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Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada

Background: During the last decade Ebola virus has caused several outbreaks in
Africa. The recombinant vesicular stomatitis virus-vectored Zaire Ebola (rVSVAG-
ZEBOV-GP) vaccine has proved safe and immunogenic but is reactogenic. We
previously identified the first innate plasma signature response after vaccination
in Geneva as composed of five monocyte-related biomarkers peaking at day 1
post-immunization that correlates with adverse events, biological outcomes
(haematological changes and viremia) and antibody titers. In this follow-up
study, we sought to identify additional biomarkers in the same Geneva cohort
and validate those identified markers in a US cohort.

Methods: Additional biomarkers were identified using multiplexed protein
biomarker platform O-link and confirmed by Luminex. Principal component
analysis (PCA) evaluated if these markers could explain a higher variability of
the vaccine response (and thereby refined the initial signature). Multivariable
and linear regression models evaluated the correlations of the main
components with adverse events, biological outcomes, and antibody titers.
External validation of the refined signature was conducted in a second cohort
of US vaccinees (h=142).

Results: Eleven additional biomarkers peaked at day 1 post-immunization:
MCP2, MCP3, MCP4, CXCL10, OSM, CX3CL1, MCSF, CXCL11, TRAIL, RANKL
and IL15. PCA analysis retained three principal components (PC) that
accounted for 79% of the vaccine response variability. PC1 and PC2 were
very robust and had different biomarkers that contributed to their variability.
PC1 better discriminated different doses, better defined the risk of fever and
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myalgia, while PC2 better defined the risk of headache. We also found new
biomarkers that correlated with reactogenicity, including transient arthritis
(MCP-2, CXCL10, CXCL11, CX3CL1, MCSF, IL-15, OSM). Several innate
biomarkers are associated with antibody levels one and six months after
vaccination. Refined PC1 correlated strongly in both data sets (Geneva: r =
0.97, P <0.001; US: r = 0.99, P< 0.001).

Conclusion: Eleven additional biomarkers refined the previously found 5-
biomarker Geneva signature. The refined signature better discriminated
between different doses, was strongly associated with the risk of adverse
events and with antibody responses and was validated in a separate cohort.

KEYWORDS

innate plasma signature, rVSVAG-ZEBOV-GP, biomarkers, adverse events,
immunogenicity

Introduction

Since the identification of the ebolaviruses in 1976, several
outbreaks of Ebola disease have been identified in sub-Saharan
Africa. Ebola virus disease (EVD) induces a high mortality rate (50-
90%) and can result in uncontrolled epidemics, as witnessed in
2014-16 during the largest Ebola outbreak ever reported (1). The
international response to this outbreak supported international
collaborations to test EVD vaccine candidates. rVSVAG-ZEBOV-
GP, the most advanced candidate at that time, is a live-attenuated
vaccine whose vesicular stomatitis virus glycoprotein-encoding
gene has been deleted (VSVAG) and replaced with the Zaire
Ebola virus (ZEBOV-GP) glycoprotein. This vaccine induced
100% protection against EVD in challenged non-human primates
(NHP) (2-4).

rVSVAG-ZEBOV-GP proved safe and immunogenic in
different clinical trials held in the USA, Europe and Africa (5-11),
but induces transient reactogenicity (12). It was shown to be
effective within days in the ring vaccination trial held in 2015 in
Guinea (10) and during the 2018-19 outbreak in the Democratic
Republic of Congo (13). All these findings supported fast tracked
vaccine licensure, resulting in a prequalification by WHO for
rVSVAG-ZEBOV-GP to be used in countries at high risk in 2019
(14), and to its license under the name of Ervebo® by the FDA (15)
and by the EMA (16).

Although rVSVAG-ZEBOV-GP is highly effective against EVD,
only a few studies have explored its principal innate and adaptive
induced immune mechanisms and its ability to induce early protection.
Studies in NHP models have demonstrated that antibodies and CD4" T-
cells are necessary for rVSV-EBOV-mediated protection against lethal
infection, while CD8" T-cells play a minor role (17). Interestingly,
rVSVAG-ZEBOV-GP induced partial and total protection in NHP as
early as 3 and 7 days after challenge, in absence of detectable antigen-
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specific IgG and low IgM-specific serum antibodies (18), suggesting a
role of innate responses in mediating early protection.
rVSVAG-ZEBOV-GP induces a robust innate immune response
characterized by the mobilization of monocytes and natural killer
(NK) cell in humans, and NK cell activation and CXCL10 levels
correlates with antigen-specific antibody responses (8, 19). Similarly,
other rVSV-based vaccines evaluated in NHPs induce the secretion of
cytokines/chemokines and NK cell activation [VSV-MARV (20, 21)]
and the transcription of genes involved in NK and innate immune
pathways [rVSVAG-LASV-GPC (22)]. We showed in Geneva
vaccinees that this mobilization and activation of circulating NK
cells was rapid and dose-dependent (23). We also identified the first
innate plasma signature response to rVSVAG-ZEBOV-GP in healthy
vaccinees, derived in a European cohort (Geneva, Switzerland) and
validated in an African cohort (Lambaréne, Gabon) (24). Among the
six monocyte-related cytokines/chemokines which peaked at day 1
post-immunization, five (MCP-1, IL-1Ra, TNF-o0,, IL-10 and IL-6)
defined a signature that was vaccine dose-dependent and correlated
with viremia, biological outcomes and adverse events, including
transient arthritis (24). Here, we aimed to identify additional
markers in Geneva vaccinees that could refine the previous
signature and to validate this refined signature in a US cohort.

Methods

Study design, population, and key
previous outcomes

We used plasma samples obtained from two clinical trials
conducted in Europe (phase 1/2, randomized, double-blind,
placebo-controlled, dose-finding trial in Geneva, Switzerland
[November 2014, to January 2015; NCT02287480]) (12) and in
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North America (phase 1b, randomized, double-blind, placebo-
controlled, dose-response trial in the USA [Dec 5, 2014, to June
23, 2015; NCT02314923]) (25). The trial protocols were reviewed
and approved by the WHO’s Ethics Committee as well as by local
ethics committees (USA trial: the Chesapeake Institutional Review
Boards (Columbia, MD, USA) and the Crescent City Institutional
Review Board (New Orleans, LA, USA); Geneva trial: the Geneva
Cantonal Ethics Commission and the Swiss Agency for Therapeutic
Products (Swissmedic). All participants had provided written
informed consent to participate in those studies (12, 25).

