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a b s t r a c t

Impaired beta-cell function is key to the development of type 2 diabetes. Cocaine- and amphetamine-
regulated transcript (CART) is an islet peptide with insulinotropic and glucagonostatic properties. Here
we studied the role of endogenous CART in beta-cell function. CART silencing in INS-1 (832/13) beta-cells
reduced insulin secretion and production, ATP levels and beta-cell exocytosis. This was substantiated by
reduced expression of several exocytosis genes, as well as reduced expression of genes important for
insulin secretion and processing. In addition, CART silencing reduced the expression of a network of
transcription factors essential for beta-cell function. Moreover, in RNAseq data from human islet donors,
CARTPT expression levels correlated with insulin, exocytosis genes and key beta-cell transcription factors.
Thus, endogenous beta-cell CART regulates insulin expression and secretion in INS-1 (832/13) cells, via
actions on the exocytotic machinery and a network of beta-cell transcription factors. We conclude that
CART is important for maintaining the beta-cell phenotype.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Type 2 diabetes (T2D) is a metabolic disease characterized by
insufficient insulin secretion and insulin resistance (American
Diabetes A, 2006; Marchetti et al., 2008). Impaired insulin secre-
tion is key to the development of T2D (Ferrannini and Mari, 2004;
Kahn, 2003; Levy et al., 1998). Therefore, improved knowledge
about the mechanisms controlling beta-cell function is important
for better understanding of T2D pathogenesis and for development
of new treatment strategies. Insulin expression is regulated by a
network of transcription factors (Melloul et al., 2002), including
PDX-1, MAFA and NEUROD1 that bind to the insulin promotor re-
gion and are crucial for appropriate insulin synthesis and secretion,
as well as for beta-cell survival (Zhang et al., 2005; Huang et al.,

2002; Chu et al., 2001; Jonsson et al., 1994; Brissova et al., 2002;
Ahlgren et al., 1998). NKX2.2 and NKX6.1 are additional beta-cell
enriched transcription factors with crucial roles for beta-cell
development and differentiation, regulating beta-cell maturation
and expansion (Cerf, 2006; Sussel et al., 1998; Sander et al., 2000;
Schisler et al., 2008; Taylor et al., 2013; Doyle and Sussel, 2007).
Furthermore, it was recently shown that TCF7L2, through binding
to ISL-1, regulates proinsulin production and processing via e.g.
MAFA, PDX-1 and PCSK2 (Zhou et al., 2014).

Cocaine- and amphetamine-regulated transcript (CART) is a
brain-gut peptidewith anorexigenic properties (Ekblad et al., 2003;
Lambert et al., 1998; Rogge et al., 2008). CART is also expressed in
islet cells and in nerve terminals innervating the islets in several
mammals, including humans (Ahr�en et al., 2006; Abels et al., 2016;
Wierup and Sundler, 2006). Exogenously added CART has been
shown to increase insulin secretion in a glucose-dependent fashion
from rodent and human islets and in vivo in mice due to enhanced
beta-cell exocytosis. Furthermore, administration of exogenous
CART inhibits glucagon secretion in human and rodent islets as well
as in vivo in mice due to reduced alpha-cell exocytosis (Abels et al.,
2016). Furthermore, exogenous CART protects beta-cells against
glucotoxicity-induced cell death in vitro in INS-1 (832/13) beta-cells
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and rat islets (Sathanoori et al., 2013). In addition, endogenous
beta-cell CART is upregulated in T2D patients as well as in several
rodent models of T2D (Abels et al., 2016; Wierup et al., 2006), likely
as a homeostatic response attempting to overcome hyperglycemia.
Importantly, CART is necessary for maintaining normal islet func-
tion since Cart -/- mice display impaired insulin secretion and
glucose intolerance due to islet dysfunction (Wierup et al., 2005).
Although, it has been established that CART has insulinotropic ac-
tions when administered exogenously and that Cart -/- mice have
reduced insulin secretion, the function of endogenous beta-cell
CART is not known.

