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Abstract

Advances in natural language processing are the talk of the town, yet these advances
have not materialized into their widespread adoption into systematic review automation.
Systematic reviews are resource-consuming and multifaceted processes and could cost any-
where between USD 16−18 million per year for companies and research institutions. The
process encompasses searching and retrieving all possible evidence to write the review,
meticulously filtering studies to find relevant ones, critically appraising it for biases, ex-
tracting and collating data from these studies, performing statistical analysis and writing
manuscripts. Automation is imperative to reduce workload and cut down the review cost.

Automatic citation screening methods have been suggested to reduce the initial study
filtering workload, but their uptake in commercial settings has been limited due to dis-
crepancies between existing approaches and real-world workflows. Methods in automatic
information extraction could aid in chaffing multiple data types from studies. These meth-
ods, however, are limited by static hand-labelled datasets and varying data extraction
needs depending on the review question. Finding a manually annotated dataset covering
all necessary data types is impractical. Approaches for cheaply extending static, man-
ually annotated datasets with new information types are necessary. Critical appraisal,
particularly the bias assessment process, is the most intellectually demanding phase of
review writing. The scarcity of hand-labelled datasets essential for evaluating the NLP
techniques hinders their adoption into SR automation.

In this thesis we have explored methods for automation of these three stages: auto-
matic citation screening, data extraction and bias assessment. To address the research gap
in prospective methods for citation screening, we explore active citation screening meth-
ods designed and evaluated for future-facing prospective scenarios aligned with industrial
processes. Additionally, we adapt and develop weak supervision methodologies to obtain
labels for varied data types necessary for the data extraction stage economically. Finally,
we develop a resource for evaluating state-of-the-art NLP approaches for bias assessment
and provide preliminary results of language model evaluation for the resource developed.
Automated methods offer the potential to make the systematic review processes cheaper,
more transparent, accountable, and reproducible.

Keywords: Natural language processing, deep learning, systematic reviews, automation
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Résumé

Les progrès en matière de traitement du langage naturel font couler beaucoup d’encre,
mais ils ne se sont pas traduits par une adoption généralisée de l’automatisation des
examens systématiques. Les examens systématiques sont des processus à multiples facettes
qui consomment des ressources et peuvent coûter entre 16 et 18 millions de dollars par
an aux entreprises et aux instituts de recherche. Le processus comprend la recherche et
l’extraction de toutes les preuves possibles pour rédiger l’examen, le filtrage méticuleux des
études pour trouver celles qui sont pertinentes, l’évaluation critique des biais, l’extraction
et le rassemblement des données de ces études, la réalisation d’une analyse statistique et
la rédaction de manuscrits. L’automatisation est impérative pour réduire la charge de
travail et le coût de la révision.

Des méthodes de sélection automatique des citations ont été proposées pour réduire
la charge de travail initiale de filtrage des études, mais leur adoption dans des contextes
commerciaux a été limitée en raison des divergences entre les approches existantes et les
flux de travail dans le monde réel. Les méthodes d’extraction automatique d’informations
pourraient faciliter le tri de plusieurs types de données provenant d’études. Ces méthodes
sont toutefois limitées par des ensembles de données statiques étiquetés à la main et par des
besoins d’extraction de données qui varient en fonction de la question examinée. Il n’est pas
pratique de trouver un ensemble de données annotées manuellement couvrant tous les types
de données nécessaires. Des approches permettant d’étendre à peu de frais les ensembles
de données statiques et annotés manuellement avec de nouveaux types d’informations sont
nécessaires. L’évaluation critique, en particulier le processus d’évaluation des biais, est la
phase la plus exigeante sur le plan intellectuel de la rédaction d’une revue. La rareté
des ensembles de données étiquetés manuellement, essentiels à l’évaluation des techniques
NLP, entrave leur adoption dans l’automatisation de la RS.

Dans cette thèse, nous avons exploré des méthodes d’automatisation de ces trois étapes
: le filtrage automatique des citations, l’extraction des données et l’évaluation des biais.
Pour combler les lacunes de la recherche en matière de méthodes prospectives de sélection
des citations, nous explorons des méthodes actives de sélection des citations conçues et
évaluées pour des scénarios prospectifs orientés vers l’avenir et alignés sur des processus in-
dustriels. En outre, nous adaptons et développons des méthodologies de supervision faible
afin d’obtenir des étiquettes pour divers types de données nécessaires à l’étape d’extraction
des données de manière économique. Enfin, nous développons une ressource pour évaluer
les approches NLP de pointe pour l’évaluation des biais et fournissons des résultats prélim-
inaires de l’évaluation des modèles de langage pour la ressource développée. Les méthodes
automatisées offrent la possibilité de rendre les processus d’examen systématique moins
coûteux, plus transparents, plus responsables et plus reproductibles.
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Mots clés: Traitement du langage naturel, apprentissage profond, revues systématiques,
automatisation1

1This abstract was translated by a non-native speaker (AKD) using an automated deep neural machine
translator (https://www.deepl.com/translator). The translated abstract was checked for improvements
by Mr. Adrien Bertaud, native speaker of French.



સાર

નેચરલ લેંગ્વજે ̆ોસેિસ�ગમાં આવતી આȴિુનકતા એ નગરચચાર્નો િવષય છે, છતાં િસસ્ટમે�ટક �રવ્Ȼુ
ઓટોમેશનમાં આ આȴિુનકતાની વ્યાપક સ્વીȢૃિત સાકાર થઈ નથી. િસસ્ટમે�ટક �રવ્Ȼુ એ સસંાધન-
ભોગી અને બɆપુક્ષીય ̆�˲યાઓ છે અને કંપનીઓ અને સશંોધન સસં્થાઓ માટ° ̆િત-વષર્ 16 થી 18
િમ�લયન USD (અમે�રક� ડોલર) ની વચ્ચે લાગત આવી શક° છે. આ ̆�˲યા સમીક્ષા લેખન િવષયક
તમામ સભંિવત ̆માણો(̆ાથિમક અધ્યયનો) શોધવા અને ȶનુઃ̆ાપ્ત કરવા, Ʌસુગંત ̆માણો શોધવા
માટ° ȶનુઃ̆ાપ્ત અધ્યયનȵું ɅǛૂમતાȶણૂર્ િનસ્પદંન કરવા, ȶવૂર˴્ હો જાણવા માટ° તેઓȵું િવવચેનાત્મક
Ⱥલૂ્યાકંન કરવા, આ અધ્યયનોમાથંી મા�હતી િનષ્કષર્ણ અને એકિ́ત કરવા, આંકડાક�ય િવશ્લેષણ
કરવા અને હસ્ત̆તો લખવાનો સમાવશે થાય છે. કાયર્ભાર ઘટાડવા અને સમીક્ષા Ƀલુ્ક ઘટાડવા
માટ° ઓટોમેશન આવશ્યક છે.

અધ્યયનનો િનસ્પદંન કાયર્ભારને ઘટાડવા માટ° ઓટોમે�ટક સાઈટ°શન �સ્˲િન�ગ પćિતઓȵું Ʌચૂન
કરવામાં આવલે છે, પરંȱ ુ વતર્માન અ�ભગમો અને વાસ્તિવક-િવĖના કાયર્̆વાહ વચ્ચેની િવસગંતતાને
કારણે વ્યવસાિયક ̆ણાલીઓમાં તેમનો ઉપયોગ સીિમત છે. ઓટોમે�ટક ઇન્ફોમ±શન એક્સ્ °˼ક્શનની
પćિતઓ અધ્યયનોમાથંી બɆિુવધ મા�હતી ̆કારોની છટંણી કરવામાં સહાયક બની શક° છે. આ
પćિતઓ, જોક°, સ્ટ°�ટક હ°ન્ડ-લેબલ ધરાવતા ડ°ટાસેટ્સ અને સમીક્ષા ̆ĕના આધાર° િવિવધ મા�હતી
િનષ્કષર્ણ આવશ્યક્તાઓના કારણે સીિમત છે. તમામ આવશ્યક મા�હતી ̆કારો સમાિવષ્ટ કરતો
મેન્Ȼઅુલી એનોટ°ડ ડ°ટાસેટ શોધવો અવ્યવહા�રક છે. નવા મા�હતી ̆કારો સાથનેા અ�ભગમો સ્ટ°�ટક,
મેન્Ȼઅુલી એનોટ°ડ ડ°ટાસેટ્સના Ƀલુ્ક-̆ભાવી િવસ્તારણ માટ° આવશ્યક છે. િનણાર્યક Ⱥલૂ્યાકંન,
િવશષેતઃ ȶવૂર˴્ હ આંકલન ̆�˲યા, સમીક્ષા લેખનના સૌથી બૌ�ćક આવશ્યકતાની માગં ધરાવતા
ચરણ છે. NLP તકનીકોȵું Ⱥલૂ્યાકંન કરવા માટ° આવશ્યક હ°ન્ડ-લેબલવાળા ડ°ટાસેટ્સની ઉણપ
િસસ્ટમૅ�ટક �રવ્Ȼ ૂ ઓટોમેશનમાં તેમના અȵȢુલૂનને અવરોધે છે.

આ થીસીસમા,ં અમે આ ́ણ ચરણો માટ°ની ઓટોમેશન પćિતઓ પર અન્વષેણ કȻુ¿ છે:
ઓટોમે�ટક સાઈટ°શન સ્˲�નીંગ, ડ°ટા િનષ્કષર્ણ અને ȶવૂર˴્ હ આંકલન. સાઈટ°શન �સ્˲િન�ગ માટ°ની
ભિવષ્યલક્ષી પćિતઓમાં સશંોધનાત્મક અંતર �ચ�Ěત કરવા માટ°, અમે ઔČો�ગક ̆�˲યાઓ સાથે
સરં° �ખત ભિવષ્યના સભંિવત પ�રȳૃશ્યો હ°ȱ ુ ર�ચત અને આંક�લત એ�ક્ટવ સાઈટ°શન �સ્˲િન�ગ પćિતઓȵું
અન્વષેણ કર�એ છ�એ. વȴમુા,ં અમે આિથ�ક ર�તે મા�હતી િનષ્કષર્ણના ચરણ માટ° આવશ્યક િવિવધ
મા�હતી ̆કારો માટ° લેબલ્સ મેળવવા માટ° િનબર્ળ િનર�ક્ષણ પćિત અȵȢુ�ૂલત અને િવકિસત કર�
છ�એ. અંતે, અમે ȶવૂર˴્ હ આંકલન માટ° અČતન NLP અ�ભગમોȵું Ⱥલૂ્યાકંન કરવા માટ° એક
સસંાધન િવકિસત કર�એ છ�એ અને િવકિસત સસંાધન માટ° લેંગ્વજે મોડ°લ ઇવલે્Ȼએુશનના ̆ારં�ભક
પ�રણામો ̆દાન કર�એ છ�એ. ઓટોમેટ°ડ પćિતઓ પćિતસર સમીક્ષા ̆�˲યાઓને Ƀલુ્ક-̆ભાવી,
અિધક પારદશર્ક, ઉĂરદાયી અને ȶનુઃઉત્પાદન સબંિંધત ક્ષમતા ̆દાન કર° છે.

ક�વડ્સર્: નેચરલ લેંગ્વજે ̆ોસેિસ�ગ, ડ�પ લિન�ગ, િસસ્ટમૅ�ટક �રવ્Ȼ,ૂ અટોમેશન2

2This abstract was translated by a native speaker (AKD) of Gujarati using Google Translate (https:
//translate.google.com/). The translated text was further edited by them for more natural sounding
Gujarati translation.
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Chapter 1

Introduction

Anecdotal evidence is information or opinion or evidence based on individual stories or
personal experiences [253]. In medical and health domains, such evidence stems from
people’s personal experiences and interactions with society and media. Human society
embraces such anecdotes because storytelling is an innate ability of ours, and it is easy to
comprehend anecdotes but difficult to comprehend scientific evidence. We often encounter
health-related anecdotes in our daily lives, like seeking advice from a friend on ointments
for bruises or burns or looking for relaxation exercises for knee pain or mobility issues. As
represented in Figure 1.1, while these anecdotes may seem reliable, there is no evidence
regarding whether an ointment is suitable for a skin type or whether a relaxation exercise
will address the underlying cause of someone’s knee pain. Relying on anecdotal evidence
is risky because it is usually based on word-of-mouth or hearsay but rarely on scientific
evidence and reliable statistical data. For instance, asking a relative for mouth ulcer
medication might not be the best approach, as it may not consider individual health
conditions or specific needs. Anecdotal evidence in medicine and health is prone to bias
and subjectivity, posing several problems when it comes to public understanding and
decision-making [208].

Figure 1.1: Cartoon presentation on anecdotal evidence in medicine. (Source: https:
//www.slideshare.net/synchro85/cartoon-presentation-on-evidence)

Evidence-based medicine (EBM), on the other hand, is an approach that emphasizes
using the best available scientific evidence to make decisions about medical treatments,
diagnosis and interventions. The term EBM was not coined in the literature until 1992,
and decades before, scientists used data based on case series and anecdotal evidence [130].
In the early 1900s, physicians treated patients based on anecdotal evidence, such as using
heroin as a cough suppressant for children. Until the late 19th century, bloodletting was
used to cure several ailments despite causing more harm than good in the vast majority
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of cases [4]. With the emergence of modern scientific methods in the late 19th and early
20th centuries, there was a shift towards more systematic and controlled approaches to
medical research. Randomized Controlled Trials (RCTs) began to be used to study the
effects of medical interventions systematically. The milestone in this area came about in
1948 and was the use of streptomycin to treat tuberculosis, which was tested using prin-
ciples of RCT methodology [57]. RCTs are clinical trials designed to compare treatment
outcomes among patient groups while controlling for external factors, achieved through
rigorous methods, for example, randomizing and blinding to allocating patients into the
intervention groups under study [136]. As the amount of RCT literature increased (refer
Figure 1.2), it became challenging for healthcare professionals to keep up with the vast
amount of contrasting available evidence. In the 1970s and 1980s, researchers began to
recognize the need for a method to synthesize and summarize the findings of multiple med-
ical studies in a standardized way. In 1993, Cochrane collaboration3 was established with
14 countries coming together to systematically review the evidence in the form of writing
systematic reviews (SRs). This international network of researchers aimed to promote
EBM and develop SR of RCTs across various medical interventions. SR methodology as
it exists now is a collaborative effort from Cochrane collaboration in the United Kingdom,
which formed a committee of 14 countries to write SRs [56]. Before that, the reviews were
often narrative and lacked a structured approach to selecting, appraising, and synthesizing
evidence.

Year

0

10000

20000

30000

40000

50000

19
65

19
67

19
69

19
71

19
73

19
75

19
77

19
79

19
81

19
83

19
85

19
87

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

20
05

20
07

20
09

20
11

20
13

20
15

20
17

20
19

20
21

20
23

PubMed EMBASE

RCTs indexed over time in PubMed and EMBASE

Figure 1.2: The exponential growth of RCTs indexed in PubMed and EMBASE over time.
Illustration made using statistics from these literature repositories.

Systematic reviews utilize a systematic, rigorous and transparent methodology to col-
late all the empirical evidence in the form of primary studies that fit pre-specified eligibility
criteria in order to answer a specific research question. They hold the top-most position
in the evidence pyramid as shown in Figure 1.3 and are considered the most reliable form

3https://www.cochrane.org/



of medical evidence when synthesized from primary studies like RCTs [147]. In areas
where a substantial number of RCTs are lacking, Systematic Reviews (SRs) may incorpo-
rate various study types, such as non-randomized controlled trials, observational studies,
quasi-experimental studies, diagnostic accuracy studies, and case series and reports [197].
As depicted in the figure 1.4, writing a systematic review begins by formulating a concrete
research question the researcher wants to address using a framework called PICO (Par-
ticipant, Intervention, Comparator, Outcome) [234]. Subsequently, a thorough search of
relevant literature sources is performed to identify scientific studies addressing the ques-
tion. A manual assessment of searched studies is conducted following the study search
to ensure they meet the reviews’ inclusion criteria. Data from included studies is then
collected and recorded. The next step is to evaluate study quality to assess potential
biases in the included studies. Finally, the results, including a detailed description of the
methodology, are summarized and reported [146].

Clinical practice 
guidelines

Systematic reviews
Meta-analysis

Randomized Controlled Trials
Prospective – tests treatments

Cohort studies
Prospective – exposed cohort is 

observed for outcomes

Case-control studies
Retrospective – Subjects already of interest 

looking for risk factors

Case reports or case series
Narrative reviews, expert opinions and editorials

Animal and laboratory studies

Figure 1.3: The evidence pyramid in evidence-based medicine. Adapted from [181]

Systematic reviews are the pillars of EBM and are the go-to documents for health prac-
titioners. They help healthcare practitioners stay informed with the latest evidence, assess
intervention effectiveness, and evaluate treatment impacts on patient outcomes, thereby
enabling them to make better treatment and diagnosis decisions [69, 186, 205, 212]. These
reviews, when combined with polemic discourse4 are finding growing acceptance among
clinicians and policymakers [109, 327]. They have also been pivotal in informing policy de-
cisions by evaluating the effectiveness and efficiency of healthcare interventions [126, 145].

Writing a comprehensive SR takes about 6 to 24 months to complete, with a timeframe
depending upon the scope of the SR question [25, 133]. However, the delay between con-
ducting, writing and publishing an SR and the constant influx of new clinical studies neces-
sitate regular updates to maintain their relevance. Conventional SRs are static artefacts,
facing the challenge of manual updates. In contrast, living systematic reviews (LSRs),

4The term “polemic discourse” refers to a specific form of discourse characterized by its contentious and
aggressive nature, often involving strong arguments and refutations. It is a type of communication that
aims to establish a position by refuting or undermining opposing views.



Figure 1.4: Illustration: Steps for conducting SRs (Source: https://acesse.dev/6tlkq)

relatively recent developments in the area, are an evolving approach to SRs in healthcare
and other allied domains [100, 233]. Unlike static SRs conducted at a single point in time,
LSRs are dynamic and continually updated as new studies become available. They are
typically defined based on their ability to incorporate the latest research and adapt to
the changes in the domain. This continuous updating ensures that the review remains a
relevant and valuable resource for healthcare practitioners, policymakers, and researchers
who need the most up-to-date information to inform their decisions and actions. The tra-
ditional SR and LSR remain costly, given the financial and manual resources required for
conducting them. The volume of clinical studies published is growing beyond the capacity
of manual tracking and reviewing, which necessitates automation. It is estimated that a
single SR could cost up to $141,194.80. With academic institutions publishing at least 132
reviews a year and pharmaceutical companies publishing an average of 118.71 reviews per
year, the cost could go up to $18,660,304.77 and $16,761,234.71, respectively [229]. These
reasons warrant automation for conducting SRs, aiming to approach the realm of LSRs.

Writing SRs is a tedious, protracted process comprising several intricate sub-stages. In
the initial stage of manually assessing the retrieved studies, also called citation screening,
two reviewers must meticulously check hundreds of thousands of studies to determine their
relevance to the SR, deciding whether to include them. Whenever there is a disagreement
between the reviewers on making the inclusion decision for a study, a third reviewer is
needed to resolve their conflict. Manual assessment for a single SR could take weeks to
months depending on certain factors [332]. An important aspect of manual assessment is



checking for the inclusion criteria defined by the PICO framework, where the reviewers
need to manually check for PICO information in the studies being screened [234]. It is
important to note that in addition to the PICO information, the reviewers might need to
control for additional important information like the type of study, study design, timeframe
of the intervention, exposure, geographical location, setting (e.g., in-patient, out-patient,
community care), etc. to ensure that the study is relevant to writing the review [32, 108,
228]. Quality assessment, also called the RoB (Risk of Bias) assessment stage, requires
two reviewers5 to go through the study full-texts carefully and comprehensively, looking
for possible biases or deviations. The demand for systematic reviews is rising significantly,
with Hoffmann et al. reporting a 20-fold increase in daily SR publications from 4 in
2000 to 80 in 2019 [153]. While the demand for SRs is increasing, the volume of published
evidence in the form of primary studies is growing at break-neck pace. Taking into account
the above-explained tedious process any automation tool that could help the reviewers
quickly identify relevant studies, and any automation tool that could hint towards the RoB
information from a study could help aid in judging the study quality, thereby reducing
their burden.

In recent years, with rapid advancements in natural language processing (NLP), ma-
chine learning and the availability of labelled data resources, the research area of SR
automation has also gained traction. The access and availability of the citation screening
datasets opened up the avenues for SR automation. Cohen et al. were the ones to ap-
proach the automation of citation screening sub-task [66]. In addition, they contributed
a data resource comprising 15 citation screening datasets labelled with the binary inclu-
sion and exclusion decisions. Other than the Cohen dataset, the other citation screening
datasets are scattered across the web. SYNERGY6 initiative has compiled 26 such citation
screening datasets into a single resource that could act as a benchmark for automation
technologies [76]. Open-access datasets are equally, if not more, crucial to automation
than the automation technique itself. However, a critical obstacle to progress in this field
remains — the shortage of freely available labelled datasets to facilitate the automation
of PICO and additional information extraction and risk of bias (RoB) assessment. This
scarcity of labelled datasets hinders the automation for RoB assessment subtask [84, 90].

The research and development in SR automation has its roots in text mining. In
its early stages, researchers devised methods to index and search large collections of sci-
entific studies, leading to the development of large online repositories like PubMed and
EMBASE. These repositories could be effortlessly searched using a combination of nat-
ural language queries and keywords to search for scientific studies of interest. However,
the research in this direction eventually gained traction thanks to the breakthroughs in
deep natural language processing. A decade ago, the machine learning (ML) models were
trained using manually engineered text features like bag-of-words (BoW) and weighted
BoW (tf-idf: term frequency-inverse document frequency) that took into account word
count information and their importance but disregarded word order [21]. Later devel-
opments led to the release of dense word and paragraph embeddings taking into account
word order, and the development of transformer models trained in an unsupervised fashion
pushed the boundaries further [81, 231]. With the increase in hardware capacity and the
advent of humongous large language models (LLMs), most notably GPT-3 (Generative
Pretrained Transformers), the field of SR automation will see further breakthroughs and
innovations [42].

5according to Cochrane, two reviewers are required
6https://github.com/asreview/synergy-dataset



1.1 Motivation

Successful design and application of NLP methodologies and frameworks for automation
of SRs faces three major challenges: I) The first challenge revolves around the absence of
citation screening approaches designed with real-world or “prospective” scenario in mind.
To contextualize, every de-novo SR will come with unlabelled studies and would challenge
the current “restrospective” automation techniques that consider citation screening task
as fully-supervised binary classification. A fully-supervised system requires large labelled
datasets which are missing for de-novo SR scenario. Businesses, academia, and hospitals
find it impractical to label a large number of studies, necessitating a “prospective” ap-
proach. Designing such “prospective” systems typically ensures proper evaluation, unlike
a “restrospective” scenario. II) The second challenge concerns automatic extraction of
clinical information, especially the PICO information, from the retrieved studies. Even
though a medium-sized PICO labelled dataset is available to train and evaluate NLP ap-
proaches, in the real-world scenario there is often a need to control for more information
than just PICO information as described in the Section 1 [254]. Unfortunately, no datasets
account for all the required new information aspects, and manual re-annotation of existing
datasets is impractical due to resource constraints within the wider scientific community.
In addition, the currently available benchmark for PICO information extraction (IE) is
error-prone [90]. III) The third challenge relates to the lack of open-access datasets for
training and evaluating NLP systems focused on extracting risk of bias information from
RCTs. Currently, there are no datasets containing RCTs annotated with RoB information,
making it difficult to develop and evaluate such methods.

1.2 Thesis objectives

This thesis centers around a single goal - provide solutions to the barriers impeding im-
plementation of NLP approaches to SR automation. Although there are many ways of
approaching this overarching goal, this thesis primarily contributes through three signif-
icant objectives through which it can be addressed. The first objective is to address the
gaps in design and evaluation considerations for real-world automatic citation screening
systems. The second objective is to design and develop inexpensive approaches concerning
the information need during the citation screening stage from manually reviewing PICO
and additional information. The sub-task of RoB assessment automation is still deprived
of freely-available dataset and impedes development and evaluation of automation ap-
proaches. Therefore, the third objective addresses this critical gap of lack of resources, by
creating open-access dataset dedicated to training and validating the automation of RoB
assessment.

1.3 Summary of contributions

The main scientific contributions of this research are at the confluence of natural language
processing, deep learning, corpus development and clinical sciences. I had and also actively
developed the opportunities to collaborate with other researchers from the School of Health
Sciences HES-SO Valais-Wallis, HEG - Genève, F. Hoffmann-La Roche AG, University
of Bristol and other external researchers and be a part of seven scientific papers. The
contributions are categorized as follows:



Citation Screening Automation Chapter 3: I explored and devised automation
approaches for citation screening both in research and business domains. In [85], I eval-
uated the performance of two popular word embeddings by pretraining them on a large
biomedical database. Subsequently, I designed an experimental framework to evaluate
the efficacy of fine-tuning these biomedical embeddings for binary classification in citation
screening. As outlined in [93], I introduced a prospective active learning approach tailored
for commercial citation screening systems. To gain deeper insights into the system be-
havior and streamline decision-making, I advocated using multiple performance indicators
as part of a multi-objective approach. In conjunction with inputs from the team, I was
responsible for designing the experiments to ensure proper evaluation these performance
indicators for decision making and shaping further research. This work also included de-
veloping a fuzzy deduplication approach that will be subsequently used to enhance the
citation deduplication approach in production.

Information Extraction from Clinical Trials Chapter 4: I explored, proposed
and extended methodologies for clinical entity extraction pertaining to SR automation.
In [82], I proposed an end-to-end multitask neural network for extraction of fine-grained,
semantic PICO information. In [89], I developed a novel distant supervision approach us-
ing a clinical trials knowledgebase to obtain a large pseudo-labelled dataset. The pseudo-
labelled dataset was used to train an attention-based neural network model for “Interven-
tion” information extraction. I also proposed a modified string metric for fuzzy mapping
of information from the knowledgebase onto raw text. In [87], I proposed, adapted and
evaluated a weak supervision approach for extraction of PICO information in absence of
any labelled data. In the paper, I proposed decomposing the fuzzy entities like PICO to
smaller units for effective application of weak supervision, while highlighting the need for
a unified ontology for data extraction in clinical trials. In [87], I extended the approach
in [90] to a new, composite “Study type and Design” entity with extended experiments
and state-of-art in weakly-supervised PICOS information extraction. I introduced a simple
algorithm in the paper for mapping ontology concepts to the target entity for extraction.
For all the papers in this and the previous chapter, I was responsible for developing and
/ or adapting the methodologies, designing and executing the experiments, analysing the
results and reporting the findings in form of manuscripts.

Risk of Bias Resource Development and LLM evaluation Chapter 5: I re-
leased visual RoB text annotation guidelines that are not only limited to corpus annotation
but could also act as training material for novice bias assessors. My contribution in this
project ranges from the problem identification and proposal, project planning, procuring
the expert volunteers for corpus annotation, guiding the annotation instruction develop-
ment and the annotation process, LLM evaluation and manuscript writing. Collaborating
with Dr. Roger Hilfiker, we procured annotators for the project. In [83], I released a
small corpus consisting of 10 RCT full-texts manually annotated using 22 RoB categories.
Furthermore, in [84], I guided a team of five annotation experts and one linguistic expert.
Together, we adapted the manual RoB assessment guidelines into RoB text annotation
instructions, which were then transformed into visual placards. I was responsible for es-
tablishing the platform for annotating the corpus, supervised the annotation process, and
assessed the performance of a large language model using this corpus. With this paper, I
enabled development of a larger, extensively annotated RoB annotated corpus of full-text
RCTs.

Complementary NLP projects: I had the privilege of collaborating with fellow
researchers within my team and across different departments at the Informatics Institute



of HES-SO Valais-Wallis. This resulted into five scientific papers. In [211], I analysed
German-language osteoarthritis patient notes and derived insights using text analysis.
In [86], I developed a text mining approach using standardized keywords for filtering Di-
agnostic Light Microscopic Images (DLMI) to retrieve a set of rare cancer images. An
overview of birds-eye goal of this approach was presented in [242]. In [92], I co-designed
experiments for binary classification of free-text pathology reports into high gleason grade
and low gleason grade class and explored interpretability methods to understand the clas-
sifier decisions. In [88], I automated a previously prototyped quality control approach for
identifying incomplete radiology reports sourced from a Swiss radiology clinic.

An updated list with publications of the author and their citation impact can be ac-
cessed in the following Google Scholar URL: https://scholar.google.com/citations?
user=C4jUZ18AAAAJ

1.4 Thesis organization
Figure 1.5 shows the overview for the organization of this thesis. In Chapter 2, the
intricacies of SR sub-tasks and prior efforts to their automation are described in the
context of up-to-date related works.

In Chapter 3, I begin by framing the citation screening task as a binary classifica-
tion problem and explore it using classical machine learning approach. Then citing the
challenges pertaining to adapting the automation approaches to real-world systems, I de-
sign a prospective active learning system and propose monitoring such systems using a
comprehensive list of performance indicators. In addition, I explore a straight-forward
pseudo-labelling method to reduce labelling costs for de-novo citation screening projects
and advocate cautiousness in their adoption in real-world automation systems. My design
approach to the prospective system have contributed to enhancement of specific modules
for our collaborators.

TheChapter 4 begins by first exploring the problem of fine-grained PICO information
extraction through development of an end-to-end multi-task learning approach. Then cit-
ing the lack of resources, I develop a novel approach to obtain noisy, inexpensive labels for
“Intervention” information extraction using clinical trials knowledgebase. The approach
is extensible to the rest of the PICO entities too. Later I address the need for inexpensive
information extraction for novel entities by developing a weak supervision approach for
fuzzy and nested PICO entities. I demonstrate through additional experimentation that
this approach could be efficiently extended to novel entities specifically the PICO + S
“Study type and Design” information. These approaches successfully improve the state-
of-the-art (SOTA) performance on the Participant and Intervention entities without the
need for labelled datasets and establish a new benchmark on “Study type and Design”
entity.

In Chapter 5, presents a new resource comprising 41 RCTs manually labelled by
experts with risk of bias text descriptions. In this chapter, I proposed the development of
corpus annotation guidelines and aided its development by leading a team of five anno-
tation experts and a linguistic expert. I transformed these guidelines into visual placards
with feedback and consistent review from the team.

Chapter 6 concludes this thesis with a discussion of the main results of the chap-
ters in the thesis. In the end, promising research directions are proposed in light of the
outstanding current developments in the field.



Chapter 2 Background and Related Work

Chapter 3 Citation Screening Automation

Chapter 4 Information Extraction from Clinical Trials

Chapter 5 Risk of Bias Corpus Development 
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Chapter 2

Background and related work

2.1 Systematic Reviews
In health, biomedicine, pharmaceutical and allied domains, SRs are widely considered a
gold evidence standard. They are known for their rigorous methodology, strict compli-
ance, comprehensive literature searches, and thorough evaluation of the available evidence.
These factors ensure bias minimization [144, 299]. Citing Cochrane Handbook, “A system-
atic review attempts to collate all empirical evidence that fits pre-specified eligibility cri-
teria to answer a specific research question. It uses transparent, systematic methods that
are selected to minimize bias, thus providing more reliable findings from which conclusions
can be drawn and decisions made [324]. Compared to a generic literature review, which
does not involve a comprehensive and systematic search of primary studies, an SR aims for
an exhaustive, comprehensive search. A generic literature review may or may not include
a quality assessment of the primary studies. In contrast, a systematic review conducts a
quality assessment, which could determine the eligibility of a primary study [127]. The
SR process typically involves the following detailed steps [146]:

1. Question definition: The SR writing process begins by formulating a precise
research question that has not been previously addressed to avoid redundant ef-
forts [149]. To identify whether the question has already been addressed in another
review, a thorough investigation of published SRs and a check of the PROSPERO 7

register and Cochrane library is necessary. The question is formulated apriori to
reduce the bias induced by observing the preliminary results during the review pro-
cess. It specifically prevents HARKing or Hypothesizing After Results are Known,
a malpractice involving modifying the review question or hypothesis based on the
observed results, ultimately compromising the integrity of the review [218].

2. Define inclusion criteria: The systematic review question should clearly define
its scope by defining eligibility or inclusion criteria. The reviews investigating inter-
ventions define their inclusion criteria using the PICO (Participant, Intervention,
Comparator, Outcomes) framework. PICO framework (refer Table 2.1) includes
defining the intervention8 the review wants to investigate and an appropriate ref-
erence comparator, specify the patient demographics of interest, and delineating
the treatment outcomes of interest that the SR in question should explore. Only

7https://www.crd.york.ac.uk/prospero/
8A treatment including drugs, surgery, physical exercises, etc.
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those primary studies that match the target population, intervention/comparison,
and outcomes specified by the review question will be eligible for answering the
question. [106, 149, 225].

Element Explanation
P What specific participant or patient characteristics does the SR

aim to investigate?
I What treatment, intervention, or exposure does the SR intend to

examine in relation to these participants?
C What is the comparator or control group against which the effects

of the investigative intervention are assessed?
O What specific outcomes related to the intervention does the SR

want to focus on?

Table 2.1: Explanation of Each Element in the PICO Framework.

3. Determining the search databases: The next step is to identify all the rel-
evant databases indexing the studies relevant to the topic of the review question.
To ensure a comprehensive and unbiased SR, the reviewers must search several
pre-determined literature repositories [146]. These repositories include but are not
limited to major literature databases, clinical trial repositories, and grey literature
databases. Literature databases include PubMed, EMBASE, CINAHL (Cumulative
Index to Nursing and Allied Health Literature), bioRxiv, medRxiv, DBLP (Digi-
tal Bibliography & Library Project), Google Scholar, and PsycINFO. Clinical trial
repositories, including ClinicalTrials.gov, EudraCT (EU Clinical Trials Register),
and WHO’s ICTRP (International Clinical Trials Registration Platform), capture
a range of evidence as well. Searching grey literature like openGrey.eu ensure the
inclusion of negative results that are more likely to remain unpublished or published
as grey literature [256]. Negative results are less attractive for publishing in peer-
reviewed venues and are more likely to be found in grey literature. Relying solely
on primary studies published in peer-reviewed venues for SRs may lead to overesti-
mating intervention effects [295]. Therefore, it is paramount to search and include
the evidence from grey literature [47, 312].

4. Search query formulation and search: Each literature mentioned above has its
own search engine, metadata, indexing vocabulary (MeSH for PubMed vs. EMTREE
for EMBASE vs. APA thesaurus for PsycINFO), and query syntax with rare in-
teroperability. Therefore, the experts, usually the information specialists, manually
formulate search queries for individual resources [328]. Search queries are formulated
using the PICO inclusion criteria and adding language and study type restrictions
[149]. Search queries are developed iteratively over several rounds of revisions. The
aim is to formulate these queries for high sensitivity rather than specificity to ensure
the inclusion of as much relevant evidence as possible [364, 367]. The final search
queries used for the systematic search are published along with the SR protocol to
ensure transparency [149]. After query formulation, comprehensive and systematic
searches are conducted across the chosen literature repositories. The systematic
search and retrieval step establishes the SR’s inclusion criteria depending on the
volume of studies retrieved. A broad research question may yield a substantial vol-



ume of studies, while a narrow more focused question may result in a more limited
selection of relevant studies.

5. Deduplication: The studies are retrieved in the previous step from multiple over-
lapping data sources, leading to duplicates in the pool. The figure 2.1 shows the
rough overlap between the different literature repositories [357]. Duplicates lead to
either overestimating or underestimating treatment effects on patient outcomes [325,
342]. Additionally, reviewing the same studies multiple times wastes time and re-
sources. Consequently, these are removed during the deduplication process.

Figure 2.1: Schematic representation of overlap between a non-exhaustive list of literature
databases used for literature search for SRs. Source: [357]

6. Manual Citation screening: Manual citation screening involves assessing re-
trieved studies to determine if they satisfy the pre-defined inclusion criteria. Citation
screening is conducted in two steps: It begins with title and abstract screening and is
followed by full-text screening. The first step involves manually looking through the
title and abstract of the studies to ensure they align with the SR inclusion criteria, as
in if the study addresses the relevant patient population, intervention/comparator,
and treatment outcomes [234]. The inclusion criteria are defined using the PICO
framework. The participants, intervention, and comparison often translate directly
into inclusion criteria for an SR. If a study addresses the target population, in-
tervention, comparator, and outcome measures specified by the SR question, it is
considered relevant and included for writing the SR; otherwise, it is excluded.

7. Data extraction: Data extraction refers to identifying important characteristics
of the included primary studies. Data of interest could include but is not limited
to extracting information about study characteristics (authors, affiliations, publi-



cation date, funding sources), participant demographics such as patient condition
and age, details of intervention under investigation, and data related to outcome
measures like outcome type and measurement scale. Different quantitative data
are extracted Depending on the analysis to perform. For example, in the case of
network meta-analysis (NMA), quantitative dosage information for each treatment
arm is systematically collected in distinct columns. Time series data associated with
outcomes for multiple arms is then documented in separate rows for each arm [258].
Data extraction also involves extracting information regarding the study quality that
could be utilized for study quality assessment [149]. The extracted data is recorded
in spreadsheets, standard forms, or software like REDCap9.

Example RoB assessment guidelines Year
Physiotherapy Evidence Database (PEDro) 1999
Risk of Bias Assessment Tool for Nonrandomized Studies (RoBANS) 2004
Cochrane Risk of Bias assessment guidelines 2008
Risk of Bias in Non-randomized Studies of Interventions (ROBINS-I) 2016
Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) 2017
Newcastle-Ottawa Scale (NOS) 2018
Revised Cochrane Risk of Bias for RCTs 2.0 tool (RoB 2) 2019

Table 2.2: “Evolution of Risk of Bias Assessment Guidelines Over Time”

8. Quality assessment: Primary studies, like clinical trials, aim to accurately measure
intervention effects on participant outcomes, especially the RCTs. In theory, RCTs
aim to minimize bias, but in practice, biases unintentionally affect any trial stage.
When such studies with questionable biases are used to write SRs, they reduce the
validity and utility of the review. Biases cannot be assessed from RCT studies, but
the risk of bias can be estimated by identifying the systematic flaws in study design,
planning, execution, assessment of outcomes, and reporting, among other relevant
factors [313]. Quality assessment entails evaluating potential bias risk in the included
studies using the risk of bias assessment tools available (refer Table 2.2). The step
helps determine the reliability and validity of individual studies. Quality assessment
results in each study were assessed and labelled with the identified level of bias
risk, classified as low, high, or unclear. A schematic representation of the RoB
assessment is shown in Figure 2.2. After quality assessment, the included studies
could be grouped into different bias risk groups: low risk of bias, unclear risk of bias,
and high risk of bias.

9. Data synthesizing and Meta-analysis: After extracting the data, the next step
involves synthesizing it through statistical meta-analysis. This process includes pool-
ing effect sizes or other pertinent data across studies, aiming to estimate the treat-
ment or intervention effect or the association with participant outcomes. The data
synthesis may involve emphasizing studies with a lower risk of bias when summa-
rizing the evidence. Subgroup analysis could be performed to explore the impact
of bias on the overall results. Common statistical techniques used in meta-analysis
include fixed and random effects models [34].

9https://www.project-redcap.org/



Figure 2.2: Schematic representation of the RoB assessment of n included studies (cita-
tions) over i risk domains D.

10. Writing the SR: Findings are presented as scientific publications that include
detailed methodology to facilitate easy updates with new research findings [144, 324].
Meta-analysis findings are reported using established guidelines such as the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement
along with the entire systematic procedure followed [240].

The anticipated workflow for conducting systematic reviews (SRs) follows a sequential
process, as detailed above; however, convolutions and interconnections exist between these
stages in practice. To put it into perspective, the deduplication process starts after search
retrieval and continues until the data extraction stage. Although dedicated data extraction
is shown to begin after citation screening, its preliminary stages commence when PICO
information is extracted from the retrieved preliminary studies and continues through
quality assessment. Different people could work on these disparate stages of writing the
review. To elaborate, the review question is formulated through collaboration between
reviewers and stakeholders, information specialists conduct query formulation, systematic
search and retrieval by experts specializing in database systems, and very specialized
reviewers focus on the risk of bias or quality assessment [252]. As a result, systematic
reviews are typically conducted by a team of experts engaging in a collaborative activity
that unfolds across a multi-stage and interconnected process [177].

The cost per systematic review could reach as high as 300’000 US dollars and exceed
1000 person-hours [33, 185, 266]. These reviews are methodologically rigorous, require
considerable expertise and collaboration across institutes and thus could take 6 to 12
months to complete [133, 173]. By the time a systematic review is completed, it is no
longer up-to-date with the current evidence given the time between its inception, planning
and completion [26]. Consequently, there is a need to automate certain aspects of writing
the review that are susceptible to automation.



2.2 Avenues for Automation

The stages of formulating the review question, determining the inclusion criteria, deciding
upon the databases to retrieve primary studies from, and formulating the search queries
for these databases are a part of the protocol writing process for SRs. Writing protocol is
largely manual and requires several revisions [177]. Registering the protocol in databases
like PROSPERO is imperative to avoid deduplication of efforts and is mandatory for
Cochrane systematic reviews [144]. Peer review of the protocol helps identify and correct
possible avoidable methodological errors before working on the actual review begins [283].

Cognitive work analysis (CWA) of medical and allied SRs revealed that search and
retrieval entail a comprehensive literature search either at a single point if the review is
a conventional SR or regular literature searches if the review is an LSR. An information
specialist from the review team then skims the retrieved studies to check if they are
broadly relevant to the review question, for example, if the study is an RCT and the
disease under investigation is relevant to the question. If so, the informal data extraction
stage begins, and the PICO characteristics from the study are manually extracted. The
study full-text (essentially a PDF), along with the title, abstract, other meta-data, and
extracted PICO information, is recorded into the research groups’ local repository meant
for that SR, and the metadata is recorded in a spreadsheet [177]. Full-text retrieval
is a cumbersome task requiring manual efforts given license restrictions imposed by the
publishers and subscription restrictions imposed by certain databases like EMBASE [38,
328]. For instance, HES-SO staff can manually query and download contents of EMBASE,
including the full-texts, as the university purchases EMBASE subscriptions. The staff,
however, cannot programmatically retrieve the contents of the database as EMBASE
requires an additional subscription, and HES-SO does not pay for it. Automating full-text
retrieval will not be the primary target of this work.

Study deduplication is the process of determining which individual study from the
retrieved pool describes the same underlying clinical study [134]. It involves manually
comparing the meta-data from each study with every other study in the retrieved pool.
Duplicates results because the studies are retrieved into the pool from multiple overlapping
repositories. Deduplication begins by exporting study data into a spreadsheet and sorting
the content by sorting based on the study title. Check for citations with identical titles
and assess whether other metadata helps identify them as duplicates. Examine meta-
data, including abstracts, author lists, journal names, and volume information, to confirm
duplicity. In case of conflicts, a third opinion is sought. Once all the duplicates are identi-
fied and marked, they are removed from the spreadsheet, leaving only one instance of each
unique study, especially the one published in a later year [39, 180, 268, 275]. At this stage,
the duplicates are not removed from the repository, only from the spreadsheet used to track
duplicates. In a practical scenario, deduplication is carried out throughout the SR writing
process to minimize bias and reduce over or under-reporting of the intervention effects.
Deduplication was not the primary target of our automation efforts as automatic dedu-
plication methods are widespread, and they perform fairly accurately [78, 134]. Widely
adopted tools like EndNote, Ovid and Covidence provide fairly accurate study dedupli-
cation functionality, though advise the reviewers to skim for duplicates manually [224].
Automating study deduplication, therefore, will not be the primary target of this work.

Manual citation screening is straightforward, starting with two independent reviewers
evaluating the study title and abstract free text. If it matches the predefined inclusion
criteria, it is considered relevant and is included for writing the review and is otherwise



considered irrelevant and is excluded from writing the review. An inclusion criteria is
typically defined by the PICO framework as explained in Table 2.1 and may include
additional restrictions based on the types of studies to be incorporated, such as only
RCTs or a broader range that includes non-randomized studies, case-cohort studies, and
more. A two-stage citation screening involves full-text screening after title and abstract
(TiAb) screening. In cases of conflict, a third opinion is sought for resolution. Wang
et al. estimated the time required for citation screening, suggesting approximately 1
minute per abstract and 7 minutes per full-text [353]. In contrast, Polanin et al. reported
an average of 1.2 minutes per abstract and 1.7 minutes per full-text per reviewer [266].
An experienced reviewer may take an average of 30 seconds to review a study, while an
inexperienced reviewer might take longer [346]. Wallace et al. presented a significantly
longer timeframe, estimating more than 60 hours for screening 5000 abstracts when done by
a non-expert [346]. The task becomes protracted because initial literature retrieval results
in hundreds of thousands of studies being retrieved due to optimised search strategies for
sensitivity. A review with a narrow scope can retrieve fewer studies, while a broad question
usually results in thousands of studies retrieved [329, 364, 367]. Manual citation screening
is widely acknowledged as one of the most time-consuming tasks in systematic reviews.
A survey of 196 reviewers revealed that about 79% of them reported using some form
of automation for citation screening, underlining the recognition of the need for reliable
automation approaches for the manual citation screening process [332]. An automation
approach could assist in classifying the retrieved studies as “relevant” for inclusion or
“irrelevant” thereby reducing the screening workload.

Figure 2.3: The figure shows abstract text from [150] with highlighted PICOS information.

Scanning for PICO information becomes a subtask of data extraction and citation
screening. If the study’s PICO information aligns with the predefined inclusion criteria, it
is considered relevant and included in the review; otherwise, it is considered irrelevant to
writing the review and is excluded. If the study’s PICO information is absent or not pre-
extracted, reviewers manually extract it and make an informed judgment [177]. According
to Borah et al., manually analyzing PICO information from thousands of publications to
gauge its relevance often takes 2-8 months of two medical experts’ time for a single SR.[33]
The entire data extraction process, which includes PICO information identification and
identification of other details like study type, design and geographical location, takes
approximately 53 minutes per study per reviewer [352]. Automation methods can help
highlight relevant PICO information in title and abstract texts, facilitating a more efficient



and effective assessment, as illustrated in Figure 2.3.

