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Abstract.

Some important early contributions of Germund Dahlquist are reviewed and their
impact to recent developments in the numerical solution of ordinary differential equa-
tions is shown. This work is an elaboration of a talk presented in the Dahlquist session
at the SciCADE05 conference in Nagoya.
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1 Introduction.

For the numerical solution of ordinary differential equations, symmetric inte-
gration methods (trapezoidal rule, midpoint rule, leapfrog method) appear very
naturally as simple low order discretisations, and they are known since the be-
ginning of numerical integration. High order symmetric multistep methods were
found more or less by accident, when Dahlquist searched for the most accurate
representative in the class of general linear multistep methods.
These symmetric methods did not receive much attention over many years.
For nonstiff differential equations, Adams, Störmer, and Runge–Kutta methods
have been in use with much success, and there was no reason for switching to
symmetric integrators. For stiff differential equations, symmetric methods are
penalised because of their bad damping at infinity.
About 20 years ago, the interest in qualitatively correct integrations grew
rapidly. One became aware that symplectic integrators for Hamiltonian systems
and symmetric methods for time-reversible problems often have a much better
behaviour for long-time integration.
It was a publication by Quinlan and Tremaine [11] in 1990 that revived the
study of symmetric multistep methods. There, an excellent performance of such
methods is reported for simulations of the outer solar system. Recently, much new
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insight into their longtime behaviour has been gained. The long-term stability of
parasitic solution components, the near conservation of quadratic invariants, and
the near symplecticity are now well understood for special important situations.
The aim of this article is to show how the ideas of Dahlquist’s early work on
symmetric linear multistep methods appear again in the present research and
how they are further developed to provide new insight.

2 Role of growth parameters (Dahlquist’s talk in Freiburg 1951).

At a conference in Freiburg im Breisgau, Dahlquist presented one of his first
discoveries concerning the numerical integration of ordinary differential equa-
tions. It is published in the one-page paper [1], and gives a clear indication of
how linear multistep methods have to be analysed. We quote from [4], where the
essentials of his talk are reproduced:
This particular analysis is concerned with the application of the leapfrog method,

yn+1 = yn−1 + 2hf(yn, tn)(2.1)

for the system, dy/dt = f(y, t), y(0) = c. The local truncation error per unit
of time is, p(t) ≈ h2y(3)/6. I show, by a somewhat heuristic (though not very
sloppy) argument, loc. cit., that the error may be decomposed according to the
formula,

y(tn)− yn ≈ u(tn) + av(tn) + b(−1)
nw(tn),(2.2)

where u, v, w are solutions of the differential equations

du/dt = J(t)u+ p(t), u(0) = 0,

dv/dt = J(t)v,

dw/dt = −J(t)w,

(2.3)

where J(t) = ∂f/∂y is the Jacobian evaluated at (t, y(t)), . . . For other (two-
step) methods studied nothing is changed in (2.3) except for the expression for
the local truncation error, but the last equation of (2.3) reads,

dw/dt = cJ(t)w,(2.4)

where c is a constant characteristic for the method (later called a growth para-
meter).

If the growth parameter c is negative (and this is typically the case for sym-
metric linear multistep methods, cf. [9]), the differential equations for v(t) and
w(t) in (2.3) have often an opposite stability behaviour. E.g., for dy/dt = λy
with �λ < 0, the solution is contractive but the oscillating term in the error for-
mula grows exponentially with time which makes the method useless on longer
time intervals.
But what happens with Hamiltonian systems which can be stable for positive
and negative time? For the problem dy/dt = λy, �λ = 0 (harmonic oscillator)
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Figure 2.1: Leapfrog method applied to the pendulum equation, step size h = π/15,
initial value (q0, p0) = (0.779, 0), starting approximation (q1, p1) computed with the
explicit Euler method. The approximations (qn, pn) with even n are plotted as circles,
those with odd n as stars. Increasing n is indicated by increasing darkness.

the differential equation (2.4) is stable whatever the sign of the growth parame-
ter c is, and the leapfrog method (2.1) can be safely used as numerical integrator.
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The following example illustrates that this behaviour does not generalise to non-
linear Hamiltonian systems.

