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Abstract: We review recent results about the macroscopic description of phase separation in the
2D Ising model, with special emphasis on boundary effects and related surface phase transitions. In
particular, after having recalled some facts about the wetting transition, we describe two situations
in which this transition has major consequences at the macroscopic scale. We also briefly describe
a more general situation for which it is possible to derive the thermodynamical variational problem
characterizing the interfaces of the equilibrium state.

Keywords: Phase separation, Wulff droplet, Winterbottom droplet, interface pinning, wetting transi-
tion.

1 Introduction

The aim of these notes is to give a non-technical account of recent results about the macroscopic
description of phase separation in the 2D Ising model. They are based on a series of works by the
authors [9, 10, 11, 12].

Consider some two-dimensional container Q, filled with some substance in the phase coexis-
tence regime (we suppose to simplify that there are only two phases) at some fixed temperature.
Macroscopically, the states can be described by a family of curves C, the interfaces, which are the
boundaries of the regions occupied by the two phases. These families may have to satisfy some
constraints, see below. The problem addressed here is how to determine the macroscopic geometry
of the phase separation, i.e. to characterize the family of interfaces of the equilibrium state. Let us
first consider the answer to this question which is provided by Thermodynamics (or rather, here,
Thermostatics).

To do this, Thermodynamics postulates the existence of a functional on these families of curves,
the surface free energy, the minimum (or minima) of which is attained on the interfaces of the
equilibrium state (or states).

In the following, it will be important to distinguish between two contributions to this surface free
energy: The surface tension is the contribution coming from the presence of an interface between
the two phases, an infinitesimal part of interface of length dl, with normal n, contributing τ(n)dl.
The wall free energy is the contribution coming from the interaction of an interface with the walls
of the container, an infinitesimal segment of length dl at some point x along the boundary of Q
contributing τbd(x)dl. Physically, the wall free energy will depend on the chemical structure of the
wall and may favor the presence of one of the two phases in its vicinity. The surface free energy of
a family C can then be written as

T (C) =
∑

C∈C
T1(C) with T1(C) =

∫

C
τ(ns)ds +

∫

C∩∂Q

(τbd(xs)− τ(ns))ds .
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Since this functional is positive, if there were no constraints the solution of the variational problem
would always be the empty set. Hence, it is necessary to force the presence of interfaces in the
system; this can be done in several ways, and we will be interested in the following two: 1) Boundary
conditions: the endpoints of the curves of an admissible family are given by a prescribed set of points
of ∂Q; 2) Volume constraint: a family is admissible if the volume of the two phases it determines
takes some prescribed value.

Our aim now is to show how the above description can be understood from the point of view of
statistical mechanics, and in particular how this variational problem can be derived.

2 Some definitions

Let L be a strictly positive integer; we define

ΛL = [−L,L]2 ∩ ZZ2 , ∂ΛL = {x ∈ ΛL | ∃y 6∈ ΛL, ‖x− y‖1 = 1} . (2.1)

A boundary condition is an element η ∈ {−1, 1}∂ΛL . A configuration σ ∈ {−1, 1}ΛL is η-compatible
is σ(x) = η(x) for all x ∈ ∂ΛL.
The Hamiltonian in ΛL with η-boundary conditions (b.c.) is defined by

Hη
ΛL

(σ) =




−

∑

〈t,t′〉⊂ΛL

J(t, t′)σ(t)σ(t′) if σ is η-compatible;

+∞ otherwise,
(2.2)

where 〈t, t′〉 denotes nearest neighbors and J(t, t′) are real numbers. The Gibbs measure in ΛL with
η-b.c. at inverse temperature β ≥ 0 is defined by

µη
ΛL

(σ) =
1

Zη
ΛL

exp{−βHη
ΛL

(σ)} . (2.3)

In the special cases of +-b.c. (η ≡ 1), we write µ+
ΛL

, Z+
ΛL

, ..., and similarly for −-b.c. (η ≡ −1).
Let J(t, t′) ≡ 1; the +-phase is described by the measure µ+ = limL→∞ µ+

ΛL
; the −-phase is

defined similarly.

Let n be a unit vector, and Dn be the straight line through the origin with normal n. We denote
by Dn the length of the segment Dn ∩ [−1, 1]2, and define the following b.c.

