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The key realization that led to the emergence of the new field of quantum information processing is that
quantum mechanics, the theory that describes microscopic particles, allows the processing of information in
fundamentally new ways. But just as in classical information processing, errors occur in quantum information
processing, and these have to be corrected. A fundamental breakthrough was the realization that quantum error
correction is in fact possible. However, most work so far has not been concerned with technological feasibility,
but rather with proving that quantum error correction is possible in principle. Here we describe a method for
filtering out errors and entanglement purification which is particularly suitable for quantum communication.
Our method is conceptually new, and, crucially, it is easy to implement in a wide variety of physical systems
with present-day technology and should therefore be of wide applicability.
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I. INTRODUCTION

When quantum communication was first proposed, it was
felt that interactions of the system with the environment, and
the consequent loss of information into the environment,
would produce errors which would be uncorrectable even in
principle. However, it was discovered using two independent
approaches, namely error-correction codes for quantum
memories �1,2� and entanglement purification �3�, that quan-
tum error correction is in fact possible. This transformed the
field from an intellectual game into a potentially revolution-
ary new technology.

In these pioneering papers and their extensions �see, for
instance �4–7��, the authors were not concerned with imme-
diate technological feasibility, but rather with proving a point
of principle. And the difficulty with all these protocols is that
in order to be implemented they require controlled interac-
tions between many particles. This is technically impractical
at present and it is likely to remain so for the foreseeable
future. For this reason, several authors have proposed meth-
ods for error correction which are comparatively simpler to
implement �8–12�. However, all these methods require spe-
cial resources such as squeezed states �8,9� or particular en-
tangled states �10,11� or optical memories �12� that are at the
limit of present technology even for proof of principle, let
alone for practical schemes. The difficulty of realizing error
correction is well illustrated by the complexity of a recent
experimental realization �13�.

Here we describe a different approach to dealing with
errors that work in a conceptually different way from exist-

ing error-correction methods. Our method realizes error fil-
tration and is particularly useful for quantum communica-
tion. It can easily be implemented with present-day
technologies and has therefore the potential to make a sig-
nificant impact on the nascent field of quantum communica-
tion. In the longer term, since our methods are applicable to
any type of communication, they may find uses inside quan-
tum computers and other quantum devices, if and when these
are built.

The difference between error correction and error filtra-
tion is the following. In error correction, the aim is actively
to correct the errors that occur during transmission so that
the decoded signal is as close as possible to the emitted sig-
nal. In error filtration, the aim is to detect with high prob-
ability when an error has occurred, and in that case to discard
the signal. In effect, what this method does is transform a
general error �phase noise, depolarization, etc.� into an era-
sure, which is far more benign. Our scheme can be thought
of as a form of error detection �14–16�.

We present two methods: one for improving a channel
which is useful for distributing arbitrary states �channel mul-
tiplexing�, the other for distributing a standard entangled
state �source multiplexing�. Of course, the first method can
also be used for distributing entangled states, but when we
know what entangled state we want we can also manipulate
the source. Thus our methods also provide new ways of pu-
rifying entangled states. The mapping between these two
problems follows the general correspondence between error
correction and entanglement purification without two-way
classical communication discussed in �4�.
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The simplicity of implementation of error filtration is un-
derlined by an experiment, reported elsewhere �17�, in which
a particular scheme is implemented.

In Sec. II we introduce our method in as simple and in-
tuitive way as possible. This should provide the reader with
the background to understand the more detailed examples
that follow. Then in Sec. III we analyze in detail an example
of implementation of error filtration in the case of a simple
particle and in Sec. IV we analyze in detail an example of
implementation of error filtration in the case of two en-
tangled particles. Finally in the Appendices we extend the
protocols presented in the main text in a number of ways:
We consider protocols with more general encoding and de-
coding operations �Appendices A and B�, protocols where
the particle has internal degrees of freedom �Appendix C�,
protocols in which error filtration is used in series �Appendix
D�, error filtration for signals comprising many particles
�Appendix E� and for classical wave signals �Appendix F�,
and general protocols for the transmission of entangled states
�Appendix G�.

II. BASIC PRINCIPLE

The central idea of the first method is what we will call
channel multiplexing, i.e., to use more transmission channels
than the minimum necessary to send the quantum state.

The main concept of our method is extremely simple and
we illustrate it by means of an example. Consider a quantum
system that propagates through a communication channel,
such as a photon going through an optical fiber. During the
propagation, errors can occur; it is these errors that we want
to identify and get rid of. Our method consists of replacing
the original single communication channel by an interferom-
eter consisting of two communication channels in parallel.
Now, instead of sending the photon through the original
single channel, we send it in a superposition of two states,
one going through each arm of the interferometer, i.e., in a
superposition of going through the two channels �see Fig. 1�.

The errors in each channel are arbitrary, i.e., we impose
no restrictions on the properties of the individual channels.
We will, however, arrange things so that the errors on the
different channels are independent. This is a simple matter of
engineering. �For instance, we can always increase the space
separation of the channels.�

When emerging from the two channels, the two wave
packets interfere. The output beam splitter is tuned in such a
way that when no error occurs, the photon emerges with
certainty in one of the output channels; we call this the “use-
ful” output. That is, we arrange the interferometer so that, in
the absence of errors, there is complete constructive interfer-
ence in one output channel and complete destructive interfer-
ence in the other output channel.

In the presence of errors, the output in the useful channel
is better than if we had not multiplexed. The reason for this
may be understood as follows.

Let us first consider that all the channels are similar, i.e.,
that they produce the same amount of errors. The total prob-
ability for an error is the same whether we send the photon
only through one single channel, as in the original scheme,

or in a superposition of going through the two channels.
�Indeed, we do not consider two photons, one going through
one channel, the other going through the other channel, each
accumulating errors, but a single photon, going either in one
channel or in the other.�

There are two complementary ways of describing noise
�18,19�. The first is to view the system as undergoing an
evolution which depends on random parameters. The second
more general approach is to describe the system and its en-
vironment as a single combined system. This combined sys-
tem evolves unitarily, and the noise manifests itself as en-
tanglement between the system and the environment. In the
second description, which we adopt here, whenever an error
occurs there is a registration in the environment. Due to the
fact that the channels are independent �as described above�,
when an error affects the photon going through the first chan-
nel, it is the state of the first channel that it is affected �i.e.,
that registers the fact that the error occurred�. Similarly,
when the photon goes through the second channel and an
error occurs, it is the state of the second channel that is
affected.

FIG. 1. Implementation of error filtration using multiple optical
fibers. A source �S1�� produces a single photon that is coupled into
an optical fiber. The photon is split into two using a fiber coupler
�C�. Note that an arbitrary state in a two-dimensional space �a qubit�
can be prepared in this way by changing the coupling ratio of the
coupler and by modifying the phase �A. In order to protect the state
against noise, each basis state is multiplexed into two transmission
states using 50/50 couplers. A single qubit is thus encoded into four
transmission states, each traveling through a separate fiber. Because
the photon cannot jump from one fiber to the other, it will only be
affected during transmission by phase noise. Furthermore the noise
in the different fibers will be independent. Hence the noise is of the
type �independent phase noise on the different transmission chan-
nels� studied in the main text. The decoding is the reverse of the
encoding procedure: two transmission states are combined into one
receiver state using fiber couplers. This is done in such a way that in
the absence of noise, constructive interference occurs and the pho-
ton always emerges in the receiver states. Due to the noise, the
photon may not emerge in the receiver states, in which case it is
discarded. But if the photon emerges in the receiver states, then the
noise has been filtered out. The receiver can then use the filtered
state. For instance he may, as described in the text, test the quality
of the filtered state by carrying out the measurement shown �D,
single photon detector�. The measurement basis is chosen by vary-
ing the phase �B and the coupling ratio of the measurement coupler.
Note, however, that the measurement step is included in the figure
for illustration only—it is not part of the filtration protocol per se.
The receiver can use the filtered signal for other purposes.
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Thus, whenever an error occurs, one could, in principle,
by looking at the state of the two channels, find out which
channel the photon went through. This causes the original
superposition �of the photon going through both channels� to
collapse. Hence, at the output beam splitter, the two wave
packets no longer interfere, and the photon may sometimes
end up at the useful output, while other times it can end up at
the other output. In this latter case, we know that an error
occurred—otherwise the photon could not have ended up
there—so we discard it. We thus get rid of some errors. And
since multiplexing did not increase the total number of er-
rors, we end up with fewer errors.

Once this simple principle is understood, it is clear that
many variations are possible. For example, in Fig. 1 we view
the channels as being different optical fibers. The same
scheme works for free space propagation of photons, or for
propagation of electrons through mesoscopic wires. Also two
“separate channels” need not be implemented as two differ-
ent physical objects. For example, one can use a single op-
tical fiber and represent the different channels by different
“time bins,” see Fig. 2 and �20�. In this case, of course, one
has to take care to make the channels independent; making
the time bins sufficiently separated in time can easily achieve
this goal.

