that following boosting, large numbers of specific plasma 
cells were detectable from day 5 to 10 and returned to baseline by day 15. Serum IgG increased 
from days 5 to 8, and reached a plateau level, which persisted for 1 month before declining with a 
half life of 40 days and after 250 days had reached pre-boost levels. Traggia et al. found that total 
IgG-secreting plasma cells increased with the same kinetics, and in all cases, their number was 
higher than that of TT-specific plasma cells, supporting the hypothesis of an ongoing activation. 
The number of plasma cells secreting antibodies to unrelated antigens to which the donor was 
immune (Toxoplasma gondii and measles virus) also increased by a factor of 10 with similar 
kinetics. 

 
 

Figure 18: Kinetics of the response of plasma cells specific for tetanus toxoid and for 
unrelated antigens after a booster dose of tetanus toxoid vaccine (The donor was immune to 

TT, T. gondii and measles and was boosted with TT)  [116] 
 

Given the rapidity of plasma cell response following immunisation, these are likely to represent 
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plasma cells derived from pre-existing memory B cells. The transient appearance of the plasma 
cells is thought to represent their translocation from secondary lymphoid tissue, where they are 
formed following immunisation, to bone marrow via the blood-stream [63]. It is also possible that 
cells appearing at day 6 come from long-lived plasma cells residing within the bone marrow. These 
may then be subsequently activated to escape bone marrow by an unknown signal after new 
exposure to the antigen.  

The kinetics of the tetanus toxoid-plasma cell response in adults observed by Traggia et al. were 
comparable to the kinetics of the tetanus toxoid-specific plasma cell response observed in the 
infants in this study. However, the peak frequency of tetanus toxoid-plasma cells was much lower 
in infants (20 /2x105 PBMCs) compared to adults (10000/106 PBMCs). This could be explained by 
a larger pool of B cells in adults, because of an increased number of booster doses of vaccine or due 
to natural exposure with cross-reactive antigens or the antigen itself. Another possible explanation 
could be that the long lived plasma cell reservoir might less well be maintained in children, because 
of a lower number of available niches in secondary lymphoid organs [63] or because plasma cells in 
adults might also have a better capacity for recirculation possibly due to higher chemokines 
responsiveness. 

In our study, no significant variation in total IgG-plasma cell levels following immunisation was 
observed (Figure 11). The theory of a polyclonal activation of all B cells following immunisation 
with a specific antigen is a possible explanation for the findings of Traggia et al., that following 
immunisation with an antigen, plasma cells specific for all recall antigens appeared in the blood at 
very low frequency. Another explanation might be that of a competition for bone marrow survival 
niches between newly generated plasma cells and old plasma cells. This suggests that these cells 
might be long-lived plasma cells of the bone marrow, dislocated from their niches by the newly 
formed antigen-specific plasma cells [63]. Perhaps newly formed plasma cells have an advantage 
over older plasma cells in terms of their capacity to respond to chemokines secreted by dendritic 
cells in bone marrow niches.  

The polyclonal activation model suggests that under steady state conditions, Ag-specific plasma 
cells are continuously generated and should be detectable in peripheral blood on their way to the 
bone marrow and frequency of Ag-specific plasma cells and serum Abs should reflect the frequency 
of Ag-specific memory B cells activated by polyclonal mitogens [13]. In this study this theory does 
not appear applicable, because there were no plasma cells and no memory cells detected in 
peripheral blood at steady state, although memory B cells appeared rapidly in blood following 
immunisation. 

Conventional models postulate that plasma cells are short-lived and are continuously generated 
de novo from long-lived memory B cells by stimulation with persisting Ag [16]. Recent studies by 
Manz et al. [63] and Slifka et al. [117] demonstrated however, that a fraction of plasma cells in the 
murine BM are long lived and can secrete antigen for extended periods of time in the absence of 
memory B cells, however, the existence of long-lived plasma cells in humans remains controversial. 

It has been postulated that the B cell response generates short-lived plasma cells first, followed 
by long-lived plasma cells and memory B cells (Figure 19). In an infection, it is important to have 
antibodies produced as rapidly as possible. This is achieved by the antigen-specific B cells that 
differentiate into plasma cells early in extra-follicular foci. Generation of high affinity antibodies 
that are much more efficient at controlling and eliminating the pathogen is also important and is 
achieved by the Ag-specific B cells that initiate germinal centres [16]. 

 



 
 

Figure 19: Memory B cell and plasma cell differentiation [16]. 
 

Considering these observations, mechanisms that contribute to sustaining serum antibody levels 
after infection or vaccination might be long-lived plasma cells that survive in appropriate bone 
marrow niches and persisting activation of memory B cells [116].  

