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EXPLICIT, TIME REVERSIBLE, ADAPTIVE STEP SIZE CONTROL∗

ERNST HAIRER† AND GUSTAF SÖDERLIND‡

Abstract. Adaptive step size control is difficult to combine with geometric numerical integra-
tion. As classical step size control is based on “past” information only, time symmetry is destroyed
and with it the qualitative properties of the method. In this paper we develop completely explicit,
reversible, symmetry-preserving, adaptive step size selection algorithms for geometric numerical inte-
grators such as the Störmer–Verlet method. A new step density controller is proposed and analyzed
using backward error analysis and reversible perturbation theory. For integrable reversible systems
we show that the resulting adaptive method nearly preserves all action variables and, in particular,
the total energy for Hamiltonian systems. It has the same excellent long-term behavior as that
obtained when constant steps are used. With variable steps, however, both accuracy and efficiency
are greatly improved.
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ods, Störmer–Verlet method, Hamiltonian systems, explicit and reversible step size control, backward
error analysis, reversible perturbation theory
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1. Introduction. Geometric integrators (symplectic methods for Hamiltonian
systems, symmetric methods for reversible problems, volume-conserving methods for
divergence-free systems, etc.) are known for their excellent behavior when constant
step size integration over long times is considered. As first observed by Gladman,
Duncan, and Candy [3] and Calvo and Sanz-Serna [1], classical step size strategies
destroy these properties. Thus, if step size selection is based on past information,
symmetry breaks down, because what is “past” depends on the direction of integra-
tion. No advantage over explicit Runge-Kutta or multistep methods is then left [4,
Chap. VIII].

The remaining possibility is to control step size using present information only.
Several such attempts have been made. For reversible differential equations, so-called
reversible step size strategies were proposed by Hut, Makino, and McMillan [8] and
by Stoffer [11]. The step size is defined by an implicit algebraic relation, producing
the same result when integrating forward or backward in time.

An explicit step size scheme for the Störmer–Verlet method was proposed in
Huang and Leimkuhler [7] and further improved in Holder, Leimkuhler, and Reich
[6]. Based on a two-term step size recursion, it is prone to creating undesirable
oscillations in step size and numerical solution; see Cirilli, Hairer, and Leimkuhler [2].

In this paper we develop a theory for the construction of completely explicit,
symmetric, and time reversible step size selection schemes, which are stable and non-
oscillatory. In particular, we propose an integrating controller for the step density, see
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Söderlind [9, 10] for control theoretic notions. Its excellent long-term performance is
illustrated in connection with the Störmer–Verlet method.

The resulting adaptive geometric numerical integrator is analyzed using backward
error analysis combined with reversible perturbation theory. For integrable, reversible
Hamiltonian systems we prove that there is near-preservation of the Hamiltonian and
of all action variables over long times, and that the global error grows only linearly.
This equals the best possible qualitative properties that can be obtained with constant
step size. Due to the varying steps, however, accuracy and efficiency are significantly
improved.

2. Reversible adaptive integration. Let us consider first-order systems of
differential equations of the form

ṗ= f(p, q),
q̇= g(p, q),

(2.1)

with initial conditions at t = 0. This system is assumed to be time reversible with
respect to the linear involution S : (p, q) �→ (−p, q) ; thus we assume that the functions
f and g satisfy the reversibility conditions

f(−p, q) = f(p, q),
g(−p, q) =−g(p, q).

(2.2)

An example is Hamiltonian systems in Newtonian dynamics, where q and p represent
position and momentum, and g(p, q) = M−1p and f(p, q) = −∇U(q) for a mass
matrix M and a potential U(q). The approach below, however, applies to more
general systems, and p and q need not have the same dimension.

Collecting p and q in a vector y = (p, q) and introducing F = (f, g), the system
and the reversibility condition can be written

ẏ = F (y), with −F = SFS.(2.3)

Assuming that F is Lipschitz, the flow ϕt of (2.3) has inverses ϕ−1
t = ϕ−t. Under the

reversibility condition it also satisfies ϕ−1
t = SϕtS.

2.1. Symmetry and reversibility. A one-step method; Φh : yn �→ yn+1 is
called symmetric if Φ−1

h = Φ−h and reversible if Φ−1
h = SΦhS, see Figure 2.1. Since
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Fig. 2.1. Commutative diagrams. Left: Upper branch represents the symmetry condition on
the numerical method Φh, and the lower branch represents reversibility. Right: Upper branch shows
reversibility for the step size map Ψy, while the lower branch represents symmetry.
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all reasonable methods satisfy SΦhS = Φ−h (e.g., partitioned Runge–Kutta methods),
reversibility is equivalent to symmetry.