Here we addressed this using siRNA silencing of CART in INS-1
(832/13) beta-cells. Our data point towards an important role of
CART as a regulator of insulin secretion by acting at multiple levels.
CART silencing in INS-1 (832/13) cells resulted in decreased insulin
secretion and insulin expression, reduced intracellular ATP levels
and exocytosis. The observed effects were paralleled by reduced
expression of beta-cell transcription factors and exocytosis genes.
In addition, CARTPT expression correlated with INS, MAFA, TCF7L2,
SYT3 and RAB3A in human islets.

2. Materials and methods

2.1. INS-1 (832/13) beta-cell culture

INS-1 (832/13) cells (Hohmeier et al., 2000) were cultured in
RPMI 1640 medium (Sigma Aldrich, St. Louis, MO) containing 2 g/l
D-glucose, supplemented with 10% FBS, 10 mM HEPES, 1 mM so-
dium pyruvate and 50 mM b-mercaptoethanol (Sigma Aldrich). To
study the effect of exogenous CART, CART 55e102 peptide (Amer-
ican Peptide Co Inc, Sunnyvale, CA, kind gift Prof. Michael J Kuhar,
Emory University, Atlanta, GA, or Novo Nordisk A/S, Mål€ov,
Denmark, kind gift Dr Lars Thim) was used.

2.2. siRNA-mediated gene silencing and qPCR

Gene silencing in INS-1 (832/13) cells was performed using
Lipofectamin RNAiMAX (#13778150, Life Technologies, Waltham,
MA) and 60 nM siRNA targeting rat Cart mRNA (#4390815, Silencer
Select Pre-designed siRNA, Ambion, Life Technologies and J-090320-
10-0002, ON-TARGETplus Rat Cartpt siRNA, Dharmacon, Lafayette,
CO). The sequences for scrambled siRNA were sense: 50-GAGACC-
CUAUCCGUGAUUAtt-30 and antisense: 50-UAAUCACGGAUAGGGU-
CUCtt-3’ (Silencer Select customer designed siRNA, Ambion, Life
Technologies and D-001810-10-05, ON-TARGETplus Non-targeting
control pool, Dharmacon). The transfection complexes were pre-
pared according to the manufacturer's protocol. Total RNA was iso-
lated 48 h after transfection and 1 mg of RNA was reverse-
transcribed to cDNA using RevertAid First Strand cDNA synthesis
kit (Thermo Scientific, Waltham, MA). Quantitative RT-PCR was
performed using the ABI Prism 7900 HT system (Life Technologies)
with 15 ng cDNA and TaqMan gene expression assays (Life Tech-
nologies). All samples were analyzed with two endogenous controls
(Hprt and Ppia). The gene expression levels were determined using
the DDCt method. TaqMan gene expression assays used were: Cart
(Rn01645174_m1), Tcf7l2 (Hs01009041_g1),Mafa (Rn00845206_s1),
Isl-1 (RN00569203_m1), Pdx-1 (Rn00755591_m1), Nkx6.1
(Rn01450076_m1), Nkx2.2 (Rn04244749_m1), NeuroD1
(Rn00824571_s1), Ins1 (Rn02121433_g1), Ins2 (Rn01774648_g1),
Hprt (Rn01527840_m1), Ppia (Rn00690933_m1), Stx1a
(Rn00587278_m1), Syt4 (Rn01157571_m1), Syt7 (Rn00572234_m1),
Syt13 (Rn00578161_m1), Stxbp1 (Rn00564767_m1), Snap25
(Rn00578534_m1), Sytl4 (Rn00589676_m1), Vamp2
(Rn00360268_g1), Gck (Rn00561265_m1), Glut2 (Rn00563565_m1)
(Life Technologies).

2.3. Immunoblotting of CART and proinsulin

INS-1 (832/13) cells were lysed 72 h after siRNA-mediated CART
knock-down (KD) using Lysis-M reagent supplemented with
Complete Mini Protease Inhibitor Cocktail (Roche Diagnostics
GmbH, Mannheim, Germany). The protein concentration in the
samples was determined using the Bio-Rad protein assay (Bio-Rad,
Hercules, CA). Proteins were separated by SDS-PAGE and trans-
ferred to nitrocellulose membranes (Life Technologies). The mem-
branes were incubated overnight at 4 �C with primary antibody
against CART (1:1000, code C4, Cocalico Biologicals, Reamstown,
PA, kind gift Prof. Michael J Kuhar, Emory University, Atlanta, GA),
proinsulin (1:1000, #8138S, Cell Signaling Technology, Beverly, MA)
and b-actin (1:500, sc-47778 Santa Cruz Biotechnology, Dallas, TX).
Detection was performed using horseradish peroxidase conjugated
secondary antibodies and SuperSignal Femto Chemiluminescent
Substrate (Pierce Biotechnology, Rockford, IL). Protein expression
was quantified by band densitometry measurement using ImageJ
software (Research Services Branch, National Institute of Health,
Bethesda, MD).