ηn(x) = sign(x · n) , (2.4)

where sign(0) = 1. Let J(t, t′) ≡ 1. The surface tension in the direction n is defined by

τ(n;β) = − lim
L→∞

1
LDn

ln
Z

ηn

ΛL

Z+
ΛL

. (2.5)

Let now

J(t, t′) =
{

h if t2 = −L or t′2 = −L
1 otherwise,

and η±(x) =
{−1 if x2 = −L,

1 otherwise.
(2.6)

The wall free energy is defined by

τbd(β, h) = − lim
L→∞

1
2L + 1

ln
Z

η±
ΛL

Z+
ΛL

. (2.7)

Let us write τ∗(β) = τ((0, 1); β). It was proved in [4] that |τbd(β, h)| ≤ τ∗(β), for all values of β
and h.
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Figure 1: Schematic representation of the regimes of partial and complete wetting of the wall by the +-phase.
When hw(β) > h > 0, the phase separation line sticks to the wall: the height of its excursions away from the wall
has bounded expectation (in fact even exponential moments) uniformly in the size of the system (left); this is the
regime of partial wetting. When h ≥ hw(β), the phase separation line takes off and fluctuates at a distance of order√

L away from the wall; this is the regime of complete wetting (right).

T

Tc

h1−1

Partial
Wetting

Figure 2: The phase diagram of the wetting transition. The shaded area corresponds to the regime of partial
wetting; it is characterized by |τbd(β, h)| < τ∗(β) or, equivalently, by non-uniqueness of the surface Gibbs state.

3 Wetting transition: microscopic point of view

The structure of the wall of a container, which is modelized in our model by the coupling constants
between the spins in ΛL \ ∂ΛL and those of ∂ΛL, can have major effects on the behavior of the
system, even deep inside the box, as will be shown later. What we will see is that it can even
induce boundary phase transitions, i.e. a dramatic change of behavior of the system resulting from
a smooth change at the boundary. The prototypical example of such a phenomenon in our model is
the wetting transition. In this section, we recall the microscopic description of this transition. We
refer to the original works [1, 4] for details (see also [9]).

We consider the following choice of boundary coupling constants: Let h ∈ IR, and a = ±1; then
we choose h(e) = h if e = 〈t, t′〉 with t(2) = 1, t′(2) = 0 (or vice-versa), and h(e) = a otherwise. We
refer to h as the boundary magnetic field and a as the boundary condition.

Let Λ′L = Λ+(0, L) and IL = {x ∈ ZZ2 |x2 ≥ 0}; all definitions done for ΛL are straightforwardly
extended to Λ′L. Let µa,β,h

IL = limL→∞ µa,β,h
Λ′

L
; such a limit is called a surface Gibbs state. The

question here is the following: does the phase in the vicinity of the wall depend on the boundary
condition a? In other words, does µa,β,h

IL actually depend on a? It turns out that the answer depends
on the value of h; more precisely, Fröhlich and Pfister proved the following

Theorem 1 [4] For any value of β and h, |τbd(β, h)| ≤ τ∗(β). Moreover, |τbd(β, h)| = τ∗(β) if and
only if µ+,β,h

IL = µ−,β,h
IL .
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This result provides a thermodynamical characterization of the wetting transition in terms of the
surface tension and wall free energy; this characterization is known as Cahn’s criterion in the physical
literature.
This result can be understood heuristically. Suppose, without loss of generality, that h ≥ 0. Then
if a = 1, the magnetization near the wall will be positive. If a = −1, then there will be competition
between attraction of the wall (when h < 1 there is an energetic gain in putting the interface along
the wall) and entropic repulsion (close to the wall the phase separation line cannot fluctuate as much
as far from it). Indeed, when τbd < τ∗, the attraction of the wall wins, and the phase separation line
stays very close to it and visits it very often; when τbd = τ∗, entropic repulsion dominates, meaning
that the phase separation line takes off and fluctuates far away from the wall (in fact at a distance of
order O(L1/2), see [1, 2]). In the first situation, the phase in the bulk will extend up to the bottom
wall, and consequently the magnetization near the wall will be negative. In the second situation,
however, no information from the bulk can reach the bottom wall and the phase in its vicinity will
have positive magnetization.