To make the method adaptive, we need notions of symmetry and reversibility for
the step size control. This requires an invertible step size map Ψyn : hn−1/2 �→ hn+1/2,
depending on yn only and where the step size is defined by hn+1/2 = tn+1 − tn.

Definition 2.1. An invertible step size map Ψy : R → R is called symmetric if
Ψ−1

y = −id ◦ Ψy ◦ (−id). It is called reversible with respect to S if Ψ−1
y = ΨSy.

A symmetric and reversible control map therefore satisfies

ΨSy = −id ◦ Ψy ◦ (−id).(2.4)

The symmetry condition requires that −Ψy is an involution (see Figure 2.1); a sym-
metric Ψy maps hn−1/2 to hn+1/2, and −hn+1/2 to −hn−1/2. Further, Ψy is nonlinear;
otherwise the symmetry condition requires Ψy itself to be an involution, which leads
to constant steps or oscillatory control. As a consequence, conventional multiplicative
step size control of the type Ψy : hn−1/2 �→ θn · hn−1/2 is ruled out. Finally, if Ψy is
reversible, then ΨSy maps hn+1/2 to hn−1/2.

As the combination of method and step size controller must be able to run forward
as well as backward in time, it is essential that the controller retain its structure and
stability independently of the direction of integration. Figure 2.2 shows that the
control map in forward as well as backward time is Ψy. Likewise, Figure 2.3 shows
that in reversed time the control map is ΨSy.

Ψy

hn−1/2 • • hn+1/2
�

yn−1• •
yn��

Φh

Φ−h

� � �

� � �

• •
yn+1��

Φh

Φ−h

Ψy−hn−1/2 • • −hn+1/2
�

Fig. 2.2. Adaptive, symmetric method integrates forward (upper half) and backwards (lower
half) in time. In both cases the same symmetric step size map Ψy governs h and −h, respectively.
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Fig. 2.3. Adaptive, reversible method integrates in forward (upper half) and reverse (lower
half) time. A reversible Ψy governs h in forward time, while ΨSy controls it in reverse time.
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2.2. Discrete integrating control. In order to construct suitable control maps
Ψy : u �→ v, we look for rational functions R(u, v), where numerator and denominator
are multinomials, linear in u and v. A unique, explicit solution for either u or v can
then be found from the linear equation R(u, v) = G(y).

The rational function R represents the control structure. To make the controller
symmetric, we impose the involution criterion R(u, v) = R(−v,−u) on R. The func-
tion G(y) is derived from the control objective. To make the controller reversible, we
impose R(u, v) = −R(v, u) on R, and on G the reversibility condition

GS = −G.(2.5)

The simplest control structure is an integrating controller. This implies that the
numerator of R is a difference. There are then only two controllers within the above
construction. The elementary choice is R(u, v) = v − u, leading to the recursion

hn+1/2 = hn−1/2 + G(yn).(2.6)

This integrating controller is both symmetric and reversible.
The other choice is R(u, v) = (u− v)/(vu), with step size selection schemes

hn−1/2 − hn+1/2

hn+1/2hn−1/2
= G(yn) ⇒ hn+1/2 =

hn−1/2

1 + G(yn)hn−1/2
.(2.7)

This symmetric and reversible controller will be seen to have several advantages over
(2.6). For instance, if G(y) is bounded, the step size changes smoothly: the step size
increment is hn+1/2 − hn−1/2 = O(h2

n−1/2).

In particular, we propose the following special version of (2.7),

ρn+1/2 = ρn−1/2 + εG(yn),(2.8)

where ε is constant and the step size is recovered through hn+1/2 = ε/ρn+1/2. This
symmetric, reversible, integrating controller will be analyzed in the following sections.

In general, the reversibility condition on G is not sufficient for constructing a
good controller. Control structure and objective are strongly linked. A proper G can
be found by investigating the continuous analogue of (2.8).

2.3. Continuous integrating control. Introduce a differentiable time trans-
formation t = Γ(τ) with derivative with respect to τ given by

(DτΓ)(τ) = Γ′(τ) = 1/ρ(τ) > 0.(2.9)

Thus prime denotes derivative with respect to τ while dot denotes derivative with
respect to t. It follows that dt = dτ/ρ(τ) and Dt = ρDτ . Both t and τ will
be sampled, with tn = Γ(τn), such that equidistant samples of τ correspond to a
nonequidistant grid in t. Thus, defining τn+1 − τn = ε for all n, we have

hn+1/2 = tn+1 − tn = Γ(τn+1) − Γ(τn) ≈ τn+1 − τn
ρ(τn+1/2)

=
ε

ρ(τn+1/2)
.(2.10)

Convergence and error bounds are studied as ε → 0, while the step density ρ(τ),
normalized by the condition ρ(0) = 1, accounts for step size variation.