2.4. Acid/ethanol extraction of insulin and proinsulin

INS-1 (832/13) cells were washed twice with PBS 72 h after
siRNA-mediated CART KD, lysed in water and sonicated on ice.
Thereafter hydrochloric acid/ethanol was added and samples were
extracted at �20 �C for at least 24 h. Insulin and proinsulin content
was determined using insulin/proinsulin ELISA (Mercodia, Uppsala,
Sweden) and normalized to total protein content (Bio-Rad protein
assay, Bio-Rad).

2.5. Glucose stimulated insulin secretion in INS-1 (832/13) cells

Glucose-stimulated insulin secretion (GSIS) was measured 72 h
after CART KD. INS-1 (832/13) cells were washed twice and incu-
bated for 2 h in 2.8 mM glucose HEPES-buffered saline solution
(HBSS): 114mMNaCl, 4.7 mMKCl,1.2 mMKH2PO4,1.16mMMgSO4,
20 mM HEPES, 2.5 mM CaCl2, 25.5 mM NaHCO3, 0.2% BSA, pH 7.2,
followed by 15-min- or 1 h stimulation in the same buffer con-
taining 2.8 mM, 16.7 mM glucose, 2.8 mM glucose and 10 mM
alpha-ketoisocaproate (KIC), 2.8 mM glucose and 35 mM KCl,
16.7 mM glucose and 4 mM carbonyl cyanide 4-(trifluoromethoxy)
phenylhydrazone (FCCP) and 4 mg/ml oligomycin (OM), 16.7 mM
glucose and 10 mM IBMX, and 16.7 mM glucose and 35 mM KCl.
Insulin concentration in supernatants were determined using ELISA
(Mercodia, Uppsala, Sweden) and were normalized to total protein
content (determined by Bio-Rad protein assay, Bio-Rad) or to in-
sulin content of each well as indicated.

2.6. Electrophysiology

Membrane currents and changes in membrane capacitance
were evoked and recorded using an EPC10 amplifier and Patch-
master software (HEKA, Lambrecht/Pfalz, Germany) as described in
(Salunkhe et al., 2016). Extracellular solutions contained: 118 mM
NaCl, 20mMTEACl, 5.6mMKCl, 2.6 mMCaCl2,1.2mMMgCl2, 5mM
HEPES, 5 mM Glucose (pH 7.4 with NaOH). Intracellular solution
contained: 125 mM CsOH, 125 mM Glutamate, 10 mM CsCl, 10 mM
NaCl, 1 mMMgCl2, 3 mMMg-ATP, 0.05 mM EGTA, 5 mMHEPES and
0.1 mM cAMP (pH 7.15 with CsOH). All experiments were per-
formed at 33e34 �C.

2.7. ApoTox-Glo triplex assay

The ApoTox-Glo assay was used to assess cell viability,
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cytotoxicity and apoptosis. CART KD was performed in INS-1 (832/
13) cells and after 72 h ApoTox-Glo Triplex assay (Promega, Madi-
son, WI) was used according to the manufacturer's instructions.
Briefly, viability and cytotoxicity were measured by fluorescent
signals produced when either live-cell or dead-cell proteases cleave
added substrates (which have different excitation and emission
spectra). Apoptosis was measured by the addition of caspase-3/7
substrate (Caspase-Glo 3/7, ApoTox-Glo Triplex Assay; Promega),
which is cleaved in apoptotic cells to produce a luminescent signal.