Obviously, we can use a greater degree of multiplexing,
i.e., replace one channel not by two but by many. This fur-
ther decreases the amount of noise in the useful output. We
also can cut a channel into pieces and use filtration on each
piece separately, in series, one after the other. It is also not
critical that the different channels have the same amount of
noise �as we assumed for simplicity above�.

It is also clear that there is a lot of freedom in the relative
phase of the superposition of the photon wave packets going
through the different channels. All that is required is that, in
the absence of noise, at the output there is constructive inter-
ference so that the photon emerges with certainty in one
particular output channel �the “useful” output port�. This de-
pends, however, on both the input into the interferometer and
on the output. We can arrange any input, and then tune the
output accordingly. �In some examples below, we arrange the
superposition by Hadamard transform; in other examples, we
use the Fourier transform; but these are just examples from
the large family discussed in Appendices A, B, and C�.

Finally it is clear that the method will work independently
of how the quantum information is encoded in the particle.
For instance, it may be encoded in the relative phase between
time bins �as in Fig. 2�, or an internal degree of freedom such
as the polarization of the photon or spin of an electron. In all
cases, the method will improve the output signal.

Error filtration is a general framework, appropriate to a
wide variety of physical implementations and types of noise.
We will present a number of examples in detail below and
present further extensions in the Appendices.

Among other ingredients, our scheme uses multiple paths
to encode the quantum state of a single quantum system; that
this could be of interest in the context of quantum informa-
tion processing and communication has been noted in �21�.

We note that some implementations of our method have
superficial similarities to the symmetrization method de-
scribed in �22� which also realizes a form of error detection.

Their are, however, some essential differences due to the fact
that the symmetrization method uses multiple copies of the
system, whereas we use a single copy. Indeed, the number of
errors is proportional to the number of copies and is therefore
much larger in the symmetrization method than in our
method. Second symmetrizing multiple copies of a quantum
system is extremely difficult to implement and does not
present practical advantages over implementing error-
correction codes.

III. ERROR FILTRATION FOR A SINGLE PARTICLE

Let us consider a source which produces a signal encoded
in the quantum state of a single particle: ���=�l=1

Stotcl�l�S,
where cl is the complex amplitude that the particle is in
source channel l and �l�S denotes the state of the particle if it
is in source channel l. Let us suppose that there are a certain
number Ttot of transmission channels with Ttot=TStot a mul-
tiple of Stot. Denote by �j�T�j=1,… ,Ttot� the state of the par-
ticle if it is in transmission channel j.

FIG. 2. Implementation of error filtration using time bins propa-
gating in optical fibers. A source produces a single photon in time
bin �1�. A first Mach-Zender �MZ� interferometer produces a state in
a two-dimensional Hilbert space as follows: the fiber coupler C
splits the time bin �1� into two pulses which follow the short and
long arm of the interferometer. Then the switch �Sw�, synchronized
with the source, is used to direct the pulses exiting from the first
MZ interferometer into the fiber leading to the encoder. In this way,
a superposition of two time bins ��1�+ei�A�2�� /�2 is produced
where the phase �A encodes the quantum information that must be
transmitted. A second MZ interferometer realizes the encoding part
of the error filtration protocol: it multiplexes time bin 1 �2� exiting
from the state preparation into time bins 1 and 3 �2 and 4�. Thus
after encoding, the qubit is a superposition of four time bins ��1�
+ �3�+ei�A�2�+ei�A�4�� /2. During transmission, the state is affected
by noise. If the time bins are sufficiently separated, then the prob-
ability that a photon jumps from one time bin to the other is negli-
gible and the noise affecting each time bin will be essentially inde-
pendent. Hence one is in the case of independent phase noise
considered in the main text. The decoding operation is the reverse
of the encoding operation. A first MZ interferometer projects the
state onto the �1�+ �3�, �2�+ �4� subspace. The receiver may then use
the filtered state. For instance, he can carry out a measurement
using a second MZ interferometer. The measurement basis is cho-
sen by varying the phase �B.
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During transmission, the states �j�T will be affected by
noise. For the sake of illustration, we consider the simple,
but experimentally relevant �see Fig. 1 and �17��, case where
the noise affecting the different states is phase noise. Further-
more, by construction, we can arrange that the noise in the
different channels is independent. As mentioned in the pre-
ceding section, this does not depend on the intrinsic nature of
the channels, but on the way we put the channels together,
and it is, in general, rather simple to do.

Then the states �j�T evolve according to �j�T�ei�j�j�T,
where � j are independent random variables. An equivalent
description of the noise is to suppose that during transmis-
sion the particle interacts with the environment as follows:

�j�T�0�E � �j�T�� j�0�E + � j�j�E�, �� j�2 + �� j�2 = 1, �1�

where the environment states �j�E are orthogonal for different
j. This represents the physical situation in which the envi-
ronment starts in the initial state �0�E and the interaction
causes the state of the environment to be disturbed. The am-
plitudes � j and � j describe the amount of disturbance; in
general, these parameters will depend on j. For simplicity,
we first consider the case in which they are the same on all
channels, i.e., � j and � j are independent of j.

We suppose that each source channel is encoded and de-
coded separately. We can therefore focus on a particular one,
�1�S, say. The source state �1�S is encoded into T transmission
channels,

�1�S � Ue�1�S =
1
�T

�
j=1

T

�j�T, �2�

where we have taken Ue to be the discrete Fourier transform.
The noise now occurs, causing the state of system plus en-
vironment to change to �1/�T�� j=1

T �j�T���0�E+��j�E�. We de-
code by performing the inverse Fourier transform,
�j�T�Ud�j�T= �1/�T��k=1

T e2i�j�k−1�/T�k�R, where �k�R denotes
the state in receiver channel k. Such encoding and decoding
transformations can easily be easily realized using linear el-
ements such as beam splitters and phase shifters �23�. One
relevant figure of merit is simply the number of such ele-
ments which are required to realize the encoding and decod-
ing operations. The Fourier transform which we use here for
illustrative purposes is not necessarily optimal in this respect.

One easily computes that the state after decoding is

�1�R	��0�E +
�

�T
�1̃�E
 +

�

T
�
j=1

T

�
k=2

T

e2i�j�k−1�/T�k�R�j�E, �3�

where �1̃�E= �1/�T�� j=1
T �j�E is a normalized state of the envi-

ronment. We see that this state has a component in the re-
ceiver channel �1�R, which we regard as the “useful” signal,
and components in all the other receiver channels, �k�R, k
�1, which we discard. The useful signal is �1�R���0�E

+ �� /�T��1̃�E�. The norm of this state gives the probability
that the state appears in the useful channel, Psuccess= ���2
+ ����2 /T�.

In summary, the signal does not always reach the useful
receiver channel. But when it does, the noise amplitude is
reduced by a factor of �T. As an illustration, consider the
case where the number of source states Stot=2 and the state
to be transmitted is ���= �1�S+ei��2�S. The ability to preserve
the phase � is a measure of the quality of the transmission.
This is often quantified by the visibility V of the interference
fringes seen by the receiver if he measures in the �1�R± �2�R
basis. One finds V=T���2 / �T���2+ ���2�, which equals ���2 for
T=1 �no multiplexing� and increases monotonically to 1 as
the amount of multiplexing T tends to infinity.

Above, we considered for simplicity that all the channels
were identical, but the method works equally well if the
channels are different. This is an essential property since it
shows that the method is robust against perturbations. To
prove this, suppose that each channel j is characterized by
parameters � j and � j which obey �� j�2+ �� j�2=1 and use the
same encoding and decoding procedure as above. The am-
plitude of the quantum state if it ends up in the useful re-
ceiver channel �the analogue of the first term of Eq. �3�� is

�1�R	�̄�0�E +
1

T
�
j=1

T

� j�j�E
 ,

where �̄= �1/T�� j=1
T � j. The probability that the signal ends

up in the useful receiver channel and is unaffected by error is
Psuccess&no error= ��̄�2, whereas the probability that the signal
ends up in the useful channel and is affected by error is
Psuccess&error= �1/T2�� j=1

T �� j�2� �1/T��1− ��̄�2�. Let us sup-
pose that the � j all have approximately the same phase �this
can easily be arranged by putting a phase shifter in each
channel� and that �̄ does not tend to zero as the degree of
multiplexing increases �this corresponds to supposing that as
we add channels they do not become worse�. Then the above
result shows that the ratio of the probabilities of errors to no
errors in the useful output channel decreases as 1/T, i.e.,
error filtration works equally well when the transmission
channels are not all identical.