All previous approaches to adaptive geometric integration assume ρ to be a pre-
scribed function of y. In contrast, we shall let ρ be determined dynamically, in actual
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computations by the discrete controller (2.8), and here, for analysis purposes, by the
corresponding continuous integrating controller

ρ′ = G(y), ρ(0) = 1.(2.11)

The original system (2.3) is thus replaced by the augmented system

y′ =F (y)/ρ,
ρ′ =G(y).

(2.12)

If discretized with constant step ε, the augmented system generates a variable step
size discretization for the original system ẏ = F (y).

Choice of the function G(y). Conventional adaptivity aims at keeping the product
of (some power of) h and a scalar function Q(y) equal to a tolerance. Thus, considering
the control objective Q(y)/ρ = Const, we have

ρ′ =∇Q(y)TF (y)/Q(y),

t′ = 1/ρ,
(2.13)

where the second equation recovers the original time t. Whenever QS = Q, the func-
tion G(y) = ∇Q(y)TF (y)/Q(y) satisfies GS = −G. For this particular choice of G(y),
(2.13) is Hamiltonian, with first integral Q(y)/ρ. With the “step size Hamiltonian”
�(ρ, t) = log[Q(y(t))/ρ], the system can be written ρ′ = �t; t′ = −�ρ.

The proposed discrete integrating controller,

ρn+1/2 = ρn−1/2 + ε∇Q(y(tn))TF (y(tn))/Q(y(tn)),

tn+1 = tn + ε/ρn+1/2,
(2.14)

can now be viewed as a fixed step size Störmer–Verlet discretization of (2.13): sym-
metric, reversible, and symplectic. The discrete step density {ρn+1/2} has errors of
magnitude ε2. As the step size Hamiltonian �(ρ, t) is nearly preserved, however, we
have Q(y(tn))/ρn ≈ Const. The discrete controller is therefore stable.

3. Main results. The established facts are that (i) a geometric integrator has
good long-time behavior for constant steps and (ii) the step density controller (2.14)
has good long-time behavior for exact data {y(tn)}. The problem is now to show that
a geometric integrator, generating approximate data {yn} for (2.14) in lieu of {y(tn)},
while governed by the controller, produces a stable, adaptive integrator with a good
long-time behavior. We shall consider the following general algorithm.

Algorithm. Let Φh be a one-step method for (2.3) with initial value y0. Further,
let ρ0 = 1, and let ε > 0 be constant. Define {yn} by

ρn+1/2 = ρn + εG(yn)/2,

yn+1 = Φε/ρn+1/2
(yn),

ρn+1 = ρn+1/2 + εG(yn+1)/2,

(3.1)

where yn approximates y(tn), and tn+1 = tn + ε/ρn+1/2.
Theorem 3.1. For the algorithm (3.1), let

Φ̂ε :
( yn
ρn

)
�→

( yn+1

ρn+1

)
and Ŝ =

(
S 0
0 1

)
.(3.2)



EXPLICIT, TIME REVERSIBLE, ADPATIVE STEP SIZE CONTROL 1843

It then holds that (i) Φ̂ε is symmetric whenever Φh is symmetric; (ii) Φ̂ε is reversible

with respect to Ŝ whenever Φh is reversible with respect to S and GS = −G.

The algorithm can be interpreted as a Strang splitting for the solution of (2.12):
it approximates the flow of (2.11) with fixed y over a half-step ε/2; then applies the
method Φε to y′ = F (y)/ρ with fixed ρ; finally, it computes a second half-step of
(2.11) with fixed y. The recursion generates a sequence ρn+1/2 ≈ ρ(τn+1/2), where
the step size is defined as hn+1/2 = ε/ρn+1/2. Thus, in spite of not knowing ρ(τ)
exactly, both the time sequence {tn} and the transformed time {τn} are explicitly
obtained by the time recursions.

3.1. The variable step size Störmer–Verlet method. Consider a Hamilto-
nian system with separable Hamiltonian H(p, q) = T (p) + U(q). Using the Störmer–
Verlet method, the reversible, variable step size algorithm becomes (starting with
ρ0 = 1 and ρ1/2 = ρ0 + εG(p0, q0)/2 or, equivalently, ρ−1/2 = ρ0 − εG(p0, q0)/2)

ρn+1/2 = ρn−1/2 + εG(pn, qn),

pn+1/2 = pn − ε∇U(qn)/(2ρn+1/2),

qn+1 = qn + ε∇T (pn+1/2)/ρn+1/2,

pn+1 = pn+1/2 − ε∇U(qn+1)/(2ρn+1/2).

(3.3)

This method is explicit, symmetric, and reversible as long as GS = −G, and it
computes approximations on a nonequidistant grid {tn} given by tn+1 = tn+ε/ρn+1/2.