2.8. ATP levels

To examine cellular ATP levels during GSIS, CART KD was per-
formed in INS-1 (832/13) cells and 72 h later cells were washed
twice and incubated for 2 h in 2.8 mM glucose HBSS. Thereafter the
same buffer containing 2.8 mM, 16.7 mM glucose and 16.7 mM
glucose with 4 mM carbonyl cyanide 4-(trifluoromethoxy)phenyl-
hydrazone (FCCP) and 4 mg/ml oligomycin (OM) was added and
cells were incubated for an additional 15 min. The Mitochondrial
ToxGlo Assay (Promega) was then used according to the manu-
facturer's instructions to examine membrane integrity and cellular
ATP levels. Briefly, protease activity associated with necrosis is
measured first followed by ATP measurement after addition of ATP
Detection reagent resulting in cell lysis and generation of lumi-
nescent signal proportional to ATP amount in the sample.

2.9. CARTPT expression in human islets

Expression of CARTPTwas examined using RNA sequencing data
on human islets from 195 cadaver donors provided by the Nordic
Network for Clinical Islet Transplantation in Uppsala, Sweden and
processed as previously described (Fadista et al., 2014). The corre-
lation between CARTPT and beta-cell transcription factors and
exocytosis genes in pancreatic islets was analyzed with Pearson's
correlation coefficient and corrected for multiple testing (Bonfer-
roni correction).

2.10. Statistics

Data were analyzed using one-way ANOVA or two-way ANOVA,
followed by Bonferroni's test post hoc, or using unpaired Student's
t-test. Protein expressionwas analyzed usingWilcoxon signed-rank
test. Differences of p< 0.05were considered statistically significant.

3. Results

3.1. Silencing of CART reduces insulin secretion in INS-1 (832/13)
cells

To investigate whether endogenous beta-cell CART regulates
insulin secretion, we silenced Cart gene expression using siRNA in
INS-1 (832/13) cells. This resulted in a 97.3 ± 0.5% reduction in Cart
mRNA and 92.1 ± 9.9% reduction in CART protein levels (p < 0.001;
Fig. 1A and B respectively). Raising the glucose concentration from
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2.8 mM to 16.7 mM in control cells provoked a 5.4 ± 0.6-fold in-
crease (Fig. 1C) in insulin secretion during the 1-h static incubation.
Silencing of CART had no effect on basal insulin secretion (2.8 mM
glucose), but caused reduced insulin secretion at 16.7 mM glucose
(55.2 ± 6.0% reduction, p < 0.001; Fig. 1C). In addition, at 16.7 mM
glucose CART KD reduced Kþ and IBMX-stimulated insulin secre-
tion (58.2 ± 23.8% and 29.1 ± 13.4% reduction respectively,
p < 0.001, Fig. 1C). At 2.8 mM glucose, CART KD had no effect on
insulin secretion stimulated by Kþ, but the response to alpha-
ketoisocaproate (alpha-KIC) was reduced to 51.0 ± 6.9%
(p < 0.001, Fig. 1C) and there was a trend towards decreased insulin
secretion stimulated by pyruvate (p ¼ 0.07, Fig. 1C). To study a
potential effect of CART KD on first phase insulin secretion, we also
assessed insulin secretion during 15-min static incubations. The
stimulatory effect of Kþ at 2.8 mM glucose during 15-min stimu-
lation was reduced in CART-silenced cells (2 ± 0.2-fold above basal
for Ctrl vs 1.2 ± 0.1-fold for CART KD; p < 0.001, Fig. 1D). Reduced
insulin secretion at 16.7 mM glucose after CART KD in INS-1 (832/
13) cells was verified using another siRNA targeting Cart mRNA
(Dharmacon, Lafayette, CO, 36.4 ± 13.4% reduction, p < 0.001, data
not shown).

ATP is crucial for both the triggering and the amplifying path-
ways in glucose-stimulated insulin secretion (GSIS) (Wiederkehr
and Wollheim, 2012). We therefore examined if CART KD affected
ATP levels after 15-min incubation with glucose and inhibitors of
mitochondrial ATP synthesis. Lower ATP levels were evident in
CART KD cells at both 2.8 mM and 16.7 mM glucose (25.3 ± 7.9%
lower at 2.8 mM glucose; p < 0.05 and 41.3 ± 8.1% lower at 16.7 mM
glucose; p < 0.001, Fig. 1E). The reduced ATP levels were observed
with only a very minor effect on protein levels in INS-1 cells after
CART KD (7% lower in KD vs. Ctrl, p ¼ 0.01, n ¼ 9, data not shown).
There was no effect of CART KD on ATP content after addition of the
uncoupler FCCP and the ATP synthase inhibitor OM, suggesting that
CART KD leads to a reduction in ATP synthesis by inhibiting mito-
chondrial metabolism.