Figure 2.4: The image displays the RobotReviewer web interface [310]. It shows an
RCT with text descriptions (on the right) automatically identified by RobotReviewer’s
underlying ML algorithm for four risk domains: Random Sequence Generation, Allocation
Concealment, Participant and Personnel Blinding, and Blinding of Outcome Assessment.

An RCT might report multiple primary and secondary outcomes, but the one for
which RoB assessment is conducted is usually predefined in the inclusion criteria. It’s
usually impractical to assess bias risk for every outcome in a trial, so usually, the focus
of risk of bias assessment is on the predefined primary outcome (PICO) [149]. The next
most important point is to select the bias assessment tool. Numerous tools are available,
and selecting the tool that best aligns with your specific research question is essential. For
instance, if your SR exclusively focuses on randomized clinical trials, it’s imperative to opt
for a tool tailored to this type of study [148]. Different tools are designed for randomized
and non-randomized studies, and a non-exhaustive list of available bias assessment tools
is provided in Table 2.2. Each tool categorizes various biases into specific groups, and the
reviewer must comprehensively evaluate each of these bias domains in the clinical study
under investigation. RoB assessment guidelines prompt reviewers to seek text evidence
in the clinical study that could indicate bias risk, aiding in decision-making about the
risk level for the assessed domains. The risk judgment for each domain is categorized as
“low risk”, “unclear risk”, or “high risk,” based on the cumulative impact of the assessed
domains. After assessing individual domains, reviewers assign an overall judgment of
the RoB for each RCT. It’s important to note that conducting RoB assessments requires
reviewers to thoroughly read the entire full-text RCTs. Hartling et al. used Cochrane’s
RoB assessment tool version 1 in a systematic review of a combination of long-acting
beta-agonists and inhaled corticosteroids for persistent asthma, where each reviewer took
between 14 to 27 minutes per study for RoB assessment [137, 147]. In contrast, Crocker et
al. reported a substantial 358 minutes spent per study using the revised Cochrane risk of
bias assessment tool for RCTs (RoB 2) [70, 148]. The time required for bias assessment for



individual RCTs varies from a few minutes to a couple of hours, depending on the chosen
bias assessment tool and the assessors’ expertise. An RoB automation tool could help
identify these text descriptions from clinical studies indicating bias risks, thus accelerating
the assessment process as shown in the screenshot of a bias assessment tool 2.4.

The resource-intensive stages of citation screening, PICO extraction, and risk of bias
assessment justify the expenditures for conducting SRs. These stages essentially revolve
around manually handling a substantial volume of natural language documents which
could come in various formats, including free-text (TiAb of studies), PDF format (full-text
of studies), or study metadata such as bibliographic information recorded in spreadsheets
that could be manipulated as CSV (comma separated values) files. It is worth noting
that any automatic PICO and RoB extraction would aid parts of the data extraction
step of writing reviews. Hence, These stages are positively susceptible to the NLP tools
and techniques discussed in the following sections. This academic work focused on ex-
ploring automation avenues for citation screening, PICO information extraction, and RoB
assessment.

2.3 Natural Language Processing (NLP)

In the 1950s, the intersection of artificial intelligence and linguistics gave rise to NLP or
Natural Language Processing. NLP is a sub-field of artificial intelligence dealing with
techniques that enable computers to understand, interpret and generate natural language
content. In 1956, NLP heavily relied on manually crafted rules such as regular expressions.
By the 1970s, heuristics like lexical analyzers and language parsers gained prominence.
Lexical analyzers segmented text into tokens, and parsers were used to validate the token
sequence. Recognizing the limitations of rule-based approaches and heuristics, the field
evolved towards statistical NLP in the 1980s. Contemporary NLP has witnessed signifi-
cant advancements attributed to the progress in modern machine learning algorithms and
available annotated data [244]. Machine learning algorithms learn patterns from the input
data (annotated or not) and make predictions on future data or generate more data per
the patterns seen in the input data. Some of the ML algorithms used in this body of work
are described in the next subsection.

2.3.1 Summary of ML Algorithms

Discriminative vs. Generative models: Discriminative models, called conditional
models, learn to distinguish between different data by drawing decision boundaries. Dis-
criminative models learn to distinguish by modelling conditional or posterior probability
distribution P (y|x) between the unobserved input data variables x and output (also called
target) labels y. Unlike discriminative models, generative models learn joint probability
P (x, y) between the observed input variable x and target class y. The joint probabil-
ity captures the likelihood of x and y occurring together, enabling generative models to
learn underlying patterns within the data iteratively. The iterative building of a statistical
model of the dataset’s underlying distribution allows generative models to create new data
with similar distribution (or, in layperson’s terms, similar characteristics). Nonetheless,
generative models like Naive Bayes can use the Bayes rule to calculate conditional proba-
bility in the case of classification tasks [250]. Figure 2.5 shows a schematic representation
of generative vs. discriminative modelling.



Figure 2.5: Schematic representation of I) Discrimative model, and II) Generative model.

Supervised learning: Supervised learning methods learn a statistical model between
the input data variables xi and the corresponding target labels yi. Supervised learning
models hence need to label datasets that contain a mapping between x and its associated
output y, which are used to “train” the model to the labelled dataset to infer the patterns
between x and y using the equation y = f(x). After training, the model can be used to
predict the unseen data x′. Classification is a form of supervised learning where the desired
output is discrete classes like “diseased” vs. “healthy”. Logistic regression, Support Vector
Machines (SVMs), Decision Trees, Random forests, and K-nearest neighbours (KNN) are
the most investigated classification models. Information extraction from raw text is a
form of classification where parts of text are classified into representing a class vs. not
representing one.

Unsupervised learning: Unsupervised learning models learn patterns and structures
from unlabelled data x without explicit supervision provided by output labels y. To
elaborate, it can be used to identify cluster structures from the data, but it is not enough to
train the classifier on its own. Common unsupervised learning methods include clustering,
dimensionality reduction, and density estimation. In unsupervised learning via clustering,
the algorithm aims to group similar data points and assign them to k clusters based on
their feature (x) similarity.

Semi-Supervision: Semi-supervised learning combines supervised and unsupervised
learning and is used when there is an availability of a small labelled dataset and a large
unlabelled dataset. Labelled training data is expensive to obtain and thus limited in
quantity [237]. Semi-supervised learning can then learn the patterns representative of
different categories from the labelled training data while simultaneously learning from the
structure in the unlabeled data.

Distant Supervision: Distant supervision is a learning approach in which an al-
gorithm is trained given a distantly labelled training dataset. Distant supervision uses



Figure 2.6: Schematic representation of distant supervision. The protein-protein inter-
action triples from Int Act database I) FADD - DED-DED interaction - Caspase-8 align
directly to the sentence from PMC9628938 raw text and thus generate an annotated text.
Another interaction between Caspase-8 and FADD, which the triple FADD represents -
activates - Caspase-8 align directly to the sentence from PMC9628938 raw text and thus
generates an annotated text.

existing knowledgebases to label raw text data, and the approach has been widely used
for relation extraction. Mintz et al. used a distantly supervised approach to obtain a
large relation extraction dataset using Freebase [237]. Elangovan et al. used IntAct PPI
(Protein-Protein Interaction) knowledgebase to create a distantly supervised dataset by
annotating raw text abstracts from PubMed with interacting protein pairs recorded in the
IntAct [99]. A schematic representation of distant supervision is shown in Figure 2.6.

Weak Supervision: Weak supervision, similar to distant supervision, is an approach to
machine learning that uses multiple noisy supervision sources to create much larger train-
ing sets much more quickly than manual labelling could otherwise produce. In contrast
to distant supervision that uses only a single source of labelling, weak supervision uses
multiple noisy sources of weakly labelling the raw text data. The multiple noisy labels are
then consolidated using generative modelling approach modeling [276].

Self-Supervised Learning: In the self-supervised learning paradigm, the training task
is designed so that the unlabelled training data can be used to train the model without any
explicit human labelling. Masked language modelling (MLM) is a training task commonly
used for self-supervised learning. MLM task randomly masks a certain percentage of words
in a training sentence. The model is then trained to predict the masked words based on
the context provided by the surrounding words, both to the left and right of the masked
position. BERT (Bidirectional Encoder Representations from Transformers) and GPT
(Generative Pretrained Transformer) are the large language models pre-trained on large
datasets of unlabeled text using the MLM task [42, 81].



Active learning: Active learning is an iterative approach commonly used when unla-
beled data is readily available, but manual labelling is costly. An active learning system
consists of a query module that incrementally queries an oracle, usually a human, for
labels. This query module encodes logic to select training data samples most informa-
tive for human labelling strategically. By identifying informative training data samples,
the active learning approach could learn better on a smaller set of labelled data than re-
quired in traditional fully supervised learning approaches. Figure 2.8 provides a schematic
representation of the active learning process.

Multi-task learning: Multitask learning is a machine learning paradigm where a
model is trained to perform multiple tasks simultaneously. Rather than training separate
models for each task, multitask learning allows the model to leverage shared information
across tasks, potentially improving performance on all tasks. This approach is useful when
tasks share common underlying features or when data for individual tasks is limited. Mul-
titask learning can also help regularize the model and prevent overfitting by encouraging
it to learn more generalizable representations. By jointly optimizing multiple tasks, mul-
titask learning can lead to better generalization and efficiency in model training [49, 286].
MTL has shown to leverage performance on nested biomedical named entities, for example,
for the nested entities in GENIA corpus [103, 104, 372].

2.3.2 Advances in Feature Representation
NLP uses the above-described machine learning methods to analyze text or speech data10.
With the emergence of statistical NLP, the methods eventually transformed into core
methods from machine to deep learning and, later, full-fledged generative AI (see Fig-
ure 2.7). One of the challenges faced in NLP is the inherent inability of machine learning
algorithms to comprehend natural language text. Over the decades, strategies were de-
veloped to numerically represent text as informatively as possible, ensuring that ma-
chines can accurately interpret and analyze it. NLP as a domain has gained considerable
limelight in recent years with the advent of large language models (LLMs) after evolving
over the years from simple Bag-of-Words (BoW) and Term Frequency-Inverse Document
Frequency (tf-idf) representations utilized for information retrieval challenges.

Doc. the cat sat on mat dog barked at and are friends
Doc1 2 1 1 1 1 0 0 0 0 0 0
Doc2 2 1 0 0 0 1 1 1 0 0 0
Doc3 2 1 0 0 0 1 0 0 1 1 1

Table 2.3: Bag-of-Words representation of documents.

Bag-of-Words as the name implies encodes pieces of text as word counts and is a
sparse vector representation of text. BoW representation for these three documents is
shown in the Table 2.3.

Document 1: ”The cat sat on the mat.”
Document 2: ”The dog barked at the cat.”
Document 3: ”The cat and the dog are friends.”

10https://www.ibm.com/topics/natural-language-processing



The BoW representation does not consider the importance of each word in the text.
For instance, the article “the” in Table 2.3 scores higher than the rest because it is a gram-
matical necessity and not because it encodes vital information about the document subject.
Tf-idf fills this gap and encodes weighted information about word count and effectively
underweight filler words like articles (a, an, the) and conjunctions (and, but) [210].

using the formula given below.

TF-IDF(t, d,D) = TF(t, d)× IDF(t,D)

Where:

TF(t, d) is the Term Frequency,
IDF(t,D) is the Inverse Document Frequency,

N is the total number of documents in the corpus,
nt is the number of documents in the corpus that contain term t.

The IDF is calculated as:

IDF(t,D) = log
(
N

nt

)
An N-gram is a sequence of n items - words, symbols, phonemes, or letters [244]. A

single word is called a unigram, a sequence of two adjacent words is called a bigram, a
sequence of three is a trigram, and so forth [170]. BoW and tf-idf are calculated using
N-grams. While the lower order unigram representation captures word count, the higher
order bi- and tri-grams can capture semantics, e.g. the unigram “New” vs the bigram
“New York” in the sequence “New York is a bustling city known for its iconic skyline and
diverse neighbourhoods.” [210].

Both BoW and tf-idf vectors encode sparse information in word counts and importance
but do not encode semantic information relating to relationships between words [210, 298].
Word embeddings or vectors and specifically word2vec were developed in an unsuper-
vised fashion in the early 2010s. Word embeddings are dense vector representations of
words in a continuous vector space, and they capture semantic relationships between
words [230, 231]. The most notable developments in the word embedding space were
Stanford NLP’s GloVe and FaceBook AI’s (now Meta) fastText vectors [31, 261]. Stud-
ies claimed that fastText outperformed word2vec because of its capacity to encode sub-
word information. Encoding sub-word information overcomes the shortcomings of out-
of-vocabulary words, which were not addressed in word2vec and GloVe [248, 272]. While
word2vec and fastText embeddings were trained on open domain text, bio2vec, an ex-
tension of word2vec, and BioWordVec, an extension of fastText, have been specifically
trained on PubMed to provide embeddings tailored to the biomedical domain. bio2vec
and BioWordVec have outperformed word2vec on biomedical NLP benchmarks [267, 370].
Word vectors encode semantics but do not retain information about the sequential order
of words in a given text.

It was the advent of memory-based contextual neural networks that revolutionized
text sequence modelling in NLP. Contextual neural networks are chains of individual
identical units that process each word in the sequence by considering the previous word,
thereby incorporating the sequential memory. Take, e.g., vanilla Recurrent Neural
Networks (RNNs) where each RNN unit takes the information about the current word i
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Figure 2.7: The figure illustrating progress of NLP from machine to deep learning and
large language models. NOTE: The image was prepared for educational purposes using
vectors available on the web and the rights to individual vector and image lies to its
creator.

and the previous word i− 1 and combines this information into a single numerical vector
i1. The numerical representation i1 is then squished between −1 and +1 using a tanh
operation. The vector is then passed to the next RNN unit, which is combined with the
next word i + 1, and continues until the end of the sequence. RNNs take into account
contextual information but have a short memory window and cannot learn as much, leading
to vanishing gradients during backpropagation [294, 303]. For extended sequences, Long
Short-Term Memory Networks (LSTMs) step in, employing a sophisticated mechanism
to combine crucial information while discarding computed data deemed irrelevant [152].
While RNNs and LSTMs were devised in the 1990s, they showed a rise in popularity in
the 2010s. They were slowly adopted for biomedical and allied domains, demonstrating
superior performance over traditional ML approaches on the tasks of entity recognition
and classification [203, 246, 318, 361].

LSTMs can encode longer sequences and, therefore, more contextual information, but
the attention mechanism’s introduction further improved the sequence-to-sequence tasks.
The attention mechanism allows one to attend to all the words in a sequence, up-weighting
the signal from the noise words. In theory, attention can look at infinite-length sequences
and attend to each word given compute power. The attention mechanism, also called
self-attention, was introduced in the paper titled “Attention is all you need,” which also
introduced transformers, an attention-based encoder-decoder architecture. An encoder
takes an input and creates a continuous vector representation out of it. The decoder then
takes this representation and, step by step, generates a single output while also being fed
the previous output. The transformer architecture uses positional encoding along with the
input embeddings to provide the model with information about the positions of words,
thereby allowing input sequences to be attended in parallel rather than sequentially [338].

BERT marked the next breakthrough by leveraging the attention mechanism to pre-
train deep bidirectional text representations, significantly enhancing various NLP tasks.
BERT was trained on 3300 million words from BookCorpus and English Wikipedia [81].



It is an open-domain pretrained transformer model which led to the development of
similar large models for biomedical and general scientific domains like BioBERT, Pub-
MedBERT, SciBERT, ClinicalBERT, and BlueBERT. These domain-specific models have
shown competitive or even better performance on several domain-specific benchmarks,
including datasets like NCBI disease, i2b2, BC4CHEMD, BioASQ, MedNLI, BC5CDR,
CLEF eHealth corpora amongst many others [7, 27, 131, 189, 260]. BERT-based models
only use encoders (not decoders), making them non-generative models. However, around
the same time in 2018, OpenAI published a paper titled “Improving Language Understand-
ing by Generative Pre-Training”, which introduced the generative pre-trained transformer
(GPT-1) system using both encoder and decoders [270].

These transformer models are trained in an unsupervised manner using masked lan-
guage modelling (MLM) or other similar objectives [81]. They can thus be trained on
progressively more data as resource availability and compute power permits. GPT-1 had
117 million pre-training parameters, and its subsequent GPT-2 had a staggering 1.5 billion
parameters. Subsequent developments led to the emergence of larger LLMs like GPT-3
with 175 billion parameters and LLaMA (Large Language Model Meta AI) with 65 billion
parameters, which excel in a wide range of NLP applications, from text generation to
understanding and translation, showcasing the transformative potential of these SOTA
models [42]. These models became accessible to the public with OpenAI releasing Chat-
GPT 11 which is a chat interface interacting with GPT-3.5, and Google’s BARD chat 12.
LLMs like MEDITRON-70B built on Llama-2, continually pre-trained on curated medical
domain corpora, outperformed GPT-3.5 and were within 5% of GPT-4 [59]. Dr. Hartley
from EPFL, Switzerland and Harvard pioneered MEDITRON-70B, making it open-access
for the scientific community. The focus is shifting to multimodal LLMs, which could con-
currently handle free-text, PDFs, images, hyperlinks and speech [363]. Google BARD chat
offers these capabilities free of cost, while ChatGPT has a paid version for it via accessing
GPT-4, which can generate content based on visual and textual inputs. Sam Altman, the
OpenAI CEO, hinted the possible release of GPT-5 in 2024 via Twitter13.

The recent breakthroughs in LLM research have spurred research on consciousness
in artificial intelligence with notable contributions from one of the leading AI experts,
Dr. Yoshua Bengio [44]. These advancements have significantly broadened the scope of
NLP, empowering machines to understand and produce human language with unparalleled
accuracy and sophistication, all while progressing at an unprecedented pace. In the next
section, the NLP approaches in SR automation are discussed in detail.

2.4 NLP approaches for SR semi-automation
2.4.1 Citation Screening
The first approach to screening reduction in citation screening is to use classification
algorithms offered by text mining and NLP. Classification algorithms are trained to make
binary decisions regarding the relevance of citations, categorizing them into “relevant” or
to be included into writing the review vs. “irrelevant” or to be excluded from writing
the review. The quality of a classification algorithm is typically evaluated using workload
reduction metrics like work saved oversampling (WSS), which is the percentage of papers

11https://chat.openai.com/
12https://bard.google.com/chat
13https://twitter.com/sama/status/1738673279085457661



the reviewers do not have to read because they have been screened out by the classifier [66].
A citation screener could also serve as a second reviewer, whereby this citation screener
checks whether the included citations are consistent and no citations have been missed. A
citation screener as a second reviewer does not attempt to reduce the number of references
that need to be screened but rather to avoid having each reference screened by multiple
reviewers [255]. In fact [22–24] have advocated replacing one of the reviewers with an
automatic citation screening system.

The earlier efforts to automate citation screening began with automatic database fil-
tering using text mining techniques to filter out RCTs from the non-randomized clinical
trials [146]. Cohen et al. and Bekhuis et al. developed classification models to filter
RCTs and non-RCTs from the rest of the retrieved studies, respectively [23, 67]. [23] et al.
compared kNN (k-Nearest neighbour), naive Bayes, complement naive Bayes (cNB), and
evolutionary SVM (EvoSVM) using tf-idf features and MeSH/EMTREE terms. The ap-
proach was evaluated on a single citation screening dataset with 46% workload reduction
and 95.5% recall using EvoSVM. Marshall et al. used SVMs to separate RCTs and non-
RCTs, reaching an excellent AUROC (Area under Receiver Operating Curve) of 0.987,
showing an improved performance in comparison to the text mining based filtering [216].
Their RCT-classifier was integrated into Covidence and EPPI-Reviewer, both widely used
tools in academic and research institutions for conducting SRs spanning disciplines [43].
These efforts were limited to the binary classification of randomized versus non-randomized
studies without considering the other inclusion criteria.

In 2006, Cohen et al. released DERP (Drug Evaluation Review Project), a set of 15
citation screening datasets with their inclusion decisions [66]. They used DERP to train a
voting perceptron to classify studies for inclusion, and the approach was evaluated on the
WSS metric measuring the amount of workload reduction. They reported work savings
between 0% - 67.95%. Later, in 2010, Cohen et al. extended DERP to 18 and 24 labelled
citation screening datasets [64, 65].

The availability of the Cohen dataset played a crucial role in accelerating the research
efforts exploring classical machine learning models like naive Bayes and SVMs trained for
binary classification [62, 63, 168, 219–221]. In [63], Cohen et al. evaluated the use of SVMs
with n-gram features, MeSH and UMLS terms. The authors from Matwin et al. used
the DERP dataset to train and evaluate FCNB (Factorized Complement Naive Bayes)
for binary classification, reaching WSS of 8.5% to 62.2%. In [168], the authors simulated
active learning with random indexing. The authors simulated the system on the DERP
dataset and reported work savings between 6%–30%. Bannach et al. [18], used SVM with
and without clustering for workload reduction in two systematic reviews of preclinical
animal studies reporting 70.5% and 69.3% WSS for over them.

Previous automation studies utilised classical machine learning approaches involving
massive text preprocessing and feature engineering for a very long. Hand-crafted features
must be heavily fine-tuned to achieve good performance, which is a tedious and time-
consuming task and must be performed by an expert. Progress in deep learning saw the
application of shallow and deep learning methods again, considering citation screening
automation as binary classification. In their approach, Lerner et al. used four medical
citation screening datasets to evaluate binary LR models trained on bio2vec word embed-
dings [190, 267]. The approach achieved an excellent 100% recall on two datasets and more
than 93% In a different approach, van Dinter et al. trained multiple binary multi-channel
CNN models using GloVe word representations of citations, presenting work savings across
21 citation screening datasets introduced by Cohen et al. [336]. Despite their comprehen-



sive assessment of workload reduction over 21 datasets, they did not report the most vital
recall metric. Qin et al. trained a gradient boosting ensemble (LightBGM) integrating
four BERT-based representations, achieving the expected recall of 96% on one internal
dataset [269], but did not release the dataset. Citation screening automation has also been
explored with PICO information extraction [41].

By training a machine learning model, binary classification involves effectively catego-
rizing studies as either “relevant” or “irrelevant”. This training is typically conducted on
50-90% of manually labelled citations from the screening dataset, with evaluation on the
remaining 10-50% [337]. In practice, addressing each new SR question requires manual la-
belling of approximately 50-90% of the dataset, depending on the chosen training dataset
size. This becomes impractical for businesses due to the associated labelling costs.

Figure 2.8: Schematic representation of active learning approach for citation screening or
active citation screening.

Active learning (AL) is an approach that aims to reduce the labelling cost per de-novo
SR by selecting the few most informative citations for classifier training. As schematically
shown in the Figure 2.8, an active citation screening system has a query module also
called a smart sampler module SU that encodes the logic to select these most informative
citations from the unlabelled citation set CU . The smart sampler SU interacts with an
oracle (e.g., a human expert) to obtain labels for these selected citations, and once a
certain number of labelled citations are collected, it triggers the active classifier model
training. The goal is to select the samples that are the most informative to the model
in order to improve its performance with a minimal number of labelled citations. AL is
quite suitable for de novo SRs, which involve a fresh set of unlabeled citations. In such
cases, AL could significantly reduce the labelling workload by assisting in selecting the
most informative citations for human labelling. This approach could lead to more efficient
resource utilization, improved work savings and thus cost-effectiveness.

AL approaches have been extensively explored in retrospective citation screening sce-
narios using publicly available datasets across domains like biomedical, public health and
software engineering. These approaches use either classical ML, deep learning or a combi-
nation of both to test multiple active learning system settings like starting and stopping
criteria, query strategies, methods of seed set sampling, and sampling methods amongst
others [50, 51, 192, 201, 238, 334, 345, 346, 365]. None of these studies explores active learn-
ing in a prospective scenario, a crucial business requirement. Optimizing prospective active



citation screening systems involves considering multiple objectives, including core metrics
like work savings (WSS), recall of “relevant” citations, and decision-enhancing metrics
such as AUROC and the labelling cost to initiate AL system training. These decision-
enhancing metrics assist in selecting better AL system settings. None of the above AL
studies evaluate their approaches using all these crucial metrics required to assess AL
systems. Additionally, the current studies do not statistically test the impact of different
active learning system settings on performance. We identify a lack of citation screening
studies employing and comprehensively evaluating active learning systems in a prospective
scenario, which poses the challenge in deploying such systems.

2.4.2 PICO+ Information Identification

Automatic identification of PICO information involves employing information extraction
techniques from NLP, such as named entity recognition (NER), entity recognition, and
paragraph retrieval. Demner-Fushman et al. developed knowledge-based extractors sup-
ported by concepts from UMLS (Unified Medical Language System) to extract PICO
terms from scientific abstracts. The extractors outperformed location-based baselines on
an internal gold standard corpus [80]. Location or position baselines assume that PICO
information is present in specific positions within the abstract, such as participant infor-
mation being in the first three sentences. Boudin et al. employed structural constructs
from PubMed abstracts to create a training set for classifying sentences describing PICO
information from the rest. They used the test dataset obtained from Demner-Fushman et
al., and Chung et al. comprised 14279 abstracts [60, 80]. They used random forest, SVM,
naive Bayes, and a shallow neural network - multilayer perceptron (MLP), with SVM
outperforming in extraction precision while MLP is consistently demonstrating strong
performance in F1-score citeboudin2010combining. These structural constructs included,
for instance, extracting the first sentence from semi-structured abstracts following the
Population/Participant, Intervention, and Outcome headings. A similar strategy was em-
ployed by [157], emphasizing that relying solely on the first sentences following the P/I/O
heading for training a classification model might not always be optimal compared to using
all sentences following these headings. Wallace et al. used supervised distant supervi-
sion to learn to identify PICO sentences from full-text studies [343]. Chabou et al. used
conditional random fields (CRF) for PICO element detection and noticed an acceptable
precision but a low recall rate. Combined with a rule-based approach, they noticed an
increase in recall compared to a machine learning-based CRF approach alone [54]. With
the introduction of deep, contextual neural networks, Jin et al. trained a single LSTM
model on thousands of abstracts to classify sentences to one of the PICO classes. Theirs
was the first large sentence-level PICO dataset made publicly available [166]. However,
this decade of automatic PICO information identification was constrained to identifying
information at the sentence level and, if not, then relying on hand-engineered features
and extensive text preprocessing. This limitation was due to the unavailability of a larger
corpus annotated with PICO entities [158, 159]. There were no publicly-available While
sentence-level recognition and summarization provide some degree of automation, the po-
tential for full automation lies in semantic-level recognition of PICO-describing phrases,
potentially granting machines the ability to reason.

The availability of a comparatively large, and probably the only, PICO benchmark
corpus (EBM-PICO corpus hereafter) from [254] with multi-grained PICO annotations
opened up possibilities to explore the neural models. EBM-PICO corpus consists of 4,993



titles and abstracts comprehensively annotated with two levels of PICO descriptions. The
first level is the coarse-grained descriptions, and the next level is the fine-grained PICO
descriptions. Each PICO class further decomposes into more refined semantic units in
the fine-grained descriptions. For example, the ‘P’ in PICO, which represents Participant
class, can be decomposed into specifics such as participant age, gender, ethnicity, disease
status, comorbidity, and so forth. Nye et al. used EBM-PICO to train baseline models
using hand-engineered features and shallow neural models for separately detecting fine-
and coarse-grained entities. Several peer-reviewed studies consequently used EBM-PICO
as a benchmark for PICO entity or span extraction going beyond the previously dominant
sentence-level extraction [28, 41, 131, 202, 369].

Labelling PICO entities is tricky because of the high disagreement between human
annotators on the exact text spans constituting PICO, leading to human errors in hand-
labelled corpora[41]. Abahoet al. and Lee et al. have explored errors in the EBM-PICO
dataset, attempting to manually correct them for their applications [1, 188]. Hand-labelled
datasets are static and prohibit quick manual re-labelling in case of human errors. More
importantly, PICO analysis frequently extends to analysing other information like PI-
COS (S = Study type and design), PICOT (T = Timeframe), PICOC (C =
Context), EDR (E = Exposure, D = Duration, R = Results), PIBOSO (B =
Background, S = Study type and design, O = Other), etc. depending upon the
SR question [8, 228, 280, 333]. Study-type information is vital, for example, in conducting
systematic reviews that aggregate evidence from selected clinical study types. Trial dura-
tion information is essential for establishing the long-term efficacy of the treatment [227].
Authors in [74] had to extract 835 PECODR text manually from 20 EBM journal syn-
opsis. After manual analysis, they proposed rules and linguistic patterns to extract the
PECODR items automatically. Similarly, Kim et al. hand-labelled a corpus (NICTA-
PIBOSO) of 1,000 medical abstracts annotated with PIBOSO entities which were used
to train a PIBOSO sentence classifier using CRF model [175]. NICTA-PIBOSO was sub-
sequently used by Hassanzadeh et al., Verbeke et al. and Sarkar et al. to improve the
PICO sentence extraction using hand-crafted features and using CRF, kernel-based learn-
ing (kLog), SVM classifiers, respectively [138, 292, 339]. The challenge arises again in the
expensive and resource-intensive process of manually re-labelling large datasets that do
not provide annotations for these additional entities.

The challenge of manual annotation, particularly in cases involving human errors and
the need for additional entities in annotated corpora, has led to a shift in focus towards
distant supervision and weakly supervised learning approaches. These approaches leverage
programmatic labelling sources, offering more cost-effective options for obtaining training
data. One of the first applications of distant supervision to open domain relation extraction
was proposed by Mintz et al, who used Freebase to extract 10,000 relation instances from
Wikipedia articles with a precision of 67.6% They assumed that if Freebase has an instance
of two entities participating in a relation, then any sentence containing these entities
will likely express that relation too [237]. Zheng et al. used DS augmented training
dataset using UniProt 14 for extraction of protein subcellular localizations with an 82%
accuracy [373]. Weak supervision too has demonstrated strengths for clinical document
classification, biomedical information and relation extraction, but clinical entity extraction
tasks like PICO have heavily relied on fully supervised (FS) approaches [98, 99, 209, 226,
351, 354]. The weakly or distantly supervised entity recognition approaches to PICO could

14https://www.uniprot.org/



be more challenging than the entity recognition approach to protein or chemical names,
which are more or less standardized. PICO terms are not standard, and even the experts
disagree on the exact tokens constituting them [41]. Thus, the area of procuring affordable
PICO+ entity labels in the absence of manually annotated data presents a research gap.

2.4.3 RoB Assessment
Risk of bias assessment in clinical studies is traditionally a manual and challenging pro-
cess led by experts. Marshall et al. used distantly supervision using SVMs to classify
RCTs into the risk of bias assessment classes, “low” risk of bias and “high” or “unclear”
risk of bias. Their distantly supervised models were trained using labelled data from the
Cochrane Database of Systematic Reviews (CDSR). CDSR 15, though a valuable, high-
quality resource, is a subscription-based service, and access to the full content requires
a subscription or institutional access through universities, libraries, or other organiza-
tions [213, 214]. Around the same time in 2016, Millard et al. published a paper on
automating RoB assessment using supervised machine learning. They trained one su-
pervised logistic regression model to predict whether a sentence contained information
pertinent to a risk of bias and used another supervised logistic regression model to predict
one of the three bias classes. The data used for training the models was obtained from
Cochrane Collaboration, specifically CDSR and was proprietary [232].

The research utilizing this pay-walled data was used to develop RobotReviewer that
has been evaluated by several studies for its human-competent performance [11, 12, 151,
164, 215, 310, 317, 340]. RobotReviewer was developed using proprietary data from CDSR
and the older risk of bias guidelines (Cochrane Collaboration’s tool for assessing the risk of
bias in randomized trials - RoB 1) [146]. Even though RoB 1 is the most frequently used
to assess RCT quality, a recently revised Cochrane RoB 2 offers significant differences
in comparison [313]. Compared to the original RoB version released in 2008, the RoB 2
version provides a more reliable and concrete structure to the RoB evaluation by devel-
oping comprehensive guidelines that aim to increase consistency [206]. A study analyzing
Cochrane systematic reviews and protocols found that the use of RoB 2 increased from
0% in 2019 to 24.1% in 2022, indicating the importance of using an updated tool [217].

Wang et al. recently released three RoB annotated datasets but for preclinical studies
with RoB assessments about animals [348]. A manually annotated corpus of RoB spans
for human clinical trials is necessary but is unavailable. This gap in annotated resources
is a significant bottleneck for training and evaluating machine learning models in RoB
assessment. The recent advancements in LLMs suggest that fully supervised training of
machine learning models may no longer be necessary. However, a benchmark corpus is
necessary to evaluate language models for the expert-led task of bias assessment. Recog-
nizing this need, Rose et al. very recently published a protocol for RoB annotation of an
in-house dataset and proposed using this annotated dataset for evaluating LLMs [284].
This indicates the pressing need for the risk of bias annotated resources to assess powerful
LLMs.

15https://www.cochranelibrary.com/cdsr/about-cdsr



2.5 Summary
• Systematic review answers clinical and research questions by analyzing and collating

all published evidence systematically and transparently.

• Being foundational to evidence-based medicine, systematic reviews are vital in in-
forming clinical guidelines and shaping health policies.

• However, the increasing cost of conducting these reviews, fueled by the increase in
the published literature, poses a significant financial challenge.

• The steps of citation screening, data extraction and risk of bias assessment are three
of the most time-consuming steps in conducting the review. These steps involve
chaffing out information from volumes of clinical studies.

• Natural language processing and text mining approaches offer potential solutions to
streamline these labour-intensive stages.

• The decade from 2014 to 2024 witnessed significant advancements in natural lan-
guage processing and machine learning approaches, evolving from simple numerical
representations like bag-of-words to sophisticated techniques such as semantic word
embeddings and large language models capable of capturing extensive knowledge.

• Several approaches to citation screening automation have been developed since 2006.
However, these methods have not been developed considering the prospective sce-
nario and are thus under-evaluated for a real-world automation scenario.

• There is a research gap in procuring affordable labels for PICO and more entities in
the absence of manually annotated data, underscoring a need for innovative solutions
powered by weak and distant supervision methodologies.

• The absence of a publicly available annotated dataset for Risk of Bias assessment
in human clinical studies poses a significant obstacle to automating the process and
advancing machine learning models in this domain.





Chapter 3

Citation Screening Automation

This chapter details the machine learning approaches used to investigate citation screen-
ing automation, considering both the retrospective and prospective scenarios. Section 3.2
details the classical machine learning approach to explore manual citation screening as
a binary classification task. Section 3.3 details the active learning approach developed
to address the challenges associated with prospective citation screening systems in the
pharmaceutical industry. This chapter also explored the considerations associated with
implementing a semi-supervision approach in real-world active citation screening systems.
Parts of this chapter have been published as a conference paper, and another segment is
currently being prepared for submission as a journal paper [85, 93]. In [85] and [93], my
contribution was to procuring and cleaning the datasets, devising approaches and system
evaluations aligned with research and business requirements, designing and executing ex-
periments, analyzing results, and presenting findings in the form of conference and journal
papers, respectively. The results of [93] were also presented at the BioTechX Europe 2023.

The following resources are made available via this research:

1. The citation screening dataset used in the section 3.2 is available on Zenodo.

• https://zenodo.org/records/10423427

2. The citation screening approach explored in the section 3.2 is available on GitHub.

• https://github.com/anjani-dhrangadhariya/citation-screening-ml

3. The active citation screening approaches explored in the section 3.3 is available on
GitHub.

• https://github.com/anjani-dhrangadhariya/active-ssl-citation-screening

3.1 Introduction
SRs involve synthesizing and summarising relevant data from hundreds of thousands of pri-
mary studies to answer specific clinical questions. Among all stages of a systematic review,
citation screening is known to be one of the most time-consuming and labor-intensive steps.
Citation screening involves manually evaluating a bulk of studies to determine their rele-
vance for answering the SR question. Manual citation screening begins after the literature
search and retrieval phase, which involves gathering as many studies as possible to answer
a systematic review question. The process involves two independent reviewers reading
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through hundreds of thousands of studies to comprehend whether the study is relevant to
writing the SR. The decision about the relevance of the study is made based on comparing
the study title and abstract with the pre-defined inclusion criteria. The studies that fulfil
the inclusion criteria are included in writing the review, and the rest are excluded, thus
narrowing down the evidence pool. In case where one of the two reviewers disagrees with
the study’s eligibility, a third opinion is sought as a tiebreak [18, 146, 173, 174].

The process is not only redundant but also resource-consuming. One of the more
recent studies shows that writing a single SR takes about 67 weeks, but the studies in
the past reported this time to be anywhere between 2.4 to 3 years, mainly depending
on how narrow or broad an SR question [33, 133, 326, 331]. About 23% of static SR need
updating within two years of completion as new primary studies become available [304]. As
previously described, LSRs or living systematic reviews are dynamic and are continually
updated as new studies become available, keeping up to date with the newly published
evidence [100, 233]. Manual citation screening becomes impractical considering situations
like a pandemic that require rapidly assessing evidence to formulate policies and make
treatment decisions.

With the exponentially increasing primary studies, the urgency to rapidly carry out
SRs to answer pressing questions, and the need to update a review as soon as new evidence
is available, the reviewers often can not keep up with the manual process of screening
the studies and constantly updating outdated SRs [173]. In the area of physiotherapy
and rehabilitation, such an exponential increase in the number of publications is also
observed16. For an ongoing update to the review on exercise and non-exercise interventions
in reducing cancer-related fatigue, the database search retrieved over 30,000 references,
about 2,000 of which were published in 2017 alone. The two independent reviewers took
more than 200 hours each to manually assess the titles and abstracts for relevance to the
research question before the studies were taken for further meta-analysis [150]. Automation
is, therefore, imperative.

3.2 Machine Learning Assisted Citation Screening

Supervised machine learning based classification approaches are successfully applied for
automation of citation screening but either only for broad and shallow SRs [17] or SRs that
retrieved fewer than 6,000 studies [190]. However, there are SRs that address very specific
research questions leading to narrow, predefined criteria for selection of relevant studies
to be included for meta-analysis. For such narrow SRs, inclusion prevalence becomes as
low as 10%, which means that out of all the studies retrieved during the search phase,
90% are excluded as non-relevant. A narrow research question combined with a low
inclusion prevalence leads to class imbalance and class overlap problems for classification
tasks that generally reduce classifier performance [117]. Class overlap cannot be artificially
controlled but class imbalance can be tackled using oversampling or undersampling [289].
Oversampling or undersampling aim to bring the number of instances in the minority
class equal to the number of instances in the majority class. In this work, we aim to
explore machine learning and natural language processing to assist citation screening in
SRs with a narrow research question and low inclusion prevalence using word embeddings
and random oversampling.

16https://www.ncbi.nlm.nih.gov/pubmed?term=(physiotherapy)%20OR%20rehabilitation



3.2.1 Methodology
This section describes the machine learning approach used to explore citation screening as a
binary classification task and also describes the dataset used to generate word embeddings
and the dataset used to test the machine learning approach.

3.2.1.1 Datasets

Datasets from the open access literature were used in the work described here. These
datasets were used primarily for two tasks: I) PubMed Central Open-Access subset (PMC-
OA) subset was used to generate task-specific word vectors or embeddings. II) A citation
screening dataset from Hilfiker et al. was used to test the machine learning approach. In
order to generate word embeddings, PMC-OA subset was used. Articles in the PMC-OA
are made available under Creative Commons or similar licenses that lets one share and
reuse the information more openly for research than a regular copyrighted work 17. As
of 2019, PMC-OA contained titles and abstracts (TiAb) of 2.09 million studies that were
used to generate semantic word embedding using the two most common architectures:
word2vec and fastText [31, 231].

A physiotherapy citation screening dataset was used to test automation approaches
and the dataset includes the studies identified for citation screening in an update to the
systematic review by Hilfiker et al. [150]. The dataset included TiAb from 31,279 studies
identified during the search phase of this SR. These studies were already manually assessed
for relevance and labelled by two reviewers into two mutually exclusive labels. 2259 studies
assessed as relevant were labelled “include” and 23,279 studies assessed as non-relevant
were labelled “exclude”. The inclusion prevalence for this case is only about 8.84% leading
to class imbalance. Inclusion prevalence refers to the percentage of studies were relevant
for writing the SR and meet the inclusion criteria, relative to the total number of studies
in the citation screening dataset.

3.2.1.2 Screening Automation Approach

We framed the citation screening automation as a fully supervised binary classification
task whereby we trained six classifiers to learn the difference between “relevant” (include)
and “irrelevant” (exclude) citations using the Hilfiker dataset represented using corpus-
specific static word embedding. This exercise let us gauge the effect of class imbalance
too. The approach follows steps enumerated below. 1) Generation of word embedding, 2)
Dataset and text preprocessing, 3) Random oversampling, 4) Feature extraction, and 5)
Classifier training and evaluation.

1. Word embedding generation To generate word embeddings, the TiAb from PMC-
OA subset were lower-cased and all punctuation except the hyphens were removed. Phrase
generation was then performed using the word2phrase tool18 to identify frequently occur-
ring bi-grams. The output of phrase generation along with the unigrams was fed to
gensim’s word2vec19 and to fastText20 using the hyperparamters in Table 3.1 to obtain
two dense, semantic, real-valued word embeddings [31, 125, 231].

17https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
18https://github.com/travisbrady/word2phrase
19https://radimrehurek.com/gensim/models/word2vec.html
20https://radimrehurek.com/gensim/models/fasttext.html



Parameter Value Parameter value Parameter value
Size 300 Alpha 0.05 bucket* 2000000
Window 5 min_alpha 0.0001 minn* 3
min_count 5 sample 0.0001 maxn* 6
sg 1 iter/epoch 5 seed 1
hs 1 negative 5

Table 3.1: Hyperparameter values used to generate word embeddings using gensim’s
word2vec and the fastText functionality. (*) means that these parameters were avail-
able only for the fastText embeddings.

2. Text pre-processing Manual deduplication was carried out on the Hilfiker dataset
to remove identical citations. After deduplication and removal of non-English language
studies, 25,540 studies remained. For these remaining studies, the text was lower-cased and
tokenized into words using NLTK21 (Natural Langauge ToolKit). Irrelevant tokens were
removed using a predefined set of stop-words provided by NLTK and PubMed22. Stop-
words were removed using a predefined set of words provided by NLTK, PubMed, and
corpus-specific stop-words identified during the experiments. Additional corpus-specific
stop-words identified during the experiments with the training set were removed accord-
ingly. The text normalization process converted British English terms into American
English. After token lemmatization, a corpus vocabulary was constructed from all the
unique unigram and bigram tokens. To scale this vocabulary down, we removed tokens
with fewer than five characters and a vocabulary count below five, as these were deemed
uninformative and not representative of the classes. We scaled down the vocabulary to
reduce the vector dimensionality and enhance efficiency in subsequent analyses.

3. Random oversampling Class imbalance often deteriorates the classifier perfor-
mance, so in the present dataset it was addressed using naive random oversampling [97].
This method randomly duplicates data points from the minority class and brings the total
number of instances in the minority class equal to the majority class in binary classification
settings [117]. A class which has a disproportionately low number of instances is termed
the minority class.

4. Feature extraction Feature extraction was performed to generate real-valued, dense
feature vectors from the tokenized text using both the pretrained word embedding types.
These resulting features served as input for training non-neural supervised machine learn-
ing classifiers. Then, all vectors corresponding to each token within an individual study
underwent an averaging process over the entire study, normalized by the study’s length.
For the Convolutional Neural Network (CNN), feature extraction was part of the model.
A static, non-trainable weight matrix, derived from the word embedding, was incorporated
with the embedding layer. This matrix facilitated the extraction of token word vectors
during the training phase of the CNN model. Typically for image processing regular CNNs
are used, but we used 1-dimensional CNN model here, aligning with the 1D dimensionality
inherent in text.

21https://www.nltk.org/api/nltk.tokenize.html
22https://www.ncbi.nlm.nih.gov/books/NBK3827/table/pubmedhelp.T.stopwords/



Figure 3.1: A t-SNE projection for 25,540 studies labelled “include” vs. “exclude” before
and after oversampling.

5. Classifier training and evaluation Six classifiers including Logistic Regression
(LR), Support Vector Machines (SVM), k-nearest neighbour (KNN), Decision Trees-CART
(DT), Random Forest (RF), and CNNs were trained and evaluated for binary classifica-
tion (“include” vs. “exclude”) over the generated embeddings. Estimated probabilities
for whether a study belonged to class “include” or not are output by all the classifiers.
Hyperparameter tuning was performed using GridSearch. The CNN was trained using hy-
perparamters loosely based on suggestions from Zhang et al. [371]. Classifier performance
before and after oversampling was evaluated on an unseen evaluation set and metrics
pertinent to imbalanced classification like precision, recall, F1 and precision-recall AUC
(PR-AUC) score were tracked [289].

3.2.2 Results and Discussion

The Hilfiker dataset used for training and evaluating the classifiers was highly imbalanced
and comprised 2,259 relevant studies labelled “include” and 23,281 labelled “exclude”. To
measure how similar both the classes were, we calculated cosine similarity between the class
centroid vectors for the “include” and “exclude” classes. Cosine similarity between class
centroid vectors for the classes before and after oversampling was 0.985814 and 0.985824
respectively. A high cosine similarity is indicative of high class overlap even after tackling
the class imbalance using oversampling. These high imbalance and high overlap of our
dataset are demonstrated in the Figure 3.1 using t-SNE (t-distributed Stochastic Neighbor
Embedding) representation.

The evaluation metrics obtained by applying classifiers on the dataset before and after
random oversampling are summarized in Table 3.2 and 3.3. Before oversampling, the
classifiers focused on improving the performance for the majority class but in reality they
are simply predicting the majority class as noticeable from the relatively high F1 score
for the exclude class. Upon oversampling, the overall classifier performance drastically
improves for the minority class especially the precision (see Table 3.3), while the precision
for the majority class is reduced with a small improvement in recall.