An interesting question concerns how our methods scale.
There are are a number of different issues to be considered.
For example, �a� for fixed length L, how the intensity of the
signal changes when we improve fidelity; �b� for a fixed
output fidelity, how the signal changes when we increase L;
�c� for fixed output fidelity, how the resources required for
multiplexing increase as we increase L.

�a� For a fixed length of the communication channel,
when we increase the multiplexing in order to increase the
fidelity to 1, the total output signal decreases towards a fixed
value that depends on the quality of the transmission chan-
nel. This value is nothing else than the probability that the
signal is not affected by noise in the original, nonmultiplexed
channel. In other words, as we increase the filtering power of
our method �by increasing the multiplexing factor�, we iden-
tify the errors better and better and throw away a larger frac-
tion of them. Eventually �in the limit of infinitely many mul-
tiplexing channels�, a perfect filter will yield a perfectly
clean signal �fidelity=1� while throwing away all the errors,
but not more than that. �For example, if the noise is phase
noise, as in Eq. �1�, then the probability of an error not to

GISIN et al. PHYSICAL REVIEW A 72, 012338 �2005�

012338-4



occur is ���2. In the limit that the fidelity becomes 1, the
probability of receiving a signal tends to ���2.�

�b� Each unit of length has equal probability of producing
an error. Thus the probability for a signal to survive without
being affected by noise �and hence to pass our filtration�
decreases exponentially with L. This is an inevitable feature
of an error filtering method as opposed to one in which errors
are corrected. In effect, what our procedure does is to trans-
form a general error �phase noise, depolarization, etc.� into
an erasure, which is well known to be a considerable advan-
tage.

�c� The resources required to achieve a fixed fidelity as
the length L increases grow polynomially in L. This polyno-
mial scaling is achieved by applying error filtration in “se-
ries.” By this we mean that the signal is encoded and after a
short distance decoded and the noise filtered out. The signal
is then re-encoded and re-decoded many times until the end
of the communication channel is reached. Suppose that the
error rate per unit distance is 	 so that the probability that the
signal is unaffected by error is ���2=e−	L. Suppose that the
communication channel has length L, that the signal is en-
coded and decoded a total of Q times, and that the degree of
multiplexing is T. Then using Eq. �3�, one can show that the
probability that the signal appears at the useful output and is
affected by error is �see the Appendix D�

�e−	L/Q +
1 − e−	L/Q

T
�Q

− e−	L. �4�

On the other hand, the probability that the signal appears at
the useful output and is not affected by error is e−	L. Hence
one easily deduces from this result that one can maintain a
fixed desired high fidelity of the output signal as we increase
L by increasing both the multiplexing factor T and the num-
ber of filtering units Q linearly with L. In other words, the
resources required to maintain a fixed fidelity of output sig-
nal scale polynomially with the length of the channel. �The
need to repeat the filtration step is very similar to existing
error-correction methods where one also needs to perform
the correction step many times, each time before the error
probability becomes too large. If the correction—or in our
case filtering—is not performed a number of times but only
once, then the resources needed to obtain a high fidelity in-
crease exponentially with L.�

Note, however, that, important as it is, asymptotic scaling
is not always the most relevant issue in practice. In practice,
one always deals with a fixed range of distances, and the
main question is, what is the advantage that a given method
yields for that range? This is determined by the asymptotic
formula but also by the precise values of the relevant param-
eters. Thus, for instance, the BB84 quantum cryptography
protocol becomes insecure when the fidelity of the commu-
nication channel is below 85%, and a singlet state becomes
an unentangled Werner density matrix when its fidelity is
below 50%. These figures show that degradation of signal
with serious consequences can occur with relatively low lev-
els of noise. With a modest level of multiplexing, our
schemes can reduce the noise in communication so as to
bring states above these important thresholds.

The protocols presented above are generalized in
Appendices A–F which are organized as follows:

Appendix A: General protocol for error filtration. The
protocol described in the main body of the article took each
source channel and multiplexed it into T transmission chan-
nels. The encoding and decoding transformations were the
Fourier and inverse Fourier transforms, respectively. In Ap-
pendix A we generalize this protocol to other encoding and
decoding transformations, and derive a condition for the
encoding/decoding to remove as much noise as possible.

Appendix B: Protocol for error filtration with collective
encoding. In the previous protocols a given source channel is
encoded into a subset of the transmission channels, but the
signal carried in a given transmission channel came from a
single source channel. Here we show how it is possible to
generalize these ideas by allowing each transmission channel
to carry signals from more than source channel.

Appendix C: Error filtration for particles with internal de-
grees of freedom. All the previous protocols can be general-
ized to the case where the particle has “internal” degrees of
freedom. By this we mean that each source and transmission
channel has a state space which is a Hilbert space of dimen-
sion larger than one.

Appendix D: Using error filtration in series. The previous
protocols can loosely be described as using transmission
channels in parallel to achieve noise filtration. We may also
use the idea of multiple channels in series to filter noise.
Here we discuss this question in detail and in particular de-
rive Eq. �4�.

Appendix E: Quantum multiexcitation protocol. In the
previous protocols the channels contained only a single ex-
citation each. In the case of bosons, we can also consider the
situation where each channel contains many quanta. We
show that error filtration also works in this case. We first
illustrate this by considering the case that the channel states
are coherent states; at the end of Appendix E we show how
this generalizes to general multiexcitation states.

Appendix F: Error filtration for classical wave signals. A
particular case of the multiexcitation protocol considered in
Appendix E is the case where the number of quanta is mac-
roscopic and one is dealing with classical wave signals. We
show that error filtration can also be used to reduce noise
when transmitting classical wave signals. In addition to the
types of noise discussed in the previous appendices �phase
noise, noise affecting internal degrees of freedom� error fil-
tration can also filter out other types of noise such as ampli-
tude noise �i.e., noise that affects the amplitude of the wave�
or even nonlinear noise �when the amount of noise depends
on the intensity of the signal�. We illustrate how error filtra-
tion works for these other types of noise in the case of clas-
sical signals.

IV. ERROR FILTRATION FOR TRANSMISSION OF
ENTANGLED STATES

The previous protocols illustrated error filtration for one-
way communication of quantum signals. We now show that
these ideas may be extended to provide protocols when the
goal is to send some known entangled quantum state from a
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source to two or more parties. First, it is obvious that this
may be achieved, and the errors diminished, by using the
previous quantum protocols: one of the parties simply pre-
pares the state locally and transmits it using the one-way
communication channels we have described earlier. How-
ever, since the task is to distribute known entangled states,
i.e., those produced by us, not some external process out of
our control, it is possible to proceed differently by modifying
not only the transmission channels but also the source that
produces the state. Our method essentially calls for using a
source that produces the same number of entangled particles
as the original, but in states with more entanglement than
what is ultimately needed. We call this method “source mul-
tiplexing.” It provides a new method for entanglement puri-
fication.

Consider the case in which the aim is for two receivers, A
and B, to share a quantum state 
m, which is as close as
possible to the maximally entangled state of dimension m:
��m

R�= �1/�m�� j=1
m �j�A � �j�B. To improve the fidelity, we use a

source that produces two entangled particles in the maxi-
mally entangled state of dimension n

��n� =
1
�n

�
j=1

n

�j�A � �j�B, �5�

where n�m, i.e., we start with more entanglement than we
want to end up with.

Again, for simplicity, we consider the case in which the
dominant errors are of the form �phase noise�

�j�A�e0�A � �j�A���e0�A + ��ej�A� , �6�

where �e0� and �ej� are states of the environment; � and � are
complex numbers satisfying ���2+ ���2=1. The dominant er-
rors for party B are also of this form. For different states of
the system, the disturbed states of the environment are or-
thogonal �A
ej �ek�A= B
ej �ek�B=0, j ,k=1…n, j�k;

A
ej �ek�B=0 ∀ j, k�. � and � describe the amount of distur-
bance; for simplicity, we have taken them to be independent
of j.