As genetic and environmental factors may influence vaccine
response, we used the Geneva trial as the derivation cohort (n=115)
and the US trial as the validation cohort (see Supplementary
Figure 1). As a wider range of vaccine doses were tested in this
US trial (7, 9), we randomly choose a subset of individuals (n=130)
grouped to best match Geneva low dose (n=48), high dose (n=60)
and placebo (n=22) recipients (Supplementary Figure 1).

Pilot high-throughput screening in plasma
from Geneva vaccinees

O-link (OLINK AB, Uppsala) is a semi-quantitative assay based
on Proximity Extension Assay (PEA) technology with no cross
reactivity. It measures proteins via an antibody-mediated detection
system linked to synthetic DNA. The method has been described
previously (26). Briefly, paired oligonucleotide-coupled antibodies
with overlapping sequences are allowed to bind to proteins in the
sample. When paired antibodies are brought in proximity to one
another through binding to their target, their oligonucleotide
sequences overlap to form a PCR target, which can be semi-
quantified with real-time PCR. We used three O-link panels
(inflammation, immune and metabolic panels, each panel
detecting 92 proteins) to screen for 276 markers. Inflammatory
panel was tested first, and we evaluated days 0, 1, 3 and 7. Immune
and metabolism panels were used later, and we evaluated only day 0
and 1. Following data pre-processing, including quality control, the
relative level (NPX) of each of the 276 proteins was assessed.
Proteins with more than 30% of samples with NPX values below
the limit of detection (n=53) were excluded from further analysis.

In this pilot screening, we selected a subgroup of participants of
the Geneva cohort (n=49), including all participants that reported
transient arthritis and matched the samples by dose, sex and age
(Figure 1A), with the aim to identify potential arthritis-associated
biomarkers. We first assessed the number of markers peaking at D1,
D3 and D7 (Figure 1B). Subsequently, the identified biomarkers
were confirmed and quantified by Luminex in each participant of
the Geneva cohort (n=115).

Quantification of biomarkers by
Luminex assay

A customized Luminex assay (Magnetic Luminex assay, R&D
Systems) was used to measure the plasma concentration of most of
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the markers identified by O-link, as some were not available for
testing with the Luminex technology. Assays were performed
according to the supplier’s instructions using) the Luminex
xMAP Technology (Luminex Corporation) and read on the Bio-
Plex 200 array reader (Bio-Rad Laboratories). Five-parameter
logistic regression curve (Bio-Plex Manager 6.0) was used to
calculate sample concentrations. In addition to previously
reported biomarkers (IL-1Ra, MCP1, IL-6, IL-10, MIP1b, and
TNF-o) (24), additional markers from the O-Link analysis were
MCP2, MCP3, MCP4, CXCL10, OSM, CX3CL1, MCSF, CXCL11,
TRAIL, RANKL and IL15 were measured in both Geneva and US
cohort. All data below thresholds (last point of the standard curve)
were set to half the value of the corresponding threshold.

ZEBOV-GP-binding antibodies

We used the data generated in studies performed in Geneva,
reported in (12) and in the US, reported in (25). For the present
study, we refer to measurements performed at day 28 and 180.
Briefly, quantification of ZEBOV-GP-specific antibodies for the
Geneva cohort was done at the US Army Medical Research
Institute for Infectious Diseases (USAMRIID) in Frederick,
Maryland, USA in the Diagnostic Systems Division using
USAMRIID’s standard operating procedure (SOP AP-03-35;
USAMRIID ELISA) (8, 12, 27) by the Filovirus Animal Non-
Clinical Group (FANG). For the US cohort, ZEBOV-GP-specific
antibodies were tested in Focus Diagnostics, San Juan Capistrano,
CA, based on the assay developed by FANG. The homologous
Zaire-Kikwit strain GP was used as specified in the SOP. The log10
transformed ELISA units per mL was used for correlation analysis
in the present study.

Identification of the Geneva and
US signatures

We applied the same methods as previously (24) to identify
signatures of the vaccine response. PCA was done for all
participants of each cohort and for all 17 identified markers for
which we used the logl0 D1/DO0 ratio to normalize the data. To
build the model, the normalized data were standardized so that the
means and the SD equalled 0. PCA components with eigen values
greater than 1 were retained. Because of the number of variables
introduced in the PCA (n=17) and the number of vaccinees
(Geneva cohort: n=100; USA cohort: n=113), a risk of overfitting
was suspected, thus a bootstrap procedure was used to check the
robustness of the number of retained principal components. For
this, 50,000 re-samplings with replacements were done: for each
resampling, the same PCA was conducted. Cronbach’s alpha values
were used to indicate whether the variation of markers upregulated
between days 0 and 1 was based on a single trait. The Kaiser-Meyer-
Olkin was used to measure the adequacy of the data to factor
analysis (28). Our validation cohort was the US cohort, and we used
the same approach to calculate the signature by PCA. The score for
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FIGURE 1

Identification of additional biomarkers by O-link. (A) Schematic of the pilot study samples used to screen for new markers (n=49). In yellow and in
parenthesis number of participants with arthritis. (B) Kinetics of biomarkers from O-link inflammatory panel (96 markers) expressed as the ratio of
the mean at dayl, day3 and day7 versus day 0. Each square represents the mean for a single marker and confidence interval is included. Volcano
plots from O-link inflammatory (C) and metabolic panels (D) of the high dose group displaying the log10 fold change (x axis) against the t test-
derived negative logl0 statistical P value (y axis) for all proteins differentially secreted between dayl and dayO. Thresholds (dotted grey line), p-value
cut-off was fixed at 0.05 (1,3 negative log10) and fold change cut-offs was 1 (0 in the logl10 scale). P-value of zero was set up as 0,0000001 (7 neg
log10). Open circles represent all proteins below the p-value and in dark grey all proteins below fold change cut-offs. Proteins above the fold-

change cut off are labelled as orange circles.

each observation was calculated by applying the equations of each
component, which then was used to evaluate the correlation with
adverse events and biological outcomes.