The most naive LR classifier performs the best in terms of the binary recall for the “in-
clude” class before oversampling. If the task is considered a classification task, a high class
overlap still leads to unacceptable precision and recall values for citation screening imply-
ing the inclusion of false-positive or “irrelevant” studies and exclusion of false-negative
or “relevant” studies. Note that in the Table, we detail only the best performing word
embeddings of the two and fastText performs consistently better than word2vec. This



could be caused by the ability of fastText to represent out-of-vocabulary (OVV) words,
which word2vec cannot. FastText can provide better embeddings for morphologically rich
languages compared to word2vec as it uses the hierarchical classifier to train the model.
Also, the dataset vocabulary coverage for both the word embeddings was about 60.629%
which meant the rest of the words were OOV.

Class “include” Class “exclude”
Model embed P R F1 PR-AUC P R F1
LR fastText 0.4044 0.8990 0.5576 0.6008 0.9891 0.8746 0.9283
SVM fastText 0.6538 0.4640 0.5428 0.6317 0.9463 0.9746 0.9602
KNN word2vec 0.6536 0.6066 0.6288 0.6512 0.9619 0.9685 0.9652
DT fastText 0.2961 0.8627 0.4394 0.4287 0.9837 0.8000 0.8821
RF fastText 0.4995 0.7892 0.6108 0.5921 0.9780 0.9209 0.9485
CNN fastText 0.6545 0.5032 0.5690 0.6388 0.9511 0.9732 0.9620

Table 3.2: Classifier performance before random oversampling for the “include” and “ex-
clude” classes. P = Precision, R = Recall

Class “include” Class “exclude”
Model embed P R F1 PR-AUC P R F1
LR word2vec 0.8981 0.8850 0.9116 0.9342 0.8951 0.9090 0.8816
SVM fastText 0.8914 0.8818 0.9012 0.9378 0.8990 0.8792 0.8890
KNN word2vec 0.8860 0.8303 0.9500 0.9321 0.9418 0.8055 0.8682
DT fastText 0.8348 0.8201 0.8510 0.8734 0.8285 0.8463 0.8126
RF word2vec 0.8695 0.8918 0.8488 0.9279 0.8966 0.8757 0.8560
CNN word2vec 0.9034 0.7480 0.8183 0.9318 0.7850 0.9200 0.8471

Table 3.3: Classifier performance after random oversampling for the “include” and “ex-
clude” classes.

3.2.3 Conclusion and Future Work

To the best of our knowledge, this was the first attempt to explore citation screening
automation for a narrow, physiotherapy SR topic using domain-specific word embedding
on a range of ML classifiers. We also shed a light on the impact of class imbalance and class
overlap on the classifier performance before and after oversampling as also discussed by
Garcìa et al. and Prati et al. [117, 289]. Knowledge of these challenges could be immensely
useful for further development of citation screening automation approaches. However, a
fully-supervised machine learning approach as we explored in this section does not lend
itself to accelerating systematic reviews in real-world scenario. A full supervision approach
as previously explained requires a large labelled training data which is impractical for
academia as well as businesses. Especially for citation screening automation whereby
with every de-novo SR question, comes a fresh set of citations and new inclusion criteria
requiring training a new model after labelling almost the complete dataset. It defeats the
purpose of automation. Active learning could help overcome this bottleneck and the next
section details how we used active learning for developing a citation screening system for
businesses.



3.3 Active Citation Screening: Business Scenario

As explained in the previous section, a supervised machine learning approach tackles
citation screening as a binary classification task whereby the ML model in question learns
to distinguish between relevant and irrelevant studies or citations. Supervised ML could
help automate the process but requires large, labelled datasets to ensure good performance.
In a real-world practical setting, whether in business or academia, for every de-novo SR,
there’s a need to label a fresh batch of citations to train the classifier. Hence, supervised
ML does not lend itself to faster SRs in practice. However, the majority of the existing
research uses supervised ML as a testing ground to retrospectively simulate the citation
screening process [18, 43, 85, 269, 329, 337, 346].

Active learning (AL) is an approach that aims to reduce the labelling cost by selecting
the few most informative citations for classifier training. An AL system has a query module
encoding logic to select these most informative citations. The query module interacts
with an oracle (e.g., a human expert) to obtain labels for these selected citations. The
goal is to select the samples that are the most informative to the model in order to
improve its performance with a minimal number of labeled citations. Active learning is
quite suitable for de novo SRs, which involve a fresh set of unlabeled citations. In such
cases, AL can significantly reduce the labelling workload by assisting in selecting the most
informative citations for human labelling. This approach could lead to more efficient
resource utilization, improved work savings and thus cost-effectiveness. AL approaches
have been extensively tested in retrospective citation screening scenarios using publicly
available datasets across domains like biomedical, public health and software engineering.
These approaches use either classical ML, deep learning or a combination of both to test
multiple active learning parameters like starting and stopping criteria, query strategies,
methods of initial training set sampling, and sampling methods, amongst others [50, 51,
192, 201, 238, 334, 345, 346, 365]. However, none of these approaches explore active learning
in a prospective scenario, a business requirement.

Optimizing a prospective active learning system for citation screening requires consid-
ering multiple objectives. The first objective of such a system is to minimize the inclusion
of irrelevant citations by excluding as many of them as possible. The second objective is
to ensure a high recall for relevant citations, aiming to identify and retain at least 95%
of them correctly. For medical and allied domains, the most used threshold is 95% to
ensure satisfactory performance, and the threshold could be lower for other domains like
software engineering. Performance in the first objective is commonly assessed using WSS
(work-saved oversampling), which measures the reduction in effort achieved by automat-
ically excluding irrelevant citations [66]. The recall of the minority class measures the
second objective and assesses the ability to retain relevant citations correctly. In binary
classification settings, a class with a disproportionately low number of instances is termed
the minority class. This is often the case in citation screening datasets, and the count of
relevant citations is significantly lower than irrelevant ones. Therefore, a successful active
citation screening algorithm should retain as many relevant citations as possible and save
time for the reviewers by removing irrelevant citations. In addition, the receiver operating
characteristic area under the curve (ROC-AUC) score is an important evaluation measure
that quantifies a classifier’s effectiveness in distinguishing relevant and irrelevant citations.
There could be instances where both WSS and minority recall are identical for the active
classifiers. In such cases, ROC-AUC could be used as a tiebreaker. None of the above-
mentioned research evaluates their approaches using all three crucial metrics for assessing



active classifiers.
Active learning tools like Abstrakr, asreview and EPPI reviewer have shown efficiency

improvements, resulting in workload reductions ranging from 9% to 57% [122, 332, 334,
335]. van de Schoot et al. simulates an AL system that starts training only after the
reviewer provides at least one relevant and irrelevant citation; however, they do not
provide the initial cost incurred for selecting the relevant citations during the citation
screening [334]. The researchers test default settings in their experiments and encourage
practitioners to simulate the impact of different AL system settings like start criteria,
query strategies, class balancing options, and seed sampling strategies. The current stud-
ies do not statistically test the impact of different AL system settings on performance. An
active query sampler chooses citations and sends them to a human oracle for labelling,
which incurs some cost. Semi-Supervision based pseudo-labeling could be effective in such
scenarios where obtaining labeled data is costly, but unlabeled data is readily available.
Nonetheless, none of those mentioned above studies listed except of [178, 201] explore the
advantages and disadvantages of semi-supervision on active learning. These two studies
do employ semi-supervision and show improvements in comparison to the results when us-
ing AL alone, but they do not address that a semi-supervision module uses pseudo-labels
as ground truth to train a classifier and thereby could introduce possible errors into a
prospective system, reducing its trust for deployment. Though comprehensive, none of
the approaches assesses a prospective scenario for citation screening where active learning
might not yield any results for very low prevalence studies with narrow research questions.
We conduct this work to explore some research questions businesses have.

1. Does active learning save work and have expected recall of the relevant studies?

2. Is a smart query sampling methodology better than random sampling?

3. Is semi-Supervision effective?

4. Do some AL system settings perform better over the others?

5. In a prospective scenario, what could it cost to start training an AL system?

In a nutshell, this work contributes the following: I) The work systematically explores
different AL system settings on 25 citation screening datasets to measure the effective-
ness of each setting on performance metrics. II) The work explores semi-supervision to
support active learning for citation screening. Semi-supervision strategies have the po-
tential to reduce manual labelling costs. III) As we develop and retrospectively simulate
the approach, we detail our experience in adapting such a methodology to prospective
de-novo SRs for businesses. These details could help businesses focus on the relevant as-
pects of implementation. IV) The work proposes tracking multiple performance metrics
and indicators to evaluate an active citation screening system comprehensively. V) We
also provide open access to the code and our in-house citation screening datasets from
the fields of physiotherapy and pharmaceuticals which can be used as test sets in future
methodologies.

3.3.1 Methodology
In this section, we will explain the datasets used and delve into the working of the modules
of the AL system. An overview of our methodology is shown in the Figure 3.2.



Figure 3.2: Semi-supervision supported active citation screening approach.

3.3.1.1 Datasets

To evaluate the effectiveness of different settings of the AL system, three distinct sets of
citation screening datasets were employed. The first set was a subset of and obtained from
the publicly accessible SYNERGY project, which is an openly available citation screening
dataset with manually entered inclusion and exclusion decisions [76]. For this particu-
lar set, only those citation screening datasets where all citations contained a PubMed
Identifier (PMID) were selected. This criterion facilitated the retrieval of corresponding
titles and abstracts for the citations. The second set comprised four citation screening
datasets that were in-house to F. Hoffmann-La Roche. The third set was sourced from
the School of Health Sciences at HES-SO and centred around physiotherapy, rehabilita-
tion and health education, thereby adding to the diversity of the evaluation process. This
set encompassed two citation-screening datasets from published systematic reviews. One
focused on the effectiveness of using Peyton’s scale for health education, while the other
compared the effectiveness of power training versus conventional resistance training on
elderly patients [119, 330]. Each citation in the dataset had metadata information like
author list, journal name, publication year, volume number, publisher, etc. The general
characteristics of the datasets are summarized in Table 3.4.

3.3.1.2 System Modules

Preprocessor In the preprocessing phase, steps were implemented to transform the ci-
tations 23. The first step involved tokenization and lemmatization, which were performed

23An individual citation comprises a title and an abstract



Sr. Dataset (identifier/topic) Prev I E

Roche datasets

1 PoC1 NSCLC 10 905 7911
2 PoC2 CRPC 22 878 3012
3 SLR04 TNBC 2.5 23 928
4 SLR09 NSCLC 6.5 1356 18783

HES-SO datasets

5 Giacomino Peyton Physiotherapy 3.17 14 442
6 Tschopp Resistance training 1.89 13 771

Public datasets

7 Nelson 2002 Hormone therapy 27.78 80 288
8 Cohen 2006 Triptans 3.71 24 647
9 Walker 2018 Transgenerational in-

heritance
1.2 765 47873

10 Cohen 2006 Proton Pump Inhibitors 3.98 51 1282
11 Sep 2021 Rodent, Psychology 17.17 40 233
12 Cohen 2006 NSAIDS 11.65 41 352
13 Cohen 2006 Calcium Channel Block-

ers
8.94 100 1118

14 Wassenaar 2017 Bisphenol A 1.46 111 7589
15 Cohen 2006 Beta Blockers 2.07 42 2030
16 Cohen 2006 Statins 2.51 85 3380
17 Cohen 2006 ACE Inhibitors 1.64 41 2503
18 Chou 2004 Skeletal muscle relaxants 0.55 9 1634
19 Rooney 2015 Immunotoxicity 2.93 54 1846
20 Cohen 2006 Oral Hypoglycemics 37.06 136 367
21 Cohen 2006 ADHD 2.41 20 831
22 Cohen 2006 Antihistamines 5.44 16 294
23 Cohen 2006 Urinary Incontinence 13.94 40 287
24 Cohen 2006 Atypical Antipsychotics 14.99 146 974
25 Chou 2003 Oral opioids 0.79 15 1900

Table 3.4: Gold standard citation screening datasets. Inclusion prevalence (Prev.) is the
ratio of “includes” to “excludes”. I = “Includes” and E = “Excludes”



using the powerful spaCy 24 package [155]. Lemmatization normalizes individual words to
their base form, ensuring consistency and coherence in the subsequent analysis. Prepro-
cessing is a time-consuming step, and therefore, the datasets were preprocessed beforehand
and stored locally for use in the experiments. Considering a prospective scenario, prepro-
cessing can be performed on the fly, allowing each preprocessed citation to be indexed in
a local database, e.g., Lucene 25, using a unique identifier, ensuring effective use in future
citation screening projects. These citations would have a unique identifier and additional
curated metadata such as author list, journal name, publication year, volume number,
publisher, etc.

UMLS (Unified Medical Language System) keyword extraction was conducted for both
the study titles and abstract texts using a third-party MetaMap 26 Python API [13, 311,
350]. By incorporating UMLS, the preprocessing method sought to capture the normalized
medical topics for each study. A list of default stopwords from en_core_web_sm was uti-
lized to eliminate insignificant words that might hinder the analysis. en_core_web_sm is a
pre-trained spaCy model for the English language. As our experiments were a simulation,
UMLS retrieval involved programmatic bulk requests to the MetaMap API. However, it
is worth noting that this approach could become impractical when dealing with a large
volume of texts due to the limitations UMLS imposes on the number of requests. However,
a real-world scenario anticipates requesting UMLS API for smaller batches of studies at
irregular intervals, closely mimicking human behaviour. This makes it more feasible to
integrate UMLS retrieval into an automatic citation screening system for de-novo system-
atic reviews. The system could index UMLS terms as meta-data to a citation screening
record.

Deduplicator module Duplicates refer to multiple records or entries in the citation
screening dataset representing the same research study. These can occur due to multi-
ple database searches (EMBASE, PubMed, etc.), indexed conference vs journal papers,
updates or the same paper, errata, etc.. In certain studies, erratums are not considered
duplicates. Duplicates can inflate the results of an SR, and consequently, deduplication
is the process of removing such duplicates using the citation meta-data. State-of-the-art
deduplication automation approaches require clean datasets with missing author names
imputed with unknown, normalized author names (replace initials with full names, ad-
ditional middle name initials), normalized journal names, add missing information about
journal volume, page number, issue, etc [134]. Not everyone has ready access to clean
datasets, and cleaning such data is time-intensive, making it a secondary priority. In
business operations, duplicates can be found throughout the SR process and the afore-
mentioned citation metadata is not cleaned until the data extraction process. Therefore,
the reviewers deal with messy and incomplete data during the deduplication process. Noisy
data anticipates journal name writing variations (abbreviation vs full-form), author name
writing variations (initials of middle or last name or first name) and partial study title.
Using DOI (Document Object Identifier) alone for deduplication could lead to false neg-
atives, given a conference proceeding with many abstracts assigned the same DOI. Using
PMIDs as unique deduplication identifiers is not feasible in all cases because not all studies
are indexed in PubMed. Keeping this in mind, we used the following fuzzy deduplication
module.

24https://spacy.io/
25https://lucene.apache.org/
26https://github.com/lhncbc/skr_web_python_api



Algorithm 1 Pseudo-code for fuzzy citation deduplication
Require:

Input: Dataset D of citations, where each citation C is represented as a tuple
(T,A, J,Au, PD), where:

T : Title of the citation (string)
A: Abstract of the citation (string)
J : Journal name (string)
Au: List of authors (list of strings)
PD: Publication date (date)

Ensure:
Output: Unique_citations, a filtered dataset containing non-duplicate citations.

1: function CitationScreening(D)
2: Initialize an empty list Unique_citations.
3: for each citation C in Dataset D do
4: if A is not empty then
5: for each citation C ′ in Dataset D do
6: Calculate Levenshtein similarity between abstracts A and A′.
7: Calculate string similarity between titles T and T ′.
8: Calculate Jaro-Winkler similarity between journal names J and J ′.
9: Calculate Jaro-Winkler similarity between author lists Au and Au′.

10: if (T is identical to T ′) and (A similarity > 80%) and (J similarity
> 60%) and (Au similarity > 80%)) then

11: Identify the citation with the latest publication date among C and
C ′.

12: Add the identified citation to Unique_citations.
13: end if
14: end for
15: end if
16: end for
17: return Unique_citations as the filtered dataset containing non-duplicate cita-

tions.
18: end function

The deduplication algorithm takes a dataset of citations with its metadata. Each
citation within the dataset is defined as a tuple, including the following items: the title
(T) represented as a string, the abstract (A) in string format, the journal name (J) as a
string, a list of authors (Au) in the form of strings, and the publication date (PD) as a date.
The algorithm takes these tuples as input and aims to output a filtered dataset containing
unique citations, removing duplicates. First, an empty list called ”Unique citations” is
initialised to store the unique references. Next, check whether the abstract (A) is empty
for each citation C in dataset D. If A is not empty, it calculates the similarities between
the titles, abstract, journal and author names for every citation pair. If the titles of these
citations are identical, it checks whether the abstracts are more than 80% similar, the
journal names are more than 60% similar and author names are at least 80% similar.
If these conditions are met between the two candidate citations, the algorithm retains
the latest published citation and adds it to the unique citations list. After the process is
repeated for the citation pairs in the dataset, return the unique citations list as the filtered



dataset containing non-duplicate citations. For the similarity calculations, Levenshtein
distance and Jaro-Winkler distance were used [191, 273, 347, 358]. It has to be noted that
we remove citations with empty abstracts only from the active training process. This
decision was based on the understanding that a citation with only a title lacks sufficient
information for training a model or making an informed decision during human labelling.
Details regarding the choice of similarity threshold are in the Supplementary material.

Seed Sampler A seed sampler module is employed for seed selection, which is the
process of selecting a seed set. It takes citation data as input and produces a seed set
comprising selected citations. The choice of seed sampling method can impact the perfor-
mance of the Active Learning (AL) system. Two seed sampling methods were employed,
namely random sampling and diversity sampling. Random sampling involves selecting a
seed set through a random process, and diversity sampling selects the most representative
citations from the pool. Diversity sampling achieved this via clustering the numerical rep-
resentation of citations and selecting the citations near the centroid. We employed Affinity
Propagation Clustering (APC), a clustering algorithm that measures the Euclidean dis-
tance between numerical representations of citation pairs as a similarity measure. We used
Sklearn’s Affinity Propagation module 27 without altering any default parameter settings.
AP clustering, distinct from methods like K-means, doesn’t require specifying the number
of clusters as a hyperparameter. This made it suitable for our task, where the number
of clusters was unknown and determining it through hyperparameter tuning would have
been resource-consuming and impractical. The AP algorithm iteratively identified cluster
centroids, also called exemplars, which could be used as the seed set [110]. APC outputs a
variable number of cluster centroids, potentially resulting in more citations selected than
required for the seed set. In such instances, the seed sampler randomly clipped the total
number of selected citations to match the desired size of the seed set.

Start Criteria Functionality We explored the two most common active learning
strategies based on the start criteria, hasty active learning (hasty start) and patient
active learning (patient start). In patient active learning (PAL), the training begins only
when at least five “relevant” citations were selected in the seed set. In hasty active learn-
ing (HAL), the training process begins with including at least one “relevant” citation. In
real-world SRs, particularly when the research question is narrow, it is not uncommon to
find only a small number of “relevant” studies among the total retrieved citations, rang-
ing from one to ten. E.g., the dataset Chou 2004 Skeletal muscle relaxants has only 9
“relevant” citations out of a total of 1643 (refer Table 3.4). Applying PAL could pose a
challenge because it requires at least five “relevant” citations to initiate training, leaving
only four “relevant” citations for evaluating the experimental setup. Citation screening
datasets with less than five citations leave no room to experiment with PAL.

Our experiments were divided into retrospective and prospective scenarios based on
the start criterion they employed. A prospective scenario simulates a situation assum-
ing an unlabeled citation screening dataset, while the retrospective scenario assumes a
labelled dataset. We applied PAL exclusively in the retrospective scenario, assuming that
our citations were labelled and selecting at least five “relevant” citations during the seed
selection. In PAL, the seed set consisted of 25 fixed citations, comprising five “relevant”

27https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AffinityPropagation.
html



and 20 “irrelevant” ones. For HAL, we simulated a prospective scenario assuming an
unlabeled dataset. During HAL seed selection, we sampled 25 studies in multiple iter-
ations, and in each iteration, we kept track of whether at least one “relevant” citation
was included. HAL-based seed sampler ensured at least one “relevant” citation was sam-
pled in the seed set. In some datasets, the prevalence of “relevant” citations was very
low, making it unlikely to find even a single “relevant” citation in a single iteration of 25
samples. Therefore, we limited the iterations to a maximum of 12, sampling 25 studies
at each iteration, resulting in a maximum of 300 studies being sampled before initiating
the active classifier training. It must be noted that inclusion prevalence is unknown in
a prospective scenario; hence, setting a constant of max 300 studies to be sampled does
not ensure that at least one “relevant” citation will be retrieved. We selected 300 using a
simulation experiment, as explained in the Appendix. The settings for the start criterion
were merged with the seed sampler.

Active classifier module Considering citation screening as a binary classification task
of separating the input citations into “relevant” and “irrelevant”, we experimented with
three prevalent binary classifiers: naive Bayes (NB), logistic regression (LR) and support
vector machines (SVM). These classifiers took as input the numerical representation of a
citation and output prediction probabilities for the respective classes. We used tf-idf (term
frequency-inverse document frequency) features to represent the citations numerically. To
optimize the performance of both the feature vectorizer and the classifier, we utilized scikit
learn grid search cross-validation module 28 allowing us to tune the hyperparameters of
the vectorizer and classifier simultaneously (details in Appendix).

In our study, we introduce the concept of a data view, representing the modalities on
which an active classifier was trained. We experimented with three different data views,
each obtained by concatenating individual vectors for the four modalities: title, abstract,
title UMLS, and abstract UMLS. The first view comprised the title and abstract of a
citation; the second view was represented by the UMLS terms from the title and abstract,
and the third view comprised the title, abstract and their corresponding UMLS terms for
a citation. Our active classifier module was a homogeneous ensemble of three classifiers to
simulate the QBC (Query-by-Committee) approach. One classifier is trained on the first
data view, another classifier on the second data view, and the third classifier incorporates
all available data views, including titles, title UMLS, abstracts, and abstract UMLS (third
data view). The ensemble is called homogeneous because all three classifiers used the same
vector representation (tf-idf) and model architecture but were trained on different data
views.

The predictor module of the trained classifiers made predictions on the remaining train-
ing set citations, with each predictor in the ensemble producing prediction probabilities
for “relevant” and ”irrelevant” classes. These probabilities were aggregated by averaging
across the three classifiers, and the resulting aggregated probability is used as the predic-
tion probability for the citation. The final predicted label is marked as “relevant” if at
least one of the three classifiers votes the citation as ”1”, as the citation screening process
is recall-oriented for “relevant” citations.

28https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.
GridSearchCV.html



Query sampler module The active classifier module produces prediction probabilities
on the training citations, which are then used by the query sampler module to select
the most informative citations depending upon the query strategy. The citations sampled
by the query module are assumed to be more information and are used to train the active
classifier. In this work, we explored five different query strategies: random sampling,
uncertainty sampling (least confident, margin and entropy), certainty sampling, query by
committee/simple voter, and diversity sampling. As the name goes, random sampling
randomly samples the citations. Random sampling also acted as a reference comparison
against the other smarter query samplers.

The least confident, margin, entropy, and certainty query samplers used predicted
posterior probabilities of the training citations to select the samples. Least confident
query sampler calculated the least confident score as 1 − Pθ(y

x|x), where Pθ(y
x|x) is the

maximum softmax probability. This query strategy selected the citations with the highest
ΦLC scores as they are deemed lowest of confidence, i.e., where the maximum probability
was close to 0.5. For example, if we consider binary classification and the model predicts
a 0.90 probability value for class-0 for a certain data sample, and thus for class-1, the
probability value will be 0.1, we can say that the model was confident with the class
membership or class assignment for this data sample. If the model predicted both the
classes with almost similar probablities of 0.5, we can say that the model was uncertain
on its predictions. The least confidence strategy considers only the most probable class
for evaluation. Margin sampling strategy considers the two most probable classes, i.e., the
classes having the highest and second-highest probabilities:

ΦM (x) = 1− Pθ(y
∗
1|x)− Pθ(y

∗
2|x).

The Entropy Sampler prioritizes data points for which the model’s predictions have
the highest entropy. Higher entropy indicates a greater level of uncertainty in the model’s
predictions:

ΦENT (x) = −
∑
y

Pθ(y|x) log2 Pθ(y|x).

Certainty sampler selected the citations with the highest cumulative predicted proba-
bility ΦC [241, 301]:

ΦC(x) =

n∑
i=1

Pθ(y|xi)

For the diversity sampler, we used the Affinity Propagation sampler as previously explained
(See 3.3.1.2). The key idea behind the voter query sampler was to select data points that
caused the most disagreement among the voting committee of the classifier ensemble.
Given we had three members on the committee, even if one disagreed with the rest, we
used it as a criterion to select the citation. When the training budget did not yield
sufficient citations, and the voters disagreed, we calculated the entropy in the agreement
using prediction probabilities. The entropy in the agreement between the voters was an
average of the differences between the prediction probabilities of each voter over each
predicted class.

Semi-Supervision Strategy The semi-supervision (SSL) module leveraged prediction
probabilities from the active classifier on training citations to choose and label citations
with the most confident predictions the module selected citations where the active classifier



Module Experiment settings

Seed sampling Random, Diversity
Start criteria HAL, PAL

Active classifier ND, LR, SVM
Query sampler Random, Least Confident, Entropy, Margin, Certainty,

Diversity, Voter
SSL benefit on, off

Table 3.5: The experiment settings explored in the AL system.

had a prediction probability greater than or equal to 0.99 for either the “relevant” or
“irrelevant” classes. This threshold helped ensure high confidence in the assigned pseudo-
labels. The semi-supervision module can be toggled on or off, and when activated, it
selects and assigns pseudo-labels to half of the training citations in the AL system. An
SSL module could further reduce the manual labelling effort by automatically assigning
high-confidence pseudo-labels to training instances.

3.3.1.3 Approach

For each dataset d listed in Table 3.4, UMLS (Unified Medical Language System) key-
word extraction was performed on all citations using a third-party MetaMap Python
API, followed by additional preprocessing steps [13, 311, 350]. The preprocessing involved
deduplication using both citations and citation metadata. The AL system received the
preprocessed and deduplicated citations, simulating the system in both retrospective and
prospective scenarios. Before sampling the seed set and following deduplication, the cita-
tion dataset d was divided into 75% for training (t) and internal validation, and 25% for
evaluation (e) (refer Figure 3.2). Depending on the sampling procedure, the seed sampler
module selected a seed set. If PAL was the start criterion, the seed sampler simulated a ret-
rospective scenario, assuming labels were available for querying and selecting 5 “relevant”
and 20 ”irrelevant” citations from t. For HAL seed selection, the seed sampler assumed
the unavailability of labels, sampling 25 studies in multiple iterations over t”. In each iter-
ation, it kept track of whether at least one “relevant” citation was included. It’s important
to note that in our work, the citation screening datasets came with inclusion decisions and
were pre-labelled. However, the seed set is sent to a human oracle for labelling. Once the
start criterion was fulfilled and a predefined number of “relevant” citations were sampled,
the active classifier module initiated the classifier training. The classifier predictor was
then used to predict training citations t. The query sampler module then selected 10% of
the training citations, then retraining the active classifier and regenerating probabilities
on the remaining training citations. This process continued until 30% of training citations
were sampled, after which the system halted training. The evaluator tracked performance
indicators on the evaluation set at each 10% of the training steps. To test the effectiveness
of each module, we conducted 168 experiments for each dataset corresponding to the two
start criteria, three active classifier types, and seven query methods, with and without
semi-supervision (ref Table 3.5). Each experiment was done over five random seeds, and
the averaged results were reported. These experiments were designed to ensure we could
probe the effect of individual modules, thereby addressing all the questions we aimed to
answer.



3.3.1.4 Evaluation

Our system was multi-objective, and we tracked eight performance indicators throughout
the experimentation. While most of these metrics were obtained on the 25% of the test set,
some metrics, like Coverage, were monitored on the training set. These specific metrics
are tracked at 10% intervals of the training dataset, up to a 30% training data threshold,
but the results are reported based on the 30% of the training data. These metrics are
collected across five-fold cross-validation for the five most common Python random seeds
(0, 1, 42, 123, 1234).

Performance Indicators We tracked work saved over sampling @95% recall (or WSS@95%
r) to evaluate the system on the amount of manual work saved by removing “irrelevant”
citations [66]. The choice of 0.95 recall r was based on the following reasons: a) Achieving
a perfect recall of 1.00 is not pragmatic by any text mining method since it would require
reviewing all candidate studies manually. b) In the context of evidence-based medicine
(EBM), a recall of 0.95 is generally deemed acceptable. This level of recall ensures that
a significant proportion of “relevant” evidence is captured while still accounting for the
limitations and practical considerations of the screening process.

WSS@95% =
True Negative+ True Positive

N
− (1− r); r = 0.95 (3.1)

Additionally, we kept a close eye on all the traditional metrics outlined in Sklearn’s
classification report, but placed an emphasis on the recall of “relevant” citations (micro-
recall on class “1”). Together, WSS@95%, and micro-recall of the “relevant” class were
vital evaluators of our system. ROC-AUC curve score was tracked and reported to measure
a classifier’s ability to separate “relevant” and “irrelevant” citations. ROC-AUC score can
also act as a tiebreaker for identifying best-performing modules in cases where both WSS
and recall are identical. Error of the semi-supervision module (hereafter SSL module error)
helped us assess whether an SSL module should be implemented in a real-world citation
screening system. SSL module error was measured as a (1−Accuracy). We also measured
Coverage, as Miwa et al explained. Coverage indicates the ratio of “relevant” instances in
the data pool annotated during active learning [238]. It must be noticed that Coverage
was calculated on 75% of the dataset partitioned as the training set. The original formula
has a FNL in the denominator, but assume all labelled instances to be true. thereby
setting FNL to zero.

Coverage = TP
TPL + FNL + FP+ TN

;FNL = 0 (3.2)

We tracked the seed cost for HAL experiments, which is the number of citations used
to initialize the active classifier training. It essentially tracks how many citations the
reviewers need to annotate until they identify at least one “relevant” citation. Finally, we
tracked the time to train a system, given that this could impact the production systems
and human interaction for providing the next set of labels. We initially planned to include
the tracking of Burden and Yield metrics as used in certain reference papers but decided
to omit them to maintain simplicity [238, 345].

Significance Tests We employed t-test and Kruskal-Wallis tests to evaluate the signif-
icance of different modules. The Kruskal-Wallis test was employed to determine whether



significant differences existed among the performance metrics for the various query meth-
ods and classifiers we used. If the p-value was ≤0.05, we concluded that there were
significant differences between the performance metrics of the module groups being inves-
tigated. To understand the differences between each module pair, we conducted Dunn’s
post-hoc analysis [95, 123]. Dunn’s test involves comparing each group to every other
group. The test calculated a p-value that assessed whether there were significant differ-
ences between those specific groups. We used a trimmed t-test to compare the means (for
performance metrics) of two groups, which returned a p-statistic that we inferred the same
as we inferred it for the Kruskal-Wallis test [366]. A trimmed t-test was used to compare
seed sampling strategies, start criteria, and the effect of the semi-supervision module. The
primary reason for selecting both these tests was the unequal sample sizes for the groups
being compared.

Effect Sizes Additionally, we measured the effect size of different modules on the per-
formance metrics using Cohen’s-d. Cohen’s d is a statistical measure used to quantify the
effect size of a particular intervention on patient outcomes in clinical trials. For instance,
consider [278], who utilized Cohen’s d to assess the impact of occupational stress manage-
ment intervention programs (intervention), reported effect sizes indicating a significant
medium to large effect on clinical outcomes. Other clinical trials used it as well [142, 285].
In AI or machine learning, we could consider a module as an intervention or a variable
and assess its effect on system’s performance metrics and indicators. It provides valuable
information on performance differences between the two groups. There were cases where
one module did not significantly differ from the other according to these tests. However,
in practical situations, we might need to select one module. We can effectively choose a
module over the other if its effect size over a performance metric is higher than the other.

3.3.2 Results
Table 3.6 displays the citation counts in both the public institute and private company
citation screening datasets before and after the deduplication and preprocessing steps.
There are no empty abstracts in the public institute datasets, with the Physiotherapy
dataset being the cleanest without duplicates.

Deduplication
Dataset Before After Empty Abstracts

Public Institute Datasets
Physiotherapy 456 456 0
Resistance training 724 701 0

Private Company Datasets
PoC1 NSCLC 8817 8747 519
PoC2 CRPC 3890 3371 43
SLR04 TNBC 951 900 50
SLR09 NSCLC 20139 18476 1509

Table 3.6: Dataset statistics before and after deduplication step including removal of
empty abstracts.



3.3.2.1 Question 1: Does active learning save work and have expected recall
on the minority class?

Dataset Prev. WSS Recall 1 (std.) Recall 0
Private Company Datasets

1 PoC1 NSCLC 11.43 0.78 0.71± 0.23 0.9
2 PoC2 CRPC 34.14 0.66 0.76± 0.15 0.86
3 SLR04 TNBC 2.62 0.92 0.15± 0.14 0.97
4 SLR09 NSCLC 7.16 0.81 0.56± 0.32 0.89

Public Institute Datasets
5 Physiotherapy 3.17 0.92 0.2± 0.22 0.97
6 Resistance training 1.89 0.93 0.23± 0.18 0.99

Public datasets
7 NSAIDS 11.65 0.84 0.53± 0.21 0.94
8 Proton pump inhibitor 3.98 0.9 0.28± 0.24 0.97
9 Calcium channel blockers 8.94 0.88 0.24± 0.2 0.94
10 ACE inhibitors 1.64 0.92 0.31± 0.25 0.97
11 Beta blockers 2.07 0.91 0.21± 0.21 0.97
12 Statins 2.51 0.9 0.3± 0.25 0.95
13 ADHD 2.41 0.93 0.1± 0.14 0.98
14 Antihistamines 5.44 0.93 0.03± 0.04 0.98
15 Atypical antipsychotics 14.99 0.84 0.31± 0.2 0.92
16 Triptans 3.71 0.84 0.16± 0.13 0.97
17 Oral hypoglycemics 37.06 0.76 0.32± 0.15 0.85
18 Urinary incontinence 13.94 0.83 0.46± 0.2 0.93
19 Oral opioids 0.79 0.93 0.13± 0.18 0.98
20 Skeletal muscle relaxants 0.55 0.94 0.01± 0.03 0.99
21 Transgenerational inheritance 1.2 0.91 0.22± 0.24 0.96
22 Immunotoxicity 2.93 0.91 0.36± 0.22 0.97
23 Rodent psychology 17.17 0.89 0.18± 0.11 0.96
24 Bisphenol A 1.46 0.9 0.44± 0.24 0.95
25 Hormone therapy 27.78 0.79 0.34± 0.14 0.89

Table 3.7: The table showing average WSS and binary recalls for “relevant” and “irrel-
evant” classes over all experimental configurations. Note: Prev. = Inclusion prevalence,
Recall 1 = Recall of “relevant” class, std. = standard deviation, Recall 0 = Recall of
“irrelevant” class.

All the results were generated from 168X5 experiments per dataset for different AL
setting combinations across five random seeds. The results presented in Table 3.7 address
our first question with insights into the average work saved (WSS@95%r), recall on the
“relevant” class (Recall 1), and recall on the “irrelevant” class (Recall 0) across the eval-
uation set e. These scores are averaged across all experiment combinations to allow us
to examine the overall trends. The observed work saved ranges from 66% to 94%, while
the average binary recall, for most datasets, remains consistently low ceiling at 76%. For



none of the datasets, the average recall reaches the expected 95%; in fact, none of the
individual experimental configurations achieves a 95% recall either. Despite a satisfactory
WSS, active learning falls short of the expected 95% recall. Additionally, the standard
deviation for the recall ranges from 3% to 34%. This variability underscores the influence
of different modules on recall and justifies the need for an in-depth analysis to identify the
most impactful module settings. Notice the high recall values for the “irrelevant” class,
revealing why there were high work savings. To reiterate, WSS measures how effectively
the classifiers eliminate “irrelevant” citations, reducing the workload for human reviewers.

3.3.2.2 Question 2: Is a smart query sampling methodology better than ran-
dom sampling?

While the overall work saved was generally satisfactory, the recall for the “relevant” class
fell short of expectations. Therefore, to address the second question regarding whether
smart query sampling outperformed naive random sampling, our focus shifts to evaluat-
ing the retention of the “relevant” class. Table 3.8 compares the performance of various
query samplers wrt. (with respect to) the recall of the “relevant” class. When considering
absolute recall scores, certainty and diversity sampling stand out, performing the best on
10 (40% of all datasets) and 11 (44% of all datasets) out of 25 datasets, respectively, of
which on 3 of the 25 datasets both the query methods had tied. One of the other sampling
methods tends to perform the best on the remaining datasets. However, when evaluat-
ing significance through the Kruskal-Wallis test, diversity (via clustering) sampling only
demonstrates a significant improvement over certainty sampling in 7 out of 11 datasets
(63.63% of datasets). Conversely, certainty sampling significantly outperforms cluster
sampling for 4 out of 10 (40%) datasets. Surprisingly, none of the query methods out-
performed the rest on physiotherapy and pharmaceutical datasets. Notably, for the Beta
Blockers, ACE inhibitors dataset and oral opioids, both certainty and diversity sampling
perform significantly better than the other methods but are on par with each other. For
the Physiotherapy dataset, certainty sampling doesn’t have a significant advantage over
cluster sampling, while both vastly outperform the rest of the query methods. For the
Rooney dataset, even though Least Confident Sampling performs better in absolute num-
bers, it does not significantly outperform margin, entropy, and voter sampling methods.
Although our expected recall of 95% is not achieved for either of the datasets using any of
the query strategies, decomposing and inspecting the recalls for individual query methods
reveals that specific query methods do impact recall. Looking at Tables 3.7 and 3.8 show
that each of the best-performing query methods exhibited a consistent increase in overall
recall, leading up to a 4.8 per cent points increase. For example, the overall recall of
0.49 for NSAID increases by 14 percent points to 0.63 using diversity sampling. These
results confirm that Diversity and Certainty sampling methods outperform naive random
sampling across these biomedical, pharmaceutical, and physiotherapy datasets.

3.3.2.3 Question 3: Is semi-supervision effective?

Table 3.9 displays the average recall and WSS values with and without semi-supervision
benefits to the AL system. The table also illustrates the SSL module’s contribution to
the error in the system. Regarding average recall, aiding the AL system with SSL benefit
outperformed on 20 out of 25 datasets; overall recall with and without SSL benefit was
only 0.266 percentage points. The standard deviation over absolute recall with and with-
out the SSL module is between 3.2% − 34.3%, pointing towards the variable capability



Dataset Cer Div Ent LC Mar Rand Vote
Private Company Datasets

1 PoC1 NSCLC 0.63 0.74 0.73 0.73 0.73 0.73 0.69
2 PoC2 CRPC 0.65 0.77 0.78 0.77 0.78 0.78 0.76
3 SLR04 TNBC 0.2 0.13 0.13 0.15 0.14 0.15 0.15
4 SLR09 NSCLC 0.54 0.58 0.58 0.57 0.58 0.57 0.54

Public Institute Datasets
5 Physiotherapy 0.23 0.22 0.05 0.04 0.04 0.2 0.12
6 Resistance training 0.29 0.22 0.24 0.22 0.21 0.24 0.21

Public datasets
7 ACE inhibitors 0.37* 0.37* 0.27 0.3 0.28 0.31 0.3
8 ADHD 0.20* 0.12 0.06 0.06 0.05 0.11 0.07
9 Antihistamines 0.06 0.02 0.02 0.02 0.02 0.02 0.02
10 Atypical antipsychotics 0.33 0.37* 0.3 0.29 0.29 0.31 0.3
11 Beta blockers 0.27* 0.26* 0.17 0.18 0.19 0.19 0.19
12 Calcium channel blockers 0.28 0.27 0.23 0.22 0.22 0.26 0.22
13 NSAIDS 0.51 0.63* 0.53 0.51 0.53 0.51 0.52
14 Oral hypoglycemics 0.32 0.39* 0.29 0.32 0.31 0.3 0.3
15 Proton pump inhibitor 0.26 0.23 0.32 0.3 0.31 0.27 0.29
16 Statins 0.31 0.34 0.29 0.3 0.29 0.29 0.29
17 Triptans 0.18 0.14 0.14 0.14 0.16 0.16 0.18
18 Urinary incontinence 0.45 0.5 0.46 0.45 0.47 0.45 0.47
19 Oral opioids 0.21* 0.21* 0.09 0.08 0.08 0.12 0.14
20 Skeletal muscle relaxants 0.01 0.01 0.01 0.01 0.02 0 0
21 Immunotoxicity 0.36 0.36 0.37 0.37 0.38 0.32 0.37
22 Rodent psychology 0.18 0.21 0.2 0.16 0.19 0.16 0.19
23 Hormone therapy 0.34 0.42* 0.33 0.31 0.33 0.36 0.31
24 Transgenerational inheri-

tance
0.23 0.2 0.25 0.23 0.23 0.22 0.23

25 Bisphenol A 0.31 0.45 0.46 0.48 0.47 0.41 0.48

Table 3.8: Table reporting the binary recall on “Relevant” class for different query sampling
methods. Note: Cer. = Certainty, Div. = Diversity, Ent. = Entropy, LC. = Least
Confident, Mar. = Margin, Rand. = Random, Vote. = Voter. Underline denotes the
query method performs the best for a dataset in terms of absolute recall. An asterisk (*)
denotes the query sampling method performs significantly better than the rest.



Figure 3.3: Radar chart plotting the average time taken by each query sampling method.
Diversity sampling method is represented in the figure as cluster sampling.

of active classifier algorithms employed in this work. Similarly, overall WSS with and
without the SSL benefit was only 0.156 percentage points. Aiding active learning with the
semi-supervision module did not significantly 29 increase either the work saved or recall,
thus bringing no clear benefit to the system. In contrast, in the SSL-aided experiments,
the SSL module error ranged from 1.3% to 29.4%, and the error values had a standard
deviation value between 2% to 8.3% again pointing towards the variable capability of
active classifiers. Across different domains, the SSL module did not show significantly
superior performance in physiotherapy, biomedicine, and pharmaceutical datasets. Our
experiments and results show that the SSL module, while saving half the labelling cost,
also has accumulated errors in the system. This raises questions about the deployment
worthiness of adding an SSL module to the system, addressing our next question regarding
the practicality and effectiveness of such an addition.

3.3.2.4 Question 4: Do some AL system settings perform better over the
others?

In addressing the question of whether certain settings in an AL system yield better perfor-
mance than others, we conducted tests to evaluate the impact of different active classifiers
on performance, comparing the outcomes of the hasty (HAL) and patient (PAL) start
approaches and finally the impact of seed sampler choice. Table 3.10 presents the average
recall and WSS scores for both the hasty (HAL) and patient (PAL) start approaches.
Patient start, which triggers classifier training with five “relevant” and 20 “irrelevant”
citations, surpassed the hasty start. PAL performed significantly better on 15 of the 25
(60%) datasets and had a higher effect size on recall over 18 out of 25 (72%) datasets. On
the other hand, HAL significantly outperformed PAL in terms of work saved over 12 out of
the 25 datasets. On 11 of 25 datasets where HAL does not significantly outperform PAL,
HAL and PAL have identical absolute work saved. Significance was calculated using a
trimmed t-test. These results confirm that PAL outperforms HAL regarding recall across
these biomedical, pharmaceutical, and physiotherapy datasets.

29Significance was calculated using trimmed t-test.



Recall “relevant”
Dataset SSL No SSL Error

Private Company Datasets
1 PoC1 NSCLC 0.722 (±0.238) 0.706 (±0.216) 0.128 (±0.055)
2 PoC2 CRPC 0.763 (±0.155) 0.748 (±0.147) 0.17 (±0.037)
3 SLR04 TNBC 0.154 (±0.15) 0.146 (±0.138) 0.048 (±0.035)
4 SLR09 NSCLC 0.573 (±0.336) 0.557 (±0.314) 0.143 (±0.076)

Public Institute Datasets
5 Physiotherapy 0.206 (±0.223) 0.195 (±0.214) 0.051 (±0.022)
6 Resistance training 0.263 (±0.188) 0.203 (±0.174) 0.03 (±0.016)

Public datasets
7 Hormone therapy 0.348 (±0.148) 0.337 (±0.135) 0.234 (±0.026)
8 Triptans 0.159 (±0.127) 0.156 (±0.134) 0.046 (±0.045)
9 Transgenerational inheri-

tance
0.222 (±0.242) 0.221 (±0.233) 0.046 (±0.055)

10 Proton pump inhibitors 0.28 (±0.241) 0.283 (±0.237) 0.068 (±0.039)
11 Rodent psychology 0.18 (±0.114) 0.185 (±0.115) 0.156 (±0.028)
12 NSAIDS 0.539 (±0.211) 0.529 (±0.206) 0.106 (±0.027)
13 Calcium channel blockers 0.245 (±0.214) 0.238 (±0.196) 0.121 (±0.066)
14 Bisphenol A 0.446 (±0.253) 0.428 (±0.233) 0.058 (±0.083)
15 Beta blockers 0.223 (±0.223) 0.192 (±0.188) 0.049 (±0.054)
16 Statins 0.309 (±0.255) 0.294 (±0.242) 0.066 (±0.073)
17 ACE inhibitors 0.331 (±0.256) 0.297 (±0.248) 0.037 (±0.039)
18 Skeletal muscle relaxants 0.009 (±0.032) 0.009 (±0.032) 0.013 (±0.016)
19 Immunotoxicity 0.373 (±0.224) 0.35 (±0.225) 0.049 (±0.04)
20 Oral hypoglycemics 0.329 (±0.149) 0.311 (±0.143) 0.294 (±0.036)
21 ADHD 0.095 (±0.146) 0.097 (±0.141) 0.043 (±0.034)
22 Antihistamines 0.027 (±0.046) 0.025 (±0.042) 0.055 (±0.02)
23 Urinary incontinence 0.474 (±0.195) 0.456 (±0.204) 0.137 (±0.028)
24 Atypical antipsychotics 0.312 (±0.209) 0.311 (±0.193) 0.161 (±0.056)
25 Oral opioids 0.115 (±0.173) 0.153 (±0.19) 0.022 (±0.041)

Table 3.9: The table demonstrating the recall values for “relevant” class and WSS with
and without semi-supervision benefit. Bold values in the recall column denote the best
absolute recall with and without semi-supervision benefit.