One may easily show that after going through the noisy
channel, the reduced density matrix of the two particles be-
comes


n = pP�n
+

1 − p

n
�
j=1

n

Pjj , �7�

where P�n
= ��n�
�n�, Pjj = �j j�
j j�, and p= ���4 is the probabil-

ity that the state is not affected by phase noise.
Let us suppose that the parties do not carry out error fil-

tration. Then the dimensions n and m of the senders and
receivers state are equal. We characterize the quality of the
receivers state by the fidelity Fm, that is, the overlap of the
receivers state with the state unaffected by noise. One finds
that

Fm = Tr�
mP�m
� = p +

1 − p

m
. �8�

Consider now that the source is multiplexed, i.e., n�m.
The two receivers first carry out a unitary decoding opera-
tion,

Ud
A�j�A =

1
�n

�
k

e−i2�jk/n�k�A,

Ud
B�j�B =

1
�n

�
k

e+i2�jk/n�k�A,

where we have taken Ud
A, Ud

B to be the Fourier transform and
the inverse Fourier transform, respectively. Party A then
measures the operators QA=�k=1

m �k�AA
k�, and party B mea-
sures the operator QB=�k=1

m �k�BB
k�. By measuring QA�B�, we
mean that the party keeps the particle if it is in channels 1 to
m, and discards the particle otherwise. It is important that
this is a measurement that does not affect the state of the
particle if the measurement succeeds. Generalizations of this
scheme to other decoding operations and measurements are
described in Appendix G.

If both measurements succeed, the state becomes


 f =
QAQBUd

AUd
B
nUd

A†Ud
B†QAQB

Tr�QAQBUd
AUd

B
nUd
A†Ud

B†�

=
1

Psuccess
�mp

n
P�m�

+
1 − p

n2


 �
k,k�,l,l�=1

m

��k − k� − l + l���k�A�l�B A
k��B
l��� ,

where ��m� �= �1/�m��k=1
m �k�A�k�B and ��k−k�− l+ l�� equals 0

except if k−k�− l+ l�=0 mod n when it is equal to 1; Psuccess
is the probability that both measurements succeed and equals

Psuccess = Tr�QAQBUd
AUd

B
nUd
A†Ud

B†� = p
m

n
+ �1 − p�

m2

n2 .

�9�

The fidelity of the state 
 f is

Fm� = Tr�
 fP�m�
� =

�n − 1�p + 1

�n − m�p + m
. �10�

This fidelity is greater than Fm, the fidelity if an entangled
state of dimension m had been transmitted without error fil-
tration, and tends to 1 for large n.

It is important to note that the state will also be purified if
party A projects onto the subspace Qc

A=�k=c
c+mPk

A and party B
simultaneously projects onto the subspace Qc

B=�k=c
c+mPk

B for
arbitrary c. There are �n /m� such orthogonal projectors
�where �x� denotes the largest integer smaller than or equal to
x�. Thus the total probability that the purification succeeds is
Psuccess-total= �n /m�Psuccess. We note that, as n becomes large,
with m fixed, this total success probability tends to p, the
probability that no error occurred; in other words, we suc-
ceed in filtering out all errors.

In the above procedure, the biggest experimental diffi-
culty is apparently the measurement of QA and QB. However,
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in many applications �for instance quantum cryptography�
this measurement is not necessary. Indeed, the parties may
proceed as follows: they assume that the filtration has suc-
ceeded and carry out the operations they desire as if the
particle is present. After these operations, the parties carry
out a destructive measurement to check whether the particle
is indeed present. It is then that they know whether the fil-
tration succeeded.

The above ideas are illustrated in Figs. 3 and 4 for pho-
tons traveling in multiple fibers and photons traveling in
multiple time bins in the same fiber. Note that the protocols
in Figs. 3 and 4 do not use the Fourier transform as decoding
operation, but rather they use a Hadamard transformation.
However, it is easy to show that these methods are both
effective, see Appendix G.

The above paragraphs illustrate in a simple example how
error filtration could be used to filter out noise during trans-
mission of entangled states. In this example we consider a
source that produces entangled states of dimension S. The
entangled particles are then sent to the two receivers, using
T=S transmission channels, who project their state onto a
smaller Hilbert space of dimension R. In the first part of
Appendix G we generalize this protocol and give conditions
on the decoding measurements for the protocol to filter out
as much noise as possible. In the second part of Appendix G
we consider a source which produces entangled states with
the same dimension S as the receiver Hilbert space R=S. The
number of transmission channels T is taken to be larger than
S. Thus one is essentially using the protocols developed for
error filtration in the case of a single particle twice, once for
each particle. We briefly describe in the second part of Ap-
pendix G how such a protocol filters out errors in the case of
entangled particles.

V. CONCLUSION

In summary, we have presented a conceptually new way
of dealing with errors in quantum communication. This idea,

error filtration, is a method for reducing errors in quantum
communication which can be easily implemented using
present-day technology. Indeed, to our knowledge it is the
first method that can easily be implemented in practice today.
For this reason, we believe it will find a wide range of ap-
plications in quantum information processing and communi-
cation.
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APPENDIX A: GENERAL PROTOCOL FOR ERROR
FILTRATION

In Sec. III a specific protocol for error filtration was pre-
sented. Here we show how it can be generalized. The gener-
alization consists in allowing more general encoding and de-
coding operations than the Fourier transform. Nevertheless,
here we keep the restriction that each source channel is en-

FIG. 3. Implementation of error filtration for entangled particles
using multiple optical fibers. A source �S2�� produces two photons
in the entangled state ��1�A�1�B+ �2�A�2�B+ �3�A�3�B+ �4�A�4�B� /2.
States �i�A �B� travel to receivers A �B� through different optical
fibers. As in Fig. 1, the transmission states will be affected by in-
dependent phase noise. The receivers filter out the noise by project-
ing the state onto the subspaces spanned by �1�A �B�+ �2�A �B�,
�3�A �B�+ �4�A �B� using 50/50 couplers. When the projections of
both parties succeed, the noise has been filtered out. When the
projection of either of the parties fails, the state is rejected. Note
that this decoding operation is based on the Hadamard transform
and is distinct from the decoding operation based on the Fourier
transform considered in the main text. However, one can easily
show �see Appendix G� that both methods filter out the same
amount of noise.

FIG. 4. Implementation of error filtration for entangled particles
using time bins. A source �S2�� produces two photons in the en-
tangled state ��1�A�1�B+ �2�A�2�B+ �3�A�3�B+ �4�A�4�B� /2 where states
�i�A �B� correspond to different time bins traveling through the same
optical fiber. A possible such source, adapted from �20�, is described
in the inset: a laser �L� produces intense pulses of light which pass
through two unbalanced Mach-Zender �MZ� interferometers so as
to produce four coherent equally spaced pulses. The pulses impinge
on a nonlinear crystal �NLC� thereby producing the entangled state
by parametric down conversion. As in Fig. 2, the transmission states
will be affected by independent phase noise. To filter out the noise,
the photons are sent through MZ interferometers. A switch �Sw�,
synchronized with the source, sends time bins 2 and 4 through the
long arm and time bins 1 and 3 through the short arm. Time bins 1
and 2 and time bins 3 and 4 then interfere. The state is kept if both
photons exit through the lower branch, in which case it has been
projected onto the subspace spanned by �1�A �B�+ �2�A �B�, �3�A �B�
+ �4�A �B�. If either of the photons exit through the upper branch, the
filtration has failed. As in Fig. 3, this example is based on the
Hadamard transform.
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coded and decoded separately. Therefore, we can focus on a
particular one, �1�S, say.

We start with the state of the source �1�S but now encode
the source state into T transmission channels,

�1�S � Ue�1�S, �A1�

where the encoding transformation Ue is a unitary map from
the source Hilbert space to the transmission Hilbert space.
Note that since the transmission Hilbert space is of dimen-
sion T, whereas there is a single source state, we have to
suppose that there are other input channels on which Ue can
act. These additional input channels contain no excitations.
Thus Ue

†Ue= �id�S and UeUe
†= �id�T, where �id�S is the iden-

tity operator in the source Hilbert space.
Following encoding, the state of the system plus environ-

ment can be written as

�
j=1

T

T
j�Ue�1�S �j�T�0�E, �A2�

where we have introduced an orthonormal basis of transmis-
sion states �j�T.

The noise now occurs, causing the state to change to

�
j=1

T

T
j�Ue�1�S �j�T���0�E + ��j�E� , �A3�

where we have supposed that the noise is phase noise which
acts independently on each transmission state.

We now decode by performing a second unitary transfor-
mation �the generalization of the inverse Fourier transform�,

�j�T � Ud�j�T. �A4�

Unitarity means that Ud
†Ud= �id�T and UdUd

†= �id�R. Thus the
state becomes

�
j=1

T

T
j�Ue�1�S Ud�j�T���0�E + ��j�E� . �A5�

Up to this point, the encoding and decoding procedure is
very general. We will now restrict ourselves by demanding
that if there is no noise, the state should be transmitted ex-
actly into the receiver channel �1�R. Thus we specify

UdUe�1�S = �1�R. �A6�

Thus the state of the system and environment becomes

�1�R	��0�E + ��
j=1

T

T
j�Ue�1�SR
1�Ud�j�T�j�E

+ ��

j=1

T

�
k=2

R

ckj�k�R�j�E, �A7�

where

ckj = T
j�Ue�1�S R
k�Ud�j�T. �A8�

Again, we see that this state has a component in the re-
ceiver channel �1�R, which we regard as the “useful” signal
and components in all the other receiver channels which we
will discard.