Statistical methods

Biomarkers were reported by vaccine dose and timepoint
using logl0 geometric mean concentrations (GMCs). GMCs
were compared between independent groups using t-tests or
ANOVA (with Schefte’s correction for multiplicity of tests and
post hoc analyses) and over time using linear regression models
with mixed effects to account for repeated measures. The
association between the signature and biological outcomes/AEs
was assessed using linear and logistic regression models with
adjustment for the dose. The type I error level was 0.05, and all
statistical tests were two-sided. AUCs of the previous and refined
signature were compared by using Delong’s non-parametric test
for paired ROC curves. Analyses were conducted in R 3.2.2
(R Foundation for Statistical Computing, version 2.15.2) and
STATA 14.0 IC (StataCorp LP).
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Results

Identification of additional biomarkers of
innate responses to rVSVAG-ZEBOV

We set up a pilot experiment using an O-link approach that can
measure up to 276 analytes to identify additional plasma markers
associated with the vaccine response compared to our previous study
(Figure 1A). Markers significantly peaked at day 1 in both the high
and low dose groups, but not at day 3 or 7 (Figure 1B). Therefore, we
subsequently only analysed the ratio of D1/DO0. In the high-dose
(HD) vaccinees group, 18 new additional proteins from the
inflammatory panel were significantly elevated and one protein
(4EBP1) showed a significant decrease (Figures 1B, C). In the low-
dose (LD) vaccinees group, 18 new proteins were significantly
elevated (16 were shared with HD vaccinees) and one (MMP1) was
significantly decreased (Supplementary Figure 2A). The analysis of
the metabolic and immune panels showed that in the HD group 17
new proteins were significantly increased, and 13 were significantly
decreased on day 1 compared to day 0 (Figure 1D), whereas in the LD
group four new proteins were significantly elevated and eight were
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significantly decreased (Supplementary Figure 2B) (no new markers
were shared with HD vaccinees). We observed that all the proteins
identified in our previous study (24) had significantly increased on
day 1, confirming our previous findings, and supporting the use of O-
link as an adequate screening tool. Secreted proteins with a D1/D0
ratio greater than 1 but without statistical significance are shown in
Supplementary Figures 2C, D. We did not find statistically significant
differences in biomarkers levels between arthritis and non-arthritis in
this subset of patients in the inflammatory panel and metabolic panel
analysed (Supplementary Table 1).

In conclusion, use of O-link screening in a subset of the Geneva
cohort (n=49) allowed us to identify 18 additional proteins significantly
secreted at higher levels on day 1 in both high and low dose groups.

Confirmation and quantification of the
biomarker signature

Out of the 18 additional markers found by O-link, eleven were
available for measurement by Luminex and were quantified on days
0, 1, 3, 7 in plasma samples of the entire Geneva cohort (n=115). The
eleven markers included chemokines: monocyte chemoattractant
protein 2 (MCP2/CCL8), monocyte chemoattractant protein 3
(MCP3/CCL7), monocyte chemoattractant protein 4 (MCP4/
CCL13), chemokine C-X3-C motif ligand 1 (CX3CL1/Fractalkine),

10.3389/fimmu.2023.1279003

interferon gamma-induced protein 10 (IP10/CXCL10), interferon-
gamma-inducible protein 9 (IP-9/CXCLI11); cytokines: Interleukin 15
(IL-15), Oncostatin M (OSM) and macrophage colony-stimulating
factor (M-CSF); and ligands: Tumor necrosis factor ligand
superfamily member 10 (TRAIL/TNESF10), Tumor necrosis factor
ligand superfamily member 11 (RANKL/TNFSFI11).

We calculated the geometric mean concentrations (GMCs) for
each marker and the ratio of D1/D0. As expected, in the placebo
control group, no marker significantly increased with time, except
for CXCL10 that showed a significant decline at day 1 (Table 1). We
confirmed that all eleven additional markers significantly peaked at
day 1 in the Geneva cohort (Figure 2), with the largest fold increases
reported in HD for CXCL11 [21.0 (95% CI, 15.1 to 29.2)], CXCL10
[14.2 (95% CI, 11 to 18.4)] and MCP2 [13.3 (95% CI, 11 to 16.1)]
(Table 1). HD vaccinees showed significantly higher increases in
GMC:s than LD vaccinees for all markers except RANKL (Figure 2).

We found that all additional markers except RANKL were
significantly correlated between each other and with the
previously reported markers, irrespective of the vaccine dose
(Supplementary Figure 3) The strongest associations were
observed between CXCL10 and CXCLI1 at both doses
(Spearman’s correlation coefficient r = 0.92, p <0.001; r=0.88,
p<0.001) and between MCP1 and MCP2 (Spearman’s correlation
coefficient r = 0.61, p<0.001; r=0.82, p<0.001 at the two doses
respectively) (Supplementary Figure 3).

TABLE 1 Ratio day 1/day 0 of the geometric mean (GM) of the additional identified markers measured in the plasma of Geneva participants.

Placebo (n=13)

Low Dose (n=51)

High Dose (n=51)

Marker Ratio Confidence p- Ratio Confidence p- Ratio Confidence
GM Interval value GM Interval value GM Interval

CXCL11 0,85 (0,68 - 1,07) 0,150 2,65 (1,98 - 3,54) <0,001 21 (15,14 - 29,23) <0,001
CXCL10 0,81 (0,69 - 0,96) 0,019 3,08 (2,39 - 3,97) <0,001 14,2 (10,99 - 18,35) <0,001
MCP2 1,12 (0,89 - 1,41) 0,298 3,95 (2,94 - 5,29) <0,001 13,3 (10,95 - 16,14) <0,001
MCSF 0,95 (0,56 - 1,61) 0,831 2,07 (1,58 - 2,72) <0,001 7,41 (5,59 - 9,82) <0,001
MCP3 135 (0,83 - 2,22) 0,207 1,71 (1,27 - 2,3) <0,001 6,18 (4,54 - 8,43) <0,001
OSM 0,93 (0,65- 1,33) 0,660 2,01 (1,72 - 2,34) <0,001 478 (3,83 - 5,97) <0,001
TRAIL 0,92 (0,76 - 1,12) 0,368 1,72 (1,5 - 1,98) <0,001 415 (3,62 -4,76) <0,001
CX3CL1 0,99 (0,77 - 1,28) 0,925 1,27 (1,12 - 1,44) <0,001 3,83 (2,95 - 4,98) <0,001
IL15 1,34 (0,91 - 1,96) 0,123 14 (1,19 - 1,65) <0,001 3,15 (2,64 - 3,77) <0,001
RANKL 1,21 (0,74 - 1,96) 0,415 1,36 (1,2 - 1,54) <0,001 2,13 (1,69 - 2,68) <0,001
MCP4 0,9 (0,73- 1,11) 0,295 1,13 (1,06 - 1,21) <0,001 1,64 (1,48 - 1,82) <0,001
IL1-Ro. 0,97 (0,78 - 1,21) 0,81 1,77 (1,39 - 2,26) <0,001 10,6 (8,41 - 13,37) <0,001
IL-6 0,7 (0,35 - 1,38) 0,31 1,82 (1,18 - 2,79) 0,007 13,5 (8,29 - 21,91) <0,001
IL-10 0,74 (0,39 - 1,38) 0,35 2,11 (1,19 - 3,75) 0,011 7,08 (4,68 - 10,70) <0,001
TNF-o. 13 (0,59 - 2,87) 0,51 1,33 (0,78 - 2,27) 03 3,98 (243 - 6,51) <0,001
MCP-1 0,89 (0,78 - 1,02) 0,11 1,4 (1,22 - 1,62) 0,011 3,35 (2,97 - 3,78) <0,001
MIP-1B 0,96 (0,81 - 1,15) 0,64 1,33 (1,14 -1,55) 0,011 2,31 (2,09 - 2,56) <0,001