Recall “Relevant” WSS
Dataset Prevalence HAL PAL HAL PAL

Private Company Datasets
1 PoC1 NSCLC 11.43 0.72 0.71 0.78 0.79
2 PoC2 CRPC 34.14 0.76 0.76 0.66 0.66
3 SLR04 TNBC 2.62 0.12 0.18* 0.93* 0.92
4 SLR09 NSCLC 7.16 0.57 0.55 0.81 0.81

Public Institute Datasets
5 Physiotherapy 3.17 0.17 0.21* 0.92* 0.92
6 Resistance training 1.89 0.21 0.25* 0.94* 0.93

Public datasets
7 ACE inhibitors 1.64 0.28 0.34* 0.93* 0.92
8 ADHD 2.41 0.07 0.11* 0.93* 0.93
9 Antihistamines 5.44 0.03 0.02 0.94* 0.93
10 Atypical antipsychotics 14.99 0.31 0.31 0.84 0.84
11 Beta blockers 2.07 0.18 0.23* 0.92* 0.91
12 Calcium channel blockers 8.94 0.23 0.25 0.88 0.88
13 NSAIDS 11.65 0.51 0.55* 0.84* 0.83
14 Oral hypoglycemics 37.06 0.32 0.31 0.76 0.76
15 Proton pump inhibitor 3.98 0.26 0.31* 0.91* 0.9
16 Statins 2.51 0.29 0.32* 0.9 0.9
17 Triptans 3.71 0.12 0.19* 0.83 0.85
18 Urinary incontinence 13.94 0.47 0.46 0.83 0.83
19 Oral opioids 0.79 0.09 0.16* 0.94* 0.93
20 Skeletal muscle relaxants 0.55 0.01 0.01 0.94 0.94
21 Immunotoxicity 2.93 0.34 0.39* 0.92* 0.91
22 Rodent psychology 17.17 0.17 0.19* 0.89* 0.88
23 Hormone therapy 27.78 0.34 0.33 0.79 0.79
24 Transgenerational inheri-

tance
1.2 0.22 0.23* 0.91* 0.91

25 Bisphenol A 1.46 0.42 0.46* 0.9 0.9

Table 3.10: Average Recall for the “relevant” class and WSS for hasty and patient start.
Bold means the absolute performance was the best (HAL vs. PAL) and asterisk (*) means
the module performed significantly better. Bold denotes the start criterion functionary
performs the best for a dataset in terms of absolute recall and WSS.



As shown in the scatter plot 3.4, diversity seed sampling significantly outperformed
in absolute recall on 20 of 25 datasets. In comparison, the random seed sampling had
significantly better work saved over 20 of 25 datasets. The good performance of the
diversity seed sampler was quite unsurprising because the diversity query sampler too
outperformed the random sampler by a large margin, evident from Table 3.8.

Figure 3.4: Scatter plot for the average absolute work saved and recall for both the
seed sampling methods. Note: A larger circle shows the method performed significantly
better over work saved over a dataset and a larger triangle shows the method performed
significantly better on the recall of the “relevant” citations over a dataset.

Table 3.11 shows the average recall for the “relevant” class and semi-supervision mod-
ule error values over individual classifiers: NB, LR and SVM. We present SSL error for
classifiers because the quality of pseudo-labels depends on the active classifier’s ability to
distinguish between “relevant” and “irrelevant” instances. These results confirm that Naive
Bayes outperforms LR and SVM across these biomedical, pharmaceutical, and physiother-
apy datasets. Furthermore, we do not observe domain-wise differences in the performance
of NB over recall.

3.3.2.5 Question 5: In a prospective scenario, what could it cost to start
training an active learning system?

In the context of prospective business scenarios, we assume that inclusion decisions are
unavailable for the citation screening dataset, whether a patient start or a hasty start.
Consequently, sampling a seed set incurs a seed cost, determined by the number of citations
a reviewer must label before identifying one “relevant” citation for a hasty start and five
“relevant” citations for a patient start. We present the average seed cost plotted over ten



Recall “Relevant” class SSL Error
Dataset NB LR SVM NB LR SVM

Private Company Datasets
1 PoC1 NSCLC 0.938* 0.833 0.401 0.187 0.11 0.074
2 PoC2 CRPC 0.894* 0.803 0.591 0.212 0.149 0.151
3 SLR04 TNBC 0.297* 0.147 0.017 0.081 0.035 0.027
4 SLR09 NSCLC 0.849* 0.754 0.108 0.225 0.128 0.063

Public Institute Datasets
5 Physiotherapy 0.398* 0.217 0.004 0.074 0.045 0.034
6 Resistance training 0.401 0.283 0.105 0.044 0.024 0.024

Public datasets
7 ACE inhibitors 0.547* 0.361 0.084 0.068 0.026 0.016
8 ADHD 0.168* 0.094 0.021 0.07 0.033 0.027
9 Antihistamines 0.046* 0.035 0.001 0.07 0.053 0.042
10 Atypical antipsychotics 0.472* 0.389 0.076 0.207 0.155 0.122
11 Beta blockers 0.398* 0.234 0.037 0.093 0.035 0.018
12 Calcium channel blockers 0.413* 0.289 0.033 0.177 0.101 0.085
13 NSAIDS 0.693* 0.597 0.327 0.124 0.094 0.102
14 Oral hypoglycemics 0.453* 0.384 0.148 0.329 0.29 0.262
15 Proton pump inhibitors 0.459* 0.352 0.029 0.098 0.058 0.047
16 Statins 0.569* 0.323 0.036 0.127 0.044 0.027
17 Triptans 0.25* 0.175 0.054 0.078 0.036 0.024
18 Urinary incontinence 0.638* 0.551 0.232 0.156 0.128 0.126
19 Hormone therapy 0.485* 0.364 0.196 0.247 0.238 0.217
20 Immunotoxicity 0.571* 0.371 0.177 0.085 0.032 0.03
21 Rodent psychology 0.233* 0.246 0.062 0.176 0.146 0.146
22 Oral opioids 0.222* 0.108 0.015 0.048 0.01 0.008
23 Skeletal muscle relaxants 0.023* 0.003 0 0.023 0.009 0.007
24 Transgenerational inheritance 0.487* 0.187 0.001 0.097 0.028 0.012
25 Bisphenol A 0.709* 0.41 0.22 0.14 0.023 0.012

Table 3.11: The table demonstrating classifier-wise recall for “relevant” class and error
values for semi-supervision module. An asterisk (*) denotes a classifier significantly out-
performed the rest. Bold values in the SSL error columns denote lowest average error.



random seeds against the inclusion prevalence values of all datasets in Figure 3.5 (left side
figure). The top-left graph illustrates the average seed cost for PAL against the inclusion
prevalence, while the bottom-left graph depicts the corresponding values for HAL. As
anticipated, the average seed cost decreased with increased inclusion prevalence for both
HAL and PAL. Specifically, for HAL, manual screening was required for an average of
159.72 citations for the lowest prevalence dataset (prevalence = 0.551). In contrast, PAL
necessitated labelling over 275 citations on average for the lowest prevalence dataset. For
the highest prevalence dataset (prevalence = 37.057), PAL demanded an average iteration
through 26.38 citations, while HAL required sampling at least 25 citations to encounter one
“relevant” citation. On the right side of Figure 3.5 are the line graphs plotting the average
number of “relevant” citations sampled in the seed set against inclusion prevalence. The
top-right graph displays these details for PAL, while the bottom-right graph shows the
corresponding details for HAL. As inclusion prevalence increased, the number of “relevant”
citations sampled in the seed set also increased. To find at least one “relevant” citation,
a minimum inclusion prevalence of 0.789 was required. To find five or more “relevant”
citations, the minimum inclusion prevalence was 3.709, as indicated by the red dotted line.

Figure 3.5: Average seed cost for hasty and patient active sampling vs. inclusion prevalence
(Left). Line graph showing number of “relevant” samples sampled in the seed set vs. the
inclusion prevalence (Right).

3.3.3 Discussion
We first discuss some aspects of our methodology, especially the UMLS retrieval and the
preprocessing steps. As mentioned, UMLS was retrieved in bulk for all the citation screen-
ing datasets. However, this bulk retrieval approach could become impractical when dealing
with a large volume of text due to the limitations imposed by UMLS on the number of



requests. In a real-world scenario, the expectation would be to request UMLS API for
smaller batches of studies at irregular intervals, which closely mimics human behaviour.
This makes it more feasible to integrate UMLS retrieval into an automatic citation screen-
ing system for de-novo systematic reviews. Such a system could index UMLS terms as
metadata to a citation screening record stored as a unique record in a local database,
e.g., Lucene 30. In our simulation, preliminary preprocessing too was performed on all
the citation screening datasets in bulk. Considering a prospective scenario, preprocessing
can be performed on the fly, allowing each preprocessed citation to be indexed in the
aforementioned local database, using a unique identifier, ensuring effective use in future
citation screening projects. This makes it easier for the diversity seed sampler to sample
the seed set citations efficiently. In addition, these citations would have additional curated
metadata such as author list, journal name, publication year, volume number, publisher,
etc.

Certainty Diversity Certainty Diversity

Certainty Diversity Certainty Diversity

I. II.

III. IV.

Figure 3.6: Forest plot comparing the effect size of certainty sampling and cluster sampling
on I) WSS@95% r, II) Recall of “relevant” class, III) Macro-F1 score, and IV) ROC-AUC
score.

The Forest plot in figure 3.6 shows a pragmatic comparison between certainty and
diversity sampling methods. Considering the effect size of both sampling methods on
the multiple performance indicators using Cohen’s-d, it became evident that certainty
sampling outperformed diversity sampling over 21 of 25 datasets in terms of effect size
on WSS, over 23 of 25 datasets in terms of effect size on macro-F1 and 22 of 25 datasets
on the ROC-AUC score. Certainty sampling thus showcased a higher overall algorithmic
efficacy. Diversity sampling has a higher effect size on recall for the “relevant” class over
13 of the 25 (52%) datasets, while certainty sampling is on the other half. Lightly.ai
showed that using diversity sampling to select instances for few-shot training ML models

30https://lucene.apache.org/



improved the model performance by up to 4.6x per additional labelled batch compared
to random selection [316]. Apart from the performance comparison, it must be noted
that the diversity sampling tool takes almost four times as much time as the other query
methods. Diversity sampling takes an average of 55.78 minutes per experiment, requiring
nearly three times as much time as certainty sampling, which takes an average of 19.13
minutes. This observation suggests significant scaling challenges in practical applications.

We investigated the strength of the correlation between the Coverage of “relevant”
instances and their recall. Figure 3.7 displays the Pearson correlation coefficient scores
between Coverage and recall for the “relevant” class over all the datasets. Among the 25
datasets, nine demonstrated a negative correlation between Coverage and recall. Mean-
while, two out of 25 datasets displayed a high correlation, six had a moderate correlation,
and the remaining datasets exhibited varying degrees of low correlation. It is safe to assume
that Coverage does not consistently impact the recall of “relevant” citations. More than
the Coverage, it could be the proportion of “relevant” and “irrelevant” training citations
causing a class imbalance that could impact the recall.

Figure 3.7: The figure illustrates Pearson correlation coefficient scores between individual
coverage and recall for the “relevant” class over all experiments.

Class imbalance has been a challenge in binary classification tasks and is a persistent
challenge in citation screening too [92, 162, 183, 368]. In the context of our study, it might
be a contributing factor to HAL’s lower recall compared to PAL in capturing relevant
instances. PAL assumes a retrospective scenario and samples five fixed “relevant” and 20
“irrelevant” citations in the seed set. In contrast, HAL assumes a prospective scenario
and requires a sample of a seed set only with at least one “relevant” citation and n
“irrelevant” citations. This difference in approach may result in HAL having a smaller
ratio of relevant to irrelevant citations in its seed set, leading to a comparatively larger class
imbalance. The right part of the figure 3.8 shows inclusion prevalence for seed set across
all the prospective hasty start experiments in this work compared to the average seed set
inclusion prevalence of retrospective patient start (red dotted bar). The figure shows that



about 90% (green dotted bar) of the HAL experiments have a higher class imbalance in the
seed set compared to the PAL experiments. This initial class imbalance could contribute
to HAL’s lower retention of the minority “relevant” class and, hence, the lower recall.
On the left side of Figure 3.8, the seed set inclusion prevalence is depicted across both
HAL and PAL in a prospective scenario, demonstrating a similar class imbalance across
experiments. The observation also raises whether PAL outperformed HAL because it was
tested in a retrospective setting, maintaining a manageable class imbalance. We leave
this as an open question, suggesting the need for further exploration and testing of start
criteria in prospective settings in future research.

Figure 3.8: Line graph plotting seed cost inclusion prevalence across hasty active learning
experiments.

Naive Bayes had the highest recall values for the “relevant” class but also high on error
values. Regarding semi-supervision module error, SVM outperformed the other classifiers
and consistently had the lowest overall error, while NB had consistently higher error, as
shown in Figure 3.9. It is vital to track the error of the SSL module in biomedical business
systems as this error could propagate and impact health policies. However, we have yet
to encounter an active learning study that uses semi-supervision for citation screening
and reports the error propagated by semi-supervision modules. The superior recall values
achieved by Naive Bayes, a generative algorithm, raise the possibility of testing active
learning for few-shot training language models for citation screening. This remains an
open question, suggesting a potential avenue for future exploration.

Limitation: One limitation of our study is the utilization of English-language cita-
tion screening datasets. Therefore, the NLP components of the system, like the stop-
word removal component, relied on the English language transformer model. There are
multiple candidate solutions to overcome this limitation. The easiest solution is map-
ping the language of the citation screening dataset to the corresponding spaCy language
model. E.g., for a Spanish citation screening dataset, use es_core_web_sm 31 instead of
en_core_web_sm. Another solution is translating the citations from the source language
to English using neural machine translation approaches, albeit understanding that the
quality of translation could depend upon language pairs for translation and also upon the
length of the input text [55, 167, 323].

31https://spacy.io/models/es



Figure 3.9: Dot plot plotting average semi-supervision module error for NB, LR and SVM
for the datasets.

Our fuzzy deduplication module logic was based on empirical observations, as explained
in the Supplementary material. As deduplication was not the focal point of this research,
we aim in future to benchmark our deduplicator module on a larger dataset and optimize
it with and without clean meta-data.

3.3.4 Conclusion and Future Work

We draw careful conclusions from our results and propose a multi-objective AL system with
the following components. We also introduced a metric called seed cost, which measures
the average number of citations needing manual labelling before at least one “relevant”
citation is discovered for starting to train the prospective active learning system. We
suggest a diversity sampler compared to naive random sampling for the seed sampling
process. At this point, NB, a generative learning algorithm, performed best; therefore, we
suggest NB as a classifier. The performance of NB has prompted our future work. We
plan to test whether large language models (LLMs) like GPT-4 (Generative Pretrained
Transformer) could be prompted to chaff out “relevant” from “irrelevant” citations using
few-shot learning. Given the error it could propagate in the results, we do not suggest
using an SSL benefit for the system, which is unaffordable for medical SRs.

The aim of this work investigating the active learning systems was to reduce the num-
ber of citations needing hand labelling for every de-novo SR question. AL still requires
labelling a subset of the retrieved citations. Instead, using the PICO framework, LLMs
could be employed to generate synthetic citation screening datasets representative of “rel-
evant” and “irrelevant” classes. This eliminates the need for any manual annotation of
citations. The synthetic dataset could be used to train active learning or machine learning



models for binary classification. Abogunrin et al. recently carried out the first steps in
this direction, testing the feasibility of using ChatGPT to synthetically generate abstracts
that mimic peer-reviewed journal-looking abstracts [2]. Finally, we will evaluate our fuzzy
deduplication module for a larger data set in the absence of clean and complete metadata.

3.4 Chapter Conclusions
This chapter delved into methodologies for citation screening, specifically focusing on semi-
supervised supported prospective active learning. This approach provided an early insight
into the system through various performance indicators. In Section 3.2, we explored
word embeddings and highlighted the potential impact of class imbalance and overlap
on performance. In Section 3.3, we introduced a multi-objective active learning system
simulated in a prospective scenario. The system results indicated that employing smart
sampling methods improved recall when using Naive Bayes, a generative model. Given
their generative nature, these sampling methods could be effectively applied to few-shot
prompt Language Model (LLM) approaches for citation screening.



Chapter 4

PICO Information Extraction
from Clinical Trials

4.1 Introduction
The previous chapter explored a prospective active learning-based binary classification
approach to automate citation screening. Another perspective for automating citation
screening involves examining it through the lens of PICO. The criteria for including a
citation into an SR is decomposed into whether all or most predetermined (inclusion crite-
ria) PICO information is present in the citation [287]. ML algorithms can help automate
the recognition of PICO information from clinical trial studies by directly pointing the hu-
man reviewers to the correct PICO descriptions in a document. To effectively design and
employ ML approaches to PICO extraction, one must first understand the nature of PICO.
PICO information comprises broad categories (refer Table 2.1), illustrated in Figure 4.10,
which further include subcategories. For instance, “P” represents clinical trial participant
information, which is then decomposed into details such as participants’ disease condition,
gender, age, sexual orientation, ethnicity, social status, overall sample size, and sample
sizes within different clinical trial groups. The intervention information category is subdi-
vided into the type of intervention, its role in the clinical trial (active or placebo), dose and
duration of administration, mode of administration, and the intervention administrator.
Similarly, the outcome information category is broken down into whether the outcome is
subjective, objective, or a hard outcome like mortality (natural or unnatural causes). It
also includes details about the outcome measurement device used and the unit of mea-
surement [90]. In summary, PICO information is inherently characterized by its highly
fuzzy and compositional nature.

In this chapter, we explore strategies and methodologies for PICO+32 information
extraction from clinical studies, mainly RCTs. In the chapter section 4.2, the possibility
of using multi-task learning (MTL) for fine-grained PICO information extraction was
explored. Section 4.3 introduces a distant supervision methodology for extracting the
“Intervention” term using freely available resources. Section 4.4 outlines developing and
evaluating a weakly supervised information extraction workflow focused on PICO entities.
In the next and the final section 4.5, the PICO weak supervision workflow was extended
to an additional “study type and design” entity.

Segments of this chapter have been published as conference papers and a journal
32“+” denotes additional entities
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paper [82, 87, 89, 90]. [87] is submitted to a conference. In [82], my contribution was
formulating the tasks as multi-task learning, designing the experimental setup with trans-
former and LSTM models, executing the experiments, analyzing the results, and report-
ing the findings in a conference paper. In [89], my contribution was conceptualizing
the idea and framework. This involved crawling and locally dumping the data from
https://clinicaltrials.gov/ repository into the local Lucene database. I also de-
signed and executed distant supervision framework and experiments, devised and adapted
the string matching approach for “Intervention” information labelling, analyzed results,
and presented the findings in a conference paper. In [90] and [87], I adapted PICOS infor-
mation extraction as a fuzzy, weakly supervised task. The process involved defining the
weak supervision framework, identifying and repurposing the sources of weak supervision,
manually and semi-automatically mapping them to PICO targets, designing experiments
using generative label model and transformer models, analyzing results, and reporting
findings in a journal paper and a conference paper.

1. The code and Hilfiker physiotherapy dataset manually annotated with coarse and
fine-grained PICO information and introduced in [82] could be found on GitHub and
Zenodo, respectively.

• https://zenodo.org/records/6961986
• https://github.com/anjani-dhrangadhariya/multitask-pico-detection

2. The distantly-labelled dataset and the code for the DISTANT-CTO approach intro-
duced in [89] could be found on Zenodo and GitHub, respectively.

• https://zenodo.org/records/6961986
• https://github.com/anjani-dhrangadhariya/distant-cto

3. The silver standard pseudo-labelled dataset and the weak supervision approach in-
troduced in [90] could be found on DRYAD and GitHub, respectively.

• https://datadryad.org/stash/dataset/doi:10.5061/dryad.ncjsxkszr
• https://github.com/anjani-dhrangadhariya/distant-PICO

4. The code to reproduce the results in [87] could be found at GitHub.

• https://github.com/anjani-dhrangadhariya/distant-studytype

4.2 Multitask learning for PICO Information Extraction
This section details experiments conducted to explore the potential of using MTL to
extract PICO and its subcategories.

An ML model can help automate PICO information extraction from clinical trial stud-
ies by directly pointing the human reviewers to the correct PICO descriptions in a doc-
ument. However, as explained in the preface of Section 4.1, the detected coarse-grained
PICO descriptions are further delineated into fine-grained semantic units (see Figure 4.1).
This means that even after a machine points a human reviewer to the correct coarse-grained
PICO description, the reviewer must manually read and understand its finer aspects to
screen the study for relevance. This leads to the semi-automation of the process. Fully



Figure 4.1: Example of I. coarse-grained annotated participant span and II. further delin-
eated fine-grained “Participant” entities (P = Participant).

automating the citation screening process requires identifying, delineating, and normal-
izing the fine-grained PICO mentions, allowing for machine reasoning over the extracted
semantic units. Unlike in many biomedical journals, fine-grained PICO mentions in the
broader health literature are neither clearly identified nor standardized as semantic units
(e.g. naming conventions for interventions and outcome measurement), making it an even
more tedious process for the reviewers [141]. This hampers machine reasoning over the
semantic units, leading to barriers for full automation.

This work explores and proposes end-to-end neural attention models that require no
hand-engineered features, unlike the previous approaches and are trained to improve the
recognition of fine-grained PICO entities. This approach achieves state-of-the-art (SOTA)
performance for fine-grained “Participant” and “Outcome” entity recognition. In this
work, the approach to fine-grained PICO recognition was considered a sequence labelling
task for which two different setups were tested: single-task learning (STL) setup and multi-
task learning (MTL) setup. It was investigated whether these model setups trained on the
PICO benchmark corpus extend to reaching similar performance for an in-house PICO-
annotated corpus from the physical therapy domain (hereafter: physiotherapy corpus).
The key takeaway from the error analysis and corpus exploration was that the PICO
benchmark corpus over-represents pharmaceutical entity labels, leading to poor perfor-
mance on any low-frequency entities, especially the non-pharmaceutical entities coming
from domains of physiotherapy, complementary therapies and in the more general health
domain. Automating PICO recognition is far more challenging than open-domain named-
entity recognition (NER) because there are disagreements between human experts on the
exact words that make up PICO elements. Additionally, PICO recognition cannot be
purely labelled as a NER task because “Participant” entities span entire sentences.

4.2.1 Related Work

As our work focuses on recognizing fine-grained semantic PICO mentions, this section
reviews previous PICO recognition approaches.

PICO elements were first proposed for building structured clinical questions [159, 279].
Since then, studies have explored their use for IR with the potential to automate relevant
screening for SRs. Research towards automatic PICO detection peaked with the explo-
ration of several methods including rule-based lexical approaches [74, 80], language models
(LM) [36], support vector machines (SVMs) [37, 75], graphical models like CRF [54, 175],
shallow neural (Multilayer Perceptron MLP) approaches [35, 135], a combination of ma-
chine learning and rules [53, 54] and deep neural approach like LSTMs [166]. These studies,
however, used small annotated corpora, heavy text pre-processing and hand-engineered
features.



The availability of a comparatively large, and probably the only, PICO benchmark
corpus from [254] with multi-grained (fine and coarse-grained) PICO annotations opened
up possibilities to explore the neural models. They used this corpus to train baseline
models using hand-engineered features to detect fine- and coarse-grained entities sepa-
rately. Their baselines achieved a competitive performance on the coarse-grained PICO
but a poor performance on the more difficult, semantic, fine-grained entities 33. SciBERT,
through domain-adaptation improved 34 the overall coarse-grained PICO recognition for
the EBM-NLP corpus [28]. [171] used the EBM-NLP pretrained parameters to improve
coarse-grained PICO recognition over a small in-house dataset compared to a randomly
initialized LSTM-CRF model. [41] combined sentence-level PICO recognition with rele-
vance screening, leveraging the use of this corpus.

A few studies dived into recognizing finer aspects of PICO but did not focus on all
of them together. For instance, the DNER (Disease NER) [369] neural model focused
on disease-mention extraction, [359] focused on extraction of patient demographics (sex,
sample size, disease), [61] explored extraction of different intervention arms from RCTs
(randomized controlled trials). Except [254], prior work either focused on coarse-grained
or sentence-level PICO detection. Fine-grained PICO detection has not yet garnered as
much attention as it should, given its potential for fully automating the SR screening
phase through machine reasoning.

The focus of our work is to improve recognition of fine-grained PICO entities, test
feasibility and competency of MTL models utilizing joint information from the fine- and
coarse-entity annotation, and improve generalization by introducing inductive bias [20, 49].
Additionally, the MTL and STL models trained on the EBM-NLP benchmark corpus were
used to evaluate fine-grained performance using an in-house corpus from physiotherapy
and rehabilitation.

4.2.2 Method
This section describes our motivation for using the MTL approach, the datasets used to
train and evaluate it, the end-to-end MTL system (refer Figure 4.2), and its components.

4.2.2.1 Multitask learning

We assume that both fine- and coarse-grained PICO entity recognition are closely related
tasks because fine- entities are essentially nested under the coarse spans (see Figure 4.1).
These closely related tasks could serve as mutual sources of inductive bias for each other
opening up the possibility to jointly train them using a multitask learning approach [20, 49].
MTL has also shown to leverage performance on nested biomedical named-entities (NEs)
for example for the GENIA corpus [103, 104, 372].

In the STL setup, multiple models separately learn to detect the coarse- and fine-
grained entities each for the population, intervention/control and outcome using individ-
ual label structure. In contrast, an end-to-end MTL system jointly learns to recognize
fine- and coarse-grained entities by exploiting the similarities and differences between the
task characteristics. MTL is particularly suitable for this case because the fine-grained
entities are nested under the coarse-grained spans both drawn from the same chunk of
text. This opens up the possibility to improve recognition of poorly performing 35 fine-

33https://ebm-nlp.herokuapp.com/
34https://paperswithcode.com/sota/participant-intervention-comparison-outcome
35https://ebm-nlp.herokuapp.com/#Leaderboard



Figure 4.2: The proposed end-to-end MTL approach with fine-grained recognition as the
main-task and coarse-grained as the auxiliary task. Removing either of the CRF decoder
heads gives the respective STL setups.

grained recognition by sharing the hidden representation with the far better performing
coarse-grained task. For comprehensive details on the MTL algorithms in NLP read [286].

In our MTL setup, fine-grained PICO recognition was considered as the main-task and
involved assigning each token in the input text with the fine-grained PICO class labels
(see Table 4.1). Coarse-grained recognition was considered as an auxiliary or helping
task and involved assigning each token in the input text with either 1 (“Participant”
or “Intervention” or “Outcome”) or 0 (“No Label”). For both tasks, 0 (“No Label”) was
considered as the out-of-the-span label. Both tasks shared the encoder system components
using the concepts from hard-parameter sharing but used separate decoder heads and loss
calculation. To understand the effect of each of the functional components for the MTL
setup, we began training simple models and sequentially added more layers to understand
the improvement effect. To compare performance of each MTL setup, a corresponding
STL setup was used. To probe the effect of the self-attention component individually on
both the tasks in the MTL setup two ablation experiments were performed.

4.2.2.2 Dataset

EBM-PICO test set: We used the EBM-PICO corpus comprising ∼5000 coarse- and
fine-grained PICO-annotated documents 36 to train and test the end-to-end system (see
Figure 4.1 and Table 4.1). A part of the dataset was annotated by crowd-sourcing and a
small part by medical experts. It comes pre-divided into a training set comprising 4,993
documents and a test set comprising 191 that was used for evaluation. More details about
the dataset can be found in [254].

36A single document consists of a title and an abstract.



Participant count Intervention/Comparator count Outcome count
0 No label 124372 No label 120453 No label 115578
1 Age 708 Surgical 659 Physical 7215
2 Sex 157 Physical 1988 Pain 180
3 Sample size 661 Drug 4424 Mortality 261
4 Condition 3893 Educational 1328 Side effect 540
5 Psychological 62 Mental 1657
6 Other 323 Other 2064
7 Control 542

Table 4.1: Coarse-grained P (Participant), I (Intervention) and O (Outcome) labels are
delineated into respective fine-grained labels. Annotation counts are shown in the table.

Physiotherapy and Rehabilitation test set: An additional test set comprising 153
documents in an in-house SR titled “Exercise and other non-pharmaceutical interventions
for cancer-related fatigue in patients during or after cancer treatment: an SR incorporat-
ing an indirect-comparisons meta-analysis” was manually annotated by the first author
using the annotation instructions37 available from [150, 254]. The primary purpose of this
additional test dataset was not to establish any inter-annotator agreement (IAA) but 1)
to understand the complexity and noise encompassed in the multi-grained PICO annota-
tion process and 2) to test the feasibility of the proposed setups trained on the general
medical (EBM-PICO) dataset to predict PICO classes for a corpus from physiotherapy
and rehabilitation domains. The vitality of this annotation exercise will be apparent in
the discussion section (see Section 4.2.5). IO (Inside, Outside) or raw labelling was used
for both sequence labelling tasks.

4.2.2.3 System Components

1. Embeddings: Instead of random weight initialization or using word embeddings,
initialization with pretrained contextual language models (LM) have proven to benefit
multiple NLP tasks [169]. Contextual representations like BERT [81], ULMFit [156], and
GPT [271] encode rich syntactic and semantic information from the English language text
into vectors eliminating the need for heavy feature engineering. The proposed model setups
used BERT to extract dense, contextual embeddings. Healthcare corpora contain several
domain-specific vocabularies often absent in word embeddings generated from general-
purpose corpora. In this case, the corpus words not present in the word embeddings are
either dropped during vector computation or a specialized OOV (out-of-the-vocabulary)
or UNK (unknown) token vector is used instead [169]. BERT mitigates the problem
of OOV words by using WordPiece tokenizer [115] and byte pair encoding (BPE) [300],
respectively.

et = BERT (xt) (4.1)

In Equation 4.1, et are the vectors extracted from the encoded text tokens xt using BERT
and is used as the input for the downstream layers. t corresponds to the individual time
steps (tokens) and ranges from 1 to n.

37https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6174533/bin/NIHMS988059-supplement-Appendix.
pdf



2. Feature transformer: Each document in the training set was composed of ∼500
tokens. To encode long-term dependencies and learn a task-specific text structure, the
model stacked a single bidirectional LSTM (BiLSTM) layer on top of the embedding
layer [152]. A forward LSTM ran from left-to-right (LTR), encoding the text into a (

−→
h )

vector using the current token embedding input et and the previous hidden state ht−1.
A backward LSTM does the same from right to left (RTL). Both outputs were shallow
concatenated ([

−→
h ;
←−
h ]) into ht and used as the input for the next layer.

(
−→
h ) = LSTM(et, ht−1) (4.2)

(
←−
h ) = LSTM(et, ht+1) (4.3)

3. Self-attention: Next, the model stacked a softmax-based multihead self-attention
layer that calculated for each token in the sequence a weighted average of the feature
representation of all other tokens in the sequence [338]. A self-attention layer was added
with the aim to improve the signal-to-noise ratio by out-weighting important tokens in
comparison to the noise tokens in the text. Self-attention weights for each token were
calculated by multiplying hidden representation ht with randomly initialized Query q and
Key k weights, which were further multiplied with each other to obtain attention weights.
Finally, the obtained scaled attention weights were multiplied with the Value (V) matrix
which was obtained by multiplication between a randomly initialized weight matrix v and
ht.

Q = ht ∗ q K = ht ∗ k V = ht ∗ v (4.4)

at = Attention(Q ∗KT ) ∗ V (4.5)

4. Decoder: After weighting BiLSTM output using self-attention, the representation is
either fed to a fully-connected layer to predict tag emission sequence followed by calculation
of weighted cross-entropy loss or to a CRF layer along with the ground-truth tag sequence
yt. CRF is a graph-based model suitable for learning tag sequence dependencies from
the training set and has shown to perform better than a softmax classifier [5, 160, 207].
During training, the CRF layer learns to predict the correct tag sequence and computes
loss. During inference, the trained CRF layer is used to predict the tag sequence ŷt. In
the MTL setup, only the final CRF and/or fully-connected layers were different for both
the tasks while all the other layers were shared.

CRFloss = CRF (linear(at), yt) (4.6)

4.2.2.4 Experiments

To compare our proposed methodology on fine-grained PICO recognition, two strong base-
lines from Nye et al. were used. The baselines use a combination of n-grams, part-of-speech
tags, and character embeddings as features and used them to separately train a logistic
regression model and a neural LSTM-CRF. To demonstrate the feasibility of the MTL
approach for improving fine-grained recognition using the auxiliary coarse-grained task
and to compare the performance of each MTL setup, exactly identical STL setups were
used. The setups are:



I. BERT Linear setup includes a linear transformation layer stacked on top of the
BERTBASE model followed by weight-balanced cross-entropy loss calculation.

II. BERT LSTM CRF setup uses BERTBASE for feature extraction followed by an
LSTM and a linear layer to generate emission probabilities that feed into the CRF decoder
head that learns tag sequence dependencies and calculates loss.

III. BERT BiLSTM CRF setup is identical to setup II, but BiLSTM replaces the
LSTM layer.

IV. BERT LSTM atten CRF setup incorporates a single self-attention head. Atten-
tion weights calculated by the attention head are applied to the output of the LSTM layer
followed by a linear transformation to generate emission probabilities. These probabilities
feed into the CRF decoder.

V. BERT BiLSTM atten CRF setup is identical to the setup IV, but BiLSTM
replaces the LSTM layer.

VI. BERT BiLSTM Multihead atten CRF setup differs from setup V in how
attention-weights are applied. For MTL, this setup uses a single-head attention-weighted
BiLSTM representation to decode coarse-grained entities while a two-head attention-
weighted BiLSTM representation is used to decode the fine-grained entities. This was
to over-weigh the fine-grained signals.

VII. BERT BiLSTM Multihead atten: setup has specific settings for the MTL and
STL. In the MTL setup, CRF is used as a decoder for the fine-grained task. The coarse-
grained task includes a linear layer followed by a weighted cross-entropy loss calculation.
As STL cannot have a coarse-grained task, the encoder setup was used with a linear
layer as the decoder for the fine-grained task. Similar to the previous setup, to decode
the coarse-grained sequence, a single-head attention-weighted BiLSTM representation was
used, while it was a two-head attention-weighted BiLSTM representation to decode the
fine-grained entities.

In the MTL setup, all except the final decoding layer shared the parameters for the
main and auxiliary tasks. For decoding, the final shared hidden representations were fed to
two separate decoding heads that calculated the losses separately for both tasks. The back-
propagated loss was a linear combination of both task losses (Loss = Losscoarse+Lossfine).
For the STL setups without any shared representation between the tasks, the models were
optimized using these individual task losses.

Experimental Details: Each model was trained for 15 epochs with a mini-batch
size of 6 and maximum sequence length of 512. Last four layers of BERT embeddings
were summed before passing to the next layer. BERT was fine-tuned without freezing
the weights. Hidden size for LSTM/BiLSTM was set to 512/1024. Model training was
optimized using AdamW using a learning rate of 5e-5. The gradients were clipped to
1.0 to mitigate exploding gradients problem. For the models that used weighted cross



entropy loss calculation, balanced class weights were calculated using sklearns’ compute
class weights function 38.

Ablation experiments: To probe the effect of attention weights individually on the
fine- and coarse-grained tasks in the MTL setup, two ablation experiments each were
performed. For the experiments, the linear transformation was directly applied to the
BiLSTM layer without attention-weighting and this unweighted BiLSTM output was first
used for the main task and in the second experiment for the auxiliary task.

4.2.3 Evaluation

Similar to the other PICO recognition studies, the F1 score was evaluated and reported per
token for comparison. Each F1 score is an average of individual fine-grained categories for
PICO. The F1 score serves to compare: 1) the performance of our methodology with the
baseline, 2) the performance of STL vs. MTL for the fine-grained PICO recognition, and
3) the performance improvement brought by the additional functional layers for the MTL
and STL setups. A t-test was applied as a significance test with a Bonferroni corrected
p-value (αaltered) threshold set to 0.007 to the normally distributed F1 scores for each
MTL model and its corresponding STL counterpart for the fine-grained task [94, 114].

4.2.4 Results

F1 scores for the EBM-PICO and physiotherapy corpus are reported in Table 4.2. In
most setups, STL significantly outperforms MTL. For the EBM-PICO corpus, in terms
of the cumulative PICO F1, the MTL setup VII outperforms the STL counterpart, but
only by gaining a 4% boost in F1 for the “Intervention” recognition while deprecating
the performance on the “Participant” entity. Compared to the MTL setup V, setup VI
gains 3% F1 on the “Participant” and “Outcome” recognition by exploiting the two-head
attention-weighted BiLSTM outputs exclusively for decoding the fine-grained output vs.
only a single head for decoding the coarse-grained output. Setup VII further improves the
performance for the “Intervention” by switching to a linear decoding layer that uses the
weighted cross-entropy loss. In comparison to the baseline, both setups outperform for
“Participant” and “Outcome”.

For evaluation on the physiotherapy corpus, MTL again seems to exploit the two-
head self-attention exclusively on the fine-grained task (vs. only a single head on the
coarse-grained task) and linear decoding followed by weighted cross-entropy loss calcula-
tion for the coarse-grained task to achieve a similar performance as STL. The MTL setup
VII obtains 2% better F1 scores for the “Participant” and “Intervention” classes. MTL
outperforms STL only by carefully exploiting task weights, weighted loss, task-specific
decoder heads. Ablation experiments (see Table 4.3) show that the performance boost
for the MTL setup is brought by cumulative attention weighting for both decoding tasks.
Removing attention weights from either of the decoding heads reduces the F1 score. This
effect of weights on the tasks was also observed in the experiments of [49] where the MTL
benefited from the weighted hidden layers on the input, the rationale being that weighted
input when backpropagated carried more information.

38https://scikit-learn.org/stable/modules/generated/sklearn.utils.class\_weight.compute\
_class\_weight.html



Setup MTL F1 STL F1
Fine-grained P I/C O P I/C O

EBM-PICO evaluation corpus
b1 logistic regression - - - 0.45 0.25 0.38
b2 LSTM-CRF - - - 0.4 0.5 0.48
I BERT Linear 0.21 0.07 0.09 0.20 0.08 0.12
II BERT LSTM CRF 0.33 0.24 0.37 0.45 0.27 0.45
III BERT BiLSTM CRF 0.39 0.28 0.40 0.52 0.27 0.53
IV BERT LSTM attn CRF 0.34 0.28 0.47 0.53 0.25 0.49
V BERT BiLSTM attn CRF 0.51 0.30 0.53 0.54 0.30 0.57
VI BERT BiLSTM multihead attn CRF 0.54 0.30 0.56 0.54 0.29 0.55
VII BERT BiLSTM multihead attn linear 0.52 0.34 0.56 0.54 0.30 0.56

Physiotherapy corpus
I BERT Linear 0.23 0.07 0.05 0.22 0.07 0.06
II BERT LSTM CRF 0.36 0.15 0.20 0.52 0.15 0.27
III BERT BiLSTM CRF 0.40 0.17 0.24 0.57 0.19 0.27
IV BERT LSTM attn CRF 0.37 0.14 0.28 0.56 0.17 0.27
V BERT BiLSTM attn CRF 0.57 0.17 0.30 0.60 0.19 0.30
VI BERT BiLSTM multihead attn CRF 0.62 0.18 0.30 0.56 0.18 0.29
VII BERT BiLSTM multihead attn linear 0.62 0.23 0.30 0.60 0.21 0.30

Table 4.2: F1-score comparison for the fine-grained (main task) PICO labels for multitask
learning vs. single task learning for the EBM-PICO evaluation corpus and the physiother-
apy corpus. The EBM-PICO baseline F1 scores for the fine-grained PICO recognition are
annotated as b1 and b2. The best F1 score for an entity in its series of experiments is
shown in bold. Underlined scores show that the setup performed significantly better than
its counterpart.

Setup F1 (Physiotherapy) F1 (EBM-PICO)
Fine-grained P I/C O P I/C O
BERT BiLSTM attn CRF 0.57 0.17 0.30 0.51 0.30 0.53
BERT BiLSTM attn (on coarse) CRF 0.44 0.11 0.19 0.39 0.21 0.37
BERT BiLSTM attn (on fine) CRF 0.43 0.15 0.23 0.31 0.29 0.42

Table 4.3: F1 score for the ablation experiments in the MTL setup (BERT BiLSTM
attention CRF) for both test corpora

In general, it was observed that 1) using BERT alone gave very poor performance
(See Table 4.2 Experiment I), 2) the addition of a single head self-attention layer brought
a significant performance boost for both setups (See Table 4.2 Experiment V), 3) the
approaches have poor generalization on the physiotherapy corpus for the “Intervention”
entity, and 4) though most MTL setups did not outperform the STL setups, it cannot
be concluded that MTL is ineffective. These results warrant further investigation into
task-weighting, appropriate task decoders, loss weighting strategies, especially for the
label-imbalanced tasks.



4.2.5 Discussion

As apparent from Table 4.2, the “Intervention” entity showed the most dissatisfying overall
F1-score and was the only entity unable to pass the baseline. For the EBM-PICO corpus,
performance on the “Intervention” entity had saturated at 0.30 F1 and was even worse
for the physiotherapy corpus. Upon the confusion matrix inspection for “Intervention” for
both setups and evaluation corpora it was identified that all the sequence taggers failed
to correctly identify any of the “Other” and “Psychological” fine-grained classes (see red
box in Figure 4.3).

Figure 4.3: “Intervention” entity example error matrix for the MTL experimental setup
V (BERT BiLSTM attention CRF)

The most obvious reason for this is the comparatively lower number of label annotations
for these classes. It was apparent during the manual annotation of the physiotherapy
corpus that the “Other” entity encompassed any intervention mention that did not fall into
the rest of “Intervention” classes making this class highly heterogeneous with a mixture of
diverse entities that followed several patterns (see Table4.1). Heterogeneous entities are a
challenge for IR [165].

All the taggers were consistently confused between the physiological and educational
intervention classes (see the blue box in Figure 4.3), which are important for our field of
interest. This challenge is related to the “Intervention” class definition. During manual
annotation, it was rather difficult, even as a human annotator, whether to classify certain
interventions as educational or psychological (for example, the psycho-educational inter-
vention if administered by a psychologist is considered as psychological intervention and if
administered by a nurse it is classified as an educational intervention). The performance
of automatic labelling was just a direct reflection of the difficulty emanating from class



definitions. General analysis of all the PICO confusion matrices shows several out-of-
the-span entities were mislabelled as PICO and vice versa. If it was merely PICO being
miss-tagged as OOS, it could have pointed to the class-imbalance problem given that OOS
forms the majority class. However, consistently even the OOS entities were mislabelled as
PICO which points to the class-overlap problem. Error inspection showed that the overall
limited performance of these classifiers might result from the class-overlap between the
PICO and OOS classes and ambiguities in how each coarse-grained PICO was divided
further into fine-grained PICO classes, especially for the health entities.

Confusion matrix for the fine-grained “Intervention” entity for the best performing
STL (refer Figure 4.4) setup V. is given below. STL model makes errors similar to the
MTL by failing to recognize “Intervention:Other” and “Intervention:Psychological” en-
tities altogether (see red box) and confusing between “Intervention:Psychological” and
“Intervention:Educational” (see blue box).

Figure 4.4: “Intervention” entity example error matrix for the STL experimental setup V
(BERT BiLSTM attn CRF)

4.2.6 Conclusion
This work proposes two end-to-end neural model setups for fine-grained PICO recognition
that outperform the previous SOTA for the fine-grained “Participant” and “Outcome”
entities without any need for hand-engineered features. We show that MTL is not only
feasible but also a good alternative to the STL setup. However, combining even the
seemingly related tasks in MTL might not directly boost the performance. To perform
similar to or outperform its STL counterpart, MTL could require rather careful individual
weighting of the involved tasks and task losses. As part of our contribution, we provide a
manually annotated dataset with multi-level PICO annotations, complementing existing
resources 39. Our error analysis warrants rethinking of semantically solid class definitions
for fine-grained PICO entities along with ontology development for the health domain.
The code is available on Github 40.

39https://zenodo.org/records/6961986
40https://github.com/anjani-dhrangadhariya/multitask-pico-detection



4.3 DISTANT-CTO: Distantly Supervised Intervention Ex-
traction

Automating PICO entity detection has garnered lower interest than other biomedical
NER tasks because of the lack of publicly available entity annotated corpora. The largest
publicly-available PICO entity/span dataset (EBM-PICO) contains only 5000 annotated
abstracts, some of which were annotated through crowd-sourcing and others by hired med-
ical experts [254]. Crowd-sourcing, involving non-expert workers, necessitates intensive
training, making it a less commonly affordable option. On the other hand, hiring medical
experts for annotation is often prohibitively expensive. Extracting PICO entities or spans
is somewhat tricky because of high disagreement between human annotators on the exact
spans constituting the mentions. This variability results in human errors within hand-
labeled corpora. Hand-labeled datasets are static and prohibit quick manual re-labelling
in case of human errors or when a downstream task requires new entities. For example,
PICO entities extend to PICOS, where S denotes the “study type” of included evidence.
In such instances, additional efforts are often required. For instance, if an application
necessitates the inclusion of this additional study type entity, one can choose to annotate
EBM-PICO with this entity or utilize another corpus, training and evaluating separate
models for the new entity. Both options require some form of resource investment.