Let us apply this method to the Kepler problem, which is Hamiltonian with

H(p, q) =
pTp

2
− 1√

qTq
.(3.4)

The initial conditions are taken as

q(0) = (1 − e , 0)T; p(0) = (0 ,
√

(1 + e)/(1 − e) )T,(3.5)

where we choose the eccentricity e = 0.8. Further, we take ε = 0.005 and select
Q(q) = (qTq)−α/2 with α = 3/2, so that the control function (see (2.13)) becomes

G(p, q) = −αpTq/qTq .(3.6)

Figure 3.1 shows the error in the Hamiltonian along the numerical solution as well as
the global error in the solution. The error in the Hamiltonian remains bounded and
proportional to ε2, and the global error grows linearly with time (in double logarithmic
scale a linear growth corresponds to a line with slope one; such lines are drawn in
grey). This is qualitatively identical to the behavior observed in constant step size
implementations of symplectic methods.

Figure 3.2 shows the step sizes hn+1/2 = ε/ρn+1/2 as a function of time. Included
is the graph of the control error Q(pn, qn)/ρn−Q(p0, q0)/ρ0 in grey. Since this devia-
tion from the constant value Q(p0, q0)/ρ0 is small without any drift, the step density
remains close to Q(p, q) multiplied by a constant.

A theoretical explanation of this excellent behavior of the variable step size im-
plementation will be given in the following subsection.
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Fig. 3.1. Numerical Hamiltonian and global error as a function of time.

10 20 30

10−3

10−2

10−1

10 20 30

10−3

10−2

10−1

control
error

step size

Fig. 3.2. Step sizes of the variable step size Störmer–Verlet method as a function of time, and
the control error Q(pn, qn)/ρn −Q(p0, q0)/ρ0 (grey curve).

3.2. Integrable reversible systems. Consider a differential equation (2.1) sat-
isfying the reversibility conditions (2.2). Such a system is an integrable reversible
system if there exists a reversibility-preserving transformation

(p, q) = ψ(θ, a), ψS = Sψ,(3.7)

to action-angle variables, defined for actions a = (a1, . . . , am) in an open set of R
m

and for angles θ = (θ1, . . . , θd) on the whole torus

T
d = R

d/(2πZ
d) = {(θ1, . . . , θd) : θi ∈ R mod 2π},

such that the transformed system (2.1) is of the form

ȧ= 0,

θ̇=ω(a)
(3.8)

(see [4, Chap. XI] for the connection to completely integrable Hamiltonian systems
and examples). Denoting the inverse transformation of (3.7) by

(θ, a) = (Θ(p, q), I(p, q)),
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the components of I = (I1, . . . , Im) are even functions of p and first integrals of
the system (2.1). For the following result, which shows linear error growth and near-
preservation of the action variables over long times for the variable step size algorithm,
we need the Diophantine condition

|k · ω| ≥ γ|k|−ν , k ∈ Z
d, k 
= 0,(3.9)

for positive constants γ and ν (cf. [4, sect. X.2.1]). Theorem XI.3.1 of [4] is now
extended to the following result for the reversible step size control algorithm.

Theorem 3.2. Consider the adaptive method (3.1) with symmetric and reversible
basic method Φh of order 2r and reversible G(y) = ∇Q(y)TF (y)/Q(y), applied to an
integrable reversible system (2.1) with real-analytic functions f , g, G, and ψ. Suppose
that ω(a∗) satisfies the Diophantine condition (3.9). Then, for an arbitray truncation
index N , there exist positive constants C, c, ε0 such that the following holds for all
ε ≤ ε0: every numerical solution (pn, qn) starting with ‖I(p0, q0)−a∗‖ ≤ c | log ε‖−ν−1

satisfies

‖(pn, qn) − (p(tn), q(tn))‖≤C tn ε
2r for 0 ≤ tn ≤ ε−2r,

‖I(pn, qn) − I(p0, q0)‖≤C ε2r for 0 ≤ tn ≤ ε−2(N−r),

|Q(pn, qn)/ρn −Q(p0, q0)/ρ0| ≤C ε2 for 0 ≤ tn ≤ ε−2(N−1).

The constants ε0, c, C depend on γ, ν,N and on the dimensions of the system, but are
independent of n and ε.

This theorem, whose proof will be given in the next section, explains the excellent
long-time behavior of the proposed variable step size algorithm for an important class
of differential equations. It can further be extended to cover perturbed integrable
systems. However, it cannot directly be applied to the Kepler problem (Figure 3.1),
because there the frequencies do not satisfy the Diophantine condition. We expect
that an argument similar to that of Example X.3.3 of [4] can be used for explaining
the phenomena observed in this problem.

In many applications, particularly molecular dynamics simulation, one is con-
cerned with nonintegrable Hamiltonian systems. Limited numerical experiments have
shown that the adaptive Störmer–Verlet method (3.3) has an excellent long-time be-
havior (near conservation of the total energy) also in this situation.

