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Doppler Peaks in the Angular Power Spectrumof the Cosmic Microwave Background:A Fingerprint of Topological Defects.Ruth Durrer?, Alejandro Ganguiyz and Mairi Sakellariadou?? Universit�e de Gen�eveD�epartement de Physique Th�eorique4, quai E. AnsermetCH-1211 Gen�eve 4, Switzerlandy SISSA { International School for Advanced StudiesStrada Costiera 11, 34014 Trieste, Italyz ICTP { International Center for Theoretical PhysicsP. O. Box 586, 34100 Trieste, ItalyAbstractThe Doppler peaks (Sacharov peaks) in the angular power spectrum ofthe cosmic microwave background anisotropies, are mainly due to coherentoscillations in the baryon radiation plasma before recombination. Here wepresent a calculation of the Doppler peaks for perturbations induced by globaltextures and cold dark matter. We �nd that the height of the �rst Dopplerpeak is smaller than in standard cold dark matter models, and that its positionis shifted to ` � 350. We believe that our analysis can be easily extended toother types of global topological defects and general global scalar �elds.PACS numbers: 98.80-k 98.80.Hw 98.80CPresently there are two main classes of models to explain the origin of large scalestructure formation. Initial perturbations can either be due to quantum 
uctuationsof a scalar �eld during an in
ationary era[1], or they may be seeded by topologicaldefects formed during a symmetry breaking phase transition in the early universe[2].The CMB anisotropies are a powerful tool to discriminate among these models bypurely linear analysis. Usually CMB anisotropies are parameterized in terms of C`'s,de�ned as the coe�cients in the expansion of the angular correlation functionh�TT (n)�TT (n0)i ��� (n�n0=cos#) = 14� X̀(2`+ 1)C`P`(cos#):For scale invariant spectra of perturbations `(` + 1)C` is constant on large angularscales, say ` <� 50. Both in
ation and topological defect models lead to approxi-mately scale invariant spectra on large scales.1



Large scale CMB anisotropies are mainly caused by inhomogeneities in the space-time geometry via the Sachs{Wolfe (SW) e�ect[3]. On smaller angular scales (0:1� <�� <� 2�) the dominant contribution comes from coherent oscillations in the baryon{radiation plasma prior to recombination. On even smaller scales the anisotropies aredamped due to the �nite thickness of the recombination shell, as well as by photondi�usion during recombination (Silk damping).Disregarding Silk damping, gauge invariant linear perturbation analysis leadsto[4] �TT = ��14D(r)g � Vjnj �	+ ��fi + Z fi (	0 � �0)d� ; (1)where � and 	 are quantities describing the perturbations in the geometry and Vdenotes the peculiar velocity of the baryon 
uid with respect to the overall Friedmannexpansion. D(r)g speci�es the intrinsic density 
uctuation in the radiation 
uid.There are several gauge invariant variables which describe density 
uctuations; theyall di�er on super{horizon scales but coincide inside the horizon. Below we useanother quantity, Dr, for the radiation density 
uctuation. The variables D(r)g andDr are de�ned in Eq. (II.5.28b) and Eq. (II.5.27b) of ref. [5] respectively, for anarbitrary matter component �. Here r stands for the coupled baryon radiation
uid1. Since the coherent oscillations giving rise to the Doppler peaks act only onsub{horizon scales, the choice of this variable is irrelevant for our calculation.� , 	 and D(r)g in Eq. (1) determine the anisotropies on large angular scales2, andhave been calculated for both in
ation and defect models [6, 7, 8, 9]. Generically,a scale invariant spectrum is predicted and thus the SW calculations yield mainlya normalization for the di�erent models. On the other hand the amplitude of theDoppler peak, which most probably will be measured in the near future, might bean important discriminating tool between them. In this Letter we present a com-putation for the Doppler contribution from global topological defects; in particularwe perform our analysis for �3{defects, textures [10], in a universe dominated bycold dark matter (CDM). We believe that our main conclusion remains valid for allglobal defects.1Actually Dr = (��r + ��b)=(�r + �b) is not quite the variable for the temperature 
uctuation,�T=T = (1=4)��r=�r. A short calculation shows that Dr is about 5% smaller than ��r=�r.2One might think that D(r)g leads just to coherent oscillations of the baryon radiation 
uid, butthis is not the case. Note that, e.g., for adiabatic CDM models without source term one can derive(1=4)D(r)g = �(5=3)	 on super{horizon scales. Since for CDM perturbations, � = �	 and 	0 ' 0,the usual SW result �T=T = (1=3)	(xrec; trec) is recovered. Neglecting D(r)g , the result would be2	 and therefore wrong by a factor of 6!