Distant supervision (DS) is a data-centric approach that allows generating massive
weakly annotated datasets without human annotators and has previously been used to
create large relation extraction corpora for the general and biomedical domains. To address
the challenges above and democratize PICO entity recognition, we propose DISTANT-
CTO, a distantly supervised and scalable approach to obtaining clinical trials annotations.
We take an integrative approach combining methods of semi-supervised learning (SSL)
and gestalt pattern matching (GPM) to develop a continuously extensible dataset. We
successfully demonstrate this approach for the “Intervention” and “Comparator” entity
annotations as proof of concept (POC). We specifically chose “Intervention” entity because
in prior studies utilizing EBM-PICO as a benchmark, the extraction of the “Intervention”
entity consistently exhibited the poorest performance. This challenge stems from the class
heterogeneity within the “Intervention” class, which comprises several intervention sub-
classes, presenting a significant obstacle to accurate extraction [48]. Our assumption is
that if the DISTANT-CTO approach demonstrates promising results on the challenging
“Intervention” entity, it can be extended to tackle other, more homogeneous entities such
as “Participant” and “Study type”.

The contributions of this work are as follows:

• A zero-cost, data-centric approach using DS to obtain “Intervention” and “Com-
parator” entity annotations was developed.

• The work develops and makes publicly available a large weakly-labeled dataset from
more than 300,000 clinical trials. The dataset offers about a million sentences with
more than 977,682 annotations across 11 semantic types.

• The work improves the state-of-the-art by 2% macro-F1 on the previously most poor-
performing “Intervention” entity extraction on the EBM-PICO benchmark corpus
without using costly manually labeled data and by 5% when combined with manually
labeled data.



4.3.1 Related Work
A decade of automatic PICO information extraction was limited to sentence-level due
to the unavailability of entity-annotated corpora [35, 157, 158, 166, 343]. The release of
the EBM-PICO corpus paved the way for the community to improve upon the PICO
entity/span extraction task. [254]. The corpus is biased towards pharma intervention
classes overshadowing non-pharma ones leading to a substandard performance on it in the
previous SOTA fully-supervised PICO entity/span recognition models [28, 41, 369] and
weakly supervised model [202]. Small-scale annotation projects cannot capture the range
and variation of the PICO descriptions spanning the entirety of clinical trials literature.
At some point, applications of such static corpora will confront the problem of insufficient
and irrelevant annotations. Manual annotation projects are neither affordable nor scalable
for every lab, limiting innovation.

A plethora of DS methods have been previously explored for large-scale relation extrac-
tion but not for (named) entity extraction [3, 101, 309]. Entity extraction in high-impact
clinical and biomedical domains largely relies on small expert annotated datasets. Com-
monly, obtaining weak annotations using DS rely on aligning terms (a word or phrase)
from ontologies onto the unstructured text [120, 143, 259, 362]. Ontologies are structured,
standardized data sources that do not capture various writing variations from clinical
literature. Weak annotations obtained using custom-built rules like regular expressions
are restricted by either task or worse even by entity type [112, 276, 288]. Bootstrapping
approaches like label propagation (LP) still require an expert annotated dataset to obtain
pseudo annotations for previously unlabeled data samples [29]. It is hence not zero-cost.

This work focuses on overcoming the discussed bottlenecks using a data-centric DS
approach to generate a large clinical entity annotated corpus and train a downstream
NER model to assess if it yields adequate results. Unlike the reviewed DS approaches,
this approach does not use ontologies or rules or LP but rather uses GPM for flexibly
aligning structured text in a clinical trials database to the free-text fields in the same
database using an adaptable internal scoring scheme.

4.3.2 Methods
The approach is schematically illustrated in Figure 4.6 and is described below.

4.3.2.1 Data

https://clinicaltrials.gov/ (CTO hereafter) documents more than 350,000 human
clinical studies conducted around the globe. The trial’s principal investigator enters and
updates information about each study stored in CTO. It includes the title and descrip-
tion of the clinical trial, participant’s eligibility criteria, participant disease and demo-
graphics, interventions evaluated, outcomes, etc. CTO allows programmatic access to
this vast amount of information in the JSON (JavaScript Object Notation) format. The
information is stored as a combination of structured tabular and unstructured free-text
(see Figure 4.5). The ‘OfficialTitle’ and ‘BriefTitle’ tags in the JSON respectively store
the official and shorter version of the study title in an unstructured free-text format.
The ‘BriefSummary’ and ‘DetailedDescription’ tags store study summaries. Interventions
used in the study are stored under the ‘InterventionName’ tag and their synonyms under
‘InterventionOtherName’ tag each of which could be linked to their broad semantic type
(drug, device, behavioral, procedural, biological, dietary supplement, diagnostic test, radi-



Figure 4.5: An example CTO record (ID - NCT01929356) to demonstrate the information
storage format which is a combination of structured table and unstructured text.

ation, genetic, combination product, other) mentioned under the ‘InterventionType’ tag.
As each intervention name is linked to its semantic type, this becomes a structured in-
formation store. The ‘InterventionDescription’ tag describes intervention administration
procedures often in a detailed passage.

4.3.2.2 Distant Supervision

Distantly supervised (DS) information extraction (IE) is an efficient SSL method [101, 356].
It is used when the task at hand has 1) some strongly-labeled data, 2) abundant unlabeled
data, and 3) a weak-labelling function that could sample from this unlabeled data and
label them using a heuristic function. This labelling function is a heuristic algorithm that
uses a heuristic to label the unlabeled data [128, 263]. It results in a weakly-labeled dataset
with potential label noise. DS-IE models can then collectively use this strongly-labeled
and weakly-labeled training data to give the final output.

4.3.2.3 Gestalt Pattern Matching

In entity extraction, the most common form of DS is to heuristically align terms from a
structured information source onto the unstructured text [356]. When flexible, this heuris-
tic boils down to a substring matching problem. The weak-labelling function matches the
longest common substring (LCS) between the structured term and unstructured text.
Gestalt Pattern Matching (GPM), also known as Ratcliff/Obershelp similarity algorithm,
is a string-matching algorithm for determining the similarity of two strings. The similarity
between two strings S1 and S2 is measured by the formula, calculating twice the number of
matching characters Km divided by the total length |S1|+ |S2| of both strings. Matching
characters are identified by the LCS algorithm followed by recursively finding matching
characters in the non-matching regions on either side from both strings [274]. Similarity
ranges between 0, which means no match, and 1, which means a complete match of the
two strings.

Similarity(S) =
2Km

|S1|+ |S2|
; 0 ≤ S ≤ 1 (4.7)

Difflib: It is a python module providing a sequencematcher function that extends
the GPM algorithm for comparing pairs of strings. sequencematcher finds the longest
contiguous subsequence between the sequence pair without the “junk” elements such as
blank lines or white spaces. The same idea is then applied recursively to the flanks of the



sequences to the left and the right of the matching subsequence. This yields matching
sequences that appear normal to the human eye.

4.3.2.4 Candidate Generation

We define candidate generation as the process of automatically generating entity-annotated
sentences.

Assumption and Problem formulation: As “Intervention” and “Comparator” enti-
ties represent interventions in two different roles in clinical trials and semantically the same
classes, they are clubbed into a single “Intervention” entity class. Let each CTO record
JSON file be ri ∈ R, i = {1, 2, ..., I}. Let the intervention terms in ‘InterventionName’
tags and ‘InterventionOtherName’ tags be the intervention source S = {s1, s2, ..., sm} used
in the study ri. Each intervention term si ∈ S is linked to intervention class from ‘Inter-
ventionType’ tag converting it into a tuple of 〈sclass, sname〉, sname = intervention term and
sclass = intervention category. sname is a sequence of words {y1, y2, ..., yn}, n = {1, 2, ..., N}.
Let each sentence ti = {x1, x2, ..., xm},m = {1, 2, ...,M} in the ‘BriefSummary’, ‘Detailed-
Description’, ‘BriefTitle’, ‘OfficialTitle’ and ‘InterventionDescription’ be a part of the in-
tervention target set T . We assume that for each sname in ri there could exist a mapping
to ti meaning sname is possibly either completely or partially mentioned in the ti (see
Figure 4.5). Our goal is to build a scalable and adaptable candidate generation pipeline
that maps each sname from the structured intervention source S to the target sentences
ti ∈ T (if a loose mapping exists). In this prototypical work, we focus on almost direct
matches between the sname and ti and keep the order-free matches for future work.

Approach For each individual CTO record ri, we extract all sname ∈ S and ti ∈ T
from the locally stored CTO dump. Both S and T are preprocessed by lower-casing,
replacing hyphens and multiple trailing spaces with a single space and removal of Uni-
code characters. Given a sname and ti, our aim is to identify and score (if identified)
the mapping between both sequences. To map and score alignment from the sname to
ti, we use a distant supervision labelling function LFds which is a combination of the
sequencematcher function and an internal scoring function to fetch almost direct anno-
tations. The sequencematcher function takes as input sname and ti and outputs several
matching blocks dblock ∈ Dblocks between both strings. These matching blocks between the
two strings are calculated using a modified gestalt pattern matching algorithm as elabo-
rated in 4.3.2.3. Each dblock = 〈MatchPost,MatchPoss,MatchLen〉. MatchPost is the
start of the match in ti, MatchPoss is the start of the match in sname and MatchLen
is number of characters matching between the both. sequencematcher provides an in-
ternal scoring function called as ratio that returns a similarity score between the two
sequences being matched. We do not use ratio because it returns an overall matching
score between the two full sequences sname and ti rather than a match score for sname

and dblock. Instead, to identify the matching blocks that correspond to an exact match
between an entire sname and a part of ti, we calculate a match score ds for each matching
block output by sequencematcher using equation 4.8 which is dividing the number of
matching characters in the match block dblock by number of characters in sname.

ds =
MatchLen

|sname|
; 0 ≤ ds ≤ 1 (4.8)



Any dblock with the ds score of 1.0 is considered as complete match and then the sname

corresponding to the dblock is mapped onto sentence ti to generate a positive annotation
sentence a+ ∈ A+. Using the dblock with only the match score 1.0 leads to missing out on
several entities leading to an incomplete noisy weakly annotated dataset. Taking this into
consideration, we retrieve the dblock matching with ds score of 0.9 as fairly-accurate partial
matches. We used a validation set to relax the choice of similarity match score ds to 0.9.
We relax the labelling function LFds to match bigrams in source terms to the targets. In
the real-world data, not all sentences in clinical trial literature mention the intervention
name and therefore in addition to the positive annotation sentences we require negative
annotation sentences. We take ti and sname where no parts of dblock scored ds more than
0.2 to generate the negative annotation sentences a− ∈ A−. We call all these sequences
comprised of the positive and the negative entity annotated sentences A+− our weakly
annotated dataset. Next, for all A+− instances we fetch part-of-the-speech (POS) tags
using POS-tagger from NLTK (Natural Language Toolkit) resulting into A+−POS . We
call the resulting dataset DISTANT-CTO set. POS tags are added as additional features
as they have shown to help model generalization [15]. difflib in combination with
the internal scoring function are previously unexplored for automatic entity annotation
generation. It has to be noted that the method depends on availability of short source
texts with the possibility that they will be mentioned in longer target texts.

Figure 4.6: DISTANT-CTO approach - I) Distantly-supervised candidate generation ap-
proach, and II) Distantly-supervised NER model architecture.

4.3.2.5 Model Training

We train an end-to-end distant NER model on A+−POS using the architecture explained
below.



1. Feature Extraction: Open-domain pre-trained language models (LM) like BERT,
ULMFit and GPT rule out the need for heavy feature engineering and also tackle the
the challenge of out-of-vocabulary (OOV) words using the WordPiece tokenizer and byte
pair encoding (BPE) [81, 169]. Unfortunately, they encode limited semantic and syntactic
information for domain-specific tasks. To capture the domain-specific information, we
used SciBERT, which was continually pretrained and domain adapted on the scientific
literature from semantic scholar [132]. The models used SciBERT to tokenize the text
input A+− into encoded tokens xt and extract dense, contextual vectors et from xt at each
time-step t [28]. POS-inputs A+−POS were one-hot encoded into pt vectors.

2. Feature transformation: To further fine-tune to the training corpus, the model
stacked a bidirectional LSTM (BiLSTM) on top of the SciBERT [152]. A BiLSTM layer
encodes the text into a (

−→
h ) and (

←−
h ) vector using the current token embedding input

et and the previous hidden state ht−1 in both the directions. −→h and ←−h were shallow
concatenated ([

−→
h ;
←−
h ]) into ht and used as the input for the next layer. Similarly, the

one-hot encoded POS-vectors pt underwent feature transformation and were concatenated
([
−→
h POS ;

←−
h POS ]) into POS-features hpt .

3. Self-attention: Next, the model stacked a single-head self-attention layer that cal-
culated for each POS-tag feature at time t in the sequence a weighted average of the feature
representation of all other POS-tag features in the sequence apt [338]. This improves the
signal-to-noise ratio by out-weighting important POS features. Self-attention weights for
each POS-tag were calculated by multiplying hidden representation hpt with randomly
initialized Query q and Key k weights, which were further multiplied with each other
to obtain attention weighted vectors. Finally, the obtained attention weights were multi-
plied with the Value (V) matrix which was obtained by multiplication between a randomly
initialized weight matrix v and ht finally obtaining scaled attention-weighted vectors apt .
Attention-weighted POS features and ht were shallow concatenated into ([apt ;ht]) vector.

4. Decoder: The attention-weighted representation ([apt ;ht]) was fed to a linear layer
to predict the tag emission sequence ŷt followed by a CRF layer that takes as input the ŷt
sequence along with the true tag yt sequence [160]. CRF is a graph-based model suitable
for learning tag sequence dependencies from the training set and has shown to outperform
softmax classifiers.

4.3.2.6 Experiments

The experiments were designed to evaluate the performance of the distant NER models
trained with the DISTANT-CTO set alone vs. DISTANT-CTO set in combination with
the EBM-PICO training set. The EBM-PICO training set is naturally composed of both
positive and negative annotation sentences, but for the DISTANT-CTO, we artificially
generated the negative sentences A−. To evaluate the impact of these negative annotation
sentences, we perform ablation experiments, training the models only with positive anno-
tation sentences A+. Finally, we also evaluate the performance when training using the
entity annotations with match score ds = 1.0 alone vs. entity annotations with ds ≥ 0.9.
A simple SciBERT-CRF model trained using positive annotation sentences A+ was used
as the baseline. Transformer-based models incorporate sequence order and self-attention



components, so our baseline served to check the impact of removing costly BiLSTM and
self-attention modules.

Benchmark datasets We evaluate our weakly annotated dataset and the NER model
on the following PICO benchmarks.

1. EBM-PICO gold. The EBM-PICO dataset developed by Nye et al. consists of
5000 PICO entity/span annotated documents 41. It comes pre-divided into a training
set (n=4,933) annotated through crowd-sourcing and an expert annotated test set
(n=191) for evaluation purposes. We use the training set for combined training
experiments and the test set for evaluation. More information regarding the dataset
could be found in [254].

2. Physio set. A test set comprising 153 PICO entity/span annotated documents from
Physiotherapy and Rehabilitation RCTs (Randomized Controlled Trials) was used
as an additional benchmark to evaluate the generalization power of our approach for
this sub-domain [82].

Experimental Setup We define the following experimental setups based on the moti-
vations described in section 4.3.2.6:

• Exp 1.0 distant A+− c[1,0.9] wPOS The setup is composed of SciBERT BiLSTM
CRF trained on the surface form (text) and attention-weighted POS inputs using
DISTANT-CTO set comprising entity-annotated sentences A+− with ds ≥ 0.9.

• Exp 1.1 distant A+− c[1] wPOS The setup is composed of SciBERT BiL-
STM CRF trained on the surface form and attention-weighted POS inputs using
the DISTANT-CTO set comprising only the entity-annotated sentences A+− with
ds = 1.0.

• Exp 1.2 distant A+ c[1] wPOS The setup is composed of SciBERT BiLSTM CRF
trained on the surface forms and attention-weighted POS inputs using DISTANT-
CTO set comprising only the ds = 1.0 annotations. The negative annotation sen-
tences were removed in this case and the system was trained with positive annotated
candidates A+ only.

• Exp 1.3 distant A+ c[1] POS ¬ BiLSTM attention The setup is composed of
SciBERT CRF trained on the surface form inputs using DISTANT-CTO set com-
prising only the ds = 1.0 annotations with only positive annotated candidates A+.
Attention weights were removed from the POS inputs. This setup was used as the
baseline.

• Exp 2.0 - Exp 2.3 These experiments are identical to their series 1.x counterparts
except that the models are trained on a combination of the DISTANT-CTO with
the EBM-PICO training set. Exp 2.3 using SciBERT-CRF architecture was used as
another baseline.

41A single document consists of a title and an abstract.



4.3.2.7 Evaluation

To evaluate the quality of automatic annotation using the DISTANT-CTO approach,
we performed manual annotation of the “Intervention” class over 200 randomly selected
samples from the dataset and compared it to the automatic annotations.

Model evaluation was carried out by predicting the “Intervention” tokens for both
benchmarks. Each experiment was conducted thrice with three random seeds (0, 1, and
42), and the average metrics (Precision, Recall, and F1) over three repetitions were re-
ported. We evaluated the statistical significance of our best model using the paired stu-
dent’s t-test as described in [94]. Further experimental details are in the Appendix.

4.3.2.8 Experiments

This section reports empirical results for the candidate generation process, evaluation
for the annotation quality of DISTANT-CTO approach using the validation sets (see
Table 4.8), and the average of the performance metrics and standard deviation σ over
three random seeds on both benchmark datasets for the described NER experiments (see
Table 4.10). We compare the performance of our weakly-supervised NER models with the
previous SOTA fully supervised (FS) methods that train on the EBM-PICO training set
and evaluate on EBM-PICO gold and also a weakly supervised approach (see Table 4.9).
These models were separately trained for each of the PICO entities/spans and also clubbed
the “Intervention” and “Comparator” together.

4.3.3 Results
This section reports empirical results for the candidate generation process, evaluation for
the annotation quality of DISTANT-CTO approach using the validation sets (see Ta-
ble 4.8), and the average of the performance metrics and standard deviation σ over three
random seeds on both benchmark datasets for the described NER experiments (see Ta-
ble 4.10). We compare the performance of our weakly-supervised NER models with the
previous SOTA fully supervised (FS) methods that train on the EBM-PICO training
set and evaluate on EBM-PICO gold and also a weakly supervised approach (see Ta-
ble 4.9). These models were separately trained for each of the PICO entities/spans and
also clubbed the “Intervention” and “Comparator” together. Therefore, the comparison is
valid. Sentence-level PICO recognition methods are not comparable to that of entity-level.

4.3.3.1 Candidate Generation

A total of 360,395 CTO records were downloaded as of March 2021. From all the down-
loaded CTO records, we extract 200,545 unique (391,286 redundant) intervention names
from the aforementioned intervention sources. Out of the 391,286 intervention terms re-
trieved, 104,433 terms were successfully mapped to one of the target sentences with the
ds = 1.0, and 3084 more were mapped with a score of 0.9. Adding ds ≥ 0.9 mappings did
not increase the total number of annotated sentences, but it did increase the number of
annotations obtained in each sentence. Table 4.4 shows the total number of intervention
annotations obtained from mapping the source terms to target sentences.

The total number of entity-level “Intervention” mentions in DISTANT-CTO are almost
30 times more than in the EBM-PICO dataset as shown in Table 4.5. For the EBM-PICO
training set, 57.48% of mentions fell under the “drug” class and the rest under the six
remaining classes.



Annotation level ds = 1.0 1.0 < ds ≥ 0.9

mention-level 943,284 17,199
token-level 1,515,868 43,096

Table 4.4: Token-level and mention-level intervention annotations obtained in the weakly
annotated DISTANT-CTO dataset grouped by their ds scores.

Total DISTANT-CTO EBM-PICO
mention-level 977,682 32,890
token-level 1,558,964 125,920

Table 4.5: Comparing the number of “Intervention” annotations in DISTANT-CTO vs.
EBM-PICO.

Out of all the mention-level annotations in the DISTANT-CTO dataset, 59.90% cor-
responded to “drug” class and 40% to the rest of 10 classes. The pie chart (upper pie in
Figure 4.7) shows the class distribution of the semantic classes for the retrieved “Inter-
vention” mentions sname about half of which fall under the “drug” (or Pharma) class and
the rest under the remaining 10 non-pharma classes. Out of the total retrieved mentions,
almost two-thirds that get mapped to a target t sentences also fall under the “drug” class
(lower pie in Figure 4.7).

Table 4.6 and 4.7 shows the number of retrieved intervention mentions by their seman-
tic class vs. the percentage of these intervention mentions that get mapped to some target
sentence with the match score ds of 1.0 and score 0.9 respectively. Notice that collectively
the intervention mentions that fall under the non-pharma classes outnumber the pharma
(“drug”) mentions.

Domain retrieved - (mapped)
drug 184835 (35.50%)
device 43134 (20.09%)
other 51703 (16.19%)
procedure 31630 (21.38%)
behavioral 33590 (16.03%)
biological 21225 (22.86%)
dietary supplement 11699 (25.46%)
radiation 4134 (20.44%)
diagnostic test 6742 (10.13%)
combination product 1070 (14.39%)
genetic 1524 (07.94%)
all non-pharma 206,451 (18.80%)

Table 4.6: Number of intervention mentions retrieved vs. percentage mapped with ds =
1.0

Metrics for the manual evaluation of DISTANT-CTO using the validation set show
that adding annotations with ds ≥ 0.9 increases the recall by 3%, but lead to an expected
drop in the precision (see Table 4.8).



Figure 4.7: upper) Class distribution for the retrieved “Intervention” mentions, and lower)
Class distribution for the mapped “Intervention” mention.

.

4.3.3.2 Model Training

Using the DISTANT-CTO set alone with the NER approach (Exp 1.1 Table 4.9 and 4.10)
crosses the previous SOTA F1 on the EBM-PICO benchmark by 2%. The best over-
all F1 for both benchmarks is reached upon training the NER models with combined
weakly-labeled DISTANT-CTO with the strongly-labeled EBM-PICO dataset (Exp 2.0
Table 4.10) crossing the previous SOTA F1 by 5% on the EBM-PICO benchmark. The
improvement in F1 for the combined experiments (see Exp 2.1 and 2.0 Table 4.10)) is
significant when compared to the their best DISTANT-CTO counterparts (see Exp 1.1
Table 4.10)). Using DISTANT-CTO alone has good precision across the experiment se-
ries 1.x, but combining it with the EBM-PICO further improves the recall and balances
out the F1 in the experiment series 2.x. Adding the artificially generated A− sentences
increases the previous F1 by 5.71% and 3.77% (compare Exp 2.2 with Exp 2.1) for both
the benchmarks. Note that adding these negative sentences results in an important im-



Domain retrieved - mapped
drug 184835 (36.22%)
device 43134 (21.13%)
other 51703 (16.84%)
procedure 31630 (22.16%)
behavioral 33590 (16.44%)
biological 21225 (24.07%)
dietary supplement 11699 (27.44%)
radiation 4134 (21.17%)
diagnostic test 6742 (10.78%)
combination product 1070 (14.95%)
genetic 1524 (08.53%)
all non-pharma 206,451 (19.64%)

Table 4.7: Number of intervention mentions retrieved vs. percentage mapped with a ds of
0.9

Match score P R F1
ds = 1.0 0.86 0.80 0.83
ds ≥ 0.9 0.84 0.83 0.84

Table 4.8: Macro-averaged evaluation metrics for the ds = 1.0 and ≥ 0.9 entity annotations
for the validation set detailed in the section 4.3.2.7

provement of about 9% in the F1 for the Physio dataset that is specific for the domain of
physiotherapy and rehabilitation. For the combined experiment, the addition of the ds ≥
0.9 annotations improves the F1 as well by a small margin for the EBM-PICO benchmark
(Exp 2.0 I.) but has a marginal performance loss for the Physio benchmark (Exp 2.0 II.).
While using the DISTANT-CTO alone with the ds ≥ 0.9 annotations boosts the precision
but downgrades recall thereby reducing the F1 for both benchmarks.

Type Method P R F1
FS Nye [254] 84.00 61.00 70.00
FS Beltagy [28] 61.00 70.00 65.00
FS Brockmeier [41] 69.00 47.00 56.00
FS Stylianou [315] 69.04 79.24 73.29
WS Liu [202] 22.00 54.00 31.00
WS distant-cto (our) 83.36 70.38 75.02
HS combined (our) 76.93 80.17 78.44

Table 4.9: Comparison of DISTANT-CTO NER models against the previous SOTA NER
methods for “Intervention” recognition in terms of macro-averaged precision (P), recall
(R), and F1 scores. Boldface represents the best score. Note: FS = Fully Supervised, WS
= Weakly Supervised, HS = Hybrid Supervision.



Dataset Experimental setup P R F1 ±σ
I. EBM-PICO gold

distant A+− c[1,0.9] wPOS 88.85 65.39 71.27 ±0.007
distant A+− c[1] wPOS 83.36 70.38 75.02 ±0.013
distant A+ c[1] wPOS 74.85 68.74 71.25 ±0.005
distant A+ c[1] POS ¬ BiLSTM att 85.82 64.84 70.31 ±0.002
combined A+− c[1,0.9] wPOS 76.93 80.17 78.44* ±0.006
combined A+− c[1] wPOS 77.10 78.83 77.89 ±0.007
combined A+ c[1] wPOS 67.65 85.02 72.18 ±0.009
combined A+ c[1] POS ¬ BiLSTM att 70.91 77.38 73.60 ±0.025

II. Physio set
distant A+− c[1,0.9] wPOS 86.13 63.70 69.14 ±0.003
distant A+− c[1] wPOS 79.45 66.28 70.63 ±0.008
distant A+ c[1] wPOS 70.52 66.37 68.14 ±0.002
distant A+ c[1] POS ¬ BiLSTM att 79.97 60.79 65.14 ±0.005
combined A+− c[1,0.9] wPOS 75.55 79.42 77.32 ±0.010
combined A+− c[1] wPOS 76.29 80.18 78.07* ±0.009
combined A+ c[1] wPOS 64.80 83.69 68.75 ±0.011
combined A+ c[1] POS ¬ BiLSTM att 71.50 78.40 74.38 ±0.020

Table 4.10: Macro-averaged performance metrics for the NER models trained on weakly
annotated DISTANT-CTO alone vs. in combination to the strongly annotated EBM-
PICO on the two described benchmarks (EBM-PICO gold and the Physio corpus). “att”
= attention. Bold is the best experiment score. Asterisk (*) denotes a significant F1-score
of the experiment to its counterpart in the series 1.x. Significance tested using the paired
student’s t-test.

(a) ds = 1.0 (b) ds ≥ 0.9

Figure 4.8: Confusion matrices for the evaluation of DISTANT-CTO validation set anno-
tations with a) ds = 1.0 and b) ds ≥ 0.9.

4.3.4 Error Analysis
4.3.4.1 Candidate Generation

Confusion matrices (see Figures 4.8a and 4.8b) for manual evaluation of DISTANT-CTO
validation set show that relaxing ds from 1.0 to 0.9 does improve the true positives (TP)



and reduce false negatives (FN) by 0.9% for the “Intervention” class but also reduce the
precision by increasing false positives by 1%. Improved recall for the “Intervention” class
is undoubtedly preferred, and hence it is vital to inspect the cause of false negatives. A
considerable chunk of false negatives was either i) missed intervention abbreviations and
the synonyms not mentioned under the sources, or ii) when only the partial intervention
name was mentioned in the source, or iii) if specific intervention terms from the source
were mentioned in the target but with different word order (see Table 4.11). This detailed
post-hoc error analysis also revealed that 67% false negatives fell under non-drug type
composite intervention mentions (phrase mentions of more than two words). For instance,
although the term ‘Home-based Rehabilitation using Interactive devices’ is expressed in the
sentence ‘This study investigates clinical outcomes after the rehabilitation by interactive
home-based devices.’, it will remain unmapped to it because the term does not map to
the target text using our alignment heuristic. The problem lies in the lack of naming
conventions for non-pharma treatment mentions that are neither clearly identified nor
standardized as semantic units[82]. There are two possible programmatic solutions to this.
The first is using additional external ontologies as sources of distant supervision which
improves coverage of our labelling function to detect further writing variations within the
text. Another solution to matching such source and target text is using order-free string
matching algorithms [10]. Using external ontologies solves the issues of missed synonyms,
and adding an external dictionary of treatment abbreviations could solve the problem
of missed abbreviations [112]. We noticed that the “Comparator” terms (e.g., placebo,
sham, saline, etc.) were often not mentioned as structured sources. The development of
a general comparator term dictionary could improve this. Improving the coverage and
reducing the false negatives (thereby improving recall) using these methodologies suggests
an area where future work would be valuable. Most false positives were a result of bigram
matching. We will modify fuzzy bigram matching to relevant bigram matching, thereby
reducing the occurrences of spurious false-positive bigrams as matches. Only frequently
occurring bigrams from the source will be matched to the targets. We plan to explore the
quality of DISTANT-CTO for ds ≤ 0.9.

Category FN count
Missed synonym 168
Missed abbreviation 77
Partial match (incl. boundary errors) 361
Missed comparator term 43
Reorder 39
Total 688

Table 4.11: Distribution of the false negatives in the DISTANT-CTO evaluation corpus.

4.3.4.2 Model Training

Manual error analysis was carried out for both the PICO benchmarks, and the error counts
for EBM-PICO gold are reported in Table 4.12. Each token level error was divided into
either of the four classes: 1) false negative (FN) - if the entire entity that the token as part
of was missed out by the NER model prediction, 2) false positive (FP) - if the entire entity
that the token was part of was falsely recognized as “Intervention”, 3) boundary error (BE)
- if the boundary tokens were missed out but otherwise the entity was identified by the



NER model prediction, and 4) overlapping error (OE) - if the NER model made an error
in the non-peripheral tokens of an otherwise identified entity mention. Non-peripheral
tokens are all the tokens except the first and the last token of the multi-token entity/span.

Models trained on DISTANT-CTO alone had a fewer boundary and overlapping errors,
meaning they missed out on many “Intervention” entity signals leading to high precision
but compromised recall. On the contrary, NER models trained on combined datasets
made twice the more BE and six times more OE. While most BE and OE in the 1.x
series were false negatives, they were false positives in the 2.x series leading to a higher
recall. This could be because the EBM-PICO training set annotated the longest possi-
ble intervention span resulting in spans rather than pure entities in the DISTANT-CTO
approach. Combined training set models also picked out names of treatments, surgeries,
and enzymes not used as treatments in the RCT as intervention mentions. A huge chunk
of overall FN (including the FN tokens in BE and OE) was for entities with composite
intervention terms containing two or more tokens. We noticed that the NER system also
missed several short intervention names and abbreviations. Overlapping errors occurred
when multiple intervention names were mentioned together, separated by either comma
or punctuation, or other conjunctions. The error analysis revealed some issues within
EBM-PICO ground truth, which had inconsistencies with the intervention boundaries for
whether intervention frequency, dose, and the way of administration should be marked as
“Intervention”. Several times, the ground truth marked articles preceding the entity and
prepositions and punctuation succeeding the entity.

Exp FP FN BE OE
EBM-PICO gold

Exp 1.0 819 1688 559 66
Exp 2.0 759 1112 1278 515
Exp 1.1 790 1152 650 55
Exp 2.1 793 1039 1327 517

Table 4.12: Distribution of the token-level errors made by the corresponding NER models
on EBM-PICO gold.

Manual error analysis results for Physio corpus are reported in the Table 4.13. FP error
count was always lower than the FN error count in the EBM-PICO gold but for the Physio
set, the combined NER experiments (series 2.x) lead to a higher FP compared the FN.
The ratio of BE in Exp series 2.x is on an average 1.2 times that of series 1.x. However, a
large chunk of BE in series 1.x are false negatives in contrast to the BE in series 2.x which
are false positives. Upon closer inspection of false-negative BE in series 1.x, we found
that they were either missed intervention synonyms inside brackets, missed information
accompanying intervention terms like dose, type, medium of intervention, administrator of
intervention, or location of administration. This is due to the fact that distantly supervised
annotation does not take into account labelling the additional intervention information
except the name. The addition of the manually annotated EBM-PICO in the combined
training experiments reduces the number of false-negative BE. This is due to the fact
that EBM-PICO guidelines required the annotators to mark the longest possible phrase
describing intervention including the additional information like dose, mode, medium, and
location of administration.

For both the evaluation corpora, the combined NER experiments lead to more TP for



the “Intervention” class which is vital to PICO entity/span recognition. This could be the
case because the combination of weakly and strongly annotations reduce the percentage of
unseen surface forms (words) from both test sets. 27.70% of the intervention entity surface
forms in the EBM-PICO gold benchmark remain unseen in the EBM-PICO training set
while for the DISTANT-CTO training set it drops to 21.38%. 27.29% of the intervention
entity surface forms in the Physio benchmark remain unseen in the EBM-PICO training
set while for the DISTANT-CTO training set it drops to 22.97%. Combining both training
sets leads to a reduction in unseen surface forms to 16.29% and 15.13% for the EBM-PICO
gold and Physio benchmarks respectively. [15] has shown that recall on unseen surface
forms is significantly lower than on seen surface forms for NER tasks.

Exp FP FN BE OE
Physio set

Exp 1.0 963 1586 654 20
Exp 2.0 1168 897 867 347
Exp 1.1 990 1420 723 19
Exp 2.1 1116 904 1025 228

Table 4.13: Distribution of the token-level errors made by the corresponding NER models
on Physio set.

4.3.5 Conclusion

This work exploits the freely-available https://clinicaltrials.gov/ (CTO) and distant
supervision for developing the largest available weakly annotated database of Intervention-
Comparator entities across 11 sub-types. Using these weak annotations combined with
the manual annotations, an “Intervention” NER model was trained that surpasses cur-
rent approaches by more than 5% in terms of F1 on the EBM-PICO gold benchmark
and demonstrates strong generalizability on a domain-specific physiotherapy benchmark.
When the same NER model was trained with the weakly annotated dataset alone, it
surpassed other approaches by 2%.

DISTANT-CTO successfully demonstrated the feasibility of using distant supervision
for “Intervention” extraction, but they did not extend it to other PICO+ entities. In
the next Section 4.4, a weak supervision approach is developed and explored for PICO+
extraction, thus bridging the gap of the previous work.

4.4 Weakly Supervised PICO+ Information Extraction

4.4.1 Background and Significance

Supervised ML requires hand-labelled data, but hand-labelling PICO information re-
quires experts with combined medical and informatics skills, which is expensive and time-
consuming in terms of intensive annotator training and the actual annotation. Labelling
PICO is tricky because of the high disagreement between human annotators on the exact
spans constituting PICO, leading to human errors in hand-labelled corpora [41]. Some
studies examine the errors in the publicly-available EBM-PICO benchmark [1, 188, 254].
More importantly, depending upon the SR question, PICO criteria extend to PICOS



(S-Study design), PICOC (C-Context), PICOT (T-timeframe), etc [228, 280, 333]. Hand-
labelled datasets are static and prohibit quick manual re-labelling in case of human errors
or when a downstream task requires new entities. This annotation bottleneck has pivoted
attention towards weakly supervised (WS) learning that relies on programmatic labelling
sources to obtain training data. Programmatic labelling is quick and allows efficient mod-
ifications to the training data labels per the downstream application changes.

Weakly-supervised learning has demonstrated strengths for clinical document classifi-
cation and relation extraction, but clinical entity extraction tasks have heavily relied on
fully supervised (FS) approaches [98, 209, 226, 237, 351, 354]. Despite the availability of
UMLS (Unified Medical Language System), a large compendium of medical ontologies,
which can be re-purposed for weak entity labelling, it has not been extensively applied
to clinical entity labelling [161]. Several legacy clinical applications are also supported by
rule-based if-else systems relying on keyword cues that aid weak labelling [111, 176, 360].
With so many weak labelling sources available, the challenge for weak supervision is ef-
ficiently aggregating these sources of varying accuracy. Compare this to crowd sourcing,
where an important task is to model the worker’s accuracy without the ground truth [163].
Though crowd sourcing requires annotator training and quality control, programmatic la-
belling does not [107].

Data programming is a domain-agnostic generative modelling approach combining
multiple weak labelling sources and estimating their accuracies. The effectiveness of data
programming for biomedical entity recognition has been explored by Fries et al. in their
Trove system [112]. However, Trove only explores well-defined entities like chemical, dis-
ease, disorder and drug. PICO categories are highly compositional spans by definition,
fuzzier in comparison and much more intricate in that they can be divided into sub-
classes. A shortcoming of span extraction is that even after a machine points a human
reviewer to the correct PICO span, the reviewer requires to manually read and under-
stand its finer aspects to screen the study for relevance. Span extraction hence leads to
semi-automation but hinders full-automation. The entity recognition approach to PICO
is more challenging than the entity recognition approach to disease or chemical names
which are more or less standardized. PICO terms are not standard, and even the ex-
perts disagree on the exact tokens constituting them [41]. Weakly-supervised PICO entity
recognition has not garnered as much attention as supervised span recognition. As far as
our knowledge goes, only two studies exist for weakly-supervised PICO recognition. One
of these approaches only explores distant supervision for intervention extraction using a
single labelling source [89]. The other approach studies weak supervision for PICO span
extraction but still utilizes some supervised annotation signals about whether a sentence
includes PICO information [202].

The challenges to developing weak supervision approaches to PICO entity recognition
are first defining the subclasses within PICO spans and then mapping several available
ontologies and terminologies to these. The next challenge is developing weakly-supervised
classifiers by optimally combining ontologies and evaluating their performance compared
to full supervision. Another challenge is developing higher-cost expert-generated rules
corresponding to these subclasses to aid ontology classifiers and evaluate their combined
performance. The study also identified limitations in the currently available EBM-PICO
training set and corrected them in the EBM-PICO test set for reliable evaluation of the
WS approaches. This work demonstrates the feasibility of using weak supervision for
PICO entity extraction using the EBM-PICO benchmark and shows how weak supervision
overtakes full supervision in certain instances. This work also shows how using only



ontology-dependent classifiers vs combining them with expert-generated rules compares
to fully-supervised extraction and, in some instances overtaking it.

4.4.2 Methods

The birds-eye view of our approach is shown in Figure 4.9.
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Figure 4.9: Weak PICO entity extraction approach: I) Multi-class labels in the EBM-PICO
benchmark are binarized. II) Low-cost UMLS vocabularies are re-purposed as labelling
sources, and experts design rules as high-cost labelling sources. III) Labelling functions
map the training sequences to class labels using labelling sources resulting in an m × n
label matrix. IV-V) The label matrix is used to train a generative model that outputs
probabilistic labels that a downstream transformer model can use for entity recognition.

4.4.2.1 Datasets

EBM-PICO is a widely used dataset with multi-level PICO annotations: span-level or
coarse-grained and entity-level or fine-grained (see Table 4.14). Span-level annotations
encompass the maximum information about each class. Entity-level annotations cover the
more fine-grained information at the entity level, with PICO classes further divided into
more semantic subclasses. The dataset comes pre-divided into a training set (n=4,933)
annotated through crowdsourcing and an expert annotated gold test set (n=191) for eval-
uation [254]

The EBM-PICO original paper and annotation guidelines caution about variable anno-
tation quality42. Abaho et al. developed a framework to post-hoc correct EBM-PICO out-
comes annotation inconsistencies [1] Lee et al. studied annotation disagreements suggest-
ing variability across the annotators [188] Low annotation quality in the training dataset
is excusable, but the errors in the test set can lead to faulty evaluation of the downstream
ML methods. About~1% of the EBM-PICO training set tokens were evaluated to gauge
the possible reasons for the fine-grained labelling errors and use this exercise to conduct an
error-focused PICO re-annotation for the EBM-PICO gold set. The paper’s first author,
who has a master’s in life science informatics and relevant experience in manual curation
projects, carried out the re-annotation.

42https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6174533/bin/NIHMS988059-supplement-Appendix.
pdf



The dataset is pre-tokenized and did not require additional preprocessing except the
addition of POS tags and token lemma using spaCy43. Multi-class fine-grained PICO
annotations were binarized, i.e. a token label was reset to 1 if the token represented a
fine-grained entity.

P I/C O
0 No label No label No label
1 Age Surgical Physical
2 Sex Physical Pain
3 Sample size Drug Mortality
4 Condition Educational Side effect
5 Psychological Mental
6 Other Other
7 Control

Table 4.14: P (Participant), I (Intervention) and O (Outcome) represent the coarse-
grained labels that are further divided into respective fine-grained labels. The table is
taken from Nye et al.[254]

4.4.2.2 Binary Token Labelling

Automatic PICO entity labelling was considered a classical binary token labelling problem
whereby a labeller maps an input sequence of n text tokens, X = (x1, x2, . . . , xn) to output
sequence Y = (y1, y2, . . . , yn), where yi ⊂ y; y = {1, 0} is the label for token xi. In weak
supervision, Y is latent and should be estimated by aggregating several weak labellers of
variable accuracy. The estimates Ŷ of Y are assigned as probabilistic token labels of X
leading to a weakly labelled dataset that can be used to train discriminative models.

4.4.2.3 Labelling Functions

In a binary token labelling task, a labeller, also called a labelling function (LF) is a weak
classifier λ that uses domain-specific labelling sources S and some logic to emit binary
token labels Ỹi where ỹ ∈ {−1, 0,+1} for a subset of input Xi tokens. An LF designed
for a particular target class t ∈ T (here; T ⊂ {Participant, Intervention,Outcome})
should output 1 for the positive token class label, 0 for the negative token class label,
and abstain (−1) on the tokens where it is uncertain λ 7→ {−1, 0,+1}. Three LF types
depending on the types of labelling sources were defined and designed. 1) The ontology
LFs for a target class take a dictionary of terminologies with each terminology mapped to
one of y ⊂ {0,+1} token target labels. Any labelling function using terminologies used
string matching as the labelling heuristic. Relevant bigram word co-occurrences were used
to account for fuzzy span matching from the terminologies. A bigram was considered
relevant for a vocabulary if it occurred ≥ 25 times in that vocabulary. 2) A ReGeX
(regular expression) labelling function for a target class uses regular expression sources
for both negative and positive token class {0,+1} labels and abstains from the rest. 3) A
heuristic labelling function is personalized for each target class and takes a generic regex
pattern and specific POS (part-of-speech) tag signals. Abbreviations in clinical studies

43https://spacy.io/



are considered using a heuristics abbreviation identifier, and the identified abbreviations
were mapped to their respective target classes. Stopwords from Natural Language Tookit
(NLTK)44, spaCy, Gensim45, and scikit learn46 were used to initialize negative token label
templates.

4.4.2.4 Labelling Sources

This section describes the labelling sources S used and their mapping to the PICO tar-
gets T . The 2021AB-full release of the UMLS Metathesaurus English subset with 223
vocabularies was used. After removing non-English and zoonotic vocabulary and the vo-
cabularies containing fewer than 500 terms, 127 vocabularies remained [161]. Terms in
the selected vocabularies were preprocessed by removing stopwords, numbers, and punc-
tuation. The following non-UMLS vocabularies were used: Disease Ontology (DO), Hu-
man Phenotype Ontology (HPO), Ontology of Adverse Events (OAE), Chemical entities
of biological interest (ChEBI), Comparative Toxicogenomics Database (CTD) - Chem-
ical and Disease subclasses, Gender, Sex, and Sexual Orientation Ontology (GSSO),
Chemotherapy Toxicities Ontology (ONTOTOX), Cancer Care: Treatment Outcomes
Ontology (CCTOO), Symptoms Ontology (SYMP), Non-pharmacological Interventions
Ontology (NPI), Nursing Care Coordination Ontology (NCCO) [77, 118, 140, 179, 198, 239,
251, 281, 282, 297]. The Table4.15 details links to the following non-UMLS labelling sources
used. ReGeX and heuristics like POS tag cues were used to capture recurring class-
specific PICO patterns otherwise not captured by standardized terminologies. Vocabu-
laries are structured, standardized data sources that do not capture writing variations
from clinical literature and custom-built ReGeX are restricted by either task or entity
type [276, 288] Distant supervision dictionaries were created from the structured fields of
https://clinicaltrials.gov/ (CTO) as described by Dhrangadhariya et al.[89] Princi-
pal investigators of the clinical study manually enter data in CTO, thereby incorporating
large-scale writing variations [46].

4.4.2.5 Sources to Targets

Along with the source S and the logic to map Si to token labels, an LF needs informa-
tion about which target Ti label and binary token class to map the source. This section
reports on how the LF sources were mapped to PICO targets. UMLS 2021AB-full re-
lease contains 16,543,671 concept names, making direct concept to PICO target mapping
impractical. These concepts are organized under semantic type categories (e.g. disease,
signs and symptoms, age group, etc.)47, which allows mapping these semantic categories to
PICO targets invariably mapping the concepts from the vocabularies to target classes [222]
It is a challenging expert-led activity, though decomposing PICO into subclasses greatly
helps map sources to a target. A semantic category was marked 1 to represent a pos-
itive token label for that target class or 0 to represent a negative token label for that
target class. Non-UMLS vocabularies were obtained from NCBO bioportal48 and were
chosen to be PICO target specific and assigned to a single label. Structured fields from
CTO were used to create target-specific distant supervision dictionaries. The structured

44https://www.nltk.org
45https://radimrehurek.com/gensim/
46https://scikit-learn.org
47https://www.nlm.nih.gov/research/umls/META3_current_semantic_types.html
48https://bioportal.bioontology.org/



Target Ontology Source
P DO bioportal.bioontology.org/ontologies/DOID
P HPO bioportal.bioontology.org/ontologies/HP
O OAE bioportal.bioontology.org/ontologies/OAE
I ChEBI - Chemical bioportal.bioontology.org/ontologies/CHEBI
P ChEBI - Disease bioportal.bioontology.org/ontologies/CHEBI
O CTD ctdbase.org/
P GSSO bioportal.bioontology.org/ontologies/GSSO
O CCTOO bioportal.bioontology.org/ontologies/CCTOO
O ONTOTOX bioportal.bioontology.org/ontologies/ONTOTOX
P SYMP bioportal.bioontology.org/ontologies/SYMP
I NPI bioportal.bioontology.org/ontologies/NPI
I NCCO bioportal.bioontology.org/ontologies/NCCO

Table 4.15: The table lists the links for the non-UMLS ontologies used in work along with
the PICO (P = Participant, I = Intervention and O = Outcome) target class the ontology
was mapped.