Ratio of GM: log10 base ratio Day 1/Day 0. Significant difference between day 1 and day 0 are represented by P-values highlighted in bold. Markers are presented according to the ratio GM levels
in the high dose. Previous signature biomarkers reported in Huttner et al., 2017 (24) are shaded in grey.
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FIGURE 2

Kinetics of newly identified biomarkers measured in the plasma of all Geneva participants. Plasma concentration in pg/ml for each marker measured
by Luminex was plotted at each time point in the different groups: placebo (gray), low dose (green) and high dose (orange). Each dot represents a
participant (n=115). Black lines represent the geometric mean concentrations with the Cl. Red dotted lines indicate the limit of detection for each
marker. Samples below the limit of detection were assigned a value corresponding to 50% of the last standard dilution value. P values less than
0.001 are summarized with three asterisks, and P values less than 0.0001 are summarized with four asterisks.

In summary, we found eleven additional markers at day 1 after
vaccination that correlated with the previously identified signature
in the Geneva cohort.

Refinement of the innate plasma signature

PCA was conducted for the 17 markers described above (6
previously reported and the 11 additional reported here). PCA
showed that the new refined signature accounted for 77.8% of the
variability of the day 1 immune response versus baseline and three
components were retained (PC1: 63.2%, PC2 8.5% and PC3 6.1% of
the variance; Figure 3A). The bootstrap analysis confirmed the
robustness of the first three components. The frequency of the
number of retained components (Eigen value > 1) over the 50’000
re-sampling was PC1: n=50000/50000 (100%); PC2: n=49849/
50000 (99.7%); PC3: n=34580/50000 (69.16%); PC4: n=113/50000
(0.23%); PC5: n=0/50000 (0%). Cronbach’s alpha values (LD:0.94,
HD: 0.94) indicated that the variability in the markers induced by
the vaccine was highly reliable and mostly based on a common trait.
The overall measure of adequacy was 0.9, considered by Kaiser et al.
(28) as very robust data for factor analysis.

After normalization and standardization, the equation of the first
component (PC1) was defined by “0.083xIL1Ra™® + 0.067xIL6™P +
0.057xTNFa®™ + 0.06xIL10°™ + 0.083xMCP1°"™ + 0.07xMIP1b>"™
+ 0.076xMCP3°™ + 0.086xCXCL10°™” + 0.068xOSM*"" +
0.076xMCP4°™ + 0.075xCX3CL1°™® + 0.075xMCSF*™"
+ 0.088xCXCLI11°™ + 0.084xTRAIL®™ + 0.084xMCP2°™ +
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0.03xRANKL*"™ + 0.074xIL15 °™”, ie, 17 biomarkers. PC2
equation is reported in Supplementary Table 2.

The biomarkers contributing to component 1 were all positively
correlated, while the ones contributing to component 2 showed both
a positive and negative correlations (Figure 3A). In the component 1,
eleven biomarkers were above the expected average contribution, six
of them strongly contributing to the component variability (CXCL11,
CXCL10, MCP-2, TRAIL, IL1Ra, MCP-1; Figure 3B), while for the
component 2, four biomarkers strongly contributed to component
variability (IL-10, TNFA, MP1b, IL-6; Figure 3C).

We next found that the refined signature discriminated better
than the previous signature between placebo recipients and LD
vaccinees [AUC: 0.87 (95% CI, 0.75 to 0.99) vs 0.79 (95% CI, 0.69 to
0.91); p=0.37], and between low- and HD vaccinees [0.91 (95% CI,
0.85 to 0.97) vs 0.88 (95% CI, 0.81 to 0.95); p=0.059]. Both
signatures discriminated almost perfectly placebo recipients and
HD vaccinees with area under ROC curves close to 1 (Figure 3D).
Altogether, these results show that the addition of eleven markers
refined the previous plasma signature as it explained a higher
percentage of the variability in the response and improved the
discrimination between the two vaccine doses.

Additional biomarkers are associated with
vaccine-related adverse events

We next performed a multivariable analysis to assess whether the
refined signature was associated with the risk of adverse events

06 frontiersin.org


https://doi.org/10.3389/fimmu.2023.1279003
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Martinez-Murillo et al. 10.3389/fimmu.2023.1279003

A ) B C
w0l Variables PCA
0 2 4 8 10 15 20
CXCLY ——— 1L 10
CXCL10 m e TNF- o
o MCP-2 I P 1
05- ANFa TRAIL I— 1L-6 I
R fP1b L 1R-c IS 1 CP- E—
8 TIENCPT MCP4 p— MCP-1 E—
e i IL1Ra MCP-3 I M —
P ——__——iss MCSF —
5 NCF2  CX3CLIn— TRAIL —
g 3 ey IL-15 —— i ——
a CL11 B CXCL10m—
£ XELI0 MIPT-5 I—
8 OSice OSM I—— CXCL 11—
IL-6 I MCP-5
o cos2 IL-10 RANKLIN
o7s  TNF-o I IL1R-
050 RANKL IL-15]
025 MCP-2]

05 00 05
Component 1 (63.2%)