3.2. Silencing of CART reduces insulin exocytosis in INS-1 (832/13)
cells

As insulin secretion was reduced after CART KD in INS-1 (832/
13) cells, and we recently showed that addition of exogenous CART
increases beta-cell exocytosis in mouse islets (Abels et al., 2016), we
assessed the effect of CART KD on exocytosis. To this end, we
employed the standard whole-cell configuration of the patch-
clamp technique. Exocytosis, measured as changes in membrane
capacitance, was elicited by a train of ten 500-ms depolarizing
pulses from �70 to 0 mV that evokes the influx of Ca2þ needed to
stimulate fusion. While there was no significant change in the total
increase in capacitance evoked by the train of depolarizations,
CART KD caused a robust reduction in the capacitance increase
evoked by the two first depolarizations (Fig. 2AeC). This is believed
to represent exocytosis of primed granules in the readily releasable
pool (RRP) of granules (Gillis et al., 1996; Olofsson et al., 2004).
Thus, CART KD caused a reduction in the size of RRP from
133.4 ± 819.8 fF in Ctrl to 77.7 ± 7.7 fF in CART KD INS-1 (832/13)
cells (p < 0.05; Fig. 2C). CART KD had no effect on charge or peak
current, which corresponds to Ca2þ and Naþ currents, respectively
(Fig. 2DeE). In order to understand the basis for reduced exocytosis
after CART KD, we nextmeasured expression of genes important for
exocytosis. Indeed, CART KD reduced expression of Stxbp1, Syt7,
Syt13, Sytl4, Snap25 and Vamp2 (52.8 ± 1.7%, 88.5 ± 2.5%,
72.4 ± 2.9%, 38.8 ± 2.0%, 79.5 ± 2.7%, 72.0 ± 5.0% compared to
control cells; p < 0.01, Fig. 2F), while Stx1a and Syt4 expression was
increased (120.4 ± 1.1%, 164.5 ± 2.5%, p < 0.001, Fig. 2F).

3.3. Silencing of CART in INS-1 (832/13) cells provokes decreased
expression of insulin and genes involved in insulin secretion and
production

We next addressed whether the reduced insulin secretion seen
after CART KD could be explained by an impact on insulin
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transcription and processing. CART KD in INS-1 (832/13) cells
decreased Ins1 and Ins2mRNA levels to 49.6 ± 3.7% and 55.7 ± 3.5%
respectively (p < 0.05; Fig. 3A), that corresponded to 49 ± 7.0%
decrease in proinsulin protein expression, as measured with
Western blot (p < 0.05; Fig. 3B). Reduced proinsulin content
(53 ± 6.3%, p < 0.05; Fig. 3C) and insulin content (75.1 ± 6.3%;
p < 0.05, Fig. 3D) after CART KD were confirmed with ELISA.
Reduced Ins2 gene expression after CART KD in INS-1 (832/13) cells
was verified using another siRNA targeting Cart mRNA (Dharma-
con, 43.1 ± 3.3% reduction, p < 0.01, data not shown). To assess
whether reduced insulin content could explain the reduction in
insulin secretion seen after CART KD we repeated the 1 h insulin
secretion experiments and normalized insulin secretion to insulin
content of the cells. This revealed that CART KD reduced insulin
secretion even when adjusted for insulin content (by 17 ± 6.8%;
p < 0.05, Fig. 3E). We next examined the expression of beta-cell
genes with important roles in insulin secretion/production. CART
KD resulted in reduced mRNA levels of Gck (72.3 ± 4.2%; p < 0.001),

Glut2 (78.5 ± 3.4%; p < 0.01), Pcsk2 (60.2 ± 10.1%; p < 0.001) and Cpe
(63.5 ± 4.9%; p < 0.001) (Fig. 3F). However, Pcsk1 mRNA levels
increased to 136.4 ± 9.9% (p < 0.001, Fig. 3F).