Example 2.1. Consider the equations for the mathematical pendulum

q̇ = p, ṗ = − sin q

with initial values (q0, p0) = (0.779, 0). The exact solution (drawn as thick line
in the pictures of Figure 2.1, q horizontal, p vertical) is very close to a circle
as for the harmonic oscillator. The numerical solution of the leapfrog method
with step size h = π/15, which corresponds to 30 approximations per period, is
shown in Figure 2.1.
Only during a few periods, the numerical solution remains close to the exact
solution (first picture in Figure 2.1). It drifts away when longer time integrations
are considered (pictures two to six). We also observe that the approximations
with even n (circles) lie on a smooth curve, and those with odd n (stars) lie on
a different smooth curve. This agrees very well with formula (2.2) and indicates
that the parasitic term w(t) grows linearly with time.

This disappointing behaviour of the leapfrog method on one of the most simple
Hamiltonian systems may discourage people from considering linear multistep
methods for long-time integrations. We shall see later in this article that there
exists a class of multistep methods (for second order differential equations) for
which the parasitic components remain bounded and small over long times.
Methods in this class are therefore well suited for long-time computations of
Hamiltonian systems.

3 General linear multistep methods (Dahlquist 1956).

The impressive publication [2] by Dahlquist begins with the sentence:

Statement of the problem. Consider a class of difference equations

αkyn+k + αk−1yn+k−1 + . . .+ α0yn = h
(
βkfn+k + . . .+ β0fn

)
.(3.1)

This was the birth of the general formulation of linear multistep methods for first
order differential equations. A few years later, Henrici [9] writes in his classical
textbook “. . . this approach, which was first adopted by Dahlquist [1956], leads
to a mathematically well-rounded theory. It also leads to the discovery of new
integration formulas which could not be obtained by the heuristic methods . . . ”

It is interesting to read further in the introduction of the article [2]:
. . . one may ask whether it would not be possible to make use of the information
from the preceding points in a much more efficient manner by choosing a more
complicated formula . . . This question was the starting point of the writer’s in-
vestigations. The main result is rather negative (Theorem 4), but there are new
formulas of this general class which are at least comparable to the classical nu-
merical methods . . .
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Today, everybody would be proud having written such an influential article.
Dahlquist was apparently disappointed with his findings. By introducing the co-
efficients αi and βi (the more complicated formula) he expected to be able to
construct more accurate formulas having an order much higher than the classi-
cal methods like those of Adams. He proved an order bound for stable methods,
and he found that the methods of maximum order k + 2 are necessarily sym-
metric. His analysis of the global error (see Section 1) indicates the presence
of parasitic solution components with symmetric multistep methods, so that he
did not further promote these methods. In a letter to the author (22 February
1998) Dahlquist writes: “In 1984 a graduate student, who took my ODE class at
Stanford, wanted to work with symmetric multistep methods. I discouraged him,
. . .”.
The article [2] contains many interesting investigations: the study of strong and
weak instability, of stable convergence, the role of the generating polynomials

ρ(ζ) = αkζ
k + αk−1ζ

k−1 + . . .+ α0, σ(ζ) = βkζ
k + βk−1ζ

k−1 + . . .+ β0,

the construction of high order multistep methods, the famous Dahlquist order
barrier of stable multistep methods, and the symmetry for methods of maximal
order. It is worth mentioning that not only the methods and the analysis of
Dahlquist are still relevant, but even the notation αj , βj for the coefficients
and ρ(ζ), σ(ζ) for the generating polynomials are used until now in nearly all
publications concerning multistep methods.

4 Dahlquist’s thesis (1958) and second order differential equations.

The work initiated in the publication [2] is further developed in Dahlquist’s
thesis, which was published in 1958 by Almqvist and Wiksell, Uppsala, and
then also distributed as Nr. 130 of the Transactions of the Royal Institute of
Technology, Stockholm, Sweden, in 1959 [3].
The thesis of Dahlquist presents a complete theory (accuracy, stability, conver-
gence) for general linear multistep methods, it introduces the logarithmic norm
of matrices and studies differential inequalities in view of a convergence analysis,
and it considers various extensions of the results of [2].
The extension which interests us most is that to second order differential equa-
tions ÿ = f(y). Dahlquist proposes to consider the general formula

αkyn+k + . . .+ α0yn = h
2(βkfn+k + . . .+ β0fn).(4.1)

The stability of such a formula requires that the zeros of the generating polyno-
mial ρ(ζ) = αkζ

k + . . .+α0 are all in the unit disc and those on its border have
a multiplicity less or equal to two. It is proved in [3] that the order p of a stable
method (4.1) satisfies p ≤ k+ 2, and one has p = k+2 only if k is even and the
method is symmetric, i.e.,