Placebo vs Low Dose

Placebo vs High Dose

Low Dose vs High Dose

1,0
0

08

06
[
06

Sensitivity
Sensitivity

04
I
0.4
I

02
I
0,2
i
N

0,6
I

Sensitivity

04

02

1-Specificity

FIGURE 3

T T T T T
0,0 02 04 0.6 08 1,0 00 02 04

1-Specificity

T T T
06 08 1,0 0.0 0.2 04 06 0.8 10

1-Specificity

Definition of a refined signature by PCA after rVSVAG-ZEBOV-GP vaccination in the Geneva cohort. (A) A variable correlation plot shows the
magnitude (length of the arrow) and direction of the correlations of each marker (n=17) to each of the two principal components. Cos2 values
indicate how well represented the marker is on the principal component and are shown in a gradient of colours shown in the legend. (B, C) Graphs
showing the percentage of the contribution of each marker to the variability on component 1 (B) and component 2 (C). Red dashed line indicates
the average contribution. Blue bars indicate additional markers and bars in black indicate previous markers. (D) Comparison Area Under the Curve
(AUC) between previous signature (black line) and refined signature (grey line)

following vaccination, as previously described (24). Similarly, we
showed that a score higher than one of the Components 1 and 2 of
the refined signature increased the risk of injection-site pain, subjective
fever and chills in HD vaccinees, (Table 2). In contrast to our previous
report, only Component 1 of the refined signature was associated with
a higher risk of objective fever and myalgia, while Component 2 was
associated with higher risk of headache in HD vaccinees. Because
adverse events (AEs) were reported mainly in HD vaccinees (97%),
which corresponds to the vaccine dose used in Erveb0®, we focused on
this group for further analyses. Headache was associated with
significant increase in CXCL10, CXCL11, MCSF, MCP-2 and TNEF-
alpha, while fatigue was associated with significant increases in
CXCL10, MCP-4 and TNF-o. (Figure 4A). Increase in MCP-2 was
specifically associated with subjective fever and chills, while CX3CL1
and TNF-o were associated with objective fever and myalgia.
In contrast, a significant decrease of the anti-inflammatory cytokine
IL-10 was associated with arthralgia. No identified biomarker was
associated with local pain. Overall, TNF-o. and MCP-2 were key
biomarkers associated with most systemic AEs.

Twenty-four percent (24%) of participants reported transient
vaccine-induced arthritis in the Geneva cohort (12), which was
previously associated with lower day 1 signature scores only in HD
vaccinees (24). Here, we report a similar finding, Component 1 was
significantly lower in HD vaccinees with transient arthritis (GM
non-arthritis 0,93 (0,7-0,17) vs GM arthritis 0,34 (-0,05-0,73) p:
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0,011) and levels of seven innate plasma biomarkers were also
significantly lower (MCP-2, CXCL10, CXCL11, CX3CL1, MCSF,
IL-15, OSM), complementary to the four previous biomarkers
reported (IL-6, TNF-a, MCP-1 and MIP-1b) (Figure 4B).

Of note, the refined signature showed little to no association
with age but was associated with gender (lower scores of
Component 1 in females [-0.22 versus 0.19, p=0.029)],
confirming what was reported for the previous signature (24).

Overall, the refined signature can thus better predict the risk of
objective fever, myalgia and headache and several additional
biomarkers were found to be significantly associated with specific
systemic adverse events including transient arthritis.

The refined signature and the additional
markers are differentially associated with
hematological, virological and
immunological outcomes

rVSVAG-ZEBOV-GP immunization triggers a transient, dose-
dependent viremia and hematological changes (8, 12). We observed a
significant positive association between Component 1 of the refined
signature and viremia mainly in LD vaccinees (Supplementary
Table 3) that was ruled by IL-15, RANKL and MCSF
(Supplementary Table 4). We found a negative correlation for both
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TABLE 2 Multivariable analyses of the determinants of clinical outcomes of the refined innate signature in Geneva vaccinees (n=100).

1st component 2nd component
Adverse Event Predictor Adjusted OR (95%Cl) p-value justed OR (95%Cl) p-value

Objective fever Dose Low dose Ref Ref
High dose 15.99 (2.3 to 331.34) 0,017 16.31 (3.03 to 303.15) 0,009

Signature <0 Ref Ref
>=0 1.05 (0.23 to 5.8) 0,956 0.64 (0.18 to 2.14) 0,472

Subjective fever Dose Low dose Ref Ref
High dose 3.73 (1.36 to 10.78) 0,012 5.07 (2.19 to 12.31) <0.001

Signature <0 Ref Ref
>=0 1.72 (0.6 to 4.78) 0,302 0.69 (0.29 to 1.61) 0,388

Headache Dose Low dose Ref Ref
High dose 2.14 (0.79 to 5.93) 0,133 2.67 (119 to 6.14) 0,018

Signature <0 Ref Ref
>=0 1.47 (0.53 to 4.01) 0,446 0.63 (0.28 to 1.43) 0,272

Fatigue Dose Low dose Ref Ref
High dose 1.22 (0.43 to 3.58) 0,706 0.75 (0.33 to 1.7) 0,495

Signature <0 Ref Ref
>=0 0.44 (0.15 to 1.24) 0,129 1 (0.44 to 2.28) 0,996

Myalgia Dose Low dose Ref Ref
High dose 2.81 (1.04 to 7.98) 0,045 3.15 (1.4 to 7.31) 0,006

Signature <0 Ref Ref
>=0 1.22 (0.43 to 3.31) 0,702 0.61 (0.26 to 1.39) 0,242

Chills Dose Low dose Ref Ref
High dose 3.2 (1.15 to 9.63) 0,030 3.1 (1.36 to 7.35) 0,008

Signature <0 Ref Ref
>=0 0.96 (0.32 to 2.69) 0,935 0.85 (0.37 to 1.95) 0,694

Arthralgia Dose Low dose Ref Ref
High dose 0.97 (0.25 to 3.78) 0,960 1.28 (0.44 to 3.88) 0,655

Signature <0 Ref Ref
>=0 1.62 (0.42 to 6.58) 0,486 0.88 (0.3 to 2.6) 0,807

Pain Dose Low dose Ref Ref
High dose 19.64 (5.81 to 91.45) <0.001 17.81 (6.59 to 55.78) <0.001

Signature <0 Ref Ref
>=0 0.62 (0.13 to 2.13) 0,484 2.92 (1.06 to 8.98) 0,046

Multivariable analyses were performed to assess the association between the refine innate signature components 1 and 2, and adverse events (AEs) adjusting for the vaccine dose. Logistic
regression models were used. The reported adjusted odds ratios (ORs) capture the increase in risk of an AE compared with the reference category (denoted “Ref”). In grey, results that were similar
between previous and refined signature.