3.4. Silencing of CART in INS-1 (832/13) cells represses key beta-cell
transcription factors

Having established that CART affects expression of insulin and
genes crucial for insulin secretion and processing, we next exam-
ined expression of the transcription factors known to regulate these
genes (Melloul et al., 2002; Zhou et al., 2014; Fu et al., 2013). CART
KD resulted in decreased expression of Tcf7l2, Mafa, Isl-1, Pdx-1,
NeuroD1, Nkx2.2 and Nkx6.1 mRNA to 51.4 ± 3.7%, 39 ± 7.9%,
50.5 ± 4.3%, 61.7 ± 2.5%, 56.9 ± 5.9%, 65.1 ± 4.8%, and 79.7 ± 6.5%
respectively (p < 0.001 and p < 0.05 for Nkx6.1, Fig. 3G). Reduced
Tcf7l2 and Mafa gene expression after CART KD in INS-1 (832/13)
cells was verified using another siRNA targeting Cart mRNA
(Dharmacon, 56.8 ± 8.8% reduction, p < 0.001 and 42.1 ± 15.9%
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reduction, p < 0.01 respectively, data not shown). Finally we tested
whether 48 h culture with exogenous CART could rescue the effect
of CART KD. This revealed that addition of CART partially rescued
expression of Mafa (increased by 21.3 ± 12%) and of Tcf7l2
(increased by 16.4 ± 2%) after CART KD (p < 0.01) but was without
effects on insulin expression (Fig. 3H).

3.5. CART silencing induces beta-cell apoptosis in INS-1 (832/13)
cells

We have previously shown that addition of exogenous CART
protects against glucotoxicity-induced beta-cell death (Sathanoori
et al., 2013). To rule out that the observed effects of CART KD
were secondary to reduced cell viability, we next assessed whether
silencing of CART would influence beta-cell survival using the
ApoTox-Glo Triplex assay. This method allows for simultaneous
measurements of cell viability, cytotoxicity and apoptosis. CART KD
caused an increase in caspase 3/7 activity (Fig. 4B), without
affecting viability (Fig. 4A) or cytotoxicity (Fig. 4C).

3.6. The levels of CARTPT correlates with INS, TCF7L2, MAFA, SYT3
and RAB3A in human islets

We have previously shown a role for CART in human islet
function. Specifically, addition of exogenous CART increased insulin
secretion in human islets (Abels et al., 2016). To assess potential co-
regulation of CART with genes important for beta-cell function, we
performed linear regression analysis between the levels of CARTPT
expression, and key beta-cell transcription factors, insulin and
exocytosis genes using RNAseq data of human islets from 195 do-
nors (Fig. 5) (Fadista et al., 2014).

The levels of CARTPT mRNA correlated with 23 of the selected
genes (nominally significant, p < 0.05), of which 11 are genes
involved in exocytosis (Suppl. Table 1). After Bonferroni correction
for multiple comparison, the levels of CARTPT expression correlated
positively with INS (p ¼ 0.001, Fig. 5A), MAFA (p ¼ 0.025, Fig. 5B),
and exocytosis genes SYT3 (p ¼ 0.007, Fig. 5C) and small GTP-
binding protein RAB3A that has been suggested to be involved in
refilling the ready releasable pool of beta-cell granules (Yaekura
et al., 2003; Regazzi et al., 1996; Iezzi et al., 1999) (p ¼ 0.009,
Fig. 5D), while the correlation between the levels of CARTPT and
TCF7L2 was negative (p ¼ 0.025, Fig. 5E) in all subjects.

4. Discussion

CART is a novel constituent of human beta-cells and alpha-cells
with insulinotropic and glucagonostatic effects when administered
exogenously (Abels et al., 2016). Global Cart�/� mice have dimin-
ished insulin secretion (Wierup et al., 2005), but the underlying

mechanisms for this has not yet been determined and the function
of endogenous beta-cell CART has remained unknown.