The phase transition line in the (positive h part of the) phase diagram can be parameterized by
hw(β) = inf{h ∈ IR | τbd(β, h) = τ∗(β)}, as was shown in [4]; the complete line can be obtained by
symmetry.

4 Macroscopic manifestation of the wetting transition

The wetting transition as described in the previous section cannot be observed macroscopically: in
both regimes, the interface lies, in the continuum limit, on the bottom wall, since it is never repelled
to a macroscopic distance. In this section, we present two versions of the Ising model in which
the wetting transition can be studied macroscopically; these two versions correspond, respectively,
to forcing the presence of interfaces inside the system by boundary conditions, and by a volume
constraint.

4.1 Grand-canonical ensemble

This is the simplest modification of the settings of Section 3. To be able to see the transition, we
will raise the endpoints of the interface at some macroscopic heights along the vertical walls of the
box.

The coupling constants are given by (2.6) with h > 01. Let a, b ∈ (−1, 1); the boundary condition
is given by

ηab(x) =





1 if x2 = L,
or x1 = −L and aL ≤ x2 ≤ L,
or x1 = L and bL ≤ x2 ≤ L,

−1 otherwise.

(4.1)

Let Q = [−1, 1]2, and A = (−1, a), B = (1, b); we denote by Ω the set of all rectifiable curves
inside Q with endpoints A and B. On this set we define the following (surface free energy) functional,

T (C; β, h) =
∫

C
τ(ns; β)ds + |C ∩ wQ|(τbd(β, h)− τ∗(β)) , (4.2)

where wQ = {x ∈ Q |x2 = −1} and |C ∩ wQ| is the length of the portion of C in contact with the
wall wQ.

It is not difficult to solve the corresponding thermodynamical variational problem (see [11] for
details); the result is given in Proposition 1 below.

1The case h ≤ 0 can be treated in exactly the same way, but is not as interesting.
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Figure 3: A sequence of phase-transition lines for various values of a and b, separating the phase in which the
interface is a straight line and the phase in which it is pinned to the wall. The shaded area corresponds to the value
of (T, h) so that τbd(β, h) < τ∗(β) (i.e. it’s a part of the phase diagram of Fig. 2). Observe that the system in case
i) exhibits reentrance (see also Fig. 4).

Let D be the straight line from A to B and W be the curve composed of three straight line
segments: from A to a point P1 ∈ wQ , from P1 to P2 ∈ wQ, and from P2 to B. The points P1 resp.
P2 are such that the angles between the first segment and the wall resp. between the last segment
and the wall are equal to θY ∈ [0, π/2], which is solution of the Herring-Young equation2

cos θY τ(θY )− sin θY τ ′(θY ) = τbd . (4.3)

W is a simple curve in Q if and only if θY ∈ [arctan a+b
2 , π/2).

Proposition 1 [11] Let θY be the solution of the Herring-Young equation (4.3). Let MT be the set
of curves minimizing T .

1. If tan θY ≤ a+b
2 , then MT = {D}.

2. If π/2 > θY > arctan(a+b
2 ), then MT = {D} if T (D) < T (W), MT = {W} if T (D) > T (W)

and MT = {D,W} if T (D) = T (W).

So Thermodynamics predicts that the interface of the equilibrium state should be given either by D
or by W, depending on the values of a, b, β and h. We show now that it is indeed possible to derive
this starting from statistical mechanics. To state the result, we need to define some microscopic
version of these two curves. Let C > 0; we define (d2 being the Euclidean metric)34

DC
L = {t ∈ ΛL |d2(t, LD) < C

√
L log L} , (4.4)

WC
L = {t ∈ ΛL |d2(t, L(W \ wQ) < C

√
L log L or d2(t, L(W ∩ wQ)) < C log L)} , (4.5)

∂QC
L = {t ∈ ΛL |d2(t,ZZ2 \ ΛL) < C log L}. (4.6)

Let β > βc and h such that T (D) 6= T (W). If MT = {D}, then we define Λ+
L as the component

of ΛL \ (DC
L ∪ ∂QC

L ) in contact with +-b.c., and Λ−L as the component in contact with −-b.c.. If
MT = {W}, we make the corresponding definition, but this time there are two components Λ−L,1