Significant difference against the reference in the Doses or in the Signature component is represented by P-values highlighted in bold.

doses between component 1 of the refined signature and day 1  biomarkers (Supplementary Table 3). Component 1 was differently
lymphopenia and thrombopenia, which was maintained until day 3 associated with neutropenia according to the vaccine dose. Early (day
only for HD vaccinees. These negative associations of both doses with 1) neutropenia was positively associated in HD vaccinees and was
lymphopenia were correlated with all additional biomarkers while the  influenced mainly by MCP-3, while delayed neutropenia was
negative correlation with thrombopenia was related to different  negatively associated with LD vaccination.
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FIGURE 4

Associations between the refined signature biomarkers with early adverse events (AEs) in Geneva vaccinees receiving high vaccine dose. (A) Each
symbol represents the ratio of geometric mean (log10 of day 1/day 0) for each biomarker. Bars shown mean and 95% Cl. Orange arrows shows
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and fold change cut-offs is 1 (0 in the log10 scale). The two vaccine doses are shown with circles (low dose) or triangles (high dose)

Finally, in this analysis, we found limited correlation of the two
PCs with antibody response except for Component 2 in HD vaccinees
that positively correlated with antibody levels 180 days after
vaccination (Supplementary Table 3). Others have reported
correlation between the antibody levels at day 28 with day 3
CXCL10 levels when considering all vaccinees irrespective of the
vaccine dose (19). A similar univariate analysis grouping the LD and
HD groups showed that the antibody levels at day 28 positively
correlated with the ratio D1/D0 (or actual concentrations at day 1) of
several cytokines and chemokines, including CXCL-10
(Supplementary Figure 4). This correlation was limited to a more
limited set of cytokines at day 3. Antibody response at day 180 was
associated with the D1/DO0 ratio of IL-10, MCP-1 and MIP-1b, and in
HD only with IL-10 that drives the positive association found with
Component 2 in HD vaccinees. In line with the multivariate analysis,
there were fewer correlations between the antibody levels at day 28
with innate plasma biomarkers when considering each dose group
separately, limited to positive correlation with D1/D0 ratio of MCP-1

Frontiers in Immunology

and MIP-1b levels (LD group) and negative correlation with CXCL10
level (HD group; Supplementary Figure 4).

In summary, component 1 of the refined signature differentially
correlated with LD viremia (positive) and hematological (negative)
outcomes, several innate plasma biomarkers including CXCL10
were associated with antibody titers one month after vaccination
but fewer with long-term specific antibody response.

Validation of the refined signature in an
independent US cohort

The kinetics of the response of the 17 biomarkers in the US
cohort was similar to the ones observed in the Geneva participants,
although some differences were noted in the magnitude of the
response (Supplementary Figure 5). In US HD vaccinees, the largest
fold increases were observed for IL10 [58.1 (95% CI, 43 to 78)],
CXCL10 [57.8 (95% CI, 43 to 79)] and CXL11 [28.6 (95% CI, 20 to
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40)]. Although weaker in magnitude, the same markers including
MCP-2 showed the largest fold increase in LD vaccinees
(Supplementary Table 5). At baseline, most biomarkers were
significantly lower in the US cohort, while the D1/D0 ratio
showed similar responses in both cohorts, CXCL10, CXCL11, IL-
10 and MCP-2 being the biomarkers with the highest ratio in both
cohorts (Table 1; Supplementary Table 5).

To evaluate whether the signature defined using the Geneva cohort
could predict rVSVAG-ZEBOV-GP responses elicited in a different
cohort, we applied an independent PCA to the US data. Similar to what
was found in Geneva, three components explained 75.9% of the
variability of the D1/DO0 ratios (PC1 explained 63.6% of the variance,
PC2: 6.4% and PC3: 5.9%) (Figure 5A). The bootstrap showed that the
first three components were robust (PC1: n=50000/50000 (100%), PC2:
n=49333/50000 (98.67%), PC3: n=27657/50000 (55.31%). The overall
measure of adequacy was 0.93. Thus, the PCA model in the US samples
was adequate and behaved very similarly as for the Geneva samples.

Comparable to what was observed in Geneva cohort, the first
component also discriminates well between LD and HD
(Supplementary Figure 6) and had a similar equation for
component 1: “0.085xIL1Ra*™ + 0.07xIL6™ + 0.08xTNFa*™ +
0.085xIL10°"" + 0.078xMCP1°"" + 0.064xMIP1b°™" +
0.056xMCP3°™ + 0.085xCXCL10°™ + 0.077xOSM*™"
+ 0.052xMCP4°™ + 0.08xCX3CL1®™ + 0.079xMCSF*™ +
0.085xCXCL11%™ + 0.078xTRAILS™ + 0.067xMCP2°™ +
0.027xRANKLS™ + 0.08xIL15 S™”. Component 2’s equation is
shown in Supplementary Table 2. In addition, biomarkers

10.3389/fimmu.2023.1279003

contributing to component 1 were positively correlated, while the
ones contributing to component 2 had both a positive and negative
correlations (Figure 5A). In component 1, eleven biomarkers were
above the expected average contribution with CXCL11, CXCL10, IL-
10 and ILR-o being the highest, while for the component 2, three
biomarkers contributed to the component variability, with RANKL
representing 58% of the contribution (Figure 5B).

We next asked whether applying the Geneva first two components
to the US data and vice versa would generate comparable results. Only
the first component correlated strongly in both data sets, using Geneva
data (r = 097, P < 0.001) and using US data (r = 0.99, P=0)
(Figure 5C), and discriminated well the participants receiving the
LD and the HD in both cohorts (Supplementary Figure 6).

The validation confirms that Component 1 of the refined
signature accurately predicts the variability in response to the
rVSVAG-ZEBOV-GP vaccine.