The state in the useful receiver channel is

�1�R	��0�E + ��
j=1

T

T
j�Ue�1�S R
1�Ud�j�T�j�E
 . �A9�

The probability that the particle ends in the useful channel
is the magnitude squared of the state �A9�, i.e.,

���2 + ���2�
j=1

T

�T
j�Ue�1�S R
1�Ud�j�T�2. �A10�

On the other hand, there is a probability of

1 − 	���2 + ���2�
j=1

T

�T
j�Ue�1�S R
1�Ud�j�T�2
 �A11�

that the particle appears at one of the “nonuseful” receivers
channels, �k�R, k=2,…,T. These channels are nonuseful be-
cause the particle ending here is always correlated with noise
in the environment. Indeed, we see in �A7� that the compo-
nent containing the receiver channels �k�R, k=2,…, T is

��
j=1

T

�
k=2

T

ckj�k�R�j�E, �A12�

which has no overlap with the unperturbed state of the envi-
ronment �0�E.

The probability of noise in the useful receiver channel is

���2�
j=1

T

�T
j�Ue�1�S R
1�Ud�j�T�2. �A13�

Now Schwartz’s inequality shows that this magnitude is
greater than

���2

T
��

j=1

T

T
j�Ue�1�S R
1�Ud�j�T�2

=
���2

T
, �A14�

with equality when

�T
j�Ue�1�S R
1�Ud�j�T� =
1

T
, independent of j .

�A15�

Thus for any encoding and decoding scheme satisfying the
conditions �A6� and �A15�, we find that the noise amplitude
is reduced by a factor of 1 /�T.

One example of encoding/decoding schemes satisfying
these conditions is the Fourier transform in the previous ap-
pendix. A second example is the Hadamard transform; in the
case of four transmission channels encoding each source
channel, the encoding is

�1�S �
1

2
��1�T + �2�T + �3�T + �4�T� , �A16�
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�2�S �
1

2
��1�T + �2�T − �3�T − �4�T� ,

�3�S �
1

2
��1�T − �2�T + �3�T − �4�T� ,

�4�S �
1

2
��1�T − �2�T − �3�T + �4�T�;

the decoding step is

�1�T �
1

2
��1�R + �2�R + �3�R + �4�R� ,

�2�T �
1

2
��1�R + �2�R − �3�R − �4�R� ,

�3�T �
1

2
��1�R − �2�R + �3�R − �4�R� ,

�4�T �
1

2
��1�R − �2�R − �3�R + �4�R� . �A17�

APPENDIX B: PROTOCOL FOR ERROR FILTRATION
WITH COLLECTIVE ENCODING

In the previous appendix, a given source channel is en-
coded into a subset of the transmission channels, but the
signal carried in a given transmission channel came from a
single source channel. It is possible to generalize these ideas
by allowing each transmission channel to carry signals from
more than one source channel. This will be of use, for ex-
ample, when the number of source channels does not divide
the number of transmission channels �e.g., two source chan-
nels and three transmission channels�.

Thus the general situation is that we have Stot source
channels which we encode collectively into Ttot transmission
channels and then decode the transmission channels collec-
tively into Rtot receiver channels with Stot=Rtot. It is clear that
the previous protocols, in which a given source channel is
encoded into T transmission channels and each source chan-
nel is encoded into a different set of transmission channels,
are included in this general framework. But other possibili-
ties exist.

Here we will simply illustrate the idea with an example.
We consider again the case of phase noise: errors in the
transmission channels of the form

�k�T�0�E � �k�T���0�E + ��k�E�, k = 1…Ttot. �B1�

If each source channel �j�S, j=1…Stot is simply sent along a
single transmission channel �trivial encoding�, the error am-
plitude is �. However, an example of the general framework
in the previous paragraph is the following encoding/decoding
scheme, based on the Fourier transform. The encoding step is

�j�S �
1
�T

�
k=1

Ttot

e−2�ik�j−1�/T�k�T. �B2�

The decoding step is

�k�T �
1
�T

�
m=1

Stot

e2�ik�m−1�/T�m�R. �B3�

For example, this protocol may be used in the case that
Stot=2=Rtot and Ttot=3. Let us write the state emitted by the
source as

a1�1�S + a2�2�S, �B4�

where a1 and a2 are complex amplitudes obeying �a1�2
+ �a2�2=1. It may be calculated that the fidelity of the state
arriving at the receiver in the channels �1�R and �2�R to the
incoming state is

���2 +
���2

3 �1 + 2�a1�2�a2�2�

���2 +
2���2

3

. �B5�

The average value of this fidelity over the Bloch sphere of
incoming states is

���2 +
4���2

9

���2 +
2���2

3

. �B6�

For any � and �, this is greater than the average fidelity
achieved by simply sending each source state through one
transmission channel.

APPENDIX C: ERROR FILTRATION FOR PARTICLES
WITH INTERNAL DEGREES OF FREEDOM

The fact that the noise corrected by the previous protocols
was phase noise, and hence corresponds to random elements
of the Abelian group U�1�, was not critical. The protocols
can be simply extended to the case where each channel can
carry a system which has “internal” degrees of freedom �i.e.,
each channel has a state space which is a Hilbert space of
arbitrary dimension I; we shall consider this dimension to be
finite here, but this is not essential to the success of the
protocol�.

Thus we consider an orthonormal set of source states,

�i��S; i = 1…Stot, � = 1…I . �C1�

An example is the case where each channel can carry a spin
degree of freedom, so that I=2. We consider a set of trans-
mission states

�j��T; j = 1…Ttot, � = 1…I , �C2�

i.e., there are Ttot transmission channels each of which carries
a state space of dimension I. The transmission states are
affected by the following noise:
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�j��T�0�E � ��j��T�0�E + �
�=1

I

�
�=1

L

���E�����j��T�j��E.

�C3�

This describes L types of error; each error corresponds to a
rotation of the system state. In the case of internal spin de-
grees of freedom, I=2, an example of a set of possible errors
is the set of three Pauli matrices,

�E1��� = ��x���, �E2��� = ��y���, �E3��� = ��z���.

�C4�

Thus �j��E is the state of the environment if error � occurred
on channel j.

The total probability of error in the channel �C3� is

��
�=1

I

�
�=1

L

���E�����j��T�j��E�2

= �
�=1

L

����2��
�=1

I

�E�����2

= 1 − ���2. �C5�

Thus if the source state �1��S is simply sent through a single
transmission channel with trivial encoding and decoding,

�1��S � �1��T � �1��R, �C6�

the probability of error is

1 − ���2. �C7�

Now consider a simple error-filtration protocol in which the
source channel is multiplexed to T transmission channels.
The encoding step is

�1��S�0�E �
1
�T

�
j=1

T

�j��T�0�E. �C8�

Note that the encoding is independent of �.
Now the noise occurs during the transmission, and the

state becomes

1
�T

�
j=1

T

�j��T�0�E �
1
�T

�
j=1

T

��j��T�0�E

+
1
�T

�
j=1

T

�
�=1

I

�
�=1

L

���E�����j��T�j��E.

�C9�

The decoding step for this protocol is also the Fourier trans-
form on the j indices,

�j��T �
1
�T

�
k=1

T

e2i�j�k−1�/T�k��R. �C10�

As before we select the term �1��R at the receiver; thus the
state in this receiver channel is

��1��R�0�E +
1

T
�
j=1

T

�
�=1

I

�
�=1

L

���E�����1��T�j��E. �C11�

Now the probability that the state was affected by noise is
the square of the magnitude of the second term,

1

T2��
j=1

T

�
�=1

I

�
�=1

L

���E�����1��R�j��E�2

=
1

T
�
�=1

L

����2��
�=1

I

�E�����2

, �C12�

where we have used the fact that

E
j1�1�j2�2�E = � j1j2
��1�2

and R
1�1�1�2�R = ��1�2
.

�C13�

Thus comparing �C12� with �C5�, we see that the error fil-
tration protocol has reduced the probability of error by a
factor of 1 /T, i.e., each error amplitude has been reduced by
a factor of 1 /�T.

This protocol has essentially used the Fourier transform to
encode and decode. It is not difficult to extend the protocol
to more general encoding/decodings as was done for phase
noise in Appendices A and B. Furthermore, the encoding
need not be independent of the internal degrees of freedom �
�as was the case in Eq. �C8��.

APPENDIX D: USING ERROR FILTRATION IN SERIES

The previous protocols can loosely be described as using
transmission channels in parallel to achieve noise filtration.
We may also use the idea of multiple channels in series to
filter noise. We illustrate this idea in the case of phase noise.