2τ(θ) ≡ τ((cos θ, sin θ)).
3In fact, the sets given here are not optimal; those given in [11] are slightly better, but more complicated to

describe.
4If V ⊂ IR2, then LV = {Lx, x ∈ V}.
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Figure 4: This figure shows part of the phase diagram for a = −0.8, b = −0.8 (left), and a = −0.8, b = −0.76 (right).
For values of the parameters T and h below these curves the interface is pinned, while it is a straight line above these
curves. Increasing the temperature along the dashed lines, we see that the system exhibits reentrance.

and Λ−L,2 in contact with −-b.c..
The following statement can be proved using the results of [11].

Theorem 2 [11] Let β > βc and h > 0. There exist C > 0 and L0 such that, if MT 6= {D,W},
then for any A ⊂ Λ+

L ,
|〈σA〉ηab

ΛL
− 〈σA〉+| < L−O(C) , ∀L ≥ L0 .

The corresponding statement for A ⊂ Λ−L (if MT = {D}), or A ⊂ Λ−L,i (i=1,2) (if MT = {W})
also holds.

This result shows that the set DC
L or WC

L corresponding to the solution of the thermodynamical
variational problem does indeed play the role of a macroscopic interface, in the sense that it separates
regions occupied by + and −-phases (notice also that it converges to the corresponding solution of
the variational problem as L → ∞). This is therefore a precise derivation of the thermodynamical
description in this case. In fact, even more can be proved, namely that for any rectifiable, simple
curve C in Q with endpoints A and B, the probability that the interface is “close” to C is roughly
given by exp{−(T (C)−T ∗) L}, where T ∗ is the minimum of the functional T on such curves. This
shows that the surface free energy is the rate-function for the large deviations of the interface, in a
way completely similar to the role played by the bulk thermodynamic potentials in the case of large
deviations of bulk quantities.

Since we are in the 2D Ising model, it is in fact possible to compute explicitly the corresponding
phase diagrams. Figure 3 shows the phase diagrams obtained for various choices of a and b. An
interesting feature is that, for some values of a and b, the system exhibits reentrance (see Fig. 4).

4.2 Canonical ensemble

We describe now another situation in which the wetting transition occurring on the microscopic
scale results in a transition at the macroscopic scale. We do not induce the presence of interfaces
by a suitable choice of boundary conditions, but rather by a more subtle mechanism, namely fixing
the total amount of magnetization. It turns out that the system reacts to such a constraint by
spontaneously segregating the two phases. Previous results on this kind of problems, but neglecting
boundary effects, are [3, 8, 5]; see also [3, 6] for a detailed description of the microscopic properties
of the canonical phase.

The coupling constant are given as before by (2.6), with h ∈ IR (here h can be positive or
negative). We consider +-b.c.. Let m∗(β) = 〈σ(0)〉+ be the spontaneous magnetization, and
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choose m such that |m| < m∗(β). We can now define the canonical states at finite volume. Let
c = 1/4− δ > 0, with δ > 0. We introduce the event

A(m; c) := {σ : |
∑

t∈ΛL

σ(t)−m|ΛL| | ≤ |ΛL| · L−c} . (4.7)

We want to study the typical macroscopic configurations under the measure µ+
ΛL

( · |A(m; c)), to
which we refer as the canonical state. Let us first briefly recall what is expected on thermodynamical
grounds. Let Q = [−1, 1]2, and for any family C of rectifiable closed curves in Q define

T (C) =
∑

C∈C
T (C) , (4.8)

with T (C) defined as in (4.2). Finally, let V (m) = |Q|(m∗ −m)/2m∗. The corresponding thermo-
dynamical variational problem is
Variational Problem: Among all subsets V of Q of volume V (m) and with rectifiable boundary,
find those minimizing T (∂V ). The idea is that if the −-phase occupies such a set, while the +-phase
occupies its complement in Q, the expected magnetization should be close to m∗(|Q| − V (m)) −
m∗V (m) = |Q|m and should therefore satisfy the constraint.