GP-specific antibody levels also correlate
with biomarkers in the US cohort

Similar to Geneva cohort, when considering all vaccinees
irrespective of the vaccine dose the antibody levels at day 28 in all
vaccinees positively correlated with the D1/D0 ratio of several
cytokines, such as IL1RA, IL-10, MCP-1, CXCL10, MIP1b,
CX3CL1, MCSF, CXCL11, TRAIL, IL-15. The correlation was
also mostly lost when considering day 3 cytokine ratio and when
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FIGURE 5

Analysis of the signature in the US cohort and validation of the refine signature defined in the Geneva cohort. (A) Variable correlation plot shows the
magnitude (length of the arrow) and direction of the correlations of each marker (n=17) to each of the two principal components. Cos2 values
indicates how well represented the marker is on the principal component and are shown in a gradient of colours: grey represent low values, light
blue represents mid values, dark blue represents high values. (B) Percentage of contribution to the variability of each marker in the component 1
(left) and component 2 (right). Red dashed line indicates the expected average contribution. Bars in blue indicate additional markers and in black
previous markers (C) Correlation between Geneva equation and US equation using Geneva data (left) and US data (right).
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splitting by dose (Supplementary Figure 4). Unlike in the Geneva
cohort, most of these correlations were maintained until day 180
after vaccination (Supplementary Figure 4).

Overall, US cohort innate plasma signature biomarkers also
correlate with antibody levels at day 28 and 180 after vaccination
with r'VSVAG-ZEBOV-GP.

Discussion

We showed that the inclusion of additional biomarkers refined
the first plasma signature identified previously in Geneva. The refined
signature, which now includes 17 markers, better discriminated
between vaccine doses as it performed better at capturing the
variability of the vaccine responses, and better defined the risk of
fever, myalgia and headache. We also found new biomarkers that
correlated with reactogenicity and transient arthritis, and that were
associated with antibody levels one and six months after vaccination.
Finally, the results were cross validated in a separate cohort.

We used O-link to screen for additional markers: of the many
markers screened, only 18 were significantly higher in both HD and
LD vaccinees. These markers are related to monocytes recruitment
as well as to biological processes involved in vaccine responses such
as pro-inflammatory cytokines, chemokine-signaling pathways,
chemotaxis of different immune populations (monocytes,
neutrophils, eosinophils and lymphocytes) and cellular response
to interferon gamma. CXCL10, CXCL11, MCP-2, IL1R-o. were the
markers with the highest D1/DO0 ratio as well as the ones with the
greatest contribution to the variability of Component 1. CXCL10
and CXCL11 are IFN-dependent cytokines and plays an important
role in the chemotaxis of monocytes, T-cells, NK cells and dendritic
cells. They are secreted by monocytes, endothelial cells and
fibroblasts, and their secretion is enhanced in the presence of
TNF-o (29). This is in line with the positive correlation that we
observed between CXCL10 and CXCLI1 with TNF-o. Previous
transcriptomic analysis from blood samples of the same cohorts
have shown that interferon signaling genes (ISGs) were upregulated
at day 1 post-vaccination and, consistent with our results, CXCL10
was upregulated at day 1 (30, 31). Similarly, the replication
incompetent Ebola vaccine Ad26.ZEBOV increases the expression
of IFN-stimulated genes (CXCL9, CXCL11, and CXCL10), and
those associated with monocyte and lymphocyte recruitment such
as CCL2 (MCP-1),CCL8 (MCP-2), and CCL7 (MCP-3) (32).
However, compared to rVSVAG-ZEBOV-GP, Ad26-ZEBOV
combined with MVA-BN-Filo (Zabdeno/Mvabea) as well as
another adenovirus-based Ebola vaccine cAd3-EBOZ is less
immunogenic with less persisting antibody response, requiring
higher doses to reach the same level of immunogenicity (33, 34).

Of note, we did not detect an increase in plasma IFN protein
level (similar to previous reports (19)) but CXCL10 and CXCL11
increase may result from a transient and earlier IFN response before
day 1. This discrepancy between gene expression and the protein
level of IFN in blood might reflect rapid migration of cells to
secondary lymphoid organs (33), rapid kinetics of the IFNs
secretion (32) and/or a sub-optimal sensitivity of the assay used
to detect these proteins. The innate vaccine response induced by the
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live attenuated rVSVAG-ZEBOV-GP it is mainly related to
monocyte recruitment and activation, whereas live-attenuated
yellow fever mainly induces a dendritic-cell (DC) innate signature
(35, 36) and the adjuvanted influenza-HIN vaccine induces a
lymphoid gene-expression signature (37). More recently,
SARSCoV-2 infection as well as mRNA vaccination were shown
to induce a monocyte and DC innate signature with enhanced
serum levels of IFN-o (38) and IFN-gamma, respectively (39).

Compared with the first signature reported previously (24), the
refined signature presented herein explains a higher proportion of the
variability of the D1/DO0 ratios. Components 1 and 2 were both very
robust and included different biomarkers that contributed to their
variability, which can explain the different associations observed with
dose, adverse events and biological outcomes. For instance, in
contrast with the previous signature, component 1 was associated
with risk of objective fever and myalgia, while component 2 (which
represented only 8.5% of the variability) was the only one
significantly associated with a risk of headache and with the GP-
specific antibody response six months after vaccination.

Another important distinction with the previous signature was
that several specific biomarkers were associated with the presence of
systemic adverse events in HD vaccinees. Most of these associations
were with single markers, for example high levels of CX3CL1 and
MCP-2 were associated with the presence of objective fever and
subjective fever, respectively. Increase in CX3CLI plasma level has
been associated with Hanta virus fever (40). CX3CL1 shedding can
be induced by MCP-1 via p38 signaling (41). This is in line with the
positive correlation we saw between plasma levels of CX3CL1 and
MCP-1, suggesting that MCP-1 could induce shedding of CX3CL1.
In addition, the correlation between fatigue and headache with
TNF-o plasma levels found in the previous signature is now
extended to several additional biomarkers including CXCL10.