We compare two situations. Given a source channel we
wish to improve, we can use the encoding described in the
main text where we multiplex a single source channel into T
transmission channels. This has the effect of causing the
noise amplitude to be reduced from � to � /�T, as we
showed earlier. If we imagine that the transmission channels
have a certain length, l, we could perform the same encoding
as in the above protocol, but then use the original decoding
procedure at the half-way point �or any other point along the
transmission channels�, then reperform the encoding, allow
the signal to travel for the remaining part of the transmission
channel, and finally decode again. As we now show, this
protocol gives better error filtration than the protocol without
the interior decoding/encoding �assuming that the decoding/
encoding module itself does not introduce significant errors�.
Clearly one could perform the decoding/encoding module at
as many interior points as one wishes; we calculate the effect
of this below. Thus using error filtration in series is some-
what analogous to the quantum Zeno effect by which evolu-
tion is frozen by repeated measurements.

Recall first that if we do not carry out multiplexing, the
state of a particle passing through channel 1 is

�1�R���0�E + ��1�E� , �D1�

whereas if we multiplex into T transmission channels the
state of the system plus environment after transmission is
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�1�R	��0�E +
�

�T
�1�E
 . �D2�

Now we imagine decomposing the transmission channel
into two halves. We describe the environment Hilbert space
as being the tensor product of two Hilbert spaces, one for the
first half �E1� and one for the second half �E2� of the trans-
mission. After the first half �in the absence of multiplexing�,
the state is

�1�R����0�E1 + ���1�E1� , �D3�

and after the second half it is

�1�R����0�E1
+ ���1�E1

�����0�E2
+ ���1�E2

� . �D4�

Comparing with Eq. �D1�, we see that ��2=�.
If we carry out multiplexing in series on the two halves,

we find that the state after transmission is

�1�R	���0�E1
+

��
�T

�1�E1
	���0�E2
+

��
�T

�1�E2
 . �D5�

In order to find out the overall probability for an error to
have occurred, we write �D5� as

�0�R����0�E + ���1��E� , �D6�

where �1��E is a normalized vector. The probability that the
useful receiver state is affected by noise is thus

����2 =
�1 − �����1 + 2T��� − ����

T2 . �D7�

It is not difficult to check that this probability is less than the
probability of error without the insertion of the decoding/
encoding module �this is equal to ���2 /T� for any �.

More generally, one can consider what happens if one has
a total of Q internal decoding/encoding modules. One gets
maximal reduction of error probability when these modules
are equally spaced along the transmission channel. In this
case the total error probability is found to be

����2/�Q+1� +
1 − ���2/�Q+1�

T
��Q+1�

− ���2. �D8�

We note that this probability tends to

����2�T−1��/T − ���2 �D9�

as the number, Q, of internal decoding/encoding modules
tends to infinity.

APPENDIX E: QUANTUM MULTIEXCITATION
PROTOCOL

In the previous protocols, the channels contained only a
single excitation each. In the case of bosons, we can also
consider the situation where each channel contains many
quanta. We will illustrate this first by considering the case in
which the channel states are coherent states; at the end of this
appendix, we show how the protocol may be used for general
multiexcitation states.

Let us consider as before two input channels. Each chan-
nel is now described by an infinite-dimensional Hilbert space
and we may describe the states in terms of the creation and
annihilation operators,

�aS
1,�aS

1�†� = 1 and �ãS
1,�ãS

1�†� = 1, �E1�

where aS
1 refers to the first channel and ãS

1 to the second. We
will work in the Schrödinger picture of dynamics. Let the
initial state of the system be the following coherent state:

N���exp	 �

�2
��aS

1�† + ei��ãS
1�†�
�0�sys, �E2�

where �0�sys is the vacuum state for the system and N��� is a
normalization factor. The phase � allows us to transmit a
signal; it will also be used later to allow us to measure the
effect of the noise.

Let us first consider what happens in the absence of fil-
tration, that is, when there is trivial encoding, namely when
each source channel evolves into a single transmission chan-
nel. The state of the system evolves to

N���exp	 �

�2
��aT

1�† + ei��ãT
1�†�
�0�sys. �E3�

The initial state of the environment is a product of states, one
for each channel. We denote it ���E. Thus the state of the
system plus environment is

N���exp	 �

�2
��aT

1�† + ei��ãT
1�†�
�0�sys���E. �E4�

The effect of the noise is that there is an interaction between
the system and environment. This may be modeled by a uni-
tary transformation of the form

U = exp i��aT
1�†aT

1B1 + �ãT
1�†ãT

1B̃1� , �E5�

where B1 and B̃1 are Hermitian operators acting on the envi-
ronment Hilbert spaces which we do not need to specify
further.

Thus after transmission through the noisy channels, the
state becomes

N���exp	 �

�2
��aT

1�†eiB1
+ ei��ãT

1�†eiB̃1
�
�0�sys���E. �E6�

We now decode the signal trivially so that the state at the
receiver is given by Eq. �E6�. Let us now allow these two
receiver channels to interfere. This has the effect of trans-
forming the operators aR

1 and ãR
1 into

�aR
1� �

1
�2

�cR
1 + dR

1� and �ãR
1� �

1
�2

�cR
1 − dR

1� . �E7�

We now calculate the current in the channel cR
1 . This is the

expected value of the operator

�cR
1�†cR

1 �E8�

in the final state
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N���exp	�

2
��cR

1�†�eiB1
+ ei�eiB̃1

� + �dR
1�†�eiB1

− ei�eiB̃1
��



�0�sys���E. �E9�

This expectation value is

���2

4 E
���e−iB1
+ e−i�e−iB̃1

��eiB1
+ ei�eiB̃1

����E. �E10�

Recall that the state of the environment ���E is a product of
states for the individual channels, thus we may write it as

���E = ��1�E��̃1�E. �E11�

Thus, for example,

E
��e−iB1
eiB̃1

���E = E
�1�e−iB1
��1�EE
�̃1�eiB̃1

��̃1�E. �E12�

We assume, as in our discussions of the previous protocols,
that the noise on different channels is independent, thus we
write

E
�1�e−iB1
��1�E = �*, E
�̃1�eiB̃1

��̃1�E = � . �E13�

Therefore, the expected value of the current in the channel cR
1

is

���2

2
�1 + ���2 cos �� . �E14�

We now consider what happens when we encode each of
the source channels by multiplexing to T transmission chan-
nels. We again start with the coherent state �E2�. We illus-
trate the noise filtration in the case when the encoding is the
Fourier transform. This encoding has the effect of transform-
ing the creation operators in the coherent state into

�aS
1�† �

1
�T

�
i=1

T

�aT
i �†, �ãS

1�† �
1
�T

�
i=1

T

�ãT
i �†. �E15�

The noise now occurs, causing each creation operator in the
coherent state to transform into

�aT
i �† � eiBi

�aT
i �†, �ãT

i �† � eiB̃i
�ãT

i �†. �E16�

We now decode with the inverse Fourier transform, and con-
sider the signal in the two receiver channels defined by the
creation operators �aR

1�† and �ãR
1�†. We again allow these to

interfere and finally calculate the expected value of the cur-
rent

�cR
1�†cR

1 �E17�

in the final state. This is

���2

4T2 E
��	�
i=1

T

�e−iBi
+ e−i�e−iB̃i

�
	�
j=1

T

�eiBj
+ ei�eiB̃j

�
���E

=
���2

2
	1 + �T − 1����2

T

	1 +

T���2

1 + �T − 1����2
cos �
 .

�E18�

Exactly as in the previous protocols, the multiplexing has the
effect of reducing the noise.

So far in this appendix we have considered a particularly
simple initial state, a coherent state. In this case it is rather
straightforward to calculate the effect of our filtration proto-
col. However, the protocol may be used for any multiexcita-
tion state.

Let us consider that the state of the source is defined by
some function of creation operators �aS

1�† acting on the
vacuum. The effect of the encoding and decoding that we
have performed above is to change this state to one in which
the operator �aS

1�† is transformed to an expression of the form

1

T
�
j=1

T

eiBj
�aR

1�†. �E19�

Thus any power of the operator ��aS
1�†�N becomes replaced

by

1

TN	�
j=1

T

eiBj
N

��aR
1�†�N. �E20�

We now imagine computing the expectation value of some
operator in the state. For T much larger than N we can ne-
glect all terms in the expectation value in which any given
operator eiBk

, say, appears to any power greater than 1. Hence
when we compute the expection value, we can perform the
inner product with the state of the environment, and hence
replace �E20� by

1

TN �T��N��aR
1�†�N, �E21�

where � is the expected value of eiBk
for channel k. Thus in

the limit of large T we see that the effect of the protocol is
that the source operator �aS

1�† gets transformed to

��aR
1�†. �E22�

The key point that this protocol achieves �for large T� is that
interference between operators is not affected, i.e.,

1
�2

��aS
1�† + ei��ãS

1�†� � �
1
�2

��aR
1�† + ei��ãR

1�†� . �E23�

Destruction of interference is avoided and replaced by over-
all absorption of quanta. This is the exact analogue of what
happens for the single-quanta protocols presented earlier
where visibility is improved at the cost of overall reduction
in intensity.