CTO field “Condition or Disease” was mapped to the participant target, and the “In-
tervention/Treatment” field was mapped to the intervention target. The semi-structured
“Primary Outcome Measures” and “Secondary Outcome Measures” fields were mapped to
the outcome target. The hand-crafted dictionaries for outcomes were designed using the
official websites listing patient-reported outcome (PROM) questionnaires49 and PROMs50.
Other hand-crafted dictionaries were separately designed for participant gender and sex-
uality and intervention comparator terms.

4.4.2.6 LF Aggregation

Depending upon the number of sources S for each T , we obtained several LFs. Each
LF λi ∈ Λm;Λ = {λ1, λ2, . . . , λm} maps a subset of inputs Xn to output sequence Ỹ n

with labels ỹ ∈ {−1, 0,+1} yielding a label matrix λ ⊂ {−1, 0,+1}m×n. The weakly-
generated labels might have conflicts and overlaps and are generally noisy. These LFs can
be ensembled using the majority vote (MV) rule, where a token label is elected only when
a majority of λi votes for it. Ties and abstains lead to the selection of the majority label.

ŶMV = max
y⊂{0,1}

m∑
i=1

1(λi = yi) (4.9)

However, MV considers each labelling function as conditionally independent and does
not consider the variable accuracies of different labelling sources weighing them equally.
Snorkel implements data programming paradigm into the label model (LM) that re-weights
and aggregates labelling functions into probabilistic labels ŷi. To do this, the label model
trains a generative model P (Λ, Y ) to estimate LF accuracies θj using stochastic gradi-
ent descent to minimize log loss in the absence of labelled data [96, 276] Even though the
ground truth is not observable to estimate accuracies, they can be estimated using observed

49https://www.thoracic.org/members/assemblies/assemblies/bshsr/patient-outcome/
50https://www.safetyandquality.gov.au/our-work/indicators-measurement-and-reporting/

patient-reported-outcomes/proms-lists



agreement and disagreement rates between labelling function pairs λi, λj in Λ. Generative
modeling ultimately results into token label probablities Ŷ for label classes {0, 1}. Grid-
Search was used to fine-tune the label model parameters using the hand-labelled validation
set from the EBM-PICO. The parameters are listed in the Experimental details section of
the supplementary material. Once the pseudo-labels are generated by majority voting or
the label model, these could be used to train a discriminative model.

θ̂ = argmin
θ

(
− log

∑
Y

pθ(Λ, Y )
)

(4.10)

4.4.2.7 Experiments

The labelling functions λm were used to label the EBM-PICO training set and obtain
Λ. Methods like MV and LM were tested to aggregate LFs. LM output probabilistic
labels for the training set were used as weak supervision signals to train downstream
PubMedBERT to minimize noise-aware cross-entropy loss. PubMedBERT was trained
on PubMed literature and was chosen because of its domain similarity to our training
data (PubMed abstracts) and task [131]. It was tuned on fixed parameters listed in the
experimental details section in the supplementary material.

ω̂ = argmin
ω

1

N

n∑
i=1

Eŷ∼Ŷ

[
l
(
f(x,w), ŷ

)]
(4.11)

UMLS ontologies are readily-available sources of weak supervision, while searching the
non-UMLS ontologies requires an additional effort and understanding of the target class
and domain. On the contrary, designing the rules requires understanding the idiosyncratic
clinical patterns for the target classes. Therefore, we experiment and report results on
three “expense” tiers to gauge the performance changes: 1) UMLS labelling sources, 2)
UMLS and non-UMLS labelling sources, and 3) UMLS, non-UMLS and expert-generated
rules. Label aggregation via MV and LM along with WS PubMedBERT for the above
tiers was tested. The weakly supervised experiments were compared against a competitive,
fully-supervised PubMedBERT trained using the hand-labelled EBM-PICO training set.
For all the experiments, 80% of the EBM-PICO dataset was used for training and 20%
for validation.

UMLS ontologies were ranked and sorted based on the number of n-gram overlaps
between the respective terminology and the EBM-PICO validation set. These were then
partitioned into 127 partitions, where the first partition combined the entire UMLS into
a single LF and was used as the baseline. The last partition kept all the terminologies as
separate LFs. Partition-wise performance over the validation set was tracked.

4.4.2.8 Evaluation

The classical macro-averaged F1 and recall for MV, LM, weakly-supervised (WS) PubMed-
BERT model and the fully-supervised (FS) PubMedBERT model was reported. Token-
level macro-F1 was chosen to make it comparable to the PICO extraction literature. Mean
macro-averaged scores are reported over three runs of each model, with the top three ran-
dom seeds (0, 1, and 42) used in Python. The models were separately trained for each
target class recognition task using the raw (IO) tagging scheme. Students t-test with an
alpha α threshold of 0.05 was used to measure the statistical significance.



4.4.3 Results
We extended the EBM-PICO subclasses (see Table 4.14) to better query the labelling
sources and design LFs (see Figure 4.10). For a more comprehensive subgrouping, we pro-
pose developing a PICO ontology [291] It is more straightforward to search for ontologies
representing adverse events or diseases rather than fending for an ontology describing the
entire participant or outcome span. It is easier to grasp cues separately for outcome terms
and instruments of outcome measurement to develop heuristics. The intervention span
can include the intervention name, role (primary intervention or comparator), dosage,
frequency, mode of administration and administrator. The outcome span can include
the outcome names, the scales, techniques or instruments used to measure them and
the absolute outcome measurement values. The EBM-NLP guidelines restrict annotating
the outcome name, how it was measured, and the intervention’s name and role (control,
placebo), leaving out the other subclasses.

Figure 4.10: Hierarchical representation of PICO subclasses. The categories marked in
bold italic are the same as the fine-grained categories in the EBM-PICO corpus.

4.4.3.1 Error Rectification

The errors in the EBM-PICO validation subset were rectified and categorized them for
each PI(C)O class, as shown in Table 4.16. Of 12,960 (~1% of 1,303,169) validation
tokens evaluated to gauge the errors, 18.30% of the intervention class tokens, 23.39% of
the participant class tokens and 20.21% of the outcome class tokens were errors. The
error analysis was used to correct fine-grained annotation errors in the EBM-PICO test



set, and both the EBM-PICO and its updated version were used for evaluation. We
were constrained with obtaining multiple annotators for the re-annotation to calculate
inter-annotator agreement (IAA). Therefore, the Cohen’s κnew was calculated between the
original EBM-PICO gold set and our re-annotation over 200 documents and compared it
to Cohen’s κ (see Figure 4.11) provided by the authors of the original corpus [254]

Table 4.17 reports macro-averaged F1 for the experiments detailed in the experiments
section compared to the fully-supervised approach. Error rectification leads to an overall
average F1 improvement of 4.88% across the experiments using a weakly labelled training
set with the highest average improvement of 8.25% (7.15%-9.52%) for participants and
2.68% (-0.11%-4.28%) for outcomes. For the participant class, both the LM and the WS
F1 scores increase the full supervision score by 0.90% - 1.71%. It has to be noticed that
weak supervision outperforms full supervision on the rectified benchmark only for the
participant entity.

Error category Participant Intervention Outcome
Repeat mention unmarked 213 227 207
Remain un-annotated 47 59 71
Inconsistency 46 18 85
Punctuation/article 15 23 48
Conjunction connector 30 36 57
Junk 53 79 30
Extra information 80 146 58
Generic mention 70 120 85
Total errors 554 708 641

Table 4.16: Error distribution and error categories in the analysed tokens (~1%) of EBM-
PICO corpus.
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Figure 4.11: Cohen’s κnew between the expert annotated EBM-PICO gold test set and
EBM-PICO compared to the Cohen’s κ for EBM-PICO gold test set annotations.



4.4.3.2 Model Training Results

MV LM WS FS
Target LF source #LF Fine Corr Fine Corr Fine Corr Fine Corr
P UMLS 3-4 62.13 69.28 64.28 72.22 65.32 73.49 72.99 74.41

+Ontology 4 61.72 69.32 64.23 72.18 64.76 72.31
+Rules 19-119 63.08 72.06 65.79 75.31 66.73 76.12

I/C UMLS 8-95 59.7 63.94 60.11 64.28 59.17 61.72 83.37 81.06
+Ontology 5-101 62.14 66.92 62.83 67.09 67.06 69.76
+Rules 4-35 58.51 63.45 64.34 68.17 70.27 72.39

O UMLS 5-6 55.79 59.85 58.76 62.36 60.83 63.55 81.2 80.53
+Ontology 4-5 56.006 59.64 59.27 62.34 59.55 60.46
+Rules 3-5 55.08 59.36 60.9 62.87 60.5 60.39

Table 4.17: Macro-averaged F1 scores for UMLS, UMLS+other and rule-based weak su-
pervision. Underlined values show the best score without manually labelled training data.
Bold values show the best overall F1 score in any category. Note: Fine = EBM-PICO
fine-grained annotations, Corr = EBM-PICO fine-grained annotations (EBM-PICO up-
dated)

MV vs. LM vs. WS The label model improved the average performance by 2.74%
(0.17%-5.83%) compared to majority voting. However, PubMedBERT did not guaran-
tee improved performance across the targets leading to performance drops between 0.4 -
2.56%. Though the weakly-supervised PubMedBERT models did not always improve the
performance compared to their label model counterparts, they had the best F1 score for
each target class. The majority voting had higher recall across experiments compared to
precision, while LM focused on precision (see Figure 4.13), making it a possible choice for
recall-oriented PICO extraction tasks.

LF tiers Adding non-UMLS LFs to the UMLS tier increases performance for the inter-
vention target by an average of 4.48%, but leads to performance drops for the participants
and outcomes targets by 0.36% and 0.64%, respectively. Adding task-specific LFs in-
creased the overall F1 by a negligible 0.98%. Heuristics improved performance for the
interventions LM by 11.1%.

UMLS partitions To investigate the optimal number of UMLS labelling functions re-
quired, we used the same methodology as in Trove, holding all non-UMLS and heuristics
LFs fixed across all ablation tiers and computed performance across s = (1, 2, . . . , 127)
partitions of the UMLS terminology. We noticed an increased performance for the first
few partitions. However, We did not see the performance drop with a further increase in
the participant and intervention target partition number. Partitions with more than 100
LFs performed better. This situation contrasts with Trove, where an increase in partitions
leads to a drop in performance across targets (see Figure 4.12). For the outcomes target,
an increase in the number of partitions leads to an increased performance initially but a
drop with a further increase in the partition numbers. LM outperforms MV on training
performance across the two targets and experiments except for the intervention target,



where the MV model combining UMLS and additional ontologies outperforms LM. The
simple baseline collapsing UMLS into a single LF usually did not perform better than the
others in UMLS partitions for any of the three experiment tiers (refer to the #LF columns
in Table 4.17).
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Figure 4.12: The relationship between the number of UMLS partitions and the macro-
averaged F1 score for i) participants target, ii) interventions target and iii) outcomes
target.

4.4.4 Discussion
Our study results show the promising performance of weak supervision compared to full
supervision, surpassing it for participant extraction. It has to be noticed that weak super-
vision requires careful LF design consideration to surpass full supervision, primarily due
to the compositional nature of PICO classes. In another study, we use this weak supervi-
sion approach to successfully extend PICO to PICOS extraction (S-Study type) without
needing additional annotated “Study type” data to quickly power applications [91]

Although it is easy to re-purpose the vocabulary for labelling, it is challenging to map
them to the correct PICO targets. A decreased or stagnant F1 after adding non-UMLS
LFs to the UMLS tier indicates this. The performance boost using rule-based LFs was
only observed in the participants and interventions and was detrimental to the outcomes.

Even though LM improves performance compared to MV, MV has a higher recall
across experiments indicating a good corpus coverage of the LFs (refer to Figure 4.13).



While some studies press on PICO extraction being a recall-oriented task, this is debated
in practice. In practice, high recall might lead to a high false positive (FP) rate, leading
to the reviewers spending more time weeding out FP noise than reading and annotating
the abstract with the entities [202]

LM only considers the information encoded in the weak sources to label phrases from
the training text but does not consider the contextual information. Transformers consider
the contextual information and should generalize beyond the label models in theory. It is
empirically confirmed by the performance boost that PubMedBERT brings this on top of
the label model for some instances, but the weakly-supervised outcomes extraction results
refute it.
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Figure 4.13: Precision and recall across the experiments for the I. Majority vote models
(left) and II. Label models (right)

4.4.4.1 Error Analysis

We conducted an error analysis on 18 (n = 5,291 tokens) out of 200 EBM-PICO gold test
set documents to contextualize the weak supervision models. Table4.18 shows token level
errors divided into either of the four classes: 1) false negative (FN) - if the entire entity
that the token was part of was missed out by the LM, 2) false positive (FP) - if the entire
entity that the token was part of was falsely recognized as an entity, 3) boundary error
(BE) - if the boundary tokens were missed out, but otherwise the entity was identified,
and 4) overlapping error (OE) - if LM made an error in the non-peripheral tokens of an
otherwise identified entity mention. Non-peripheral tokens are all tokens except the first
and last of the multi-token entity.

In future, we aim to reduce FNs and dig deeper into this category. Besides participant
disease, tokens representing participant sample size, age group, gender, and symptoms
subclasses went unrecognized. The LM labelled these FNs with low confidence, meaning
the LFs did encode this information, but the signals were not strong enough for correct
classification. Such FNs could be mitigated by weighting LFs for these subclasses. Con-
siderable standard and unusual abbreviation terms were missed out, especially the ones
encompassed by brackets, e.g., MetS (Metabolic Syndrome), TC+TSE (testicular cancer
+ testicular self-examination), LVH (left ventricular hypertrophy), etc.. The model did
not pick some of the standard abbreviations, e.g. LVH and MetS, due to a faulty map-
ping of these abbreviations to the incorrect PICO target. A similar pattern was observed
for the intervention (e.g., IBA (Inference-based Approach), RT (Radiotherapy)) and out-
comes class abbreviations too. The mismapping is now amended. LM did not capture the



abbreviations enclosed in a bracket (e.g., “(COPD)”) as the LFs were not designed to tag
these brackets.

Intervention LMs did not recognize common drug names, e.g. Fenofibrate and CP-
529,414. In addition, many non-standardized treatment names went unrecognized, e.g.
substance abuse prevention program, inference-based approach, high-concentration con-
trast agents, epigastric impedance, etc. Such terms are absent from UMLS and non-UMLS
vocabularies leading to FNs, so the LFs do not encode them. Similarly, intervention BEs
were the non-idiosyncratic tokens partially misrecognized because the vocabulary did not
encode this partial information. E.g., the term “internal stenting” is partially recog-
nized because “stenting” is a UMLS concept but not “internal”. Similarly, in the term
“endopyelotomy stent placement,” only the UMLS concept token “stent” was identified.
Participant BE FNs were usually the extra information that described more about the
participant’s disease, e.g., the information about disease staging went unrecognized in the
participant’s disease entity (in “advanced carcinoma”, the word “advanced” was a BE
FN). Such entities not encoded by the LFs contribute to the FNs and could be mitigated
by adding relevant vocabulary and rules [15] It is straightforward to add vocabulary but
challenging to map a semantic group or a vocabulary to PICO categories, especially for
the outcomes class. The current source-to-target mapping approach is manual and based
on subjective expert judgment which an objective algorithm can improve. This mapping
could have led to several unexplainable errors, especially for the outcomes and, to a less
extent, for the intervention class. Additionally, it took time to identify semantic categories
and UMLS vocabularies corresponding to the study outcomes pointing towards the gap in
developing one.

FP FN BE OE
Participants 160 76 80 10
Interventions 308 119 60 0
Outcomes 233 306 139 7

Table 4.18: Distribution of the token-level errors made by the best label models on EBM-
PICO gold.

Some of the error categories identified in this work were also identified by Abaho et al.,
but this work adds more classes on top of them. While they limit their error exploration
to the outcomes class, we extend it to the rest. An error falls under repeated mention if
one instance of an entity is marked, but another identical instance of the same entity in
the same context is not marked within the abstract. The reason can be the EBM-PICO
guidelines flaw where the annotators of fine-grained entity annotation were confined to only
annotate within the longer span-level annotation. Hence, any annotation error missed by
the coarse-grained annotators was continued by the fine-grained annotators.

An error falls under remains unannotated if a token should have been annotated as
an entity but was not. In the intervention class, a large portion of this category was
constituted by the generic mentions of controls (placebo, saline), which were not annotated.
In the participant class, patient ethnicity and other information like smoking status and
pregnancy (marked in the coarse-grained span) were not marked in the fine-grained entity.
The reason could be that there was no fine-grained class to categorize this information.
The annotators missed multiple important outcomes and repeated mentions in the outcome
class.



Conjunction connector errors are the conjunctions occurring between two semantically
separate entities but are falsely marked as entities. For example, “Nausea and vomiting”
are two different outcomes marked as one by annotating the conjunction between them.
When falsely marked as an entity, punctuation succeeding the entity, an article, or a
preposition preceding the entity fall under the punctuation/article errors. Extraneous
tokens marked along with the entity tokens fall under extra information category. For
example, in the phrase “This trial demonstrated short-term efficacy of smokeless tobacco
in combination with”, the annotators had marked “short-term efficacy of smokeless to-
bacco” as an outcome entity, but only “short-term efficacy” is an outcome entity. In
contrast “smokeless tobacco” is an intervention entity. In the intervention class, the an-
notation guidelines mentioned not annotating any part of the text that did not mention
the intervention name. The annotators often marked extraneous information like inter-
vention dosage, frequency, route of administration and information about the intervention
administrator.

A generic reference is a co-reference of an entity mentioned using different or similar
(but not identical) words. A generic reference of an entity (and its repeated mention) in
the same abstract was several times left unmarked by the annotators constituting a generic
reference error. For example, if the outcome endpoint “smoking cessation” was referred to
in the same abstract elsewhere as “quitting smoking”, it was not marked even though it
is a reference to the outcome phrase “smoking cessation”. If “aerobic exercise” mentioned
as “exercise intervention” was not marked, this also constitutes a generic reference error.
For instance, in an RCT, if the “breast cancer risk counselling” intervention was referred
to as “risk counselling”, the former was marked, and the latter was missed. This error was
pronounced specially for the non-pharmaceutical interventions and outcomes.

An inconsistency error arises when an entity is fully marked in some abstracts vs when
in the other abstracts the same entity is partially marked. For example, if an exercise
intervention involved aerobic exercise involving stretching and running, this information
(“stretching”, “running”) was marked in some studies while not in all the other studies.
In the case of the participant class the sample size sub-grouping information needed to be
more consistently marked. In another example, participant sample size information was
either partially or entirely marked (“59” vs “59 subjects”, “200” vs “200 controls”). We
consider a phrase as a sample size only when the absolute value quantifying sample size
follows an appropriate unit (subject, controls, patients, participants, women, men). Only
in some cases, when the unit was unavailable, did we consider a standalone number as
a sample size participant span. In the outcome class, the annotation guidelines marked
“what was measured and how it was measured”. Often, the method used for measuring
outcomes was inconsistently marked.

A junk error is a token entirely irrelevant to an entity but is marked as one. For
example, in the outcomes evaluation, the phrase “evaluate and compare” from the larger
phrase “This study aimed to evaluate and compare” was marked as an outcome entity
even though it is not a valid outcome.

These errors and inconsistencies in the EBM-PICO gold test (and training) set can
cause faulty evaluation of the machine learning approaches defying the purpose of the
corpus. A possible reason behind these inconsistencies in the corpus could be that the
annotators had clinical background but lacked an informatics background. This situation
could undermine the importance of semantic consistency required for annotating such
corpora. Hiring annotators with a combined knowledge of clinical and informatics domains
might improve the manual annotation quality. Aggregation of crowd annotations for spans



with fuzzy span boundaries might lead to many boundary errors, for example, when two
disparate entities are linked by a conjunction connector.

4.4.5 Conclusion
This work successfully adapted weak supervision for PICO spans and developed models
for predicting PICO entities without a hand-labelled corpus. Another contribution of
this work was the errors identified from the current PICO benchmark; rectified them and
used both datasets to evaluate the recognition models. Compared to full supervision,
the approach achieves promising performance and warrants further research into weak
supervision for challenging PICO extraction. In the future, we will work on extending
the data programming approach to inspect strategies for objectively mapping ontologies
to PICO subclasses and experiment using external models like MetaMap as LFs. The
approach can be extended to more clinical SR entities without a manually labelled corpus,
thereby being a starting point to overcome the annotation bottleneck. The next section
explains how the weak supervision approach was extended to extract an additional “study
type” entity without hand-labelled data.

4.5 PICO to PICOS: Using Weak Supervision to Extend
EBM-PICO Dataset with Study type (S) Information

4.5.1 Background and Significance
During the citation screening phase, PICO analysis frequently extends to analysing other
information like Study type and design, study context, timeframe, trial duration and
background, etc. depending upon the SR question and inclusion criteria [8, 228, 280, 333].
Study-type information is vital, for example, in conducting systematic reviews that aggre-
gate evidence from selected clinical study types, for e.g., Randomized Controlled Trials.
Trial duration information is essential for establishing the long-term efficacy of the treat-
ment [227]. Ethnicity of participants in important for the pharmaceutical SRs concerning
intervention effects on particular patient populations [9, 245]. The challenge lies in the ex-
pensive and labor-intensive manual re-annotation of extensive datasets like EBM-PICO,
which currently lack annotations for these additional entities.

Weakly supervised (WS) information extraction is a powerful technique that allows for
the programmatic labelling of datasets using noisy and imprecise data labelling sources
with varying accuracies. Common freely-available sources include ontology compendiums
such as UMLS (Unified Medical Language System) and other terminologies available from
NCBO BioPortal, which can be repurposed for programmatic labelling [111, 161]. Weak
supervision sources utilize multiple imprecise labelling sources to label datasets followed
by aggregating these annotations into consensus labels. The task of aggregating these
labels obtained from multiple noisy sources was earlier addressed using methods such as
majority voting and joint conditional probability models [154, 302, 322]. Soft majority
voting techniques takes into account the confidence or probability scores assigned by each
classifier or voter. Instead of considering only the most common prediction, soft voting
assigns weights to each classifier’s prediction based on its confidence level. For example,
max-margin majority voting takes into account the distance from the decision boundary to
the closest data point of each class for each classifier in the ensemble. Larger margins indi-
cate higher confidence in the prediction and higher the weight a voter gets. Soft majority



voting does not explicitly model the relationships or dependencies among labels or fea-
tures, potentially leading to sub-optimal label aggregation. Joint conditional probability
can capture the intricate relationships and dependencies among labels or features Label
aggregation has now transitioned to training generative models that estimate the accu-
racy of each labelling source to obtain a weighted programmatic label [195, 200, 277, 288].
Generative modelling allows estimating the accuracy of each labelling source to obtain a
weighted programmatic label.

Previous studies have explored weakly-supervised biomedical and clinical document
classification and relation extraction. However, clinical information extraction (IE) still
heavily relies on hand-labelled data [98, 209, 226, 237, 351]. For instance, Wang et al.
employed DS for biological entity extraction by combining multiple dictionaries into a
single labelling operator [349]. Zhou et al. too used a single source to weakly label chemical
and disease information using PubTator pipeline followed by correcting the labels using
knowledge-bases [374]. Dhrangadhariya et al. explored distantly supervised extraction of
clinical trial intervention extraction but relied only on the clinical trials database51 for
the noisy labelling [89]. Fries et al. used biomedical ontologies and regular expressions
to train their weakly-supervised system called Trove for extracting entities like diseases,
chemicals, and drugs [112]. WS requires a set of programmatic labelling sources that have
at least some representational value for the entity being weakly labelled. Such sources
are commonly available for semantically well-defined biomedical entities but are difficult
to obtain and utilize for the fuzzy clinical entities like PICO. Fries et al. [112] succeeded
in extracting the strictly standardized biomedical entities but extracting entities in the
clinical domain is more challenging due to lack of standardization, language diversity, and
fuzzy class definitions. Our previous work (see Section 4.4) addressed the challenge of
repurposing the weak supervision sources for the fuzzy, compositional PICO information
but did not extend it to “Study type and design” and other before-mentioned entities.

Drawing inspiration from the prior work [90], this work demonstrates the feasibility
of weak supervision for enriching large hand-labelled corpora, such as EBM-PICO, with
new clinical entities. Specifically, we successfully applied weak supervision techniques to
generate programmatic labels for the “Study type and design” entity for all 4,081 EBM-
PICO documents. This approach was validated using an additional 912 manually labeled
documents, serving as validation and test sets for future methodologies. In addition, [90,
112] use expert knowledge to repurpose the UMLS labelling source to the target entity
classes. In the absence of expert knowledge, no approach exists to map the labelling sources
to these new classes of interest. We have also provided a straightforward algorithm for
mapping the weak labelling sources to the new entity class, offering a pragmatic solution
in the absence of domain experts. Furthermore, many studies in this domain focus on
RCT vs. non-RCT classification [105, 216, 296, 344]. However, these studies do not delve
deeper to provide information about the study design, such as whether an RCT was a
cluster or parallel trial, which could be crucial for writing a systematic review and so the
current research landscape has a gap in addressing this broader aspect of “Study type and
design”.

4.5.2 Methods

Figure 4.14 schematically represents our approach.

51https://clinicaltrials.gov/
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Figure 4.14: WS entity extraction approach: 1. Define the training, validation, and test
datasets. 2. Define labelling sources Si. UMLS vocabularies are reused as labelling sources
and mapped to the“Study type and design” class labels (see Algorithm 2). 3. Labelling
functions λi map the datasets to class labels using Si resulting in an m×n (training) label
matrix. 4-5) The training label matrix is used to train a generative model that could be
used to label unlabelled training sets with probabilistic labels or can be used to predict
class labels on unseen test set to evaluate.

4.5.2.1 Dataset

We used the EBM-PICO dataset comprising manually annotated RCTs (randomized con-
trolled trials) to demonstrate the effectiveness of programmatic labelling and the weak
supervision approach. The dataset comes pre-divided into a training set (n=4,933) an-
notated through crowd-sourcing and an expert annotated gold test set (n=191) for eval-
uation [254]. We further segmented EBM-PICO into a validation set comprising 721
documents (∼ 15% of 4, 933) and reserved the remaining documents to train the weak
supervision model. EBM-PICO comes pre-tokenized and no additional preprocessing was
done except enrichment with the part-of-the-speech (POS) tags using spaCy52 [155].

4.5.2.2 Dataset Annotation

We need gold standard annotations to evaluate the WS approach to “Study type and
design” information extraction. Specifically, we need a hand-labelled validation set to
tune hyperparameters and an annotated test set for final evaluation. However, the EBM-
PICO test set is not annotated with the “Study type and design” entity.

We first defined the “Study type and design” class to design the annotation guidelines
efficiently. According to the National Institute of Health (NIH), “Clinical studies are
the medical research involving people to evaluate the safety and effectiveness of medical
interventions, including drugs, devices, procedures, and behavioural interventions, as well
as studies that aim to understand the mechanisms of disease, develop new diagnostic tools,
or identify risk factors for health conditions”53. As such, the “Study type and design”
class should comprise text descriptions that provide information on the clinical study’s
type and design features. For example, the “Study type and design” text description from
PMID:36116481 “randomised, double-blind, placebo-controlled, parallel-group, phase 3
trial” elaborates on this clinical trial’s type and design.

Next, we defined clear annotation guidelines for the “Study type and design” entity.
Following this, the test set (n = 191) was doubly-annotated by two health informatics
experts54 to calculate pairwise F1 measure as inter-annotator agreement (IAA). F1 mea-
sure disregards out-of-the-span tokens (unannotated tokens) during agreement calculation
and is an ideal measure of annotation reliability for the token-level annotation tasks. It

52https://spacy.io/
53https://www.nih.gov/health-information/nih-clinical-research-trials-you/basics
54a Ph.D. student and a postdoc



measures the F1 measure, as shown below, for each pair of annotators, treating one an-
notator’s labels as the “true” labels and the other annotator’s labels as the “predicted”
labels. It assesses the agreement or overlap between annotations and thus the annotators
at the token level [79].

F1 measure = 2× TP
2× TP+ FP+ FN (4.12)

where:

TP : True Positives
FP : False Positives
FN : False Negatives

The IAA for the 191 test documents between the expert annotators was 78.33%. Deem-
ing the IAA sufficient as per the F1 agreement interpretation in Dhrangadhariya et al, the
validation set (n=721) was singly annotated [84].

4.5.2.3 Task definition

We define the entity tagging task as a binary sequence labelling task where given an input
sequence of tokenized words X = (x1, x2, . . . , xn) and an output sequence of binary labels
Y = (y1, y2, . . . , yn) where y ⊂ {0, 1} (here 1 = “Study type and design”, 0 = OOS token),
the task is to train a supervised ML model using the token-label pair.

In weak supervision, the task is to design m weak labelers or labelling functions (LF)
λm, each of which is a function that takes input sequence X and produces an integer label
sequence Ỹ = (ỹ1, ỹ2, . . . , ỹn) ; ỹi ⊂ {1, 0,−1} for “Study type and design” class labels.
Output label 1 represents “Study type and design” or positive class label, 0 represents not
a “Study type and design” or OOS or negative class label, and −1 are abstains.

As the groundtruth Y is latent in the absence of labelled data, it should be estimated
by aggregating several weak labellers of variable accuracy. It has to be noticed that
aggregating model can apply differential weights to the abstain labels compared to the 1
and 0 labels. These weights reflect the confidence level associated with each label, allowing
the model to appropriately weigh the contributions of abstain labels in the final labelling
decision. The estimates Ŷ of Y are assigned as probabilistic token labels of X, leading to
a weakly labelled dataset that can be used to train discriminative models.

4.5.2.4 Programmatic labelling

In this section, we describe the process of designing labelling functions using labelling
sources used to programmatically label EBM-PICO dataset.

Labelling Sources A labelling source s could be a set of terms (including ontology,
terminology, vocabulary, dictionary), expert-designed ReGeX, heuristics, or a combina-
tion of these sources that encode some domain-specific knowledge. Our labelling sources
included available biomedical vocabularies, expert-led rules like ReGeX and heuristics. We
used the 2021AB-full release of the UMLS Metathesaurus English subset with 224 vocab-
ularies55. After removing the zoonotic and non-English vocabularies, we were left with

55https://www.nlm.nih.gov/research/umls/sourcereleasedocs/index.html



112 vocabularies. The task to label “Study type and design” class entails using terms (or
concepts as they are called in UMLS) within these UMLS vocabularies as representative
of this class. Terms are organized under vocabulary like MeSH (medical subject headings)
or SNOMED-CT (SNOMED Clinical Terms), etc. which are not very helpful for labelling
“Study type and design” class labels {1, 0,−1}. These terms are also organized under
127 semantic groups Sgroups = (sgroup1 , sgroup2 , ..., sgroupn);n = 127 like “disease”, “age
group”, “geographical location” denoting whether a term represents a disease name or a
geographic location. As such semantic groupings impart meaning to these terms. Thus
our task was to map these semantic groups to “Study type and design” class as per their
representational value, ultimately mapping the terms to “Study type and design” class
labels.

Non-UMLS ontologies refer to ontological frameworks not part of the UMLS Metathe-
saurus. Non-UMLS ontologies like Clinical Trial Ontology (CTO), Randomized Controlled
Trials Ontology (RCTONT), Ontology of Clinical Research (OCRe), and Clinical Trials
Ontology (CTONT) [199, 307] were used to represent positive class (+1) labels56. We
provide the links to the following non-UMLS labelling sources used in our work in the
Table4.19.

Ontology Source
RCTONT https://bioportal.bioontology.org/ontologies/RCTONT
OCRe https://bioportal.bioontology.org/ontologies/OCRE
CTO https://bioportal.bioontology.org/ontologies/CTO
RCTONT - Chemical https://bioportal.bioontology.org/ontologies/RCTONT

Table 4.19: The table lists the links for the non-UMLS ontologies used in work.

Handcrafted dictionaries were designed using key-phrases from MeSH containing the
generic term “trial”57. The terms in this dictionary were used to label positive (+1)
“Study type and design” labels. Some example terms include “random allocation”, “ran-
domization”, “controlled clinical trial”, “quasi-experimental study”, and “crossover trial”.
We included hand-crafted dictionaries provided by [90] for the PICO classes as labelling
sources for negative/(0) “Study type and design” labels.

The hand labelled validation set was used to develop ReGeX. We examined the most
common keyword patterns in “Study type and design” class. These class-specific keyword
patterns were used as ReGeX hooks along with the observed POS patterns to emit the
positive class label. For example, the trial design information precedes the hook pat-
tern “randomized controlled trial”, for example, “multi-arm, double-blind, non-inferiority,
randomized controlled trial”. To identify such domain-specific patterns, a ReGeX was
developed to identify the hook pattern “randomized controlled trial” and was combined
with position and POS tags to identify preceding trial design information.

Sources to targets mapping We do not use expert knowledge to map UMLS Sgroups

to “Study type and design” targets, instead we conducted a separate experiment using the
manually-labelled validation set using the following steps to obtain the mapping.

1. Label the hand-labelled validation set using all the Sgroups.
56https://bioportal.bioontology.org/
57https://meshb.nlm.nih.gov/search?searchMethod=FullWord&searchInField=termDescriptor&

sort=&size=20&searchType=allWords&from=0&q=trial



𝜆! MV𝛉 LM𝛉

𝜆" 0 1 1 1 -1 0 -1 -1 -1 1.0 0.62

𝜆# 0 1 1 1 -1 0 -1 -1 -1 1.0 0.62

𝜆$ 0 1 1 1 -1 0 1 1 1 1.0 1.0
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Learned accuracies

1 : Study type and Design label

0 : Not Study type and Design label

-1 : Abstain

Figure 4.15: The figure shows four LFs used to label token sequence Xn with entities
“randomized controlled trial” and “parallel group trial”. MV assigns labels based on the
equally weighting the importance of each LF. LM uses the Λm×n to estimate latent accu-
racies θj of LFs using agreement and disagreement rates between LFs. These accuracies
are then used to re-weight the labels generating more accurate probablities Ŷ .

2. Calculate recall for the positive class58

3. Rank and sort Sgroups based on their recall.

4. Next, label the validation set using the Sgroup that ranked 1 and calculate the initial
recall r and f1-score f1.

5. Then loop through the ranked Sgroup starting at rank 2 and sequentially add labels
to the validation set (already labelled with Sgroup rank 1) and calculate the new
recall ri and f1-score f1i with the combined labels.

6. After looping through all the Sgroups, Algorithm 2 is used to classify Sgroup into
representing the positive (+1) class, negative/OOS (-1) class or abstain (0) class.

We consider a Sgroup representative of the “Study type and design” class if the change in
the recall ∆r is greater than equal to 1 without impacting the f1-score. Such Sgroup are
marked as +1 and the rest as abstain or negative per algorithm 2. The concepts within
non-UMLS ontologies and the hand-crafted dictionary entries were mapped to target class
+1.

Labelling functions We categorize our LFs into three types depending on the labelling
sources.

1. Any ontology LF takes a set of terms (vocabularies, ontologies, etc.) each mapped
to one of y ⊂ {0,+1,−1} class labels. Dictionary LFs used string matching as the
labelling heuristic.

2. A ReGeX LF used only regular expressions representative of the positive token label
{+1} and abstained from the rest.

3. A heuristic LF often took a generic ReGeX pattern, specific POS (part-of-speech)
tag signals, and token positions to label tokens with the positive token class {+1}
labels and abstained from the rest.

58The recall and the F1 score are binary metrics calculated for the “Study type and design” (positive)
class.



Algorithm 2 An algorithm to map UMLS Sgroups to “Study type and design” labels
Require: D =< Sgroups, ri+j , f1i+j >
Ensure: < Sgroups, Sclass >

1: Initialize r0 ← rS1 , f0 ← fS1 , Sclass ← []
2: for Si, ri, fi in D[1 :] do
3: Calculate ∆r = ri − r0, ∆f = fi − f0
4: if ∆r ≥ 1 and ∆f > 0 then
5: Sclass.insert(1)
6: else if 0 ≥ ∆r < 1 and ∆f > 0 then
7: Sclass.insert(-1)
8: else if ∆r = 0 and ∆f < 0 then
9: Sclass.insert(0)

10: else if ∆r < 0 then
11: Sclass.insert(0)
12: end if
13: end for

Labelling Consider S = (s1, s2, . . . , sx) set of labelling sources used by m LFs to pro-
grammatically label the Xn EBM-PICO training tokens to the aforementioned integer
labels (−1, 0, 1). The LFs map Xn input tokens to the integer label sequence Ỹn leading
to a label matrix Λm×n. It has to be noted that these labels are noisy in nature, and their
accuracy depends upon the labelling source and function. The next task is to aggregate
the labels from these LFs to obtain a consensus label sequence Ŷ .

Label aggregation Majority voting (MV) and generative label model (LM) are tested
to aggregate labels in the label matrix. Snorkel implements data programming paradigm
into the label model (LM). LM learns varying accuracies of LFs, weights them accordingly,
and aggregates them into probabilistic labels ŷi. To do this, LM trains a generative model
P (Λ, Y ) to estimate LF accuracies θj using stochastic gradient descent to minimize log
loss in absence of labelled data. [96, 276] The true labels are not observable to estimate
accuracies, but they can be estimated using observed agreement and disagreement rates
between LF pairs λi, λj in Λ. Generative modeling ultimately results into token label
probablities Ŷ for label classes {0, 1}. An example of combining LFs using MV and LM
into consensus labels is shown in Figure 4.15. Figure 4.15 shows an example of LFs using
MV and LM into consensus labels.

4.5.3 Experiments

The experiment aimed to evaluate the impact of sequentially adding labelling sources
on the label aggregation methods of MV and Snorkel’s LM. We ranked various labelling
sources based on their costs, with UMLS labelling sources being the least expensive as
they require no extra effort of web searching to obtain. Non-UMLS sources follow them
in terms of cost, and then come manually-crafted dictionaries and ReGeX, which are the
most expensive and require expert knowledge. The experiments were carried out in seven
tiers, with tiers 1-4 testing the addition of non-UMLS, dictionaries, and rule-based LFs to
UMLS LFs in sequence (least to most costly labelling sources). Tier 5 examined whether
up-weighting rules could improve performance, while tiers 6 and 7 measured the effect of



removing non-UMLS and dictionaries from tier 4 on performance. We performed addi-

Tier Labelling sources s
1 UMLS
2 UMLS + Non-UMLS
3 UMLS + Non-UMLS + dictionaries
4 UMLS + Non-UMLS + dictionaries + ReGeX
5 UMLS + Non-UMLS + dictionaries + weighted ReGeX (ReGeX × 2)
6 UMLS + Non-UMLS + ReGeX - dictionaries
7 UMLS + dictionaries + ReGeX - Non-UMLS

Table 4.20: The table enumerates seven experiment tiers and describes what labelling
sources the programmatic labelling module used.

tional experiments to compare the Snorkel LM experiments with another weak supervision
methodology, FlyingSquid [113]. Previously, we had planned to compare Snorkel with
skweak, another generative modelling methodology for combining LFs [200]. However, we
switched to FlyingSquid for two reasons: firstly, the label matrix created for Snorkel in-
teroperable with FlyingSquid, and secondly, both Snorkel and FlyingSquid label matrices
use the IO (raw) labelling scheme, whereas skweak’s label matrix includes additional span
boundary information for entities, which makes the comparison less meaningful.

UMLS vocabularies were ranked based on the number of n-gram overlaps between
the respective vocabulary and the EBM-PICO validation set. The ranked vocabularies
were divided into p = (1, 2, . . . , 112) partitions, with partition one aggregating all the
ontologies into a single LF and partition 112 with all the ontologies as separate LFs.
The above-mentioned experiments were carried out with all the partitions to evaluate the
performance of the number of UMLS LFs. We evaluate performance using token-level
macro F1, precision and recall over three runs of experiment tiers with three random
seeds.

Baseline: We used a CRF model trained on the hand-labelled validation set (n=721) as
the fully supervised baseline. The CRF model was trained on token-level entity recognition
task with with IO (Inside - Outside) labelling scheme.

4.5.4 Results
In both the labelled validation and test sets, the “Study type” class constitute the minority
class with token strength between 2.24% - 2.34% of all the tokens (see Table 4.21).

Of 178 unique tokens representing the minority class in the validation set and 103 in
the test set, 135 were unique. The top 14 out of 15 tokens are common between both sets
(see Figures 4.16 and 4.17).

Token class Validation set Test set
1 4,650 1,257
0 207,220 53,667

Table 4.21: Simple statistics for the EBM-PICO validation and test set annotations for
“Study type” (class = 1) entity and out of the span (class = 0) entity.
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Figure 4.16: The top 15 most common tokens from the “Study type” class in the EBM-
PICO test set.
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Figure 4.17: The top 15 most common tokens from the “Study type” class in the EBM-
PICO validation set.

Using the described labelling sources and functions, we developed a total of 144 LFs
(refer Table 4.22).

The results of the experiments are listed in Table 4.17. LF aggregation via MV fails to
detect any meaningful signals and performs at a level close to or even worse than random.
For tier 7, however, removing non-UMLS LFs boosts the recall and therefore the F1 for
MV. The performance of UMLS alone for the LM tier 1 is poor. Incorporating non-
UMLS sources into the model results in a significant drop in F1 score by as much as 8.4%
again pointing towards the low representational value of this labelling source. Adding
dictionaries increases the previous F1 by 13.52%, but it hits the performance glass ceiling
at 63.16%. As expected, adding generic rules in tier 4 boosts the recall by 18.25% from
tier 1. Up-weighting rule-based LFs in tier 5 leads to a nominal F1 increase by 0.55%. In
the ablation tier 6, removing handcrafted dictionaries decreases the previous best recall by
6.87%, demonstrating performance contribution. In the ablation tier 7, removing the non-
UMLS labelling sources improves the F1 by 3.06% improving both recall and precision.
The best performing weakly supervised LM in Tier 7 outperforms the fully supervised
CRF model by 16% on F1-score as shown in Table 4.24.



LF source Number of LFs
UMLS 112
non-UMLS 10
dictionary 2
ReGeX 20

Table 4.22: Table enumerates the number of labelling functions for each of the labelling
sources.

Experiments MV LM
Sr. LF tier Part. P R F1 P R F1 (stdev)
Tier 1 UMLS 75-94 48.64 50.00 49.31 61.03 56.42 58.02 (4.4 × 10−5)
Tier 2 + non UMLS 1-2 51.58 50.01 49.37 50.21 50.02 49.62 (2.2 × 10−4)
Tier 3 + Dictionaries 2 48.64 49.99 49.31 64.87 62.23 63.16 (3.6 × 10−2)
Tier 4 + Rules 2-4 48.64 50.00 49.31 86.03 78.50 81.41 (4.2 × 10−3)
Tier 5 + Weighted rules 2-4 98.64 50.17 49.66 85.09 79.42 81.96 (7.4 × 10−3)
Tier 6 - Dictionaries 1 98.64 50.13 49.59 81.40 72.55 75.37 (1.5 × 10−3)
Tier 7 - non UMLS 1 96.22 53.31 55.56 89.96 81.41 85.02 (1.7 × 10−2)

Table 4.23: Macro-averaged recall, precision and F1 % for “Study type and design”
extraction models. The best F1 score is shown in bold. Standard deviation (stdev) is
reported for average over three runs. Part. = Partition.

A lower number of partitions lead to good performance (also refer to Table 4.19), except
for the UMLS tier 1, which required between 75-94 partitions to perform its best as shown
in Figure 4.19. Snorkel’s LM consistently and substantially outperformed FlyingSquid as
shown in Figure 4.18 for tiers 4-7.

4.5.5 Discussion

Our results showed that even large ontology databases such as UMLS may be inadequate
for representing an entity and may require expert-led rules to perform optimally. Both
studies by Fries et al. and Dhrangadhariya et al. observed an improvement in F1 scores
between entity classes when non-UMLS labelling sources were included, indicating that
these sources have value in representing these classes. However, we found the opposite
effect, as the F1 score for the “Study type and design” entity improved upon removing
non-UMLS labelling functions, suggesting that these functions were not typical for “Study
type and design” entity. It must be noted that while the ReGeX and heuristics developed
for the “Study type and design” class cannot be directly applied to other entity classes,
the method of developing such ReGeX using the hook patterns and the small labelled

Model Type P R F1 ∆ F1
CRF FS 82.44 63.66 69.02
LM WS 89.96 81.41 85.02 +16

Table 4.24: The table shows results of the fully supervised CRF model in comparison to
the Tier 7 weakly supervised LM (the best performing model)
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Figure 4.18: Graph comparing macro F1 scores for aggregating the designed LFs using
Snorkel’s LM vs FlyingSquid’s LM for all experiment tiers.

validation set can be very well extended to other entity classes.
We conducted experiments across multiple tiers and determined the optimal number of

UMLS partitions necessary to achieve the best macro F1 score. As depicted in Figure 4.19,
for all experiment tiers except tier 1, the first and second partitions achieved high scores,
after which the F1 score began to decline with consecutive increases in the number of
partitions. However, for tier 1, which exclusively used UMLS labelling functions, increasing
the number of partitions actually led to an increase in the F1 score. In particular, the
higher-end partitions exhibited the best performance. We did not have any experiment
tier without UMLS LFs, as doing so either resulted in disproportionate abstentions during
prediction or worse than random performance.

Previous research has shown that full supervision typically performs better than weak
supervision, but it is much slower and requires significantly more manual labor. In fact,
researchers at Stanford found that by using Snorkel’s weak supervision techniques, models
could be built 2.8 times faster and with an average of 45.5% better predictive performance
than with hand-labeled data alone [276]. Labelling clinical information is a challenging
task due to the high level of disagreement between human annotators regarding the exact
spans that constitute these entities. As a result, hand-labelled corpora may contain errors.
For instance, recent studies have identified errors in the EBM-PICO dataset, correcting
which requires costly reannotation [1, 41, 90, 188]. A data-centric approach like this can
be used to analyze errors and programmatically re-annotate the dataset quickly.