4. Backward error analysis. We shall theoretically explain the excellent long-
time behavior of the adaptive version (3.1) of reversible integrators. To this end,
backward error analysis is an indispensable tool. Since the adaptive method (3.1) can
be interpreted as a one-step method (3.2) in an augmented space, applied with a con-
stant step size ε, standard arguments can be applied to obtain the modified equation.
We assume that all appearing functions are real-analytic on suitable domains.

Theorem 4.1. Suppose that the basic method Φh is symmetric and reversible,
and that GS = −G. Then there exist unique functions Fj(y, ρ) and Gj(y, ρ) such that,
for an arbitrary truncation index N , the exact flow ϕ̂t(y, ρ) of the truncated modified
equation

y′ =
(
F (y) + ε2F1(y, ρ) + · · · + ε2N−2FN−1(y, ρ)

)
/ρ,

ρ′ =G(y) + ε2G1(y, ρ) + · · · + ε2N−2GN−1(y, ρ)
(4.1)

satisfies

Φ̂ε(yn, ρn) − ϕ̂ε(yn, ρn) = O(ε2N+1).(4.2)



1846 ERNST HAIRER AND GUSTAF SÖDERLIND

The expansions in (4.1) are in even powers of ε and the modified equation is reversible,

i.e., FjŜ = −SFj and GjŜ = −Gj for all j.
Proof. Inserting the solution of (4.1) into the method and comparing like powers

of ε yields uniquely the functions Fj and Gj . The results of [4, sect. IX.2] then imply
the reversibility of the modified equations and that the expansions are in even powers
of ε.

If the basic method Φh is of order 2r > 2, the leading perturbation terms in the
series (4.1) are still of size O(ε2). This is because the interpolation of ρ(τ) is at the
values ρn with integral indices and not at the values ρn+1/2. However, the coefficient
functions satisfy

Fj(y, ρ) = sj(y, ρ)F (y) for j = 1, . . . , r − 1,(4.3)

with scalar functions sj . This follows because Φh has a modified differential equation
with leading perturbation term of size O(h2r). The relation yn+1 = Φε/ρn+1/2

(yn)
therefore implies that the modified equation (4.1) for y(τ) has to be of the form
y′ = s(y, ρ, ε)F (y) + O(ε2r) which is equivalent to (4.3).

4.1. Reversible perturbation theory. The numerical method (3.1) is consis-
tent with the augmented system (2.12) as can be seen by putting ε = 0 in (4.1).

If G(y) is given by (2.13) with Q satisfying QS = Q, the expression A = Q(y)/ρ
is a first integral of (2.12). Now assume that the original problem ẏ = F (y) is
an integrable reversible system and that y = ψ(θ, a) transforms it to action-angle
variables. The transformation( y

ρ

)
= ψ̂(θ, a,A) =

( ψ(θ, a)
Q(ψ(θ, a))/A

)
(4.4)

again preserves reversibility, i.e., Ŝψ̂ = ψ̂Ŝ. It brings the system (2.12) to the form

θ′ = r(θ, a,A)ω(a), a′ = 0, A′ = 0,(4.5)

where r(θ, a,A) := A/Q
(
ψ(θ, a)

)
. Here the number of action variables is increased

by one. In contrast to (3.8), the differential equation for the angle variables depends
not only on the actions, but also on the angles. This is characteristic of the present
situation, because otherwise the step density ρ would be essentially constant, and we
would not have an adaptive integrator.

By applying the coordinate change (4.4) to (4.1) we have

θ′ = r(θ, a,A)
(
ω(a) + ε2η1(θ, a,A) + · · · + ε2N−2ηN−1(θ, a,A)

)
,(4.6)

a′ = ε2ξ1(θ, a,A) + ε4ξ2(θ, a,A) + · · · + ε2N−2ξN−1(θ, a,A),(4.7)

A′ = ε2ζ1(θ, a,A) + ε4ζ2(θ, a,A) + · · · + ε2N−2ζN−1(θ, a,A),(4.8)

which is an ε2-perturbation of (4.5). Since the change of variables preserves reversibil-
ity, the functions r and ηj are even functions of θ, while the functions ξj and ζj are
odd functions of θ.