The solution of this variational problem is well known, at least if we ignore the constraint V ⊂ Q
(see [9] for more details):

• If τbd(β, h) = τ∗(β), then the solution is given by a convex set, not touching the wall, whose
shape can be obtained through the Wulff construction;

• If τbd(β, h) < |τ∗(β)|, then the solution is given by a convex body attached to the wall, whose
shape is given by the Winterbottom construction;

• If τbd(β, h) = −τ∗(β), then the solution is degenerate, in the sense that any minimizing
sequence consists of unbounded sets (for example a sequence of rectangle attached to the wall
with increasingly larger base and fixed volume).

These three situations are referred to, respectively, as: complete drying; partial wetting (partial
drying); complete wetting.

Of course, the constraint V ⊂ Q may prevent the system from reaching the true minimum of
the variational problem; in particular, the third case will never be observed. The solution to the
constrained variational problem is much more complicated [7]; see Fig. 5 for illustrations.

We want to show that the typical macroscopic configurations of the model in the canonical state
are close in some sense to the minimum of the (constrained) variational problem described above.
Using the fact that the infimum of the variational problem is necessarily taken on a unique convex
body (by convexity of the surface tension), it is possible to prove such a claim in complete generality
[10]; one of the strength of our method is that we don’t need to know what the solution explicitly
is, neither require informations on its stability properties.

To define the notion of closeness, we need to be more careful than in the previous section. Indeed
in the present case the minimum of the variational problem is typically taken on an uncountable
set (since any translate of one solution staying inside the box is also a solution). We therefore use
a somewhat weaker notion of proximity as before, which we describe now.

Let C ⊂ ZZ2; the empirical magnetization in C is

mC(σ) :=
1
|C|

∑

t∈C

σ(t) . (4.9)
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Figure 5: Left: A sequence of droplets for decreasing values of the boundary magnetic field. The first picture
corresponds to h ≥ hw(β); the droplet has the Wulff shape and “floats” inside the box. As soon as h becomes smaller
than hw(β), the droplet starts to touch the wall. Further decrease of h makes it spread until it touches both vertical
sides of the box. Further reduction of the magnetic field does not modify the shape of the droplet, but makes it
unstable in the sense that the removal of the vertical walls would result in a spreading of the droplet (for example,
the dashed line in the last picture shows part of the droplet which would be obtained by removing the walls for some
0 > h > −h∗. Right: A sequence of big droplets in a tube for decreasing values of the magnetic field. The droplets
have neither Wulff, nor Winterbottom shape; however Theorem 3 still holds.

Let 0 < a < 1; we introduce a grid L(a) in ΛL made of cells which are translates of the square box

B(0; [La]) = {t ∈ IR2 : |t(j)| ≤ [La] , j = 1, 2} . (4.10)

The value of a is close to 1. In most of the cells the empirical magnetization is close to m∗ or
−m∗ with high probability. For each cell of the grid L(a) we compute the empirical magnetization
mC(σ). Then we scale all lengths by 1/L, so that after scaling the box ΛL is the rectangle Q. For
each σ we define a magnetization profile ρL(x; σ) on Q by

ρL(x;σ) := mC(σ) if Lx ∈ C (4.11)

if Lx ∈ C, where Lx is the point x ∈ Q scaled by L and C a cell of the grid L(a).
The set of macroscopic droplets at equilibrium is

D(m) := {V ⊂ Q : |V | = V (m) , T (∂V ) is minimum } . (4.12)

For each V ∈ D(m) we have a magnetization profile,

ρV (x) :=
{

m∗ if x ∈ Q \ V ,
−m∗ x ∈ V .

(4.13)

Let f be a real–valued function on Q; we set

d1(f,D(m)) := inf
V ∈D(m)

∫

Q

dx | f(x)− ρV (x) | . (4.14)

The result is

Theorem 3 [10] Let β > βc, h ∈ IR, −m∗ < m < m∗, c = 1/4 − δ > 0. There exists a positive
function ε(L) such that limL→∞ ε(L) = 0 and for L large enough

µ+
ΛL

({ d1(ρL( · ;σ),D(m)) ≤ ε(L) } |A(m; c)
) ≥ 1− exp{−O(Lκ)} .
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The thermodynamical description has then again been derived, since this result proves that typical
macroscopic configurations are close (in some L1 sense) to the solution of the variational problem
(which we don’t need to know!). In particular, the complete drying/partial drying phase transition
in this case is observable macroscopically (and occurs at exactly the same value of the boundary
magnetic field as in the wetting transition described in Section 3).