Traggiai et al. tried to explain the kinetic of antibody responses as follows: 

 
 

Figure 20: Mechanisms that sustain serum antibody levels following boosting [116]. 
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In the Ag-dependent model, memory B cells proliferate and differentiate massively to short-lived 
plasma cells. This response is transient because of the negative feedback of the high level of 
antibodies present. Some plasma cells generated in this way become long-lived, survive in bone 
marrow niches and continue to produce antibodies for few months. In the polyclonal model, all 
memory B cells respond to environmental antigens and continuously proliferate and differentiate 
into plasma cells, maintaining a constant level of serum antibodies and plasma cells throughout life. 
In conclusion, there is a “short term serological memory” which is Ag dependent and lasts for a few 
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months, and a “long-term serological memory” resulting from Ag-independent polyclonal 
activation of memory B cells [13]. 

The kinetics of the antibody response have not been considered yet in this study, but it has been 
observed in several other investigations that antibodies appear in the blood by day 4 post 
immunisation in primed subjects. This suggests that following immunisation, plasma cells appear in 
the blood later in comparison to the appearance of antibodies. A possible explanation might be that 
antigen-specific plasma cells formed during previous exposure to the antigen and homing in bone 
marrow niches could rapidly increase their rate of antibody secretion following re-challenge with 
the antigen. Later, plasma cells differentiated from circulating memory B cells might contribute to 
further increases in antibody level in the blood. Another explanation for the later appearance of 
plasma cells compared to antibodies might be a difference in sensitivity between the two assays 
used to measure antibody titer in blood (ELISA) and to detect ASCs (ELISpot). It is assumed that 
ELISA has a lower detection threshold compared to ELISpot which directly detects B cells 
secreting antibodies and which requires the survival of these cells during the assay. 

 

3.5.3 Comparison of the results of the present study with the one performed on the 
same infants, during priming at 2, 3 and 4 months of age 

Comparing MenC-specific plasma cell and memory B cell response after primary immunisation 
with 3 doses of MenCV at 2, 3 and 4 months in the same infants (Figure 21), the principal difference 
was the highest frequency of plasma cells and memory B cells at one year of age: at 4 months, the 
peak median frequency of plasma cells was 9.9 ASCs per 2x105 PBMCs and at one year it was 22.5 
ASCs pre 2x105 PBMCs. The memory B cell peak frequency was at 4 months 2.5 memory B cells per 
2x105 cultured lymphocytes and at one year of age 8 memory B cells per 2x105 cultured lymphocytes. 

When comparing the plasma cell response at 4 months and one year of age with the one at 2 months 
of age following the first dose of MenCV, plasma cells appeared in blood much later, by day 10-15 
compared to day 4-6 by 4 months and one year of age. These findings suggest two possible 
explanations: the maturation of the immune system between 2 months and 4 months/one year of age, 
or the difference in the characteristics of a primary immune response compared to a secondary immune 
response.  

To distinguish between these two possibilities, it might be interesting to assess the immune 
response to MenCV in non-primed infants of the same age (respectively 4 months and one year of 
age). If the immune response observed at 4 months or at one year is comparable to the primary 
immune response that was observed in these children at 2 months of age, it would suggest that the 
delay might be characteristic of a primary immune response rather than immaturity of the immune 
system. The higher frequency of B cells at one year of age compared to 4 months of age might be due 
to the expansion of the B cell pool by one year of age because of increased exposure to MenC antigens 
or to cross-reactive antigens. The other possible explanation might be the maturation of the immune 
system with age. In a study by Kelly et al. [10] assessing a secondary immune response in teenagers 
previously primed with MenCV and receiving a booster dose of MenCV, kinetics of plasma cell and 
memory B cell response (Figure 22) were comparable to that observed at one year of age, but the 
frequency of B cells was also much higher than in infants with a peak of 125 ASCs per 2x105 PBMCs 
and 15 memory B cells per 2x105 cultured lymphocytes respectively.  

 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 21: Plasma cell response (top) and memory B cell response (bottom) at different days 
after immunisation with 3 doses of MenCV at 2, 3, 4 months of age (Kelly et al. unpublished). 

 
It would be interesting to assess a primary immune response in adults and in children with the 

same novel antigen, as this would help to determine whether increased B cell frequency in adults is 
due to the existence of a larger pool of these cells or to maturity of the immune system. Further, this 
type of experience would also aid in answering the question of whether the delay in the response of 

 61



plasma cells at 2 months of age is due to a primary exposure or to an immaturity of the immune 
system. This would only be possible, using a novel antigen to which both adults and infants have 
not been exposed. Rabies antigen would be a good candidate for these studies.  

An increase of the B cell pool with age may result from natural or artificial boosting, through 
natural exposure to the antigen, or to cross-reacting antigens or by vaccination. Immaturity of the 
immune system may be manifested as a lower number of available niches in secondary lymphoid 
organs to home plasma cells and memory B cells, or different chemokines able to keep cells in life 
or to guide them in available sites.  