Here we show that endogenous beta-cell CART plays an
important role as a regulator of insulin secretion at multiple levels
(summarized in Fig. 6). Thus, silencing of endogenous beta-cell
CART leads to reduced insulin secretion by lowering ATP and
attenuated exocytosis of docked and primed granules. In parallel,
CART silencing decreased synthesis of insulin and expression of
genes encoding proteins important for exocytosis, glucose sensing,
and insulin processing, likely as a consequence of reduced
expression of a network of transcription factors with key roles in
beta-cell function.

Our present data on reduced insulin secretion in CART KD cells
agrees with our previous data on glucose stimulated insulin
secretion in Cart -/- mice (Wierup et al., 2005). Here, we stimulated
insulin secretion with a battery of secretagogues to dissect the
mechanistic basis for the effect of CART on insulin secretion. This
revealed that CART KD reduced insulin secretion stimulated by
glucose alone, cAMP, Kþ, and the mitochondrial fuel alpha-KIC. This
suggests that CART acts at late events of insulin secretion. In
agreement, CART KD reduced exocytosis, and in particular exocy-
tosis of granules from the RRP. This finding gains support from our
previous observations that addition of exogenous CART increases
beta-cell exocytosis in mouse islets (Abels et al., 2016). The finding
that CART KD reduced Kþ-stimulated insulin secretion (at 2.8 mM
glucose) after 15min, but not after 1 h is likely explained by that the
effect of CART KD is primarily on primed granules. The fact that our
patch-clamp experiments were performed in the presence of ATP
and that CART KD only reduced primed granules, without reducing
the Ca2þ current, suggests a direct effect on the exocytotic ma-
chinery (Eliasson et al., 1997). This is, most likely related to the
observed reduced expression of key exocytosis genes, a notion
supported by the fact that 24-h CART treatment was needed for
stimulatory effect of exogenous CART on beta-cell exocytosis (Abels
et al., 2016). Indeed, CART KD mediated downregulation of Vamp2
and Snap25, whereas Stx1a expression was increased, implicating
importance of CART in regulating expression of proteins involved in
granular fusion (Eliasson, 2014). CART KD thus alters the stoichi-
ometry of the SNARE proteins, which has been shown to cause
inhibition of insulin secretion (42). SNAP25 has earlier been
demonstrated to have a fundamental role in beta-cell exocytosis
through mechanisms that are independent of the Ca2þ-influx
(Vikman et al., 2006, 2009). Syntaxin 1 together with STXBP1 are
critical for the formation of granular docking sites (Gandasi and
Barg, 2014) and STXBP1 together with SYTL4 are important for
docking (Tomas et al., 2008). Thus, the CART KD induced reduction
of Stxbp1 expression and increase in Stx1a and Syt4 expression is
more complex, but might explain why no effect is observed on
granular docking and mobilization (represented by increase in
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membrane capacitance by the later depolarizations of the train).
Interestingly, expression of the synaptotagmin genes Syt7 and Syt13
was slightly reduced after CART KD. Depletion of SYT7 in knock-out
animals leads to reduced first phase insulin release (Gustavsson
et al., 2008), and first phase insulin secretion has been suggested
to be associated with the release of RRP granules (Eliasson et al.,
1997), whereas not much is known about the function of SYT4
and SYT13 in beta-cell exocytosis. However, silencing of SYT13 in
INS-1 (832/13) cells reduces glucose stimulated insulin secretion
and the expression of SYT4, SYT7 and SYT13 is reduced in islets of
T2D donors (Andersson et al., 2012).

In the present study, we also show that CART KD caused a
reduction in ATP content, unlikely to be linked to decreased
viability since total protein content was only marginally decreased

after CART KD. This together with our present and previous findings
that the effect of exogenous CART is glucose-dependent suggests a
role for CART in glucose metabolism. We found that CART KD
caused reduced expression of Glut2 (although not rate-limiting for
glucose metabolism) and Gck. This could in turn lead to less glucose
available for the glycolysis and hence less pyruvate available for ATP
production in the mitochondria. Reduced expression of GLUT2 was
also evident in islets from Cart -/- mice (Wierup et al., 2005). On the
other hand, the inhibitory effect of CART KD on GSIS was still pre-
sent under stimulationwith alpha-KIC indicating that CART may be
important for oxidative phosphorylation. CART has been shown to
preserve ATP levels after ischemic conditions via interaction with
succinate dehydrogenase (SDH, complex II) in neurons (Mao et al.,
2007). ATP is indeed an important trigger and amplifying factor of
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beta-cell exocytosis (Eliasson et al., 1997; Ashcroft and Rorsman,
2013) and the effect of CART KD on insulin secretion was lost af-
ter uncoupling with FCCP and blocking ATP synthesis with OM. On
the other hand, exocytosis was decreased during the patch clamp
experiments performed in the presence of ATP, suggesting
involvement of additional mechanisms to ATP in the reduced in-
sulin secretion after CART KD.