We note that while we have focused on the case of large T
in the previous paragraph, similar analysis shows that, quite
generally, even for finite T, multiplexing has the effect of
reducing noise and replacing it by an overall reduction in
intensity.

APPENDIX F: ERROR FILTRATION FOR CLASSICAL
WAVE SIGNALS

In the previous appendix, we considered the case where
the signal contained many excitations. A limiting case is the
one where the number of excitations is macroscopic and one
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is dealing with classical wave signals. Classical waves �as
well as the quantum multiexcitation states discussed in the
previous appendix� have a number of properties that can all
be affected by noise. Scalar classical waves �i.e., described
by a single complex amplitude� can be affected by phase
noise; waves having “internal degrees of freedom” �such as
polarization� can be affected by noise acting on these degrees
of freedom. But the wave can also be subjected to noise that
affects its amplitude �amplitude noise�. Furthermore, it is
also possible that the amount of noise in all the above cases
depends nonlinearly on the amplitude �“nonlinear noise”�.
The very same mulplexing scheme that we used for single
particles will filter noise in all these situations.

We consider the simple encoding/decoding in which a
single source channel is encoded in T transmission channels.
Denote by �S a normalized mode of the source channel. Con-
sider a classical signal of amplitude A emitted by the source
in mode �S. Denote by �T

j �j=1,… ,T� normalized modes of
the transmission channels. The encoding operation trans-
forms the signal as

A�S → �
j=1

T
A
�T

�T
j = �

j=1

T

ATin

j �T
j , �F1�

where ATin

j is the amplitude at the input of transmission chan-
nel j. Suppose that noise acts during the transmission. Then
the amplitude in transmission channel j gets transformed as

ATin

j → ATout

j �� j,ATin

j � , �F2�

where � j is a random variable �the noise� and ATout

j �� j ,ATin

j � is
the amplitude at the output of the transmission channel if the
noise has value � j and the signal at the input of the transmis-
sion channel has amplitude ATin

j . It is convenient to rewrite
the output amplitude as

ATout

j �� j,ATin

j � = ATin

j Nj�� j,ATin

j � , �F3�

where Nj is the noise acting on channel j. The noise is linear
if Nj depends only on � j but not on ATin

j .
Again, by suitable engineering, we can arrange that the

noise acts independently on the different channels. Math-
ematically, this is equivalent to the statement that the � j are
independent random variables. If in addition the channels are
identical, then we have the further simplification that the
functions Nj�� j ,ATin

j �=N�� j ,ATin

j � are independent of j and
that the � j are independent identically distributed �i.i.d.� ran-
dom variables. For simplicity, we assume from now on that
the noise in all transmission channels is identical and inde-
pendent, i.e.,

ATout

j = ATin

j N�� j,ATin

j � with � j i.i.d. random variables.

�F4�

As an illustration, linear phase noise is described by a
noise function

Nlinear phase��,A� = ei���� �F5�

and linear amplitude noise is described by a function

Nlinear amplitude��,A� = f��� with f real �F6�

whereas nonlinear phase noise could, for instance, be de-
scribed by a noise function

Nnonlinear phase��,A� = N1ei�����A�2 = N1N2, �F7�

where N1 represents some linear phase noise and N2

=ei�����A�2 is independent of N1 and describes the nonlinear
part.

Having described the action of the noise, let us consider
the form of the useful signal in the receiver channel. We
suppose that the decoding is realized using the Fourier trans-
form. Denote by �R a normalized mode of the receiver chan-
nel. The amplitude in the receiver channel is

AR�R = �
j

ATout

j

�T
�R = A	 1

T
�
j=1

T

N�� j,A/�T�
�R. �F8�

In order to interpret the expression Eq. �F8�, we first con-
centrate on the case of linear noise. We will then come back
to the case of nonlinear noise. Upon averaging over the ran-
dom noise variables � j, one finds that the average amplitude
in the receiver channel

AR = AN̄ �F9�

is independent of the degree T of multiplexing. On the other
hand, the average intensity in the reception channel depends
on the degree of multiplexing,

IR = AR
*AR = �AR�2	1 +

1

T

N*N − �N̄�2

�N̄�2

 . �F10�

The average intensity thus decreases with the degree of mul-
tiplexing. This is because the filtration removes more and
more noise as T increases. In the limit of large T, the average
intensity is equal to the norm squared of the average ampli-
tude.

This result can be reexpressed in terms of the amplitude
fluctuations in the reception channel. These fluctuations are
given by

�AR
2 = AR

*AR − �AR�2 = �AR�2
1

T

N*N − �N̄�2

�N̄�2
. �F11�

They decrease with T. In the limit of large T, the amplitude
in the useful receiver channel AR no longer fluctuates, i.e., all
the noise has been removed.

It is interesting to also look at the amplitudes in the non-
useful receiver channels. These are given by

AR
k �R

k = �
j

Aj

�T
ei2�jk/T�R

k , k � 0. �F12�

One finds that the average amplitude in the nonuseful re-
ceiver channels is zero,

AR
k = 0, �F13�

and that these channels contain nonzero average intensity.
This means that these channels contain only noise.
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As an illustration of the effect of the noise reduction in the
useful receiver channel, we consider the visibility of interfer-
ence fringes. Suppose the sender prepares two signals,

AS1�S1 + AS2�S2, �F14�

where AS1= �1/�2�A and AS2= �1/�2�ei�A. Let us suppose
that each signal is independently transmitted by multiplexing
it into T channels. The useful receiver signals are

AR1�R1 + AR2�R2, �F15�

where

AR1 =
A

�2T
�
j=1

T

N�� j� ,

AR2 =
ei�A
�2T

�
j=T+1

2T

N�� j�,

� j i.i.d. random variables, j = 1,…,2T . �F16�

If the receiver lets the two signals interfere, he will find an
intensity

�AR1 + AR2

�2
�2

=
1

2
�A�2�N̄�2	1 +

�N�2 − �N̄�2

T�N̄�2
+ cos �
 ,

�F17�

hence the visibility of interference fringes he sees is given by

V =
Imax − Imin

Imax + Imin
=

1

1 +
�N�2−�N̄�2

T�N̄�2

. �F18�

The visibility thus tends to 1 as the degree of multiplexing T
increases.

Let us now consider the case of nonlinear noise. The ef-
fects of the multiplexing are more complex. Multiplexing
reduces noise via two independent processes. First, there is
the filtration itself. Second, multiplexing also reduces the
intensity in each transmission channel, and so it reduces non-
linearity. Both effects are beneficial, and the exact result de-
pends on the interplay between them, and on the specific
form of the nonlinearity.

All the above formulas Eqs. �F9�–�F18� stay valid, but
one must replace N��� by N�� ,A /�T�, which introduces an
additional dependence on T. A first consequence is that the
average amplitude AR depends now on the degree of multi-
plexing. For the noise considered in �F7�, AR=AN1N2 de-
pends on the degree of multiplexing through N2. Let us now
compute the noise fluctuations �which appear in Eqs. �F10�,
�F11�, �F17�, and �F18��,

1

T

�N�2 − �N̄�2

�N̄�2
. �F19�

As an illustration, consider nonlinear phase noise de-
scribed in �F7�. Let us suppose that the noise is small so that
we can expand N2�� ,A�=1+ i��A�2−�2�A�4 /2. Then one eas-
ily obtains that

1

T

�N�2 − �N̄�2

�N̄�2

=
1

T
� �N1�2 − �N1�2

�N1�2
+

1

T2

�A�4

�N1�2
��2 − �̄2� + O	 1

T4
� . �F20�

Here we can see the interplay of the two ways in which noise
is reduced by multiplexing. The factor 1 /T that multiplies
the whole expression comes directly from filtering, while the
factor 1 /T2 in the square bracket that multiplies the nonlinear
noise appears because the reduction in intensity in each
transmission channel has reduced the nonlinearity.

Above we considered the situation in which the classical
wave was described by a single complex amplitude, i.e.,
there were no internal degrees of freedom. In the case of
quantum systems, we showed in Appendix B that multiplex-
ing works equally well if the particle has internal degrees of
freedom. It is not difficult to check that exactly the same is
true for classical waves.

All the above remarks which have been made in the case
of classical signals are important because they also apply in
the case of signals with one or many excitations: error filtra-
tion will remove amplitude noise and nonlinear noise in the
quantum case as well.