Similarly, the risk of transient arthritis after vaccination is
associated with the reduction of various additional biomarkers
mainly in HD vaccinees. After rVSVAG-ZEBOV-GP vaccination,
24% of Geneva trial reported transient arthritis and the virus was
isolated in the synovial fluid (12). While in US trial the frequency of
reported transient arthritis was 5%, the cases were dispersed across
multiple doses including placebo (7, 9), likely confounding a direct
comparison. In agreement with the previous signature (24), we found
in Geneva cohort that Component 1 was significantly lower in HD
vaccines who developed arthritis, this was ruled by 12 out of 17
biomarkers constituting the signature that had significantly lower
plasma levels in HD vaccinees with arthritis. The topmost
differentially expressed markers were IL-6, CXCL10, CXCL11, TNF-
o and MCSEF. Although the roles of IL-6 and TNF-o. in rheumatoid
arthritis (42, 43) and in chronic chikungunya arthritis (44) are well
established, we saw a reduction during the acute phase. However, it is
also well established that a robust cytokine response during the acute
phase of viral infection is vital for clearance and control of viral
dissemination, and prevention of chronic chikungunya arthritis (45).
Our results suggest that individuals who developed arthritis after a HD
vaccine (which in close to the dose currently in use in the field
72x10°pfu/dose)had a lower level of inflammatory response and
therefore, we hypothesize have a less effective early control of viral
dissemination, which may in turn leads to viral presence in privileged
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sites such as joints, and thus could enhance the risk of vaccine-induced
viral arthritis (8, 12, 46). The lack of association with bone resorption
markers such as RANKL (47) is in line with the absence of bone
resorption lesions in our arthritis patients (12), in contrast to
chikungunya arthritis (46). Recently, transcriptomic analysis of the
same Geneva cohort identified an early five-gene signature associated
with the risk of arthritis that included T-cell subset genes CD4 and
CCR7, IFN-regulatory sign gene FCGR1A, myeloid-associated gene
IL12A, and Th2-associated gene GATA3 (30). Taken together, we
hypothesized that the loss of T-cell homeostasis, a weak innate
response during the acute phase (in HD vaccinees) and age at the
time of vaccination (in LD vaccinees) are associated with transient
arthritis after -VSVAG-ZEBOV-GP vaccination.

We did not analyze the impact of baseline in the incidence of
the adverse events observed after vaccination, but this was evaluated
using machine learning in other paper by members of the
consortium using the same cohorts as in the present study. In
this study, 22 genes at baseline were associated with fatigue,
headache, myalgia, fever, chills, arthralgia, nausea and arthritis (48).

Others have reported a correlation between the early innate
response and specific-GP antibody levels one month after rVSVAG-
ZEBOV-GP vaccination that involved upregulation of ISGs such as
IFI6 gene at day 7 (30) and CXCLI10 protein levels at day 3 (19). We
also found a positive correlation in both cohorts between specific-
GP antibody titers one month after vaccination in all vaccinees and
D1/D0 ratio of several innate plasma signature biomarkers
including CXCL10 and IL-15. IL-15 and IFN-g have been
reported to correlate with antibody response after the second dose
of BTN162b2 mRNA COVID-19 vaccine (49). We also saw that in
US cohort more innate biomarkers correlate with the antibody
levels compared to the Geneva cohort; we can not exclude that this
could be due to a difference in the vaccine dose in the two
countrioes, since for the HD groups participants in the US
received 100x106pfu/dose (n=30) and 20X106pfu/mL (n=30),
while in Geneva, participants received 10x10°pfu/dose (n=35)
50x10°pfu/dose (n=16).These results highlight the key role of
early activation of interferon-dependent responses at the
transcriptional and protein level in the generation of high
antibody levels, as reported for other vaccines (49-53).

We validated this refined signature in a US cohort. Although
baseline levels of IL-10 were higher in the US than in the Geneva
cohort, the kinetics of the biomarkers as well as the components of
rVSVAG-ZEBOV-GP early response were remarkably comparable.
This implies that innate responses induced after rVSVAG-ZEBOV-GP
vaccination were very robust, likely independent of genetic and
environmental background. The biomarkers that contributed to the
US Component 1 variability were similar to the ones in Geneva’s,
except for IL-10, which was significantly higher for the US Component
1. In contrast, Component 2 in the two cohorts have different sets of
markers that contribute to the variability. For instance, in Geneva IL-
10, TNF-a, MIP-1b and IL-6 are the main contributors, whereas for the
US cohort the main contributors are RANKL, MCP-2 and MCP-3.

The study identified certain markers by O-link, with CLEC4G/4C/
4D/6A showing significant increases in the high-dose (HD) group, while
only CLECAC increased in the low-dose (LD) group. These markers
belong to C-type lectin ligands receptors (CLRs), recognized as pattern
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recognition receptors (PRRs) and are crucial for initiating innate
immune responses. CLEC4G, known as LSECtin, serves as an
attachment factor for Ebola and SARS viruses, (54) and plays an
important role in Ebola GP-mediated inflammatory responses in
human DCs by inducing TNF-ou and IL-6 secretion (55). CLECAC is
found exclusively on plasmacytoid dendritic cells (pDCs) and can bind
various cells and viruses, including HIV-1 and hepatitis C virus (56, 57,
Florentin et al.,, 2011). CLEC6A (Dectin-2) is an FcRy-coupled receptor
on macrophages and dendritic cells, proposed as a potential attachment
factor for Ebola (56). CLEC4D (MCL) is a macrophage C-type lectin
implicated in the upregulation of innate genes post-vaccination.
Altogether, this suggest that CLEC proteins that increased after
rVSVAG-ZEBOV-GP vaccination may have the potential to bind to
the Ebola glycoprotein. This binding could lead to the activation of
monocytes, macrophages, and dendritic cells. However, further research
is required to fully understand the role of these CLEC proteins in the
context of vaccination.Our study has limitations, we were not able to
quantify all the markers that were found with the initial O-link screening
because they are not available within the Luminex technology, a
technique that we had to use to allow comparison with our previous
study. Binding antibody responses were assessed at different labs on
samples from two different cohorts. This may have also led to some
variability in correlation analysis. It would also be interesting to conduct
in vitro studies to define which cells produce these biomarkers associated
with AEs upon rVSVAG-ZEBOV-GP exposure, in particular cells from
the joint, skin or vascular.

In conclusion, we refined the early plasma innate signature
induced by rVSVAG-ZEBOV-GP vaccine, which now better
correlates with the presence of AEs, hematological changes, viremia
and antibody titer in Geneva cohort. This refined signature was
validated in an independent US cohort and showed strong correlation
between cohorts, demonstrating its robustness and potential for
broad applicability. This innate refined plasma signature highlights
the importance of the innate response, especially of monocytes, in the
development of rVSV-vaccine responses, and its potential role in
controlling vaccine dissemination to prevent arthritis. Altogether,
these results provide new insights into early blood biomarkers of
immunogenicity and reactogenicity of the rVSVAG-ZEBOV-
GP vaccine.
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