αk−i = αi, βk−i = βi.
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Let us discuss in more detail the weak instability (or weak stability) of sym-
metric formulas. This is essential for the rest of this article. We thus consider
the differential equation of the harmonic oscillator ÿ + ω2y = 0 for which (4.1)
becomes a linear difference equation with characteristic polynomial

ρ(ζ) + (hω)2 σ(ζ).(4.2)

Denoting the zeros of this polynomial by ζj(hω), the numerical solution is given
by yn = c1(hω)ζ

n
1 (hω) + . . . + ck(hω)ζ

n
k (hω). Since the coefficients of (4.2) are

real, roots appear in pairs, and the symmetry implies that with ζj(hω) also
1/ζj(hω) is a root. Consequently,

• if ζj(0) �= 1 is a simple root of ρ(ζ), the root ζj(hω) of
(4.2) remains on the unit circle as long as it does not
interfere with another root; in this situation there is
no weak instability.

• if ζj(0) �= 1 is a double root, ζj(hω) can leave the unit
disc and an exponential error growth is possible in this
case.

By consistency of the formula, the principal roots ζ1,2(hω) approximate e
±ihω

and remain on the unit circle for sufficiently small hω. Dahlquist mentions that
for even k there always exists a method of maximum order k+2 which shows no
weak instability. In fact, the polynomial ρ(ζ) can be chosen arbitrarily satisfying
the above stability requirements, and then σ(ζ) is uniquely determined by the
order conditions.
After Dahlquist’s work, symmetric multistep methods did not receive much
attention for a long time. Nearly 20 years later, Lambert and Watson [10] studied
multistep methods for which the numerical solution remains close to a periodic
orbit of the linear test equation. A revival of symmetric multistep methods (4.1)
suddenly came through the work of Quinlan and Tremaine [11] who report an
excellent performance of such methods for long-time integrations in celestial
mechanics.

5 Multistep methods for long-term calculations.

For a justification of correct long-time integrations in Hamiltonian systems,
symmetric linear multistep methods have two major obstacles:

• the smooth part in the numerical solution (which corresponds to u(t)+av(t)
in the error formula (2.2)) has to satisfy a good long-time behaviour as is
known from symplectic one-step methods;

• the parasitic solution components (the oscillating term in (2.2)) has to re-
main bounded and small over long times.

In the spirit of Dahlquist’s error analysis of Section 1 we write the numerical
solution of a stable symmetric multistep method (4.1) as

yn = v(nh) +
∑
ζnj wj(nh).(5.1)
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Here, the sum is over the zeros ζj �= 1 of ρ(ζ) and over products of them (the
sum is finite if all ζj are roots of unity). The function v(t) approximates the
exact solution of the differential equation, and the wj(t) are so-called parasitic
solution components.

Backward error analysis. For the study of the long-time behaviour of numerical
solutions, one needs a good knowledge of the functions v(t) and wj(t). This is
achieved by a backward error analysis (see [6] for methods (3.1), [7] and [8] for
methods (4.1)). Inserting (5.1) into the multistep formula, expanding in powers
of h around t = tn = nh, and comparing the coefficients of ζ

n
j , one finds that

the function v(t) is the formal solution of a differential equation which is a per-
turbation of ÿ = f(y), and the wj(t) are formal solutions of

ẅj = µjf
′(v)wj + . . . if ρ(ζj) = ρ

′(ζj) = 0, ρ
′′(ζj) �= 0,

ẇj = µjhf
′(v)wj + . . . if ρ(ζj) = 0, ρ

′(ζj) �= 0,

wj = µjh
2f ′′(v)(wk , wl) + . . . if ζj = ζkζl, ρ(ζj) �= 0,

(5.2)

where µj = σ(ζj)κ!/(ζ
κ
j ρ
(κ)(ζj)) with κ = 2 in the first equation, κ = 1 in the

second, and κ = 0 in the third equation. These constants are related to the
growth parameter of equation (2.4). Since the differential equation z̈ = µf ′(y)z
with µ �= 1 can have a completely different long-time behaviour than that of
ÿ = f(y), double roots of ρ(ζ) should be avoided. This is in agreement with the
linear stability analysis of Section 4. The presence of the factors h and h2 in the
modified equations for the remaining cases encourages us to study further the
long-time behaviour of linear multistep methods.

Hamiltonian systems. For the rest of this article we consider linear multistep
methods (4.1) applied to a Hamiltonian system

ÿ = −∇U(y)(5.3)

written as a second order differential equation. Although general potentials U(y)
can be considered, we have in mind N -body problems and high accuracy com-
putations in celestial mechanics.