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The Doppler contribution to the CMB anisotropies is approximately given by3"�TT (x;n)#Doppler � 14Dr(xrec; trec) +V(xrec; trec) � n; (2)where xrec = x�nt0. In the previous formula n denotes a direction in the sky and tis conformal time, with t0 and trec the present and recombination times, respectively.Due to the inaccuracies mentioned in the previous footnotes, Eq. (2) tends to under-estimate the amplitude of the �rst Doppler peak by up to 30%. On the other hand,we neglect Silk damping of perturbations, which leads to a slight overestimation. Wethus are on the safe side, if we postulate that approximation (2) leads to an error ofless than about 30% in the amplitude of the �rst Doppler peak and overestimatesthe value ` of its position by less than 10%. The nice feature of Eq. (2) is thatwe will need only one simple scalar component of the defect stress{energy tensor toevaluate it.To determine Dr and V at trec, we consider a two{
uid system: baryons plusradiation, which prior to recombination are tightly coupled, and CDM. The evolutionof the perturbation variables in a 
at background, 
 = 1, is described by[5]V 0r + a0a Vr = k	+ k c2s1+wDrV 0c + a0a Vc = k	D0r � 3w a0aDr = (1 + w)[3a0a	� 3�0 � kVr � 92 �a0a �2 k�1(1 + w�r� )Vr]D0c = 3a0a	� 3�0 � kVc � 92 �a0a �2 k�1(1 + w�r� )Vc ; (3)where subscripts r and c denote the baryon{radiation plasma and CDM, respectively;D; V are density and velocity perturbations; w = pr=�r, c2s = p0r=�0r and � = �r+�c.The only place where the seeds enter this system is through the potentials 	 and �.These potentials can be split into a part coming from standard matter and radiation,and a part due to the seeds, 	 = 	(c;r) +	s and � = �(c;r) + �s, where 	s and �sare determined by the energy momentum tensor of the seeds. In this way, the seedsource terms will arise below[4].From Eqs. (3) we derive two second order equations for Dr and Dc, namelyD00r + a0a [1 + 3c2s � 6w + F�1�c]D0r � a0a �cF�1(1 + w)D0c+4�Ga2[�r(3w2 � 8w + 6c2s � 1)� 2F�1w�c(�r + �c)+�c(9c2s � 7w) + k24�Ga2 c2s]Dr � 4�Ga2�c(1 + w)Dc = (1 + w)S ; (4)3In principle this Doppler term has to be added to the SW contribution. But the SW contribu-tion decays on subhorizon scales (like `�2). At horizon scales, especially the last term in Eq. (1),the integrated Sachs{Wolfe (ISW) e�ect, can be important. At ` = 200 it contributes about 30%to the angular power spectrum for standard adiabatic CDM. Neglecting it, slightly shifts the �rstDoppler peak to smaller angular scales, ` � 220, as we have found by testing our code for thestandard adiabatic CDM model. Since we will �nd here, that the �rst Doppler peak is lower thanin this model, the ISW contribution might be higher. However, as we shall see below, the peak isat ` = 365. Therefore we expect a suppression by (365=200)2 � 3, so that the ISW contributionto the peak is probably not much higher. We also neglect the contribution of the neutrino 
uc-tuations. But since even the dark matter 
uctuations yield only about 20% of the gravitationalpotential, we expect the neutrino 
uctuations, which for standard models contribute about 20%,to be considerably smaller. 3



D00c + a0a [1 + (1 + w)F�1�r(1 + 3c2s)]D0c � a0a (1 + 3c2s)F�1�rD0r�4�Ga2�cDc � 4�Ga2�r(1 + 3c2s)[1� 2(�r + �c)F�1w]Dr = S ;(5)where F � k2(12�Ga2)�1 + �r(1 + w) + �c and S denotes a source term, which ingeneral is given by S = 4�Ga2(� + 3p)seed. In our case, where the seed is describedby a global scalar �eld �, we have S = 8�G(�0)2. From numerical simulations one�nds that the average of j�0j2 over a shell of radius k, can be modeled during thematter dominated era by[9]hj�0j2i(k; t) = 12A�2pt[1 + �(kt) + �(kt)2] ; (6)with � denoting the symmetry breaking scale of the phase transition leading totexture formation. The parameters in (6) are A � 3:3, � � �0:7=(2�) and � �0:7=(2�)2. On super{horizon scales, where the source term is important, this �t isaccurate to about 10%. As we argue later, analytical estimates support this �nding.On small scales the