This situation is similar to the one treated in [4, sect. XI.2], the only difference
being that the unperturbed system depends on the angle variables. Since this depen-
dence is only via the scalar function r(θ, a,A), the techniques and results of [4] can
be extended to the present situation.
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Lemma 4.2. Suppose that ω(b∗) satisfies the Diophantine condition (3.9). For a
fixed N ≥ 2, there then exists a reversibility-preserving change of coordinates

θ = ϕ + ε2μ1(ϕ, b,B) + · · · + ε2N−2μN−1(ϕ, b,B),(4.9)

a = b + ε2c1(ϕ, b,B) + · · · + ε2N−2cN−1(ϕ, b,B),(4.10)

A = B + ε2C1(ϕ, b,B) + · · · + ε2N−2CN−1(ϕ, b,B)(4.11)

(i.e., μj is odd in ϕ, and cj , Cj are even in ϕ) such that in the new coordinates, the
system (4.6)–(4.8) is given by

ϕ′ = r(ϕ, b,B)ωε,N (b,B) + ε2NEN (ϕ, b,B),(4.12)

b′ = ε2NΞN (ϕ, b,B),(4.13)

B′ = ε2NZN (ϕ, b,B),(4.14)

with ωε,N (b,B) = ω(b) + ε2ω1(b,B) + · · · + ε2N−2ωN−1(b,B). The above transfor-
mation is defined for sufficiently small ε, for ‖b − b∗‖ ≤ c|log ε|−ν−1 with some ε-
independent c > 0, for B in an ε-independent neighborhood of some B∗, and for ϕ in
an ε-independent complex neighborhood of T

d. The remainder terms in (4.12)–(4.14)
are bounded independently of ε.

Proof. This proof is based on the ideas presented in sections X.2 and XI.2 of [4].
Here, we only focus on those parts which are different due to the dependence of the
differential equation on the angle variables. We do not repeat technical details that
can be taken over without changes.

Inserting (4.9)–(4.11) into the system (4.6)–(4.8) yields a differential equation for
ϕ, b, and B. It is of the form (4.12)–(4.14) with N = 2 provided that the functions
μ1, c1, C1 satisfy

∂

∂ϕ

(
μ1(ϕ, b,B)

/
r(ϕ, b,B)

)
ω(b) =

(
κ(ϕ, b,B) − ω1(b,B)

)/
r(ϕ, b,B),(4.15)

∂

∂ϕ

(
c1(ϕ, b,B)

)
ω(b) = ξ1(ϕ, b,B)

/
r(ϕ, b,B),(4.16)

∂

∂ϕ

(
C1(ϕ, b,B)

)
ω(b) = ζ1(ϕ, b,B)

/
r(ϕ, b,B),(4.17)

where κ(ϕ, b,B) is an even function of ϕ depending on η1, r, c1, and C1, but not on
μ1. To solve these equations for μ1, c1, and C1, we represent all appearing functions
as Fourier series, e.g.,

C1(ϕ, b,B) =
∑
k∈Zd

γk(b,B)ei k·ϕ, ζ1(ϕ, b,B)
/
r(ϕ, b,B) =

∑
k∈Zd

δk(b,B)ei k·ϕ.

Equation (4.17) thus becomes

i k · ω(b) γk(b,B) = δk(b,B).(4.18)

Since the right-hand side of (4.17) is an odd function of ϕ, its angular average is
zero, i.e., δ0(b,B) = 0, implying that (4.18) is automatically satisfied for k = 0. We
can arbitrarily put γ0(b,B) = 0. For k 
= 0 and k · ω(b) 
= 0, the relation (4.18)
yields γk(b,B). Assuming exponential decay of the Fourier coefficients δk and the
Diophantine condition (3.9), the γk also decay exponentially, and C1(ϕ, b,B) is well-
defined and a solution of (4.17). From δ−k = −δk it follows that γ−k = γk, so
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that the function C1 is an even function of ϕ. Equation (4.16) can be solved in the
same manner. Before solving (4.15), one has to define ω1(b,B) such that the angular
average of the right-hand side vanishes.

For constant r the system obtained by neglecting the O(ε2N ) terms in (4.12)–
(4.14) can be solved exactly and yields constant functions b(τ) and B(τ) and a linear
function for ϕ(τ). The next lemma shows that we have qualitatively the same behavior
in the general case. We suppress the subscript in ωε,N (b,B) and the dependence on
B (because b and B play the same role).

Lemma 4.3. Let ω(b0) satisfy the Diophantine condition (3.9), and let r(ϕ, b)
be a scalar function which is analytic on a complex neighborhood of T

d × {b0} and
satisfies 0 < r0 ≤ r(ϕ, b0) ≤ R0. The solution of the differential equation

ϕ′ = r(ϕ, b0)ω(b0)(4.19)

then satisfies ϕ(τ) = ϕ0 +σ(τ)ω(b0), where σ(τ) is a monotonically increasing func-
tion with σ(0) = 0, and, for τ → ∞,

σ(τ) = O(τ),
∂σ(τ)

∂ϕ0
= O(1),

∂σ(τ)

∂b0
= O(τ).