APPENDIX G: PROTOCOLS FOR COMMUNICATION OF
ENTANGLED STATES

Here we generalize the error filtration protocol for com-
munication of entangled states given in the main part of the
paper.

The protocols we consider in Appendix G have the fol-
lowing general structure. A source emits two S-level systems
in an entangled state. System A will be sent to party A
whereas system B will be sent to party B. These systems are
first encoded as T-level systems. The signals are then trans-
mitted through the noisy channels. Finally they are decoded
by parties A and B to R-level systems. The key to the per-
formance of the protocols is to allow the encoding and de-
coding operations to change the dimension of the space of
states.

Denote the states of system A when emitted by the source
as

�i�S
A �i = 1…S� . �G1�

These states are encoded by the encoder by a transformation
Ue

A; thus the state of the system which emerges is

Ue
A�i�S

A = �
j=1

T

T
A
j�Ue

A�i�S
A�j�T

A. �G2�

The initial state of the system plus environment of the chan-
nel is thus

�
j=1

T

T
A
j�Ue

A�i�S
A�j�T

A�0�E
A. �G3�

After transmission through the channel, the state becomes

GISIN et al. PHYSICAL REVIEW A 72, 012338 �2005�

012338-14



�
j=1

T

T
A
j�Ue

A�i�S
A�j�T

A�� jA�0�E
A + � jA�j�E

A� . �G4�

The decoding acts by a further transformation Ud
A. Thus the

final state after encoding and decoding is

�
j=1

T

T
A
j�Ue

A�i�S
AUd

A�j�T
A�� jA�0�E

A + � jA�j�E
A� . �G5�

Finally, only some of the receiver states are used. This is
accomplished by projecting the final state on a Hilbert sub-
space of receiver states of dimension R. We will denote this
projector by �A. There is a certain liberty in choosing this
projector as one can modify the projector by a unitary trans-
formation which, on the other hand, can be absorbed into the
definition of Ud

A. For concreteness, we fix this arbitrariness
by defining

�A = �
l=1

R

�k�R
A

R
A
k� . �G6�

Thus when starting with the initial state �i�S
A�0�E

A, we end
up with the �unnormalized� state

�
j=1

T

T
A
j�Ue

A�i�S
A�AUd

A�j�T
A�� jA�0�E

A + � jA�j�E
A� . �G7�

Party B performs similar operations on its state.
A given protocol is a choice of the dimensions of the

different Hilbert spaces at each time, and of the encoding and
decoding operations. Below we give some specific examples
of these choices.

1. Protocol 1: Multiplexing at the source

In this example, the task is to share an R-dimensional
maximally entangled state. The protocol works by preparing
an S-level system �S�R�, allowing it to be transmitted
through the noisy channel, and then processing it at the end
�i.e., the encoding between the source and transmitter chan-
nels is trivial and T=S�. The protocol allows the two parties
to end up with a final state of their R-level systems which has
higher fidelity than would have been achieved if the R-level
system were simply transmitted directly through the channel.
We call this method “multiplexing at source” because we use
a source which produces more entanglement than the one we
wish to produce at the receivers �S�R�. It is this which
enables us to obtain a state at the receivers which is closer to
the required state than that we would have obtained had we
started with the source simply producing an R-dimensional
entangled state.

Consider the initial state

��in� =
1
�S

�
i=1

S

�i�S
A�i�S

B�0�E
A�0�E

B. �G8�

The first condition defining this protocol is that the encoding
stage is trivial. This means that

T
A
j�Ue

A�i�S
A = T

B
j�Ue
B�i�S

B = �ij . �G9�

Thus the unnormalized state of the system after decoding
and projection is

��fin� =
1
�S

�
i=1

S

�A�BUd
AUd

B�i�T
A�i�T

B���0�E
A + ��i�E

A�


���0�E
B + ��i�E

B� . �G10�

We are interested in the maximum fidelity to an R-level
��R� singlet that we can produce,

��R� =
1

�R
�
i=1

R

�i�R
A�i�R

B. �G11�

The fidelity of the state ��fin� is

F =
�
�R��fin��2


�fin��fin�
. �G12�

We now introduce the second condition defining the pro-
tocol, namely that Ud

A and Ud
B should be related by being

essentially the complex conjugates of each other in the bases
we are using. That is, if we write

Ud
A�i�T

A = �
j

uij�j�R
A, �G13�

then

Ud
B�i�T

B = �
j

uij
* �j�R

B. �G14�

This means in particular that

Ud
AUd

B�
i

�i�T
A�i�T

B = �
i

�i�R
A�i�R

B, �G15�

i.e., in the absence of noise the receiver obtains a maximally
entangled state.

Now let us compute


�fin��fin� =
1

S
�

i,i�=1

S

T
A
i��T

B
i���Ud
A�†�Ud

B�†�A�BUd
AUd

B�i�T
A�i�T

B


 ����4 + �1 − ���4��i,i��

=
���4

S
�

i,i�=1

S

T
A
i��T

B
i���Ud
A�†�Ud

B�†�A�BUd
AUd

B�i�T
A�i�T

B

+
1 − ���4

S
�
i=1

S

T
A
i�T

B
i��Ud
A�†�Ud

B�†


�A�BUd
AUd

B�i�T
A�i�T

B. �G16�

It may be calculated that


�fin��fin� =
���4R

S
+

1 − ���4

S
�
i=1

S

�T
A
i��Ud

A�†�AUd
A�i�T

A�2,

�G17�

where we have used the fact that

T
A
i��Ud

A�†�AUd
A�i�T

A = T
B
i��Ud

B�†�BUd
B�i�T

B. �G18�

Also
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�
�R��fin��2 =
���4R

S
+

1 − ���4

RS
�
i=1

S

�T
A
i��Ud

A�†�AUd
A�i�T

A�2.

�G19�

Thus we may write the fidelity as

F =
�
�R��fin��2


�fin��fin�

= 	 ���4R

S
+

1 − ���4

S

Y

R

	 ���4R

S
+

1 − ���4

S
Y
−1

, �G20�

where

Y = �
i=1

S

�T
A
i��Ud

A�†�AUd
A�i�T

A�2. �G21�

Y is a positive quantity and by Schwarz’s inequality

Y = �
i=1

S

�T
A
i��Ud

A�†�AUd
A�i�T

A�2 �
1

S
	�

i=1

S

T
A
i��Ud

A�†�AUd
A�i�T

A
2

.

�G22�

But

�
i=1

S

T
A
i��Ud

A�†�AUd
A�i�T

A = R . �G23�

Thus

Y �
R2

S
�G24�

with equality when

T
A
i��Ud

A�†�AUd
A�i�T

A =
R

S
for all i . �G25�

We will impose �G25� as the third condition defining this
protocol. In this case, the fidelity is

F = 	 ���4R

S
+

1 − ���4

S

R

S

� ���4R

S
+ �1 − ���4�	R

S

2�−1

.

�G26�

We see that by increasing the amount of entanglement
produced by the source �i.e., by increasing S�, the fidelity is
increased and tends to 1 for large S.

2. Protocol 2: Multiplexing of the transmission channels

We may also use the protocols for error filtration pre-
sented in the main text and Appendices A and B directly to
filter errors when communicating entangled quantum states.
We can think of the protocols in the main text and in Appen-
dices A and B as ways of improving a given transmission
channel: by multiplexing each source channel to T transmis-
sion channels, we can reduce the error amplitude from � to
� /�T.

Consider, then, that a source prepares a state of two
S-level systems. This state is preprocessed by multiplexing
each source channel into T transmission channels using a
general encoding as given in Appendix A. The signal is then
decoded and postprocessed to yield a state at the two receiv-
ers RA and RB. The received state will be of higher fidelity
than if the pre- and postprocessing had not been used.

Consider, for example, the following input state:

��in� = �
i=1

S

ai�i�S
A�i�S

B, �G27�

where ai are complex amplitudes �this is essentially the most
general bipartite state�. If each source channel is processed
through T transmission channels, in such a way that the
original error amplitude is reduced from � to � /�T, then the
final state is

��fin� = �
i=1

S

ai�i�S
A�i�S

B	��0�E
A +

�

�T
�i�E

A
	��0�E
B +

�

�T
�i�E

B
 .

�G28�

The fidelity of the state at the receivers to the state which
would have been transmitted if there were no noise �i.e.,
�i=1

S ai�i�R
A�i�R

B� is

F =
�
�in��fin��2


�fin��fin�
=

���4 + �����2 + ���2/T�2 − ���4��
i=1

S

�ai�4

����2 + ���2/T�2 .

�G29�

Thus the fidelity increases monotonically with T and tends to
1 as T→�.
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