Conflicts in manual annotation: Despite an acceptable IAA, there were specific
conflicting scenarios where the agreement between the annotators fails, and these are
highlighted here. Annotator 2 always missed marking the phrase “clinical trial” where its
corresponding protocol in external repositories is mentioned. E.g., in the sentence “Clin-
ical Trial registration: https://clinicaltrials.gov/ Identifier: NCT01467843.” the
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Figure 4.19: Macro-averaged F1 scores for UMLS partitions across the experiment tiers.

phrase “Clinical Trial” explicitly mentions the study registration as a clinical trial. So this
should have been marked but was not marked by the annotator 2. This is attributed to
our annotation guidelines’ lack of explicit instruction. Our annotation guidelines require
marking information about the number of arms used in a clinical study. Many conflicting
tokens resulted when Annotator 1 completely missed marking information about the num-
ber of arms in the clinical trials. In contrast, annotator 2 marked details additional to the
number of arms used in the clinical trial. For example, in the phrase “a four-arm random-
ized controlled trial”, “ four-arm” should be marked as an entity along with “randomized
controlled trial”. However, annotator 2 marked additional information not corresponding
to the number of arms in a trial, e.g., marking the phrase “40K arm” from the sentence,
“eighty-three patients were assigned to the 40K arm”, but 40k here refers to the treatment
“epoetin alfa 40,000 U”. Annotator 2 did not mark whether a study was a “superiority”
or a “non-inferiority” study which is study type feature, but the annotator 1 marked it.
These was not clarified in the annotation guidelines, but will be improved.

Error Analysis We conducted an error analysis to investigate the impact of high-cost
expert-generated rules on tiers 3 and 4, and the results are presented in Table 4.25. Token-
level errors were categorized into four types: 1) false negative (FN), which occurred when
the model failed to predict the entire entity that the token belonged to; 2) false positive
(FP), which occurred when the model mistakenly recognized the token as part of an entity;
3) boundary error (BE), which occurred when the model missed the boundary tokens but
otherwise correctly identified the entity; and 4) overlapping error (OE), which occurred
when the model falsely captured out-of-span tokens between adjacent entities. Tier 3

Errors Tier 4 Tier 3
FP 30 (5.24%) 920 (57.57%)
FN 232 (40.55%) 502 (31.41%)
BE 209 (36.53%) 170 (10.63%)
OE 59 (10.31%) 6 (0.73%)
Total 530 1598

Table 4.25: Distribution of the token-level errors for the Tier 3 and Tier 4 LMs on EBM-
PICO test set.



had plenty of FP and FN errors completely missing an entity, while tier 4 had abundant
BEs, indicating its ability to capture more signals. For instance, in the entity “randomly
assigned”, the generic term “randomly” was captured, but “assigned” was missed by tier
4, while tier 3 completely overlooked it. It indicates the ability of the rule-based LFs
to capture the characteristic patterns not detected by the vocabularies. Rule-based LFs
reduces FPs by diminishing the probability of irrelevant vocabulary concepts being signals.

One of the common mistakes across both tiers was several FPs for the token “control”,
which did not occur in a context denoting that a particular study is a controlled trial. For
e.g., the term “control” was identified from “BP control” and “electrical control activity”.
Tier 3, based on vocabularies alone, captures lots of irrelevant FP tokens like “man”,
“document”, “baseline”, “treatment”, etc.

Interestingly, vocabulary-based LFs capture more information irrelevant to the “Study
type and design” entity. For instance, some terms related to “allocation”, “block ran-
domization”, “protocol”, and “blinding” suggest their usage to the other clinical entities
beyond study type.

OE are usually the commas connecting multiple components of study design falsely
identified as entities. For instance, commas are detected as entities in the term “Multi-
centre, double-blind, double-dummy, placebo-controlled trial.’

Another limitation of the label model is that it relies on dictionaries, and the ReGeX
only learns about label agreements and disagreements, ignoring contextual information in
the sentence. Consequently, entities may be marked incorrectly if they appear in an inap-
propriate context within the document. For instance, the phrase ”randomized controlled
trials” from the sentence ”Larger randomized controlled trials are needed to evaluate the
results of the case-control study further” could be labeled as a ”Study type and design”
entity in the future tense, even though the context of the present study does not mention
study types.

Interestingly, tier 3 performed better than tier 4 in identifying generic terms such as
”placebo,” ”controls,” and ”control,” despite being less powerful overall. Tier 3 also cor-
rectly identified signals from clinical trial phases like ”Phase III,” ”randomized phase I
clinical trial,” and ”clinical trial phase I,” but was unable to identify the entire entity.
However, the poor performance of tier 3 also suggests that the vocabularies do not ade-
quately represent the ”Study type and design” entity, missing common patterns such as
”randomization” and ”randomly.” Additionally, both tiers failed to identify entities such
as ”controlled trials,” ”prospective,” ”open-labelled,” ”multicentre,” ”prospectively,” ”su-
periority,” and ”retrospectively.” Further analysis is needed to compare all the tiers, along
with measuring the seen and unseen entities in each tier, to understand the contribution
of each approach.

4.5.6 Conclusion and Future Work

We adopt a weak supervision approach to enhance existing datasets, such as EBM-PICO,
by incorporating additional categories, like “Study type and design” without relying on
manual annotation. This is achieved through the application of weak supervision tech-
niques using Snorkel. Our approach achieved exceptional performance, with an F1 score of
85.05% on the hand-labelled EBM-PICO test set, highlighting the potential of this method
for rapidly generating large amounts of annotated data compared to traditional supervised
approaches. We also provide a straightforward algorithm for mapping UMLS terms to en-
tity classes, even in cases where expert guidance is unavailable, and semantic groupings



are unclear. Our code, weakly-labelled EBM-PICO training set, doubly-annotated EBM-
PICO test set, and hand-crafted dictionaries are openly accessible.

In the future, we aim to extend the methodology to cover more entities and improve
the mapping methodology of UMLS semantic groups to clinical classes. Currently, we
employ hard-coded rules decided based on observed performance changes over recall and
F1 scores, and such rules require experimentation on other entities. Our study is limited to
exploring the “Study type and design” entity class, which has less heterogeneity and is more
standardized than the less standardized and fuzzy classes like PICO. However, by limiting
the scope to a single, well-defined clinical entity class, our study can provide a thorough
and detailed analysis of the relevant steps and variables critical to weak supervision’s
success in more complicated clinical entity classes. The corpus we labeled, EBM-PICO,
is expected to contain only RCTs leaving out many other trial types; hence our weakly-
labelled corpus and labelling functions might not represent all the trial types. We suggest
extending the approach to other wide variety of clinical studies.

4.6 Chapter Conclusions
The contributions of this chapter are the methodologies in information extraction, specifi-
cally weak-supervision and distant-supervision that enable clinical information extraction
in absence of hand-labelled corpora. These methods primarily focus on enhancing the
extraction of PICOS-related entities. In the section 4.2, a multi-task learning (MTL)
approach was investigated, where coarse-grained PICO extraction served as the primary
task, while fine-grained PICO extraction functioned as an auxiliary task. The method im-
proved performance on fine-grained “Participant” and “Outcome” extraction. Moving on
to Section 4.3, the DISTANT-CTO methodology was developed. This methodology lever-
aged distant supervision principles for successful “Intervention” information extraction,
surpassing state-of-the-art (SOTA) results. Then, in the section 4.4, a weak-supervision
framework as developed for PICO information extraction using freely-available resources.
The methodology improved extraction of the “Participant” entity. Finally, in the sec-
tion 4.5, the previously introduced weak supervision framework was extended to extract
“Study type and design” information showing extensibility of the methodology.



Chapter 5

Risk of Bias Corpus Development

This chapter addresses the research gap of the lack of a publicly available corpus to train
and evaluate the RoB assessment automation. The section 5.3 describes a pilot anno-
tation project that aimed to test whether existing RoB assessment guidelines could be
used as RoB corpus annotation guidelines. The pilot project introduces a small RoB span
annotated corpus of 10 RCTs. The section 5.4 describes in detail the annotation guide-
lines developed for RoB corpus annotation and their adaptation as visual placards. The
section also describes the RoBuster corpus annotated using these guidelines. Parts from
this chapter are published as a conference paper and as a journal paper (preprint) [83, 84].
In [83] and [84], my contribution was to conceive the project, guide a team of five an-
notation experts to adapt RoB corpus annotation guidelines, conceptualize and aid the
development of visual placards, set up the annotation platforms, analyze the results and
report the findings in the form of the papers. The following resources are made available
via this research:

1. The dataset developed in section 5.3 is available on Zenodo.

• https://zenodo.org/records/7924466

2. The dataset developed in the section 5.4 is available on GitHub.

• https://github.com/anjani-dhrangadhariya/RoBuster/tree/main/RoBuster

3. The dataset parsers and the python notebooks exploring the corpus characteristics
for corpora in the section 5.3 and 5.4 are found on GitHub.

• https://github.com/anjani-dhrangadhariya/rob-preliminary-annotation
• https://github.com/anjani-dhrangadhariya/RoBuster/

4. The visual annotation placards developed in section 5.4 are available on GitHub.

• https://github.com/anjani-dhrangadhariya/rob-annotation-placards

5.1 Introduction
SRs synthesized from RCTs are the highest quality of evidence in the hierarchy of evidence
(see figure 1.3). SRs are used for health-care policymaking, effective drug formulation,
and primary care physicians and health professionals could use them to make treatment
decisions [6, 187, 196]. An RCT is a scientific experiment in which a group of patients is

119



randomly divided into two or more groups and allocated to either an intervention under
investigation or a control intervention group or other another comparator intervention to
compare the effect of the interventions being studied [305]. In theory, an RCT accurately
measures the intervention effect on patient outcomes. However, it can be biased in practice
due to expected and unexpected flaws in the study design, execution, analysis or outcome
reporting. Biases in clinical trials lead to systematically overestimating or underestimating
the intervention effect. Therefore, when the RCTs with questionable biases are used to
write SRs, it can diminish their validity and reliability. Such SRs can lead to faulty clinical
care guidelines, ultimately harming the patients [136]. Therefore, researchers conducting
SRs must rigorously look for possible biases in the RCTs before using them for writing
SRs.

The biases in RCTs cannot be measured, but an RCT can be assessed for biases to
minimize the overall risk and judge the RCT quality. The revised Cochrane risk of bias
tool for randomized trials, also called RoB 2 59 provides RoB assessment guidelines and
has been extensively used for bias evaluation in RCTs [19, 30, 184, 262, 313]. Published
RCTs are exponentially increasing 60 over time, so manual RoB assessment for every study
becomes a protracted process. RoB assessment is a part of writing systematic reviews,
which is highly resource-heavy, taking in most cases about six months to several years to
complete [173, 331].

ML approaches can help accelerate the RoB assessment process by directly pointing
the reviewers to the parts of the RCT text relevant to identifying bias, leading to quickly
judging the trial quality. Supervised ML models require RoB span annotated data, but
unfortunately, to date, there’s a lack of publicly available manually labelled RoB corpora
or any established guidelines aiding in corpus annotation. RoB assessment is a knowledge-
heavy task in which even highly trained experts are prone to subjective judgments. The
primary requirement to develop such a corpus entails creating a well-thought-out annota-
tion scheme and clear annotation guidelines. As neither the corpus annotation guidelines
nor the annotation scheme exists for risk of bias, this work is focused on the following
primary concerns. The main goals for the works in this chapter were:

1. To test whether RoB 2 assessment guidelines could be used as RoB corpus annotation
guidelines. If so, these guidelines could be used to develop a corpus that could be
utilized for training supervised ML models.

2. To develop and test a RoB annotation scheme that closely mimics the RoB 2 guide-
lines [313].

3. To develop concrete RoB corpus annotation guidelines using RoB 2 and adapt them
into visual annotation placards.

4. To develop a corpus of RCT full-texts manually annotated with RoB text spans.

5. To ensure these resources are publicly available for the community to build upon
and improve.

59https://sites.google.com/site/riskofbiastool/welcome/rob-2-0-tool
60https://pubmed.ncbi.nlm.nih.gov/?term=randomized\%20controlled\%20trial&filter=pubt.

randomizedcontrolledtrial



5.2 Related Work
Marshall et al. [214] attempted automation of RoB assessment using a distant supervi-
sion approach supported by proprietary data from the Cochrane Database of Systematic
Reviews (CDSR). They classified the trial quality assessment as binary into low-risk and
unclear-risk/high-risk quality attributes for each risk domain. The study was supported
by the manually-entered data from CDSR, which is behind a paywall and automates based
on Cochrane’s RoB 1.0 guidelines and not the latest RoB 2 [147]. Even though Cochrane’s
RoB tool (version 1) is the most frequently used to assess RCT quality, a recently revised
Cochrane RoB 2 offers significant benefits in comparison [206]. Compared to the original
RoB version released in 2008, the RoB 2 version provides a more reliable and concrete
structure to the RoB evaluation by developing comprehensive guidelines that enforce con-
sistency [147, 313]. A study analyzing Cochrane systematic reviews and protocols found
that the use of RoB 2 increased from 0% in 2019 to 24.1% in 2022 [217]. This indicates
the importance of using an updated and standardized tool to assess bias in RCTs.

Millard et al. attempted automating RoB assessment using supervised machine learn-
ing trained on proprietary data as well [232]. The research utilizing this pay-walled data
was used to develop RobotReviewer that several studies have evaluated for its human-
competent performance [151, 164, 215, 310, 340]. The question, however, remains of the
unavailability of a publicly available RoB annotated corpus that hinders community ef-
forts for automation and evaluation. Wang et al. recently released three RoB annotated
datasets but for preclinical studies with RoB assessments about animals [348]. A manually
annotated corpus of RoB spans for human clinical trials is still necessary but is unavail-
able. The next section, 5.3, describes the initial steps taken to work towards developing a
RoB span annotated corpus.

5.3 First Steps Towards Developing a Risk of Bias Corpus
Manual RoB assessment is a complex, expert-led task with subjective judgements. System-
atically translating this process for developing a RoB annotated corpus requires a carefully
designed annotation scheme and detailed annotation guidelines. To our knowledge, there
exist no detailed corpus annotation guidelines. To address this gap and build upon ex-
isting resources, a pilot annotation study was conducted to assess the applicability of the
currently available RoB 2 guidelines in the manual annotation of a RoB corpus. The RoB
2 guidelines were directly applied to annotate a small set (n = 10) of RCTs by multiple
experts to assess their utility as corpus annotation guidelines. The results were analyzed
to confirm the suitability of these guidelines as corpus annotation instructions.

5.3.1 Methods
The methodology section provides an overview of our annotation scheme, explaining its
design rationale, the annotation software used, and the common annotation guidelines
adhered to in addition to the RoB 2 assessment guidelines in our annotation process. The
section also describes our expert annotation team for this work.

5.3.1.1 Formulating Annotation Scheme

The RoB annotation scheme is formulated as a function of the revised Cochrane RoB tool
for randomized trials (RoB 2). Understanding the tool structure is essential to under-



standing the proposed RoB annotation scheme [313]. Version 2.0 divides biases into five
risk domains, each corresponding to different parts of the trial design. Each risk domain
decomposes into several signalling questions, each aiming to prompt a relevant response
to bias assessment (refer to Table 5.1). The response options are restricted to “Yes”,
“Probably yes”, “No”, “Probably no”, or “No information”. A visual representation of our
annotation scheme is illustrated in Figure 5.1.

Bias class Bias domain Signalling questions
RoB 1 biases arising from the randomization process 3
RoB 2 biases due to deviations from intended interventions 7
RoB 3 bias due to missing outcome data 4
RoB 4 bias in the measurement of the outcome 5
RoB 5 bias in the selection of the reported result 3

Table 5.1: The table lists down the bias domains as structured in the revised Cochrane
RoB assessment tool (RoB 2) and the number of signalling questions in each domain.

RoB 1.1

RoB 1.2

RoB 1.3

RoB 2.1

RoB 4.3

RoB 4.4

RoB 4.5

RoB 5.1

RoB 5.2

RoB 5.3

1. Yes
2. Probably yes
3. No Information
4. Probably no
5. No

Signalling questions = Entity

1. Low risk
2. Unclear risk
3. High risk

RoB 1
biases arising from the randomization process

RoB 2
biases due to deviations from intended interventions

RoB 3
bias due to missing outcome data

RoB 4
bias due to missing outcome data

RoB 5
bias in the selection of the reported result

Risk domain

RoB Domain judgement
Response options = 

Entity labels

I. II.

Figure 5.1: Annotation scheme. I. SQ level: each SQ (RoB 1.1, 1.2, ...) is an entity
that could take either of five response options (entity labels). SQ response judgements for
individual risk domains (RoB 1-5) could be combined to arrive at risk domain judgement.
Note: Risk domain judgments are not addressed in this work.

To respond to the signalling questions, the reviewers must go through individual RCTs
and inspect the evidence required to respond with one of the five previously mentioned
response options. For instance, to respond to the signalling question “Was the allocation
sequence random?”, the reviewers read through the clinical trial study to identify the
methodology used to randomize the allocation of participants into the intervention groups.
If a clinical study described a proper allocation sequence randomization, the reviewer
responds to this question as “Yes” and otherwise “No”. Similarly, each signalling question
prompts the reviewer to look for a piece(s) of factual evidence in the clinical study to
respond with one of the five response options. An annotation scheme where each signalling
question is an entity was formulated. The factual evidence in the RCT helps decide
the response to that question. Each entity could have one of the five response options
incorporating the reviewer’s judgment of the answer. The reviewer needs to mark the
identified text evidence (a phrase, sentence (s), or paragraph) with the RoB entity along



with one of the five response options. In this regard, this makes it a hierarchical annotation
scheme comprising 22 entities corresponding to the 22 signalling questions, each with five
response options.

The cumulative risk judgment from each domain could be estimated using decision
flowcharts combining the responses from all the signalling questions. The flowchart allows
this risk judgment to be classified as either “Low-risk”, “High-risk” or “Some-concerns”
(refer the Figure 5.2). To accommodate this, an additional document-level annotation
scheme for each risk domain (as outlined in Table 5.1) allows reviewers to select one of
the three risk judgments.

1.2 Allocation 
sequence 

concealed?

1.1 Allocation 
sequence random?

1.3 Baseline 
imbalances suggest a 

problem?
Low risk

1.3 Baseline 
imbalances suggest a 

problem?
Some concerns

High risk

Y/PY

NI

Y/PY/NI Y/PY/NI

Y/PY

Y/PY

N/PN

N/PN

N/PN/NI

Figure 5.2: Algorithm for suggested judgement of risk of bias arising from the randomiza-
tion process. The figure is recreated from the revised Cochrane’s risk of bias tool (RoB
2) [313].

5.3.1.2 Preliminary Annotation Guidelines

The four reviewers used RoB 2 guidelines to annotate RCT full-texts. 61 The reviewers
include two doctoral researchers and two postdoctoral researchers who have previously
performed RoB ratings in several systematic reviews. Some generic annotation guidelines
were developed by a natural language processing (NLP) expert in conjunction with four
experienced physiotherapists writing systematic reviews.

These are the generic guidelines; If an entire sentence is relevant to answering a sig-
nalling question, then annotate this whole sentence, including the full stop at the end. If
a sentence phrase is relevant to answering this particular RoB signalling question, then
annotate only that phrase. When there is no information relevant to answering a signalling
question with any of the response options, do not annotate. Be sure to annotate all parts
of the information you used to respond to the questions, even if the information is found in
disparate parts of the RCT full text. Every signalling question must be answered invariant
to the flowchart structure in the RoB 2 assessment manual. If the caption of a particular
table or figure leads to answering a question, annotate the caption. If the caption does not
provide text relevant to the answer, then annotate the table’s contents. If the reference
to the table or figure leads to answering the signalling question, annotate it. If all three
are relevant to answer the question, annotate all.

61https://drive.google.com/file/d/19R9savfPdCHC8XLz2iiMvL_71lPJERWK/view



5.3.1.3 Pilot Annotation

Our aim with the pilot annotation was to assess if RoB 2 assessment guidelines could be
used as annotation guidelines to obtain an RoB annotated dataset. We also tested the
suitability of the previously detailed annotation scheme 5.3.1.1. One of the authors, the
most experienced in RoB assessment, developed an R script to build the corpus. This en-
tailed an Entrez search 62 using the search query “(randomized[title] or randomized[title])
and (rehabilitation or (physical therapy))” that searched for the term “randomized” in the
study title. The search query was restricted to retrieving first 1000 hits and for one-year
time spans. Ten such searches were made for 10 time spans each (2000 - 2001, 2002 -
2003, 2004 - 2005, 2006 - 2007, 2008 - 2009, 2010 - 2011, 2012 - 2013, 2014 - 2015, 2016 -
2017, 2018 - 2019). The code then used a function to randomly choose ten studies from
the retrieved 1000 for that particular year. Out of the ten sampled studies, the author in
question took the first possible study with a freely available PDF.

Four experienced annotators carried out pilot annotation following the RoB 2 tool,
generic annotation guidelines and the developed annotation scheme. Tagtog 63, a com-
mercial text annotation web application, allows for annotating PDF (Portable Document
Format) documents, was used for pilot annotation [52]. We chose to annotate PDFs rather
than plain text because RCT PDFs have a visual format (maintains the structure of sec-
tions and subsections, tables, and figures) that makes the annotation task quicker for
the annotators and increases annotation quality. Tagtog allows customized annotation
schemes at entity and document levels and has functionality for parsing PDF documents
to plain HTML for annotation extraction, allowing for easy quality control for the anno-
tations. Tagtog has an internal IAA (inter-annotator agreement) scoring scheme and a
visual display to report the agreement. This setup streamlines the iterative annotation
projects. Each annotator was given access to the Tagtog project with ten corpus RCTs
after a brief training session with Tagtog. The task for the annotator was to annotate
text relevant to answering each signalling question entity and choose a signalling question
response option, each risk domain judgment for the five risk domains.

5.3.1.4 Annotation Evaluation

Cohen’s kappa is the standard annotation reliability measure for many classification an-
notation tasks, but it is not a relevant measure for token-level annotation tasks. We
report the pairwise F1 measure that disregards out-of-the-span tokens (unannotated to-
kens), which is the ideal measure of annotation reliability for the token-level annotation
tasks [40, 79].

Our first aim was to determine if RoB 2 assessment guidelines could be reliably used
as RoB corpus annotation guidelines. To this end, we measure how consistently the
annotators identified chunks of text in the RCTs to answer each signalling question and
report inter-annotator agreement IAAsq. IAAsq measures the pairwise agreement between
annotators for identifying the same chunk of text to answer each signalling question.
We calculate IAAresponse to determine how reliable the RoB 2 guidelines were for the
annotators to make a “response” judgment for each signalling question after identifying
relevant chunks of text. Document-level agreements (Cohen’s Kappa) for risk domain

62The Entrez Global Query Cross-Database Search System is a federated search engine, or web portal
that allows users to search PubMed database

63https://www.tagtog.net/



judgment IAArd. We interpret IAA values (F1 scores as well as Cohen’s Kappa) as shown
in the Table 5.2 [182].

Agreement interpretation IAA range
Poor 0-0.99
Slight 1 - 20.99
Fair 21 - 40.99
Good 41 - 60.99
Substantial 61 - 80.99
Almost perfect 81 - 99.99
Perfect 100

Table 5.2: The table details interpretation of pairwise F1-measure and Cohen’s Kappa.

5.3.2 Results
Our pilot annotation corpus comprised ten RCTs between the years 2000-2019. The docu-
ment PDF lengths varied between 4-20 pages, with the smallest RCT having 2836 tokens
and the largest having 20,290 tokens. Annotators also annotated figures and tables be-
cause answering specific signalling questions requires looking into these modalities. Four
annotators annotated these ten RCTs, resulting in 902 RoB entity labels corresponding to
the signalling question categories and 220 risk domain class labels at the document level.
It took each annotator minimum of 20 minutes to annotate a single RCT with all the bias
classes. An example of tagtog annotation is shown in Figure 5.3. All the annotations were
stored as JSON files and parsed accordingly for analysis. The distribution of labels for
each signalling question entity label is shown in Figure 5.4.

Figure 5.3: A screenshot of tagtog interface with text evidence annotations for the RoB
signalling questions (in the left) and risk of bias judgment labels (in the right) in display.

Table 5.3 reports pairwise IAAsq between the six annotator pairs (Left). Individual
pairwise agreements range between 0% (poor) and 75% (substantial), with most agreement



Figure 5.4: Distribution of signalling question entity labels in the labeled RCT corpus.

values falling under the poor category and very few under the substantial agreement (refer
Figure 5.5). Signalling questions RoB 1.1, 1.2, 1.3, 2.6, and 3.1 fared well in terms of the
average pairwise agreement between all pairs, but none of these categories had a substantial
agreement. Signalling questions 2.3, 2.4, 2.5, 2.7, 3.4, 4.4, 4.5, and entire domain 5
fared extremely poorly or with no agreement or annotation. Table 5.3 (Right) reports
the IAAresponse averaged over all the annotator pairs at the signalling question response
option level. The IAAresponse scores are considerably lower (to zero) than agreement at
the signalling question level (IAAsq), hinting that annotators assign different response
options for the text relevant to answering a signalling question.

Table 5.4 reports document-level IAArd for each risk domain. The agreement scores
range between poor (0%) and substantial (≥ 80%). Risk domains 2 and 5 are the most
challenging at the signalling question, response option and risk domain judgment level.

Table 5.5 details the IAAresponse agreement specifically at the signaling question re-
sponse level for risk domain 1, which focuses on bias arising from the randomization
process. The agreement values for signalling question 1.2 are the lowest and mostly zero.
The highest agreement values in domain 1 signalling questions are between good and per-
fect. Annotator pair P4 has a surprising 100% (perfect) agreement on the judgment “No
information” for RoB 1.3.

Tables 5.6 and 5.7 report the IAAresponse agreement at the signalling question response
level for the risk domains 2 (biases due to deviations from intended interventions). Ex-
cept for the signalling question 2.6, agreement at other signalling questions fare poorly.
Answering the signalling question 2.6 (“Was an appropriate analysis used to estimate the
effect of assignment to intervention?”) is straightforward and prompts the reviewers to
look for the appropriate analysis method(s) in the RCT literature. In contrast, answer-
ing RoB 2.1 and 2.2 require the annotators to read between the lines about whether the
participants, carers and intervention administrators were blinded to the administered in-
tervention. Except for vague terms like “single-blind”, “double-blind”, and “open-label,”
there is no single method or process that could help determine answers to these signalling
questions. For questions 2.4, 2.5 and 2.7, either the agreement is zero, or there are no
annotations for the response.



SQ P1 P2 P3 P4 P5 P6 Avg. Y PY NI PN N
1.1 23.1 24.5 52.2 57.0 48.0 21.5 37.7 21.8 7.1 0.0 - -
1.2 66.1 50.3 72.8 50.7 46.0 50.5 56.1 4.9 11.5 10.2 0.0 -
1.3 69.5 20.5 16.1 31.6 59.9 53.5 41.8 - - 41.8 11.4 9.9
2.1 1.0 1.4 0.0 9.1 19.1 0.0 5.1 8.2 0.0 - 3.0 0.0
2.2 18.3 7.3 11.1 0.0 23.0 7.4 11.2 3.6 0.0 0.0 0.0 0.0
2.3 20.6 5.5 13.4 0.0 0.0 0.0 6.6 - 0.0 - 1.0 0.0
2.4 0 - - 0 0 - 0 - 0 - 0 -
2.5 0 0 0 0 0 - 0 0 0 - 0 -
2.6 75.3 68.9 19.3 63.9 12.9 19.6 43.3 39.4 0.0 0.0 0.0 3.6
2.7 0.0 6.6 0.0 0.0 0.0 0.0 1.1 0.0 0.0 - 0.0 0.0
3.1 45.8 23.6 32.2 43.4 22.9 14.8 30.4 47.6 0.6 - 1.3 3.3
3.2 1.4 0.0 0.0 3.3 7.4 0.9 2.2 0.0 0.0 - 0.0 0.0
3.3 0.0 0.0 0.0 16.4 0.0 0.0 2.8 - 0.0 31.4 0.0 0.0
3.4 - 0 - 0 0 0 0 0 0 0 0 0
4.1 4.0 6.6 14.2 25.6 22.3 6.3 13.2 - - - 0.8 12.0
4.2 1.8 0.0 0.4 0.0 40.1 0.0 7.1 - - - 0.3 0.0
4.3 7.6 13.9 5.0 10.5 39.5 8.4 14.2 0.0 0.0 0.0 13.1 20.5
4.4 0 0 0 0 0 0 0 0 0 - 0 0
4.5 0 0 0 0 0 0 0 0 0 - 0 -
5.1 0.0 0.0 0.0 0.0 0.0 4.2 0.7 0.0 0.0 0.0 0.0 0.0
5.2 23.9 0.0 0.0 0.0 0.0 2.4 4.4 - 0.0 0.0 0.0 0.0
5.3 0.2 0.0 0.0 0.4 8.1 42.0 8.4 - 0.0 0.6 0.0 0.0

Table 5.3: Left: Table lists down IAAsq between the six annotator pairs (P1-P6) for the
RoB SQs. Substantial (≥ 61) agreements are in bold. Right: Table lists down IAAsq

averaged over the six annotator pairs for the SQs at the entity label level. Note: Y =
Yes, PY = Probably Yes, NI = No Information, N = No and PN = Probably No, Avg. =
Average. “-” shows that one of the annotators did not annotate any text for a particular
SQ.

Table 5.8, 5.9, and 5.10 report the IAAresponse agreement at the signalling question
response level for the risk domains 3 (bias due to missing outcome data), domain 4 (bias
in the measurement of the outcome), and domain 5 (bias in the selection of the reported
result) respectively. For question responses for these domains, the agreement either re-
mains zero, or there are no annotations. Signalling question 3.1 has fair to almost perfect
agreements between the pairs. The reason for this is “almost clear” assessment guidelines
for this signalling question. The question asks whether the outcomes data is available for
all, or nearly all, participants randomized. If the outcomes data is available for nearly
all randomized patients, the annotator chooses the response option “Yes” and otherwise
“No”. Annotator pair P4 again has a surprising 94.11% (almost perfect) agreement on the
judgment “No information” for RoB 3.3, and it is the only non-zero agreement for this
signalling question. Generally, the agreement values at the response level vary across the
annotator pairs. Prospectively, the reason for no annotation was the lack of clear corpus
annotation guidelines.



Figure 5.5: Distribution of IAAsq agreement values in the labeled corpus.

5.3.3 Discussion

In this section discusses the four types of annotation disagreements identified.

Polarity disagreement: A polarity disagreement arises when two annotators choose
the same chunk of text to answer a SQ but choose polar opposite entity labels (“Yes”
or “Probably yes” vs “No” or “Probably no” vs “No information”). In one of the docu-
ments, all four annotators chose the same text evidence (“71 allocated routine services,
67 allocated intervention service, ...”) to answer the SQ 3.1. However, three of the four
annotators responded to this question with “Yes”, but one chose “Probably no”. This SQ
asks whether the outcomes data were available for all, or nearly all, participants random-
ized but does not clarify the exact cut-off for how many participant dropouts increase
the risk? Therefore, the annotators make subjective response judgments depending upon
what exact percentage of participant dropout is considered valid in their experience. In
another example example, for corpus document number 5, annotator pair P1 chose the
text evidence, “Statistical analyses were performed using STATA version 10.0 (Statcorp,
College Station,TX). The Shapiro-Wilk W test for normal data was performed on con-
tinuous outcome measures. The distribution of categorical variables in each group was
compared...” to respond to the SQ 2.6. Even though both annotators in the pair selected
the same evidence for answering 2.6, one chose the “Probably no” response option, and
another chose “No information”. For the SQ 2.6 (“Was an appropriate analysis used to
estimate the effect of assignment to intervention?”), RoB 2 guidelines do not instruct when



Risk domain (class) P1 P2 P3 P4 P5 P6 Total
RoB 1 57.14 57.14 57.14 57.14 85.71 71.42 64.28
RoB 2 14.28 0 0 57.14 14.28 42.85 21.42
RoB 3 50 33.33 42.85 83.33 57.14 71.42 56.34
RoB 4 66.66 14.28 42.85 28.57 71.42 28.57 42.058
RoB 5 50 0 28.57 0 42.85 0 20.23

Table 5.4: The table lists down IAArd between the pair of annotators at the risk domain
level.

RoB 1.1
- Y PY NI PN N
P1 16.09 4.1 0 - -
P2 30 16.37 - - -
P3 11.39 1.71 - - -
P4 14.58 7.18 0 - -
P5 0 0 0 - -
P6 58.42 13.2 0 - -

RoB 1.2
- Y PY NI PN N
P1 0 18.29 60.67 0 -
P2 0 0 0 0 -
P3 0 0 0 0 -
P4 0 0 0 - -
P5 0 0 0 - -
P6 29.18 50.6 0 - -

RoB 1.3
- Y PY NI PN N
P1 - - 75.36 55.42 0
P2 - - 75.36 2.83 0
P3 - - 0 2.15 0
P4 - - 100 5.16 32.67
P5 - - 0 2.35 8.07
P6 - - 0 0 18.28

Table 5.5: The table lists down IAA between the pair of annotators for the risk of bias
signalling questions at the “response” option level IAAresponse for the risk domain 1 (bias
arising from the randomization process). Highest agreement values for each signalling
question are marked on bold. The lowest agreement values were always zero.

to choose “Probably no” vs “No information” when the details about the analysis used to
estimate the effect of assignment to intervention are unclear.

Degree disagreement: A degree disagreement causes low IAAresponse and arises be-
cause some annotators are lenient in judging risk while others are sceptical. The lenient
ones select definitive “Yes” or “No” for responding to a SQ, while the sceptical ones choose
“Probably yes” or “Probably no”. For example, in the corpus document 1, pair P1 selected



RoB 2.1
Pair Y PY NI PN N
P1 0 0 - 0 0
P2 0 0 - 0 0
P3 0 0 - - 0
P4 49.05 0 - 11.76 0
P5 0 0 - 0 0
P6 0 0 - - 0

RoB 2.2
Pair Y PY NI PN N
P1 0 0 0 0 0
P2 12.98 0 0 - 0
P3 8.16 0 0 - -
P4 0 0 - 0 0
P5 0 0 - - -
P6 0 0 - - -

RoB 2.3
Pair Y PY NI PN N
P1 - 0 - 0 -
P2 - 0 - 5.76 -
P3 - - - 0 0
P4 - 0 - 0 -
P5 - 0 - 0 0
P6 - 0 - 0 0

RoB 2.4
Pair Y PY NI PN N
P1 - 0 - 0 -
P2 - - - - -
P3 - - - - -
P4 - 0 - 0 -
P5 - 0 - 0 -
P6 - 0 - 0 -

Table 5.6: The table lists down IAA between the pair of annotators for the risk of bias
signalling questions at the “response” level IAAresponse for the risk domain 2 (biases due
to deviations from intended interventions (Part I)). Highest agreement values for each
signalling question are marked on bold. The lowest agreement values were always zero.



RoB 2.5
Pair Y PY NI PN N
P1 - 0 - 0 -
P2 0 - - - -
P3 - - - - -
P4 0 0 - 0 -
P5 - 0 - 0 -
P6 0 - - - -

RoB 2.6
Pair Y PY NI PN N
P1 33.54 0 0 0 -
P2 63.41 - 0 - 0
P3 34.1 0 0 - -
P4 40 0 - 0 10.69
P5 24.32 0 0 0 0
P6 40.51 0 - 0 -

RoB 2.7
Pair Y PY NI PN N
P1 0 0 - 0 -
P2 0 0 - 0 0
P3 0 - - - -
P4 - - - 0 0
P5 - - - 0 -
P6 - - - 0 0

Table 5.7: The table lists down IAA between the pair of annotators for the risk of bias
signalling questions at the “response” level IAAresponse for the risk domain 2 (biases due
to deviations from intended interventions (Part II)). Highest agreement values for each
signalling question are marked on bold. The lowest agreement values were always zero.



RoB 3.1
Pair Y PY NI PN N
P1 98.06 3.32 - 0 0
P2 53.76 0 - 0 0
P3 19.35 0 - 0 19.83
P4 57.59 0 - 7.84 0
P5 23.15 0 - 0 0
P6 33.23 0 - 0 0

RoB 3.2
Pair Y PY NI PN N
P1 0 0 - 0 -
P2 - 0 - 0 0
P3 - 0 - - -
P4 0 0 - 0 0
P5 0 0 - 0 -
P6 - 0 - 0 0

RoB 3.3
Pair Y PY NI PN N
P1 - 0 0 0 -
P2 - - 0 0 -
P3 - - - - 0
P4 - 0 94.11 0 -
P5 - 0 - - 0
P6 - - - 0 0

RoB 3.4
Pair Y PY NI PN N
P1 - 0 0 0 0
P2 - - - 0 -
P3 - - - 0 -
P4 0 0 - 0 0
P5 - 0 - - 0
P6 - - - - -

Table 5.8: The table lists down IAA between the pair of annotators for the risk of bias
signalling questions at the “response” level IAAresponse for the risk domain 3 (bias in the
measurement of the outcome). Highest agreement values for each signalling question are
marked on bold. The lowest agreement values were always zero.



RoB 4.1
Pair Y PY NI PN N
P1 - - - 0.95 12.33
P2 - - - 2.96 16.28
P3 - - - - 6.24
P4 - - - 0 8.15
P5 - - - 0 13.07
P6 - - - 0 15.81

RoB 4.2
Pair Y PY NI PN N
P1 - - - 1.83 0
P2 - - - 0 0
P3 - - - 0 0
P4 - - - 0 0
P5 - - - 0 0
P6 - - - 0 0

RoB 4.3
Pair Y PY NI PN N
P1 0 0 0 0 0
P2 0 0 - 0 40.93
P3 0 0 0 65.11 0
P4 - 0 0 0 5.55
P5 0 0 0 0 76.27
P6 0 0 0 - 0

RoB 4.4
Pair Y PY NI PN N
P1 - 0 - 0 -
P2 - - - 0 0
P3 0 - - 0 -
P4 - 0 - 0 0
P5 0 0 - 0 -
P6 0 - - 0 -

RoB 4.5
Pair Y PY NI PN N
P1 - 0 - 0 -
P2 - 0 - 0 -
P3 0 0 - 0 -
P4 - - - -
P5 0 0 - - -
P6 0 0 - - -

Table 5.9: The table lists down IAA between the pair of annotators for the risk of bias
signalling questions at the “response” level IAAresponse for the risk domain 4 (bias in the
selection of the reported results). Highest agreement values for each signalling question
are marked on bold. The lowest agreement values were always zero.



RoB 5.1
Pair Y PY NI PN N
P1 0 0 0 0 0
P2 0 0 0 0 0
P3 - 0 0 - 0
P4 0 0 - - -
P5 0 0 - - 0
P6 - 0 - - 0

RoB 5.2
Pair Y PY NI PN N
P1 - 0 0 0 0
P2 - 0 0 0 -
P3 - 0 0 0 0
P4 - - - 0 0
P5 - - - 0 0
P6 - - - 0 0

RoB 5.3
Pair Y PY NI PN N
P1 - 0 0 0 0
P2 - 0 0 0 0
P3 - 0 0 0 0
P4 - - - 0 0
P5 - - 2.27 0 0
P6 - - - - 0

Table 5.10: The table lists down IAA between the pair of annotators for the risk of
bias signalling questions at the “response” option level IAAresponse for the risk domain 5
(bias in the selection of the reported result). Highest agreement values for each signalling
question are marked on bold. The lowest agreement values were always zero.

the same sentence “Patients were randomly allocated to either intervention by a computer-
generated schedule stratified by sex and attendance at a day hospital” to respond to SQ
RoB 1.1. However, the more stringent annotator of the pair chose to respond with “Proba-
bly yes” and the lenient one with “Yes”. In corpus document 7, annotator pair P5 selected
the same information “Retention = 95.7%” and “Retention = 91.7%” to answer the sig-
nalling question 3.1. However, one annotator responded with the lenient “Probably no”
and another with a definitive “No”. A practical and rationally justified solution is to merge
the response options “Probably yes” with “Yes” and “Probably no” with “No” to reduce
the complexity of the task and increase IAA without altering the final risk judgment for
this risk domain. [313] As shown in Figure 5.2 responding to any signalling question for
the risk domain 2 as either “Probably yes” or “Yes” does not alter the final risk judgment
for this domain (low, high, or some concerns).

Text span disagreement: A low IAA is also caused by our annotation guidelines not
limiting the annotators to selecting either the phrase vs a sentence(s) vs a paragraph
for answering the question leading to a text span disagreement. RoB 2 tool led to some
annotators using and annotating very condensed information to come to a response. In



contrast, others used an entire paragraph to reach the same response for a SQ leading to
a low token-level IAA. In corpus document 5 for pair P6, one of the annotators selected
parts of a sentence “The primary outcome measure was a 0–10 NRS pain score, which
reflected the average pain experienced by the patient for ten days prior to follow-up” as
relevant text to answering signalling question 4.1 as “No”, while another annotator se-
lected only the phrase “a 0–10 NRS pain score”. In the corpus document 7, the annotator
pair P5 selected the same information “Retention = 95.7%” and “Retention = 91.7%” to
answer the signalling question 3.1, but one of the annotators used additional text infor-
mation (“Retention = 85.7%” and “Retention = 85.7%”Retention = 83.3%) as relevant
to answering the RoB 3.1. In corpus document 4, for pair P2, one of the annotators
chose an entire paragraph (“Randomisation was performed centrally by computer at the
Birmingham Cancer Clinical Trials Unit, University of Birmingham. When a patient was
identified as eligible for the study, and had given written, informed consent to take part,
the research nurse telephoned the trials unit...”) as text evidence to answer RoB 1.1 with
“Yes”. In contrast, the other annotator chose condensed, specific information from the
same paragraph to make the same decision. This problem requires mending the annota-
tion guidelines to precisely instruct authors to select the complete information they used
to decide or the minimum necessary information to decide on a SQ. Another method is
automatically extending the more condensed annotations to the broadest ones. In the
guideline improvement outlined in the next section, the restriction is on marking the full
sentence(s) where the relevant information is found unless otherwise instructed to mark
phrases.

Disparate document section disagreement: Sometimes annotators came to a re-
sponse judgment for a SQ but used different parts of the RCT text leading to disparate
document section disagreement. For example, document 7, pair P5, answered RoB 2.6
as “Yes” but used different parts of RCT as evidence. One of the annotators chose this
sentence “This study was guided by the HAPA, which has been widely used to address
the gap between intention to change and a person’s actual change in behaviour [25-27].”
to reach “Yes”. The other chose “intention-to-treat analysis was done with missing data
substituted by the last-observation-carried-forward procedure”. In corpus document 8,
pair P1 chose the same response option, “Yes” for the RoB 1.1 but chose different parts
of the text to answer it. One of the annotators chose the text evidence “A PHASE III
INTERNATIONAL RANDOMIZED CLINICAL TRIAL” in the study’s title to answer
this question. In contrast, the other annotator chose the text evidence from the methods
section. Such disagreements emanate from a lack of corpus annotation guidelines as well.
For each signalling question, the guidelines could instruct what part of the RCT to anno-
tate and what part to not annotate for a particular signalling question. For example, the
text evidence to answer the signalling questions 1.1 and 1.2 can be found in the methods
section. Applying this instruction could have retrospectively nullified this disagreement.
However, the RoB 2 guidelines do not provide such instruction, and the annotator will
annotate either all the places where they find text evidence to answer a question or only
one of the parts of the text where they see the evidence. We noticed many SQs remained
unanswered because the annotators did not understand what part of the text to annotate,
even after following the RoB 2 guidelines.

There was a specific case whereby the annotators selected multiple parts of text rel-
evant to answering the signalling question and responded to the question with different
response options. For document 1, one annotator selected the text evidence, “Patients



were randomly allocated to either intervention by a computer-generated schedule strat-
ified by sex and attendance at a day hospital” to respond to RoB 1.1 with “Yes”. The
same annotator selected another text evidence (“Single-blind randomized controlled trial.”
) from the same document to respond to RoB 1.1 with “Probably yes”. For document
8, one annotator selected the text evidence, “Children were randomized at a 1 to 1 ra-
tio and used an adaptive blocked randomization algorithm” to respond to RoB 1.1 with
“Yes”. The same annotator selected another text evidence (“SCATE was a Phase III,
randomized, open-label, partially masked, multi-centre, international, prospective trial of
hydroxyurea versus observation for children with SCA and centrally confirmed conditional
TCD velocities”) from the same document to respond to RoB 1.1 with “Probably yes”. It
has to be noticed that this issue is limited to RoB 1.1. Technically, a signalling question
for a document can only have one response judgment selected, but this was not reinforced
in our annotation setup. We wanted to capture as much relevant text as possible to an-
swer a signalling question with a judgment, even if it meant selecting multiple response
options for the signalling question. Though this is a beneficial signal for machine learning
applications, it does not serve the purpose of good IAA.

5.3.4 Limitations and Future Work

The corpus developed in this pilot study was very small, but it traded off for i) the docu-
ment length for annotation (full-text), ii) the complexity and subjective nature of the RoB
annotation task, and iii) the number of the entity and document classes (22 + 5) in the
RoB annotation task. However, despite the smaller scale, this work conclusively demon-
strates that the RoB 2 guidelines are not suitable for serving as annotation guidelines for
the RoB corpus. As detailed in the discussion section, the absence of clear annotation
guidelines resulted in a low IAA across the small manually labeled corpus. However, this
work does not present any annotation guidelines which are an overarching necessity for
developing an annotated corpus. Clear annotation guidelines could significantly enhance
annotation and have the potential to elevate the quality of a RoB annotated corpus by
fostering consistent decision-making and subsequently increasing the IAA. The next sec-
tion 5.4 explains how the concrete annotation instructions were developed by adapting
the RoB 2 guidelines. It also details adapting these annotation instructions into visual
annotation placards that could be used to annotate a large corpus.