Because of the finite size of the box, it is not possible to observe the partial wetting/complete
wetting transition; indeed, the droplet always completely covers the bottom wall before the magnetic
field reaches −hw(β). However, if instead of looking at macroscopic droplets we look at mesoscopic
droplets, this transition can be recovered. This corresponds to choosing m = m∗ − CL−ν , for
some C > 0 and small enough ν > 0. Then a result analogous to the above can be proved [12].
In particular, as long as h > −hw(β), the equilibrium droplets will always have the Wulff, or the
Winterbottom shape (depending on h), as soon as L is large enough. Indeed, the volume of the
corresponding subset of Q is of order L−ν and therefore the unconstrained solution always fits inside
the box if L is large enough. However, if h ≤ −hw(β), the equilibrium “droplet” completely covers
the bottom wall for arbitrarily large L! Since its volume vanishes in the limit, the height of the
droplet goes to zero; in this case, the limiting shape is a film along the bottom wall.

Considering this dramatic effect of the partial wetting/complete wetting transition on the equi-
librium droplet, one might expect that this transition must also have non-trivial consequences on
the probability of large moderate deviations. This is indeed the case; it can be shown that5

µ+
ΛL

(A(m; c)) =

{
e−O(L1− ν

2 ) if h ≥ −hw(β),
e−O(L1−2ν) if h < −hw(β).

(4.15)

Therefore, this phase transition changes the scale of the large moderate deviations. The results
proven in [12] have been obtained for small enough ν, but are expected to hold for all ν < 2/3 if
h ≥ −hw(β) (this could be proven combining the argument in [12] with the local limit theorem of
[6]), and for ν < 1/2 if h < −hw(β) (even though this would be more difficult to prove). As ν
becomes close to 1/2, the exponent in (4.15) goes to zero. This should not be surprising since in
the complete wetting regime, even without imposing a deviation of the magnetization, the phase
separation line is repelled away from the wall and makes fluctuations of order L1/2, as can be shown
at low temperature (since this line converges to the Brownian excursion [2] for which this result is
known). Therefore, in the complete wetting regime, fluctuations of magnetization are not dominated
by bulk fluctuations, which are of order L, but by the fluctuations of the phase separation line. This
implies that typical fluctuations of magnetization in the complete wetting regime should be of order
L3/2, which is just L2−ν for ν = 1/2.

5 A more general situation

In this last section, we describe briefly a “general” situation for which it is possible to derive the
macroscopic description provided by Thermodynamics; the walls of the container can now have a
rather complicated structure (they can be split into an arbitrary number of macroscopic pieces on
each of which a different boundary magnetic field is acting) and the number of interfaces can be as
large as desired.

More precisely, Let Q = [−1, 1]2, and let M and N be two strictly positive integers. We
consider a partition of ∂Q into N disjoint, connected components, ∂Q =

⋃N
k=1 ∆k. Moreover, let

B = {x1, . . . , x2M} be 2M distinct points of ∂Q. The macroscopic problem we consider now is the
following: Find the equilibrium state of a binary mixture in the box Q, with wall free energies given
by τk

bd on ∆k, under the constraint that there are M interfaces with endpoints given by the set B.

5Exact expression of these probabilities at leading order in L can be computed, see [12].
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The corresponding variational problem is then given by
Variational problem: Among all families C of M open, rectifiable simple curves in Q with endpoint
given by the set B, find those minimizing the total free energy T (C) =

∑
k=1M T (C), where

T (C) =
∫

C
τ(ns)ds +

N∑

k=1

(τk
bd − τ∗)|∆k ∩ C| . (5.1)

Of course, in such generality not much can be said about the solution, except that it is taken on
families of polygonal lines (by convexity of the surface tension). It is however again possible to
derive, as before this variational problem from statistical mechanics for the corresponding Ising
model. The result is completely similar to Theorem 2.
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