accuracy reduces to a factor of 2. By using this �t4 in thecalculation of Dr and Dc from Eqs. (4), (5) we e�ectively neglect the time evolutionof phases of (�0)2; the incoherent evolution of these phases may smear out subsequentDoppler peaks[11], but will not a�ect substantially the height of the �rst peak.From Dr and D0r we calculate the Doppler contribution to the C`'s according toC` = 2� Z dk "k216 jDr(k; trec)j2j 2̀(kt0) + (1 + w)�2jD0r(k; trec)j2(j 0̀(kt0))2# ; (7)where j` denotes the spherical Bessel function of order ` and j 0̀ stands for its deriva-tive with respect to the argument. The angular power spectrum `(` + 1)C` yieldsthe Doppler peaks.In order to solve Eqs. (4), (5) we need to specify initial conditions. For a givenscale k we choose the initial time tin such that the perturbation is super{horizon andthe universe is radiation dominated. In this limit the evolution equations reduce toD00r � 2t2Dr = 43 A�pt ; (8)D00c + 3tD0c � 32tD0r � 32t2Dr = A�pt ; (9)with particular solutionsDr = �1615�At3=2 ; Dc = �47�At3=2 : (10)In the above equations we have introduced � � 4�G�2, the only free parameter inthe model. We consider perturbations seeded by the texture �eld, and thereforeit is incorrect to add a homogeneous growing mode to the above solutions. Withthese initial conditions, Eqs. (4), (5) are easily integrated numerically, leading tothe spectra for Dr(k; trec) and D0r(k; trec) [see, Fig. 1].4Our �t is not valid in the radiation dominated era. There, logarithmic corrections or a di�erentpower law might have to be applied. Since the relevant scales enter the horizon roughly during thematter{radiation transition, this renders the amplitude of the corresponding 
uctuations somewhatuncertain. 4



Figure 1: The dimensionless power spectra, k3jDrj2 (solid line) and kjD0rj2 (dashed line)in units of (A�)2, are shown as functions of k. These are exactly the quantities which enterin the expression for the C`'s. We set h = 0:5 ; 
B = 0:05 and zrec = 1100.Integrating Eq. (7), we obtain the Doppler contribution to the CMB anisotropies[see, Fig. 2]. For ` < 1000, we �nd three peaks located at ` = 365, ` = 720 and` = 950. Silk damping, which we have not taken into account here, will substantiallydecrease the height of the second and even more that of the third peak. The inte-grated Sachs Wolfe e�ect, which also has been neglected, will shift the position ofthe �rst peak to somewhat larger scales, lowering `peak by (5 { 10)% and increasingits amplitude by less than 30%, as we argued above.Our second result regards the amplitude of the �rst Doppler peak, for which we�nd `(`+ 1)C` ��� `�365 = 5�2 : (11)As a consequence of the remark in footnote 4, the above numerical result has to betaken with a grain of salt. It is interesting to notice that the position of the �rstpeak is displaced by �` � 150 towards smaller angular scales than in in
ationarymodels [6]. This is due to the fact that our solution represents a combination ofthe growing and decaying modes, and only once the perturbation enters the horizonand the source term becomes negligible, the decaying mode starts to decay. Thisis manifest in the di�erence in the growth of super{horizon perturbations, which isDr / t3=2 in our case, and Dr / t2 for in
ationary models, where on all scales onlythe growing mode is present.One may understand the height of the �rst peak from the following analyticestimate: matching the sub{horizon with the super{horizon solutions of Eq. (5), inthe matter dominated era, one �nds Dc � �0:4A�(k=2�)1=2t2. From Eq. (4) we thenobtain in this limit Dr � A�k�3=2. Plugging this latter value into Eq. (7) we getroughly `(` + 1)C` � (A�)2 for the height of the �rst peak. This agrees, within afactor 2 with the numerical result given in Eq. (11).5
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log(l)Figure 2: The angular power spectrum for the Doppler contribution to the CMBanisotropies is shown in units of �2. We set cosmological parameters h = 0:5 ; 