 

 
 
 

 
 

Figure 22: MenC-plasma cell (top-1b) and memory B cell response (bottom-3b) following 
immunisation with MenCV in teenagers previously primed with MenCV. 
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3.5.4 Why CRM197-specific B cell frequency was lower than diphtheria toxoid-specific 
B cell frequency? 
 

In this study, frequencies of diphtheria toxoid-specific plasma cells or memory B cells were 
always greater than the frequencies of CRM197-plasma cells or memory B cells.  

Non-toxic variants of diphtheria toxoid known as the cross-reacting materials (CRMs) are 
produced by different bacteriophages. In comparison to diphtheria toxoid, CRM197 contains a 
mutation where a glycine residue has been replaced by a glutamic acid residue in the catalytic 
domain of the toxin molecule. This small structural difference to the wild type toxoid makes 
CRM197 more sensitive to proteolytic degradation and therefore less immunogenic in comparison. 
However, it has been shown that CRM197 could be stabilised and protected from proteolysis by 
treatment with formaldehyde [118, 119]. It has been demonstrated in several studies that diphtheria 
toxoid and CRM197 were equally effective immunogens if the latter had been treated with a certain 
concentration of formalin [118]. However, it has been found in a study by McNeela et al. that 
although the effects of formaldehyde treatment on antibody responses are beneficial, T cell 
responses to CRM197 were progressively reduced with increasing concentration of formaldehyde 
[120] This suggests that formaldehyde treatment might result in the alteration or loss of T cell 
epitopes, interfering with TCR recognition of the antigen processed and presented by MHCII 
molecules. These observations might explain the differences between CRM197-specific and 
diphtheria toxoid-specific B cell frequencies found in this study. 

 

3.5.5 Expression of the memory B cell frequency as a percentage of total IgG ASCs 
 

Different research groups have expressed frequencies of memory B cells per total PBMCs, such 
as Bernasconi et al. [13] and Dorfman et al. [121] Others groups, such as Nanan et al. [11] or 
Crotty et al. [12, 115], expressed frequency of memory B cells as a percentage of total IgG-
secreting B cells. It has been suggested that it is more accurate to express memory B cell frequency 
as a percentage of total IgG-secreting B cells. This is because the number of memory cells observed 
in the ELISpot assay after 5 days culture does not directly reflect the number of specific memory 
cells seeded into a culture well, but despite in vitro expansion the ratio of memory B cells per total 
IgG memory B cells does not change. However, in this study and other studies of adults from the 
same laboratory, it has been found that the total number of IgG-memory cells varied in one 
individual over time and that the frequency of total IgG-spots detected by the ELISpot assay was 
too high and therefore less reliable. It was therefore decided in the present study to express the 
frequency of memory B cells per the total frequency of PBMCs. Results were expressed per 2x105 

PBMCs (for plasma cells) or 2x105 cultured lymphocytes (for memory B cells), rather than as 
percentage of total IgG-B cells. Although the totals of IgG plasma and memory B cells were highly 
variable in one individual over time, the same bias was applied for all individuals, all antigens and 
all time points.  

It is also important to mention that assessment of plasma cells and memory B cells was 
performed using the ELISpot assay and the only difference was the fact that memory B cells 
assessment was performed after polyclonal stimulation during 5 days of culture.  
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Chapter 4: Conclusions 
 

This study has shown that MenC-specific memory B cells were infrequently detected in the 
peripheral blood of infants of one year of age who had been primed previously with three doses of 
MenCV at 2,3 and 4 months of age. Furthermore, this study has shown that MenC-specific plasma 
cells and memory B cells appeared rapidly following immunisation with MenCV. Given the 
rapidity of this B cell response following immunisation, these findings suggest that although 
memory B cells were not detectable in peripheral blood before immunisation they might persist 
after priming, and home in secondary lymphoid organs ready to rapidly differentiate and proliferate 
upon re-challenge. These findings are important since it is known that MenC-specific antibody 
levels are not sustained after a primary immunisation with MenCV in infancy [5, 6]. 

However it has been suggested that in case of low baseline level of anti-capsular antibodies, 
mechanisms of memory immunity (inducing rapid production of high quality specific antibodies) 
might be too slow to protect an individual in the immediate hours or days following exposure to 
invasive meningococcus [67]. 

 It has been shown that antibody responses following re-challenge with the antigen are not 
detectable earlier than 4 days following antigen exposure, even in primed individuals. This suggests 
that the only way to protect children from invasive meningococcal disease might be the induction of 
sustained anti-capsular antibodies. It is hoped that a booster dose of MenCV at one year of age, 
when the immune system is more mature, will induce a better persistence of plasma cells and 
memory B cells to sustain serum antibody levels. 

Further studies are now essential to better understand the development of long-term protection 
against protein-polysaccharide conjugate vaccines given in infancy, in particular the relationship 
between plasma cells/memory B cells and long term humoral immunity. Such data may permit 
adaptation of the infant vaccine schedule to provide sustained protection against encapsulated 
bacteria and reduce infant mortality. 
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