The study of the long-time behaviour requires a good knowledge of the modi-
fied equations (5.2), and it is not sufficient to consider the dominant term. This
has been elaborated in [7], see also Chap.VX of [8]. It can be shown that under
suitable assumptions the modified equations inherit the Hamiltonian structure
of the differential equation (5.3). This permits one to obtain the following result
which is taken from [7].

Theorem 5.1. Consider a linear multistep method (4.1) applied to the Hamil-
tonian system (5.3), and assume that

• the potential function U(y) is defined and analytic in an open neighbourhood
of a compact set K;



522 E. HAIRER

• the method (4.1) is symmetric, stable, of order p, and such that the zeros of
the ρ-polynomial are all simple and on the unit circle (with the exception of
ζ1 = 1 which is a double zero);

• the starting approximations y0, y1, . . . , yk−1 are O(hp+1) close to the exact
solution of the problem (h is the step size).

As long as the numerical solution stays in the compact set K and on intervals
of length T = O(h−p−2) (if no root of ρ(ζ) other than 1 can be written as the
product of two other roots, on intervals of length T = O(h−2p−3)) we have

• the parasitic solution components wj(t) in the representation (5.1) are
bounded and of size O(hp+1) on intervals of length T ;

• the total energy H(y, ẏ) = 1
2 ẏ
T ẏ + U(y) is conserved up to O(hp) (without

drift) on intervals of length T ; the derivative approximation ẏn is computed
a posteriori with a difference formula of order p;

• quadratic first integrals of the form L(y, ẏ) = ẏTAy (for example the angular
momentum in N -body problems) are conserved up to O(hp) (without drift)
on intervals of length T ;

• if (5.3) is completely integrable and if the initial values satisfy a certain
non-resonance condition, then we have for tn = nh

(yn, ẏn)− (y(tn), ẏ(tn)) = O(thp)

I(yn, ẏn)− I(y0, ẏ0) = O(hp)

on intervals of length T ; here, I(y, ẏ) denotes a first integral of the system
that depends only on the action variables.

With exception of the property of exact conservation of quadratic first inte-
grals, linear multistep methods (4.1) without weak instability share the same
good long-time behaviour with symplectic one-step methods.

Example 5.1 (Spring pendulum with gravity and
attraction). To illustrate that methods studied in The-
orem 5.1 usually have a better long-term behaviour than
symmetric non-symplectic one-step methods, we consider
the mechanical system (5.3) with two degrees of freedom
(i.e., y = (y1, y2) ∈ R2) and with the potential func-
tion (cf. [5])

U(y) =
ω2

2
(‖y‖ − 1)2 + y2 −

1

‖y − a‖
,

where ω = 2 and a = (−3,−5)T . Initial values are y1(0) = 0, y2(0) = 1,
ẏ1(0) = −1, and ẏ2(0) = −0.5, which correspond to the upright position of
the spring (light grey in the picture). The velocity is sufficiently large so that
the pendulum turns around the fixed origin (increasing darkness).
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Figure 5.1: Energy error of numerical methods applied to the spring pendulum of
Example 5.1.

As numerical integrator for this problem we consider the explicit linear multi-
step method of order 4,

yn+4 − yn+3 − yn+1 + yn =
h2

4
(5fn+3 + 2fn+2 + 5fn),

and we use sufficiently accurate starting approximations for y1, y2, and y3. The
upper picture of Figure 5.1 shows the error in the energy for a computation with
step size h = 0.03. In agreement with our theorem, no drift in the energy is
visible, and the error remains O(h4) small on extremely long time intervals.
For comparison, we also apply the 3-stage Lobatto IIIB method, which is
a symmetric but non-symplectic implicit Runge–Kutta method (see [8] for the
coefficients). We apply this method to the same problem with step size h = 0.09
(notice that one step requires 3 function evaluations per iteration in solving the
nonlinear Runge–Kutta equations). This time, there is a clear linear drift in the
error of the total energy (lower picture of Figure 5.1). It should be mentioned
that this linear drift disappears if one considers either attraction or gravity (but
not both). In this situation, some symmetry is introduced in the problem.

Acknowledgement.

The author is grateful to Christian Lubich and GerhardWanner for stimulating
discussions. This work was partially supported by the Fonds National Suisse,
project No. 200020-109158.

REFERENCES

1. G. Dahlquist, Fehlerabschätzungen bei Differenzenmethoden zur numerischen Integration
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