Proof. Defining the time transformation σ(τ) as the solution of the differential
equation σ′ = r(ϕ0 + σω(b0), b0), we see that ϕ(τ) := ϕ0 + σ(τ)ω(b0) solves (4.19).
The boundedness of r implies that σ(τ) = O(τ). Separation of the variables in the
differential equation for σ yields∫ σ(τ)

0

dσ

r(ϕ0 + σω(b0), b0)
= τ,(4.20)

and implicit differentiation with respect to ϕ0 gives

∂σ(τ)

∂ϕ0
· 1

r(ϕ0 + σ(τ)ω(b0), b0)
+

∫ σ(τ)

0

∂

∂ϕ0

( 1

r(ϕ0 + σω(b0), b0)

)
dσ = 0.(4.21)

Letting γk(b0) be the Fourier coefficients of the inverse of r(ϕ, b0), the integral in
(4.21) becomes∫ σ(τ)

0

∂

∂ϕ0

(∑
k∈Zd

γk(b0)e
i k·(ϕ0+σω(b0))

)
dσ =

∑
k∈Zd

i k γk(b0)
ei k·(ϕ0+σω(b0))

i k · ω(b0)

∣∣∣σ(τ)

0
.

By the Diophantine condition and by the exponential decay of the Fourier coefficients
this expression is bounded, implying that the derivative of σ(τ) with respect to ϕ0 is
bounded.

A similar argument with an additional partial integration gives the statement on
the derivative with respect to b0.

4.2. Proof of Theorem 3.2. The numerical solution of our adaptive reversible
algorithm is very close to the solution of the modified differential equation (4.1). To
get more insight into this differential equation (and hence into the numerical solution)
we have transformed it successively to the simpler form (4.12)–(4.14). We now have
to transform properties of the system (4.12)–(4.14) back to those of the modified
equations. This then proves Theorem 3.2.
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(a) The exact solution of (4.12)–(4.14), with initial values ϕ0, b0, and B0, satisfies

ϕ(τ) =ϕ0 + σ(τ)ωε,N (b0, B0) + O(τε2N ) + O(τ2ε2N ),

b(τ) = b0 + O(τε2N ),

B(τ) =B0 + O(τε2N ),

(4.22)

where σ(τ) is the time transformation of Lemma 4.3. The statements for b(τ) and
B(τ) follow from integration of (4.13) and (4.14). Inserting these estimates into (4.12)
adds a term O(τε2N ) to the remainder. The nonlinear variation of constants formula
together with the boundedness of ∂ϕ/∂ϕ0, which is a consequence of the estimates of
Lemma 4.3, yields the formula for ϕ(τ).

(b) The transformation (4.9)–(4.11), which is ε2-close to the identity, brings the
statements (4.22) back to the action-angle variables θ, a, and A. As a consequence of
the estimates of Lemma 4.3 we have

θ(τ) = θ0 + σ(τ)ωε,N (a0, A0) + O(ε2) + O(τε2) + O(τ2ε2N ),

a(τ) = a0 + O(ε2) + O(τε2N ),

A(τ) =A0 + O(ε2) + O(τε2N ).

(4.23)

The σ(τ) in this formula is given by (4.20) with b0 replaced by a0, A0.
(c) Theorem 4.1 shows that the local error (difference between the numerical

solution and the exact solution of the truncated modified differential equation) is
bounded by O(ε2N+1). Since, for integrable systems, perturbations in the initial
values are propagated at most linearly in time, this implies that the difference between
the numerical solution and the exact solution of the modified equation (global error)
increases at most as O(τ2ε2N ) and that in the action variables at most as O(τε2N ).
Together with (4.23) this proves that

I(pn, qn) = I(p0, q0) + O(ε2) + O(τε2N ),

Q(pn, qn)/ρn =Q(p0, q0)/ρ0 + O(ε2) + O(τε2N )

for the action variables in the augmented system. The error in the solution, which is
essentially that in the angle variables, is

(pn, qn) −
(
p(τn), q(τn)

)
= O(ε2) + O(τε2) + O(τ2ε2N ).(4.24)

Here τn = nε, and y(τ) = (p(τ), q(τ)) is the solution of the differential equation (2.12).
(d) To complete the proof of Theorem 3.2 we have to rewrite this estimate in

the original time variable t. Adding tn+1 = tn + ε/ρn+1/2 to (3.1) gives a symmet-
ric discretization of (2.12) augmented by t′ = 1/ρ. The backward error analysis of
Theorem 4.1 then yields (4.1) augmented by a modified equation for t(τ):

t′ = 1/ρε(y, ρ), ρε(y, ρ) = ρ + ε2r1(y, ρ) + · · · + ε2N−2rN−1(y, ρ).(4.25)

(Putting the ε2-series in the denominator does not change the argumentation.) The
local error of the values tn compared to the solution t̂(τ) of the modified equation
(4.25) is O(ε2N+1), so that we have for the global error

tn = t̂(τn) + O(τε2N ).(4.26)