B = 0:05and zrec = 1100Let us now compare our value for the Doppler peak with the level of the SWplateau. Unfortunately, the numerical value for the SW amplitude is uncertainwithin a factor of about 2, which leads to a factor 4 uncertainty in the SW contri-bution to the power spectrum: Refs. [7, 8] and Ref. [9] �nd respectively`(`+ 1)C` ���SW � 2�2 and `(`+ 1)C` ���SW � 8�2: (12)According to Refs. [7, 8], the Doppler peak is a factor of � 3:4 times higher thanthe SW plateau, whereas it is only about 1.5 times higher if the result found in [9]is assumed. (We allow for about 30% of the SW amplitude to be added in phase tothe Doppler amplitude of � 2:24�, according to Eq. (11)). Clearly, improved numer-ical simulations or analytical approximations are needed to resolve this discrepancy.However, it is apparent from Eqs. (11) and (12) that the Doppler contribution fromtextures is somewhat smaller than for generic in
ationary models.We believe that our results are basically valid for all global defects. This dependscrucially on the 1=pt behavior of (�0)2 on large scales (cf. Eq. (6)), which is ageneric feature of global defects: on super{horizon scales, (�0)2(k) represents whitenoise superimposed on the average given by (�0)2(k = 0) / pV =t2. Since there areN = V=t3 independent patches in a simulation volume V , the amplitude of (�0)2(k)is proportional to pV =(t2pN) / 1=pt. (Notice that this argument does not applyfor local cosmic strings.)Based on our analysis, we conclude that if the existence of Doppler peaks is in-deed con�rmed and if the �rst peak is positioned at ` < 300, then global topologicaldefects are ruled out. On the other hand, if the �rst Doppler peak is positionedat ` � 350 and if its amplitude is lower than the one predicted for standard in
a-tionary models, global topological defects are strongly favored if compared to thelatter. (There are however non{generic, open, tilted in
ationary models which might6



reproduce a similar signature in the CMB angular power spectrum). To our knowl-edge this is the �rst clear �ngerprint within present observational capabilities, todistinguish among these two competing models of structure formation.As a future work, we aim to model with better accuracy the global scalar �eld� during both the radiation and the matter dominated era, as well as to includethe SW e�ect and the photon di�usion. This will allow us to better estimate theamplitude of the �rst Doppler peak and to investigate secondary peaks.As we were completing our work, a preprint[12] on the same issue, but follow-ing a di�erent approach, came to our attention. The authors calculate the Dopplerpeaks from cosmic textures in the synchronous gauge. They include the Sachs Wolfecontribution into the analysis, but they need more of the uncertain modeling of thedefect stress energy tensor. Even though we basically agree with the shape andposition of their Doppler peaks, we obtain a somewhat smaller amplitude.AcknowledgementWe thank Leandros Perivolaropoulos, who participated in the beginning of thisproject and Mark Hindmarsh, for helpful discussions and in particular for his skillswith MATLAB. One of us (R.D.) acknowledges stimulating discussions with NeilTurok. A.G. thanks Nuno Antunes and Dennis Sciama for encouragement, the In-stitut f�ur Theoretische Physik, Z�urich for hospitality and The British Council forpartial �nancial support. This work was partially supported by the Swiss NSF.References[1] P.J. Steinhard, Class. Quantum Grav. 10, S33, (1993).[2] T.W.B. Kibble, Phys. Rep. 67, 183 (1980).[3] R.K. Sachs and A.M. Wolfe, Astrophys. J. 147, 73 (1967).[4] R. Durrer, Fund. of Cosmic Physics 15, 209 (1994).[5] H. Kodama and M. Sasaki, Prog. Theor. Phys. Suppl. 78, 1 (1984).[6] N. Sugiyama, Preprint astro-ph/9412025 (1994).[7] D. Bennett and S.H. Rhie, Astrophys. J. 406, L7 (1993).[8] U.{L. Pen, D.N. Spergel and N. Turok, Phys. Rev. D49, 692 (1994).[9] R. Durrer and Z.H. Zhou, in preparation.[10] N. Turok, Phys. Rev. Lett. 63, 2625 (1989).[11] A. Albrecht et al., Preprint, astro-ph/9505030.[12] R.G. Crittenden and N. Turok, Phys. Rev. Lett. 75, 2642 (1995).
7