Addition of exogenous CART has previously been shown to
protect against glucotoxicity-induced cell death in rat islets and
INS-1 (832/13) cells (Sathanoori et al., 2013). However, CART KD
had no major effect on cell viability or cell death, although a
moderate increase in apoptosis was observed. This is in line with
our observations that Cart -/- mice have normal islet size (Wierup
et al., 2005). We therefore feel confident to conclude that the
observed effects of CART KD are not secondary to reduced cell
viability.

We showed that CART KD caused reduced insulin synthesis.
Thus, reduced insulin mRNA, proinsulin content and insulin con-
tent were evident after CART KD. We also provide evidence for that
this reduction in insulin content does not alone explain the reduced
GSIS seen after CART KD, since lower GSIS was evident even after
normalizing to insulin content. Prohormone convertases 1/3 and 2
and carboxypeptidase E cleave proinsulin to insulin and C-peptide
(Steiner et al., 2009). We found that CART KD decreased Pcsk2 and
Cpe, but on the other hand increased Pcsk1. This is an interesting
finding that may have implications for processing of peptides
differentially processed by these enzymes (e.g. the proglucagon
peptide), but does not suggest a major role for CART as a regulator
of processing of proinsulin to insulin. Rather we believe that the
observed reduced insulin synthesis is a consequence of reduced
expression of a network of key beta-cell transcription factors, in
turn affecting insulin transcription. Thus, CART KD reduced
expression of Mafa, Pdx-1, Isl1, NeuroD1, Nkx2.2 and Nkx6.1 that can
activate insulin transcription or regulate beta-cell development and
differentiation (American Diabetes A, 2006; Melloul et al., 2002;
Chu et al., 2001; Brissova et al., 2002; Zhou et al., 2014; Ediger
et al., 2014; Glick et al., 2000). CART KD also reduced Tcf7l2, the

number one risk gene for T2D so far identified. Culture with
exogenous CART was without on insulin expression, but partly
rescued expression of MafA and Tcf7l2 after CART KD. Whether a
complete rescue can be achievedwith other concentrations of CART
and other culture times needs further investigation. TCF7L2 was
recently shown to bind to ISL1 and controlling expression of PDX-1,
NEUROD1, NKX6.1 and MAFA transcription factors, as well as other
key beta-cell genes (including PCSK1 and PCSK2) controlling in-
sulin processing, maturation and secretion (Zhou et al., 2014). In
addition, decreased ATP content after CART KD could also
contribute to the reduced insulin content (Orci et al., 1987; Rhodes
et al., 1987). Although the exact mechanisms are difficult to dissect
due to the lack of identified CART receptors (Rogge et al., 2008;
Vicentic et al., 2006), our data position CART as an important
regulator of beta-cell transcription.

Finally, we used RNAseq in human islets to assess whether our
findings in INS-1 (832/13) cells have relevance in man. Indeed, the
level of CARTPT expression was correlated with INS, MAFA, TCF7L2,
SYT3 and RAB3A. Together with our previous data showing that
CART increases insulin secretion, reduces glucagon secretion and is
expressed in human beta-cells as well as alpha-cells, and is upre-
gulated in T2D islets (Abels et al., 2016), this suggests important
roles for CART also in human islets.

In summary, our data point towards important roles for
endogenous CART in the beta-cell since CART silencing resulted in
reduced (1) insulin synthesis, (2) insulin secretion via reduced ATP
and exocytosis of RRP granules, (3) expression of beta-cell key
genes regulating transcription, glucose sensing, insulin processing
and exocytosis.

5. Conclusions

We conclude that endogenous beta-cell CART plays important
roles in regulation of beta-cell function and suggest that CART
expression is necessary for maintaining the beta-cell phenotype.
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