Since we have t(τ)− t̂(τ) = O(τε2) for the solution t(τ) of the unperturbed differential
equation, we finally obtain y(τn) = y(t(τn)) = y(t̂(τn)) + O(τε2) = y(tn) + O(τε2).
Together with (4.24) this proves the statement of the theorem for order 2r = 2.
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(e) Slight modifications of the above proof are necessary to get the correct order
of convergence for higher order methods. First of all we replace the factor 1/ρ in the
modified differential equation (4.1) by 1/ρε(y, ρ) with the function of (4.25). This
implies that Fj(y, ρ) = 0 for j = 1, . . . , r−1 as expected for a method of order 2r. We
then obtain (4.6)–(4.8) with a function r(θ, a,A) depending on ε2, and ηj = ξj = 0
for j = 1, . . . , r − 1. In Lemma 4.2 we then use a change of coordinates for which
μj = cj = 0 for j = 1, . . . , r−1. The function r in (4.12) is then r(θ, a,A) written in the
new variables, and hence also depends on ε2. Since the transformation (4.12)–(4.13)
is ε2r-close to the identity, the former proof yields the correct order of convergence.

5. Concluding remarks. We conclude this article with some remarks concern-
ing further applications of the presented theory, and with comments related to a
practical implementation.

5.1. Theoretical justification of proportional controllers. In the variable
step size strategies of Hut, Makino, and McMillan [8] or Stoffer [11] the step size
is defined implicitly by an algebraic relation of the type e(yn, yn+1, hn+1/2) = ε,
satisfying suitable symmetry and reversibility conditions. Backward error analysis
[5] then yields a modified differential equation for y as in (4.1) with ρ replaced by a
given function of y and ε. The resulting controller is proportional but not integrating,
so there is no differential equation for the step density ρ. A simplified version of
the above analysis (one need not consider the variables ρ, A, and B) then gives the
same statement as in Theorem 3.2 for proportional controllers applied to integrable
reversible systems.

5.2. Step size integrating controller. Instead of an integrating controller for
the step density ρ as in (2.8), we consider a step size integrating controller (2.6). We
put hn+1/2 = εsn+1/2, where sn+1/2 are discrete values approximating a function that
is given by a differential equation

s′ = H(y), s(0) = 1(5.1)

(cf. (2.11)). Considering the control objective Q(y)s = const, we obtain by differen-
tiation with respect to τ and by using y′ = sF (y) that

s′ = −s2∇Q(y)TF (y)/Q(y) = −s2G(y),(5.2)

with G(y) from (2.13). Although not of the form (5.1), this differential equation can
be solved for constant y = yn by separation of variables and yields

1

sn+1/2
− 1

sn−1/2
= εG(yn),

which again is the integrating controller for the step density ρ = 1/s.
Insisting on an integrating controller for the step size, we can replace s in (5.2)

by s = const/Q(y) = Q(y0)/Q(y) to obtain

s′ = −Q(y0)
2∇Q(y)TF (y)/Q(y)3,(5.3)

which then leads to

sn+1/2 = sn−1/2 − εQ(y0)
2∇Q(yn)TF (yn)/Q(yn)3,
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with the step size given by hn+1/2 = εsn+1/2. Numerical experiments indicate that
this controller also performs well, without drift in the numerical energy, when applied
to the problem of Figure 3.1.

However, the theory of the previous section no longer applies. Since the differen-
tial equation (5.3) depends on the initial value y0, the expression Q(y)s is no longer
a first integral of the system y′ = sF (y) augmented by (5.3), because

d

dτ

(
Q(y) s

)
= ∇Q(y)F (y)

(
s2 − Q(y0)

2

Q(y)2

)
,

which vanishes only on the manifold defined by Q(y)s = Q(y0). Note that Q(y)s is a
first integral of (5.2). This lack of theoretical justification is one of the main reasons
for proposing the integrating controller for the step density ρ and not for the step
size s.

5.3. Implementation issues. Given a control function G(y), the reversible step
density controller is implemented in the form

ρn+1/2 = ρn−1/2 + ε αG(yn),(5.4)

with initial value ρ0 = 1 and ρ1/2 = ρ0 + ε αG(y0)/ε. The controller has two settings.
The setpoint ε > 0 is the external means of controlling accuracy, via the step size
hn+1/2 = ε/ρn+1/2. It affects the absolute magnitude of the entire step size sequence.

The controller’s integral gain α ≥ 0 (see [9] for control theoretic terminology) is
used to balance the computational effort, by affecting the rate of change in the step
density. This parameter was used in (3.6). Adjusting the integral gain is equivalent to
changing the control objective; with gain α, the objective is Q(y)α/ρ = const. Taking
α = 0 produces constant step size, while α = 1 produces the controller discussed in
previous sections.
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