5.4 Development of RoB Annotation Instructions and Ro-
Buster

To develop a corpus annotated with RoB text spans, RoB 2 guidelines were adapted into
comprehensive text annotation guidelines in this work [313]. These annotation guidelines
were modelled in form of visual placards for ease of annotation and understanding. In
addition to RoB annotation, these visual placards could also be utilized to train graduate
RoB student assessors. Using the annotation guidelines in addition to the RoB 2 tool,
we annotated and released a larger corpus of 41 full-text RCTs with 22 risk of bias span
types which could be used to fine-tune machine learning models or LLMs. The corpus
could also be used as a validation benchmark. We evaluated the performance of LLMs to
automatically identify the answers to these signalling questions using prompt generation.



Figure 5.6: Our adapted annotation scheme. Note: No Information* = No Information
label will not be manually annotated. It will be automatically considered for any SQ
where the annotator did not mark any answer. Probably yes* and Probably no* = Will
be collapsed with yes and no options, respectively (except for certain SQs).

5.4.1 Methods

This section provides an overview of the annotation scheme, the software tools used for
annotation, and the development of visual annotation instructions. Since there were no
existing annotation guidelines for the RoB span annotation task, we took the initiative
to create them from the ground up by adapting the RoB 2 tool. Our team first crafted
a preliminary set of visual annotation guidelines. Experts then proceeded to annotate a
subset of documents with these guidelines, and any conflicts that came up during this
process were used as valuable feedback to improve and refine the guidelines followed by
annotating a larger subset.

5.4.1.1 Adapted Annotation Scheme

Instead of redeveloping the annotation scheme, this work adapted and enhanced the pre-
viously developed scheme in the section 5.3.1.1 as per the learning from the pilot project.
This annotation scheme was directly adapted from the RoB 2 assessment procedure and
hence I reiterate the how RoB 2 guidelines are structured to understand the annotation
scheme. RoB 2 divides biases into five risk domains, each loosely corresponding to different
parts of the trial design. Each risk domain decomposes into several SQs, each aiming to
prompt the assessor to look for relevant RCT text evidence and elicit a relevant response
for bias risk judgment for that SQ (refer to Table 5.1).

The response options are restricted to “Yes”, “Probably yes”, “No”, “Probably no”, or
“No information” [313]. Reviewers assess these signalling questions by examining the fac-
tual evidence in the RCT. For instance, to answer the signalling question “Was the alloca-



tion sequence random?”, the reviewer reads through the study to identify how participants
were randomized into intervention groups. If a well-executed method of randomization is
identified, the reviewer answers with “yes” (the allocation sequence is random) judging the
risk of bias for this signaling question as low risk. Conversely, if a poorly executed method
of randomization is found, the risk of bias is deemed high risk with response option “no”.

In RoB span annotation, we mimic this assessment process by considering evidence
text spans in the RCT as the main units of annotation. Each span corresponds to an-
swering a signalling question and is annotated with the most informative label. The label
incorporates information about the signalling question number and the domain it assesses
(for the above example, “1.1” for the first domain and first signalling question of the do-
main) Additionally, the response judgement is incorporated in the label, such as “1.1 Yes
Good” for a well-executed randomization (see Figure 5.6). We took the learning from our
previous work et al. and collapsed the response options “yes” and “probably yes” into
a single “yes”, and “no” and “probably no” together into a single “no” to increase the
inter-annotator agreement (IAA) without altering the final risk domain judgment [83]. As
shown in Figure 5.2 responding to any signalling question for the risk domain 2 as either
“Probably yes” or “Yes” does not alter the final risk judgment for this domain (low, high,
or some concerns). Therefore, except for some special case signalling questions, these re-
sponse options were collapsed as suggested. This makes it a hierarchical span annotation
scheme comprising 22 entities corresponding to the 22 SQs, each with typically two re-
sponse options (“Yes” or “No”) and two directions (“good” and “bad”). We also remove
the “No Information” response option because this was meant for the situations where
actually no text evidence is found in the RCT to answer and label for a SQ. However,
for selected SQs (currently only SQ 2.1), “Probably Yes”, “Probably No” and “No In-
formation” may still be acceptable. For instance, consider that an RCT uses “...random
number generator and sealed envelopes for patient randomization...”, but the trial pro-
vided no information on whether the envelop was “opaque” or not. In such situations,
“No Information” judgment is acceptable.

5.4.1.2 Expert Team

As mentioned earlier, RoB annotation is a complex task that requires specialized expertise.
It is cognitively demanding due to the need to carefully go through the entire full-text
of RCTs and identify 22 different bias categories for annotation. This level of complexity
would not be manageable for annotators without expertise in the field. Our annotation
team consisted of two researchers specializing in RoB assessment in physiotherapy and
rehabilitation domains, including an epidemiology researcher (ID: E1MA 64) and an as-
sociate professor (ID: E2IRAA 65) in physiotherapy. With a substantial background in
both physiotherapy, advanced statistical methods and experience writing SRs, both ex-
perts possessed a deep understanding of the complexities involved in bias assessment. Two
additional physiotherapy experts, two senior PhD students, were a part of developing the
visual annotation guidelines and placards. Two additional researchers with expertise in
natural language processing (NLP) were involved, a computational linguistics associate
professor and a PhD student in computer science. Their inclusion was important because
the guidelines and placards they helped create will be utilized to annotate a text corpus,
serving as a benchmark for RoB text span extraction. Finally, Prof. Dr. Julian PT

64Expert 1 Major Annotator
65Expert 2 Inter-Rater Agreement Annotator



Higgins, who is the main editor of RoB 2, provided critical feedback to shape the visual
annotation placards [149].

5.4.1.3 Data Collection

Different outcome categories exist in SRs: subjective, objective and mortality outcomes
(a sub-category of Objective). Savović et al. found that trials assessing subjective out-
comes are more prone to bias, therefore, had this work used only one outcome type, we
would have limited label types for different risk classes [257, 293]. In context of RCTs,
subjective outcomes are measurements that rely on individuals’ perceptions, opinions, or
feelings about their own health or well-being. These outcomes are typically self-reported
by the participants in the trial and can be influenced by factors such as placebo effects,
patient expectations, interpretation, and psychological factors. For example, in a study
on rheumatoid arthritis, subjective outcome measures included patient-reported pain rat-
ings [341]. Objective outcomes are measurements that are independent of individual opin-
ions or perceptions and are based on observable and measurable data. These outcomes
are typically collected by trained assessors or through laboratory tests, imaging studies, or
other objective methods. For instance, in a study on peripheral artery disease, objective
outcome measures included angiography and molecular imaging to evaluate the effective-
ness of cell therapy [129]. Mortality outcomes refer to the occurrence of death during the
course of the trial. To ensure that these various outcome types are represented in the
corpus, we included 17, 17, and 7 RCTs addressing objective, subjective, and mortality
primary outcomes, respectively. The epidemiology researcher (E1MA) from our team cre-
ated this 41 RCTs dataset from the domain of physiotherapy and rehabilitation. PDFs
of the full-text RCTs were extracted and each article was collated with its trial protocol
from wherever available. Each PDF was renamed with the primary outcome that was to
be examined using RoB 2 before uploading to the annotation software 66. Corpus details
are in the Appendix.

5.4.1.4 Visual Placards Development

RoB 2 tool consist of an extensive and step-by-step set of instructions to answer signaling
questions and even though RoB 2 guidelines are widely used for bias assessment, there
have been some research on their reliability. This reliability concern has been extensively
investigated by Minozzi et al. [235, 236]. They formulated specific instructions on how to
approach and answer the signaling questions of RoB 2. These instructions, referred to as
the Instruction Document (ID), address the subjectivity present in the RoB 2 guidelines
and provide clear guidance for the assessment process. Subjectivity in assessment could po-
tentially result in different evaluators coming to disparate conclusions when analyzing the
same trial. Before implementing the ID, the agreement among four expert RoB assessors
was zero, but it improved after adopting the ID. Several other papers explored subjectivity
and reliability of the Cochrane RoB 1.0 and 2 tools [72, 204, 235, 236]. With this in mind,
precise and clear text annotation instructions using the RoB 2 tool were developed with an
aim to maintain the consistency and reliability among annotators. Working closely with
our team of experts, we formatted these instructions into visual instructional placards.
Each placard takes the form of a flowchart and provides instructions for annotating RCT
text to answer a SQ. The flowchart also provides instructions on labelling the annotated

66tagtog text annotation software, PAWLS annotation software



text with risk judgment. The RoB 2 tool SQs are broadly factual but leave room for
subjective judgements and our visual placards aim to facilitate judgements about the risk
of bias.

5.4.1.5 Annotation

Figure 5.7: A screenshot of PAWLS interface with an example PDF and RoB annotations.

For every SQ, the annotators were guided to use the complete RoB 2 guidance doc-
ument along with visual placards that were developed. They followed these instructions
meticulously, going through each placard’s signaling question one by one. The provided
instructions directed the annotators to read specific sections of full-text RCT that needed
annotation. Their task involved identifying and highlighting relevant text related to an-
swering the signaling question. It has to be noted that the domain 2 of RoB 2 focuses on
assessing the risk of bias due to deviation from the intended intervention. This domain
evaluates both the effect of assignment to the intervention and the effect of adherence to
the intervention. RoB 2 offers distinct sets of SQs for each aspect. The study specifi-
cally focuses on assessing Domain 2 for the effect of assignment to the intervention and
consequently addresses only address the SQs corresponding to this aspect.

Tagtog 67, a commercial text annotation web application, allows for annotating PDF
(Portable Document Format) documents, was used for the annotation [52]. Out of the 41
documents, 9 were doubly annotated by two experienced annotators (E1MA and E2IRAA)
to calculate inter-annotator agreement (IAA) over these documents and the rest were
singly annotated by E1MA. After double annotation, conflict resolution was performed
to address conflicting annotations, which helped us further calibrate the visual placards.
The conflict resolution was followed by annotating 51 additional RCTs.

After the annotation of 9 doubly-annotated RCTs, we switched to the PAWLS 68

annotation tool, which allows users to annotate PDFs for free [249]. We chose to annotate
PDFs rather than plain text because RCT PDFs have a visual format that will be lost
upon converting to text. For example the structure pertaining to sections and subsections,
tables, and figures makes the annotation task quicker for the annotators and increases
annotation quality. Post annotation, the feedback was taken from both the annotators,
details of which could be found in the Appendix.

67https://www.tagtog.net/
68https://pawls.apps.allenai.org/



5.4.1.6 Evaluation

We report IAA at two levels checking whether the annotators agree on the text spans to
answer SQs using the pairwise F1 measure. F1-measure disregards out-of-the-span tokens
(unannotated tokens) during agreement calculation and is an ideal measure of annotation
reliability for the token-level annotation tasks. It measures the F1 score as shown below
for each pair of annotators, treating one annotator’s labels as the “true” labels and the
other annotator’s labels as the “predicted” labels [40, 79].

F1−measure =
2× True Positives

2× True Positives+ False Positives+ False Negatives
We also check how strongly the annotators agree on the risk judgment for each SQ

using prevalence and bias adjusted kappa (PABAK) κpabak and compare it with raw per-
cent agreement. PABAK κpabak is the standard annotation reliability measure for many
classification annotation tasks and is suitable to measure reliability at the risk judgment
level. κpabak is an extension of Cohen’s Kappa κ that takes into account prevalence
and bias in the agreement. We interpret both the IAA measures as shown in the Ta-
ble 5.11 [45, 68, 182, 223].

F1-measure κpabak Raw Agreement
interpretation range interpretation range interpretation range

Poor 0-0.99 No agreement ≤ 0 None 0
Slight 1 - 20.99 Slight agreement 0-0.20 Very low 1-10%
Fair 21 - 40.99 Minimal 0.21-0.39 Low 11-30%
Good 41 - 60.99 Weak 0.40-0.59 Moderate 31-50%
Substantial 61 - 80.99 Moderate 0.60-0.79 High 51-70%
Almost perfect 81 - 99.99 Strong 0.80-0.90 Very high 71-90%
Perfect 100 Almost Perfect ≥ 0.90 Perfect >90%

Perfect 1.0

Table 5.11: The table details interpretation of pairwise F1-measure (Left), κpabak (Middle)
and observed or raw agreement (Left)

5.4.1.7 LLM Evaluation

Our annotation guidelines and annotations were adapted for benchmarking supervised
machine learning approaches and not LLMs. So even though we were annotating PDFs,
we had to restrict a lot of annotations based on the assumption that PDF will be converted
into text via OCR (optical character recognition) losing its structure of tables and figures,
which anyway a classical ML model could not use without extensive modifications [73, 193,
194]. Recent advancements with LLMs offers a better alternative and made us rethink
the evaluation. The bar for clinical applications is high and it is imperative to evaluate
LLMs for the more challenging clinical tasks like RoB text span extraction [308]. The tools
like ChatPDF 69 allow direct interaction between LLMs and PDFs, negating the clumsy

69https://www.chatpdf.com/



PDF to text conversion. Therefore, it is essential to evaluate LLMs instead of forcefully
adapting the evaluation to a classical ML problem. LLM evaluation was formulated as
a zero-shot RoB text span extraction task. This was to gauge whether an LLM encodes
knowledge related to assessing trial biases. We used simple prompt constructs of the
structure “Answer the {SQ} + Action item to extract sentence supporting the answer”.
Consider the following example.

Example prompt: Question 4.3 Were outcome assessors aware of the inter-
vention received by study participants? Provide an answer and extract the
supporting sentences that you write your answer based on. Extract the sen-
tences in JSON 70.

The prompt serves two purposes for evaluating LLMs for correctness. LLM is prompted
to 1) answering the SQ with a response option (risk judgment), and 2) extract the text
evidence to support their answer. When answering a question, ChatPDF finds the most
relevant paragraphs from the PDF and uses the ChatGPT API from OpenAI to generate
an answer 71. LLM is required to do the same task as human annotators and will be
evaluated on the basis of correctness of the answer. If LLM answer corresponds to re-
sponse option selected by the expert annotator, it is considered a correct answer for that
SQ. If the text extracted by LLMs as evidence for answering the SQ fuzzy matches the
text selected by the expert annotator, it is considered a correct answer. Both of these
skills will be evaluated using a raw or observed agreement metrics PO(Extraction) for
measuring agreement over extraction and PO(Response) for measuring agreement over re-
sponse judgments and interpreted as per Table 5.11. Observed agreement is essentially the
number of documents for a RoB SQ where LLM responses align with those of the human
expert, divided by the total number of documents assessed [14]. In several instances, there
was no information found by the expert annotator from the RCT to answer a question.
For such instances, if ChatPDF correctly identifies the absence of relevant information to
answer a question, it is considered a correct response. It’s important to highlight that the
evaluation framework is designed solely to measure the agreement of the answers between
ChatPDF and the expert. LLM evaluation was manually conducted by a bias assessment
expert and an NLP expert for 10 out of the 41 RCTs.

5.4.2 Results
This section outlines the visual placards, annotated dataset, reports the IAA findings, and
the outcomes of the LLM evaluation.

5.4.2.1 Visual Placards

A total of 27 placards were developed to address the 22 signalling questions in RoB 2 tool.
Details of the annotation guidelines and visual placards are available in the Supplementary
material. Figure 5.8 presents an example placard for annotating SQ 3.1 (“Were data for
this outcome available for all, or nearly all participants randomized?”) which assesses the
completeness of outcome data in an RCT. This question assesses whether data for the
specific outcome of interest were collected and available for analysis for a high proportion
of initially randomized participants. Missing data can compromise statistical power and

70JSON = JavaScript Object Notation
71ChatPDF employs GPT (Generative Pretrained Transformer) 3.5.



RoB 3.1 Were data for this outcome available for all, or nearly all, Participants randomized?

Check the 
mentioned 

sections to identify 
the outcomes at 

this particular time 
point. Did you find 

the data? 
Annotate it.

3_1_No_Information 3_1_No_Bad

Annotate full sentences if not otherwise specified to annotate only phrases.
Green arrow = which section to find this text evidence
Yellow arrow = If the information was not found in the Results, then look for in the Results: Table

3_1_Yes_Good

Results

Flowchart!

Were the 
outcomes 

available for 
nearly all (95%) 

patients 
randomized?

Results: Table

No

YES NO

No

Check for the outcome 
being assessed in the 
document name in 
tagtog and the time 
point at which this 
particular outcome is 
assessed.

For continuous outcomes, data 
availability from 95% of the participants 
will often be sufficient. For 
dichotomous outcomes, the proportion 
required is directly linked to the risk of 
the event. If the observed number of 
events is much greater than the number 
of participants with missing outcome 
data, the bias would necessarily be 
small.
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Figure 5.8: Sample annotation instruction placard for the SQ 3.1 designed and adapted
using RoB 2 tool.

treatment effect estimates. The first diamond on the placard instructs annotators to check
the Results section (first priority) and the flowchart and Table within the Results section
(second priority) to identify outcome data at the specified time point. If outcomes data
were available for at least 95% of participants, annotators mark relevant text descriptions
as “3.1 Yes Good” indicating a low bias. If data were available for less than 95%, they mark
it as “3.1 No Bad” indicating a high bias. Lack of information will lead to automatically
assuming a “No Information” label. The yellow arrow on the first diamond suggests
checking the Results section first; if not found, annotators should look in the Results
section table. If still not found, annotators are instructed to check the flowchart caption,
marked with a red exclamation as a last resort.

5.4.2.2 The Corpus: RoBuster

We provide key statistical information about the annotations in RoBuster in this section.
The histogram in Figure 5.9 shows a visual representation of the absolute counts of anno-
tations (tokens) for each of the RoB SQs. SQ 1.3 had disproportionately higher number
of annotated tokens, while for all other SQs, the number of annotated tokens remained
consistently below 2000 across the entire corpus. The only exception to this trend was
for SQ 3.1 which had slightly more than 2000 annotated tokens. SQ 2.4 (”Were these
deviations likely to have affected the outcome?”) had only 25 annotated tokens.

Table 5.12 lists down essential information on the absolute and average annotation
lengths for each RoB SQ along with the total number of documents the annotations
were identified from. Annotations for the “randomization” risk domain 1 were found in
an average of 35 of the 41 documents, while annotations related to answering the other
risk questions were available only in a small subset of the total annotated RCTs, as also
depicted in Figure 5.10 which shows the distribution of risk judgments across RoBuster.
The figure highlights that, for most SQs, no information was available (indicated by yellow
bars) for answering the SQs and making the risk judgment. Notably, SQs 2.2, 2.6, 3.1,
4.3, and 4.4 stood out as exceptions, with information available in more than 50% of the
annotated documents. In cases where information was available, bias tended to be low, as



indicated by the prevalence of green bars with an exception for the SQs 2.2, 3.1, 4.3, and
4.4, where bias was high, as indicated by the prevalence of red bars. Check the Appendix
for the references of all the studies in RoBuster.

Figure 5.9: Total number of token annotations for each RoB SQ.

Figure 5.10: Distribution of bias judgment across RoB SQs in RoBuster.

5.4.2.3 Inter-annotator agreement

Table 5.13 illustrates the levels of F1-measure (inter-annotator agreement) between the two
annotators, both before and after the development of the visual placards. The F1-measure
before and after the guideline improvement were calculated on a different set of documents.
The average overall F1 agreement across the corpus exhibited a modest 10.87% agreement
before the introduction of visual placards. Following their implementation, this agreement



SQ Total tokens Average length Total documents

Domain 1: Biases arising from the randomization process
RoB1.1 960 32 30
RoB1.2 838 24.65 34
RoB1.3 16446 411.15 40
Domain 2: Biases due to deviations from intended interventions
RoB2.1 455 32.5 14
RoB2.2 1502 55.63 27
RoB2.3 282 56.4 5
RoB2.4 25 25 1
RoB2.5 58 29 2
RoB2.6 544 20.92 26
RoB2.7 126 25.2 5

Domain 3: Bias due to missing outcome data
RoB3.1 2529 74.38 34
RoB3.2 103 34.33 3
RoB3.3 75 15 5
RoB3.4 276 21.23 13

Domain 4: Bias in the measurement of the outcome
RoB4.1 240 24 10
RoB4.2 572 33.65 17
RoB4.3 698 30.35 23
RoB4.4 585 27.86 21
RoB4.5 622 41.47 15

Domain 5: Bias in the selection of the reported result
RoB5.1 628 69.78 9
RoB5.2 235 19.58 12
RoB5.3 628 89.71 7

Table 5.12: General statistics for the annotated corpus: This table provides an overview of
the annotated corpus, including the total number of annotated tokens, the average length
of token sequences, and the number of documents in which annotations were identified,
out of a total of 41 annotated documents.



increased significantly by 17.14 percent points, reaching a fair 28.01%. The agreement for
the “randomization” domain 1 doubled from a poor (F1 31.72 IAA) to a substantial (F1
63.30 IAA). For the “deviations from intended interventions” domain 2, the agreement
increased from a slight (F1 (F1 12.76 IAA) to fair (F1 27.02 IAA). In the case of the
“missing outcomes” domain 3, the agreement rose from (F1 5.89 IAA) to (F1 9.92 IAA),
although it remained within the slight agreement category. For the “missing outcome
measurement” domain 4 the agreement increased from (F1 4.072 IAA) to (F1 17.29 IAA).
The agreement before the placard development was none and it increased to slight (F1
16.49 IAA) for the “selection of reported results” domain 5.

Improvements in agreement were observed at individual SQs level too, with consid-
erable gains exceeding 50% points for signaling questions 1.3, 2.1, 4.1, and 4.4. The
F1-measure between the two reference annotators for a total of 11 out of 22 questions
remained 0 both before and after the guideline development. Notice that nine of the 11
questions for which the agreement was zero before and the after placard development are
the same SQs. For two SQs, 4.4 and 5.2, the guideline improvement raised it from 0 to
56.25 and 49.49 respectively. However, for SQs 2.3 and 2.7, the agreement experienced a
modest decline of 5.42 and 6.52, reaching 0 after the guideline development. For the SQ
1.2, the agreement dropped by 6.28 IAA points making it a drop in agreement for 3 SQs.
Inferring from the table 5.11 and table 5.13, annotators for 11 of the 22 SQs had a poor
agreement, 3 of the 22 questions had a fair agreement, 4 out of the 22 questions had a
good agreement and 2 out of the 22 questions had a substantial agreement while only 2 of
the 22 questions had an almost perfect agreement of beyond 81 IAA points. As expected,
none of the SQ annotations had a perfect F1-measure.

We present the prevalence and bias adjusted kappa κpabak agreement, raw agree-
ment and the percentage of κpabak agreements that stemmed from the “No Information”
judgments in Table 5.14. To recall κpabak measures agreement at the SQ risk judgment
level [223]. The overall κpabak agreement between the annotators stand at a weak IAA of
0.41181 IAA. The average agreement for “randomization” domain 1 was a moderate 0.629
IAA. For the “deviations due to intended interventions” (domain 2), there was a moderate
agreement of 0.64 IAA and for the “due to missing outcome data” (domain 3) there was
a minimal agreement of 0.388 IAA. The last two domain 4 and 5 “measurement of the
outcome” and “selection of the reported result” had agreements 0.166 IAA and 0.092 IAA
interpreted slight and no agreement.

The highest agreement of 1.0 is observed for SQ 2.6. It is, however, important to
note that more than half of this agreement arises from the assumed “No Information”
judgments for 2.6. For the remaining SQs, there were no instances of either almost perfect
or strong agreement. Agreements for SQs 1.1, 2.1, 2.5, 3.1, and 4.3 fall within the moderate
agreement category ranging from 0.60 to 0.80 IAA. Amongst these SQs, only for the SQ
1.1, 2.1, 3.1 and 4.3 has no substantial agreement originating from the “No Information”
judgments. In contrast, 2 of the 22 signaling questions (4.2 and 5.1) exhibit agreement
worse than what would be expected by chance. For SQ 5.1, one annotator did not mark
any text, leading to negative IAA, while for SQ 4.2, both annotators correctly marked
their answers in different parts of the text, resulting in negative agreement. The bias
questions 3.3 and 4.5 show 0 κpabak agreement. The IAA was zero for SQ 4.5 because
the annotators annotated mutually exclusive sets of documents, resulting in no consensus.
A similar case was observed for SQ 3.3, wherein both annotators correctly marked the
answer for only one document. However, since these markings were in different text parts,
the agreement remained at zero.



F1-measure IAA
SQ before guideline improvement after guidelines improvement change

Domain 1: Biases arising from the randomization process
RoB 1.1 24.44 55.02 +30.58
RoB 1.2 50.28 44 -6.28
RoB 1.3 20.44 90.9 +70.46

Domain 2: Biases due to deviations from intended interventions
RoB 2.1 1.34 67.26 +65.92
RoB 2.2 7.23 38.66 +31.43
RoB 2.3 5.42 0 -5.42
RoB 2.4 - 0 0
RoB 2.5 0 0 0
RoB 2.6 68.85 83.25 +14.4
RoB 2.7 6.52 0 -6.52

Domain 3: Bias due to missing outcome data
RoB 3.1 23.57 39.68 +16.11
RoB 3.2 0 0 0
RoB 3.3 0 0 0
RoB 3.4 0 0 0

Domain 4: Bias in the measurement of the outcome
RoB 4.1 6.51 61.71 +55.2
RoB 4.2 0 0 0
RoB 4.3 13.85 30.21 +16.36
RoB 4.4 0 56.25 +56.25
RoB 4.5 0 0 0

Domain 5: Bias in the selection of the reported result
RoB 5.1 0 0 0
RoB 5.2 0 49.49 +49.49
RoB 5.3 0 0 0

Table 5.13: The table displays the F1-Measure at the text span annotation level before
and after the development of visual placards. The change in F1-Measure is presented in
terms of absolute IAA points. Note: Dash (-) shows that one of the annotators did not
annotate any text for a particular SQ.



SQ κpabak agreement Raw agreement Contribution from “No Information”

Domain 1: Biases arising from the randomization process
RoB 1.1 0.8333 88.90% 22.22%
RoB 1.2 0.5 66.70% 33.33%
RoB 1.3 0.5556 77.80% 11.11%

Domain 2: Biases due to deviations from intended interventions
RoB 2.1 0.7037 77.80% 5.56%
RoB 2.2 0.5 66.70% 38.89%
RoB 2.3 0.5 66.70% 77.78%
RoB 2.4 0.5556 77.80% 88.89%
RoB 2.5 0.6667 77.80% 83.33%
RoB 2.6 1 100.00% 55.56%
RoB 2.7 0.5556 77.80% 77.78%

Domain 3: Bias due to missing outcome data
RoB 3.1 0.8333 88.90% 11.11%
RoB 3.2 - 100.00% 100.00%
RoB 3.3 0 33.30% 55.56%
RoB 3.4 0.3333 55.60% 33.33%

Domain 4: Bias in the measurement of the outcome
RoB 4.1 0.5556 77.80% 11.11%
RoB 4.2 -0.5556 22.20% 38.89%
RoB 4.3 0.6667 77.80% 27.78%
RoB 4.4 0.1667 44.40% 22.22%
RoB 4.5 0 33.30% 66.67%

Domain 5: Bias in the selection of the reported result
RoB 5.1 -0.5556 22.20% 61.11%
RoB 5.2 0.5 66.70% 22.22%
RoB 5.3 0.3333 55.60% 72.22%

Table 5.14: Prevalence and Bias adjusted Kappa κpabak and raw agreement between an-
notator pairs for agreement at the risk judgment level for each SQ.



5.4.2.4 LLM Evaluation

Table 5.15, presents the observed or raw agreement between LLM and expert assessments
in extracting and responding to SQ over a subset (n=10) of RoBuster. The evaluation was
conducted on four RCTs reporting objective outcome, three RCTs evaluating subjective
outcome and the rest three RCTs reporting mortality outcome. For the first risk domain,
ChatGPT had high PO(Extraction) and PO(Response) agreements (66.6% and 55.3%
IAA respectively) with experts and none of these agreements came from “No Information”
responses indicating a good availability of information for bias assessment. Specifically,
for individual SQs within domain 1, the PO(Extraction) was greater than PO(Response).
The observed agreements for the the second domain are even higher 64.28% and 60%
respectively, but 40% of these agreements emanate from “No Information” responses sug-
gesting lower availability of information. Domain 3 exhibited a moderate average ob-
served agreement of 47.5% for both PO(Response) and PO(Extraction) , while Domain
4 demonstrated a lower observed agreement of 28% and 26% for response and extraction,
respectively. For the domain 5, the observed agreement for extraction was lower than the
observed agreement for response. Details about the RCTs used for LLM evaluation are in
the Appendix.

5.4.3 Discussion

5.4.3.1 Visual Placards

As per [83], there were two reasons causing a low F1 IAA for annotating text span to an-
swer a SQ. One reason was a lack of instructions whether the annotators should annotate
a phrase, a sentence or sentences. While some annotators might annotate an entire para-
graph as text evidence to answer a SQ, others might focus on the most informative portion
of the text. To address this, our placards provide clear guidance on whether annotators
should annotate a phrase, a sentence, or a combination of sentences. Another common
reason for a low F1 was when annotators correctly addressed a bias SQ but annotated
evidence from different parts of the full text leading to no or low agreement. To tackle this,
our placards restrict annotations for a question to a specific part of the text for specific
SQs, such as the Methods section, Results section, Flowchart in the Methods section, etc.
Annotations in Flowcharts and Tables are restricted as last priority for all SQs except 1.3.
We had this restriction since ML models face challenges in directly interpreting Tables
and Figures. Reiterating the details presented in Figure 5.8, the information related to
answering SQ 3.1 is found in the RCT flowchart. However, the first diamond instructs
annotators to locate the information in the Results section for annotation. This decision is
made to facilitate ML models, as training on text data from the Results section is deemed
more effective.

The visual placards addressed various facets of RoB 2 subjectivity and also when
dealing with situations lacking information for risk judgment annotation. In one trial
document annotation, both annotators selected the phrase “71 allocated routine services,
67 allocated intervention service, 69 assessed at 8 weeks, 64 assessed at 8 weeks” from
the PRISMA flowchart to answer signaling question 3.1 [121]. However, one annotator
responded with “Yes” while the other chose “No”. This question asks whether outcome
data were available for all or nearly all participants randomized, but it doesn’t specify the
exact cutoff for participant dropouts that increase the risk. Therefore, annotators make
subjective judgments based on their experience regarding what percentage of participant



Observed Agreement PO

SQ PO(Extraction) PO(Response) “No Information”

Domain 1: Biases arising from the randomization process
RoB 1.1 90% 70% 0%
RoB 1.2 70% 60% 0%
RoB 1.3 40% 30% 0%
Domain 2: Biases due to deviations from intended interventions
RoB 2.1 50% 40% 0%
RoB 2.2 30% 30% 10%
RoB 2.3 60% 60% 50%
RoB 2.4 90% 90% 100%
RoB 2.5 90% 90% 100%
RoB 2.6 80% 50% 10%
RoB 2.7 50% 60% 40%

Domain 3: Bias due to missing outcome data
RoB 3.1 30% 40% 0%
RoB 3.2 60% 40% 40%
RoB 3.3 30% 30% 30%
RoB 3.4 70% 80% 70%

Domain 4: Bias in the measurement of the outcome
RoB 4.1 40% 30% 10%
RoB 4.2 40% 30% 20%
RoB 4.3 10% 10% 10%
RoB 4.4 10% 20% 10%
RoB 4.5 40% 40% 40%

Domain 5: Bias in the selection of the reported result
RoB 5.1 22.22% 77.77% 0%
RoB 5.2 33.33% 44.44% 33.33%
RoB 5.3 55.55% 55.55% 44.44%

Table 5.15: LLM evaluation: Observed agreements between LLM and experts over a subset
of RoBuster. Note: For the domain 5, LLM evaluation was conducted on 9 RCTs, as one
of the RCTs did not have the trial registry available.



dropout is considered valid. To address this subjectivity, we introduced a threshold of
95% in the placard instructing annotation (see Figure 5.8).

5.4.3.2 The Corpus: RoBuster

The immediate points noticed in the Figure 5.9 were that SQ 1.3 had a disproportionately
higher number of annotated tokens (n=16,446) while the remaining signal questions had
fewer than 2600 tokens each annotated. The reason behind this is that the answer to
SQ 1.3 is found in the table detailing baseline patient characteristics of the intervention
groups. To ensure good F1 IAA, instructions on visual placards directed annotators to
label the entire table, leading to a higher count of annotated tokens for this question.
For the rest of the SQs, it is the availability of detailed description on the study design,
methods and results that could have impacted the amount of tokens annotated and also
the subjectivity level of bias assessment. The more information a study provided, the
easier it is to evaluate a bias question. Some studies tend to not report key details making
it tougher to assess certain bias questions. Feedback forms received indicated that for
SQs with fewer than 100 annotated tokens, annotators consistently rated the availability
of information to answer those questions as either “low” or “very low”. In contrast, for
the top 5 signalling questions shown in Figure 5.9, both annotators consistently rated the
availability of information as “high” and “normal”. It is important to interpret this qual-
itative feedback with caution though, as annotator ratings are influenced by the number
and types of RCTs they annotated. The annotator who reviewed a greater number of
documents in RoBuster experienced that it was more difficult to assess certain questions
and the availability of information was lower than the other annotator who annotated
fewer documents (for IAA calculation).

5.4.3.3 Inter-Annotator Agreement

Text span agreement F1 agreement was calculated before and after visual placard
development showing an improvement in the agreement for choosing the RCT text spans
for 10 of the 22 SQs. SQ 1.3 had the highest increase of 70.46 F1 IAA points thanks
to the visual placards requesting to look for the text evidence to answer this question
first priority in the table recording patient characteristics and instructs to mark the entire
table along with the table caption. Earlier, the annotators would only mark a portion of
the table to answer this question. The specific text selected by an annotator depended on
which part of the table text they noticed first as potentially indicating bias given any of the
listed patient characteristics could show imbalances between the groups. This variability
in selection led to lower F1 on this SQ. Similarly, SQ 1.1 showed a 30-point increase, with
placards emphasizing marking text evidence in the Methods section. The evidence to
answer the SQ 1.1 could be found in both abstract and the methods section and prior to
placard development, the annotators variably marked the answer to this question leading
to a lower agreement. We restricted annotating this text in the methods section in the
visual placards because a more detailed textual description is found in this section. In
addition, prior to the placard development, the annotator marked the phrase “randomized
controlled trial” to justify their decision for “1.1 Yes Good”. The placards added a rule
that “Yes Good” was to be marked only if the annotators found a proper method of
randomization and annotated it in the text. These improvements were also the reason
for an increased agreement for the SQs 2.1 and 2.2. For SQ 2.1, there was a remarkable
increase of 67.26 IAA points. This can be attributed to the comprehensive instructions



provided by the visual placards, which instruct annotators to specifically identify and
label text descriptions related to intervention administration and placebo administration.
Earlier, the annotators were inconsistently annotating either the description of intervention
administration or placebo administration, leading to lower agreement.

While the agreement drastically increased for certain SQs, for other questions it re-
mained 0. These outcomes align with the feedback forms’ findings. Almost all the RoB
questions where the IAA between the annotators was zero (2.3, 2.4, 2.5, 2.7, 3.2, 3.3, 3.4,
4.2, 4.5, 5.1, 5.3) consistently received remarks from one or both annotators regarding
their higher subjectivity, difficulty in assessment, and lower availability of information
for evaluation and hence annotating. The poor agreement hence can be well assumed to
caused by the subjectivity of the SQs, lack of information to annotate in the RCT, and
the overall complex process of analysing trials.

Zero IAA could also be attributed to the theoretical nature of certain SQs like 3.4 and
4.5. For instance, SQ 3.4 assesses the “likelihood” that missing outcomes data is related
to the true values of those outcomes, examining the risk of bias associated with missing
outcome data. Similarly, SQ 4.5, dependent on SQ 4.4 results, aims to gauge the “like-
lihood” that the assessment of the outcome was influenced by knowledge of whether the
intervention was received. Such “theoretical” questions require making judgments that
rely on hypothetical scenarios rather than direct observations or concrete text evidence
leading to higher subjectivity of assessment results. As these questions pertain to aspects
of study design, conduct, or reporting that may not be explicitly addressed in the trial
documentation these questions also suffer from a lack of information that could be an-
notated in a trial. To address this, annotators are instructed to annotate outcome and
outcome measurement descriptions in the paper for these questions, ensuring a basis for
judgment and the availability of annotations for training and evaluating ML models on
RoBuster.

There were certain aspects where question subjectivity might have led to low agreement
score. For example, for the SQ 2.4, it is asked whether deviations from the intended
intervention could have affected the outcome. Assessing whether deviations could have
affected outcomes requires a subjective judgment. What one person considers likely to
affect outcomes, another might not. This leaves room for variability in how different
assessors may interpret and score this question. In addition, annotators may have limited
information available to annotate any text and to make a judgment. They may not have
access to detailed data or explanations regarding the deviations, making it challenging
to assess their potential impact accurately. Specifically, only 2 out of the 9 RCTs had
annotations for SQ 2.4 and these annotations were made only by one of the annotators and
not by both annotators lading to no agreement at the text span level. Similar subjectivity
occurs for the SQ 3.3: Could missingness in the outcome depend on its true value? The
SQ involves assessors making a judgment about the relationship between missing data
and the true outcome, which can be challenging to determine objectively. Annotating
text evidence is even more difficult for this question because authors need to annotate
the reasons for missing outcomes data that are related to the true value of the outcome,
for the physiotherapy outcomes like ‘fatigue’. If authors describe the reasons for missing
outcomes data as patients not showing up at follow-up owing to fatigue, annotating this
is necessary because missingness of outcomes data in this case depends on the true value
of outcome (here fatigue). However, this information is not usually available in the RCT.
Placards instructed annotators to mark outcome descriptions instead, aiding judgment.
Unfortunately, one annotator did not follow this instruction, resulting in 0 agreement at



the text span level. Such instances suggest a longer training and several rounds of conflict
resolution and correction are required for the annotators.

Response option agreement The disagreements at response option judgments arose
because of two reasons. The most apparent cause of disagreement occurred when two
annotators choose a text section to address a signaling question but did not reach a
consensus on the response option judgement. The other less obvious reason was when one
of the annotators annotated a part of text to answer a SQ and gives it a response option
judgment, but the other one did not annotate anything for this SQ leading to an automatic
assumption of “No Information”. Notably, 82.85% of these conflicts fall into the second
category, with only about 17% involving discrepancies in response judgments. Similarly,
agreements were of two types too, the agreements when both annotators chose a text span
for answering a SQ and labelled it with the same response options and the agreements
when none of the annotators answered a SQ leading to both their annotations being set to
“No Information”. The agreements were evenly distributed between these two categories.
Therefore, a considerable of chunk of both agreements and disagreements came from “No
Information”. It is worth recalling the prevalence of the “No Information” judgment, as
indicated by the yellow bar in Figure 5.10. This underscores the significance of considering
whether to use RCTs from specific high-quality journals in the annotation corpus. Doing
so could potentially ensure more comprehensive information reported in the paper and is
available for annotation and assessment, thereby contributing to the creation of a corpus
that will not have as many “No Information” judgments.

Negative κ are unlikely to occur in practice, but for two SQs (4.2 and 5.1) where the
response judgment agreement was measured by κpabak was negative. The reason for lower
κpabak for these questions was disagreements over seven of the nine annotated documents
which was the highest number of disagreements in the subset RCTs used for kappa cal-
culation (refer Figure 5.11). To note that these agreements came from “No Information”
judgments. Though the κpabak values for these SQs are considerably smaller than −0.10.
According to [223], a κ value smaller than −0.10 represents strong disagreement among
the raters and the collected data are considered not meaningful.

The SQs (1.1, 2.1, 2.5, 2.6, 3.1, 4.3) with adequate agreement (> 0.60 kappa) had
higher number of agreements (refer Figure 5.11) not coming from “No Information” judg-
ments. This aligned with the results of the feedback form where the difficulty and subjec-
tivity of these questions was consistently rated as “Normal” or “very low”, the availability
of information was rated “normal” or “very high”. For the SQs with zero and negative
agreement, had a net higher number of disagreements. In a nutshell, a decrease in dis-
agreements and an increase in agreements led to improved κpabak agreement.

Domain 5 had an average overall agreement close to zero and the reason for this could
be the complexity for analysing this domain. To assess this risk domain it was imperative
to attach a trial protocol with the RCT document. Consequently, the annotators needed
to mark the information in both the RCT and its corresponding protocol and make a
judgment after summarizing information.

5.4.3.4 Feedback on Placards

We will now address the concerns raised by Julian PT Higgins in bias assessment. To
address subjectivity arising from signaling questions 2.7 and 3.1, which inquire about
the potential impact of failure to analyze participants in their randomized groups and
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Figure 5.11: The histogram of total number of conflicts and total number of agreements
in the subset of RCTs used to calculate prevalence and bias adjusted kappa.

the availability of data for all participants, respectively, the concept of a threshold was
introduced in this work. Specifically, SQ 2.7 “Was there potential for a substantial impact
(on the result) of the failure to analyse participants in the group to which they were
randomized?”. To annotate for this question, the visual placard instructs the annotators to
find the data about the number of participants included and excluded from the intention-
to-treat (ITT) analysis. The placard then goes to instructs that if more than 5% of
participants were excluded from the ITT analysis, it was a substantial number and mark
this information and label it a higher risk of bias. Similarly, for the SQ 3.1 “Were data
for this outcome available for all, or nearly all, Participants randomized?”, the term “all,
or nearly all, participants” can be interpreted differently by different reviewers. What one
reviewer considers “nearly all” might be different from another reviewer’s interpretation.
This ambiguity can lead to subjective judgments when applying the tool. Therefore, we
introduced the 95% threshold meaning if the data were not available for at least 95% or
more participants, we instructed the assessors/annotators to judge the bias risk as high.
On our end, to simplify the annotation process and increase the IAA, these thresholds
were chosen but enforcing a threshold deviates from the recommended RoB guidance as
critiqued by Julian Higgins. In practical, thresholds are not one-solution-fits-all and are
difficult to apply in different trial conditions. Thus, an alternative approach to guide
annotators in assessing risk without relying on thresholds should be found. One potential
solution is to provide examples illustrating instances where low numbers may still introduce
bias, offering guidance on specific result figures that annotators should scrutinize.

We also received guidance to designate specific SQ placards with a “Subjective” flag to
signal the presence of subjective judgments. Consequently, for several SQs, the recommen-
dation was incorporated, adding a “subjective flag” to the placards wherever subjective
judgments were necessary. Previously, a subjective judgment flag had been marked for
SQ 2.4, and after the recommendation, it was also marked for SQs 3.3, 3.4, and 4.5.



5.4.3.5 LLM evaluation

Manual LLM evaluation highlighted the tricky nature of bias annotation as well as the
subjective nature of LLM evaluation. LLM was tasked with the same work as human
expert and was supposed to answer a SQs and extract text descriptions from RCTs that
supported answer. In some cases LLM (via ChatPDF) straightforward answered a SQ
with a response option - “Yes” or “No” or “No Information”, but in certain cases it gave
an indirect answer. For instance, in the Gleason study [124], for SQ 1.1, LLM directly
and correctly answered “Yes, the allocation sequence was random. Extracted sentences:
A random number generator (Excel, Microsoft) was used to devise a randomization series.
The order of randomization was incorporated into a KEEPS database, so that treatment
allocation occurred when a study identification number was assigned.” In contrast, to
answer SQ 5.2, LLM indirectly answered the following, “Regarding RoB 5.2, the study
authors reported that to correct for multiple comparisons, they divided the p-value by the
number of outcomes. For example, there were five cognitive outcomes (four domain factors
and one global cognition score) and six POMS mood scores. Splitting the significance value
of 0.05 equally between the five cognitive and six mood sub-domains resulted in a p-value of
0.01 for each of the two primary domains investigated (cognition and mood). However, the
study authors did not provide information on whether the numerical result being assessed
was selected on the basis of the results from multiple eligible outcome measurements within
the outcome domain.” implying it found “No Information” for answering the SQ 5.2.

The LLM evaluation results of the first risk domain SQ 1.3 saw a comparatively lower
agreement between LLM and the experts because the answer to this SQ is typically found
in the table text of RCT. Text in tables is read by ChatPDF, but it might have problems
correlating the correct rows and columns leading to a distorted understanding of the tables.
This could be the reason why ChatPDF sought to answer this question typically using
RCT text rather than the table text wherever available. To elaborate, for [314], both
the expert and LLM answered SQ 1.3 with “No Good”, but expert used Table 2 as the
evidence to answer the question while LLM used the text evidence not found in the table.

LLM answer: No, there were no significant differences (p < 0.05; based on
z-statistics from generalized estimating equation models) between the inter-
vention and control groups in any of the baseline characteristics listed in Table
2 [314].

The LLM correctly extracts information about participant randomization and allo-
cation concealment procedures pertaining to answer SQ 1.1 and 1.2 leading to a rightly
good PO(Extraction) agreements. As shown in the Table, for individual SQs in domain
1, PO(Extraction) was greater than PO(Response) but in an example, LLM came to
a correct response judgment without correctly extracting complete evidence. To elabo-
rate, in [314], LLM used this part of text “’PRO-AGE Solothurn CONSORT diagram.
The randomization ratio (intervention to control group) was 1:1 in the first project phase
(November 16, 2000, to March 27, 2001), and 1:2 in the second project phase (March 28,
2001, to January 8, 2002), resulting in a ratio overall of 1:1.6” to answer SQ 1.1 with
“Yes Good” (low risk of randomization bias) even though the extracted sentence does not
contain information about the randomization method.

The results for domain two where about 40% of average PO agreement comes from
“No Information” shows a lack of availability of information in RCTs for answering the
SQs especially for the SQ 2.4 and 2.5. However, in one instance for the domain 2, LLM



evaluation led to identification of incorrect label from the expert. For SQ 2.6 in [139],
the expert had annotated this text (“The main analysis for each subgroup analysis was
an interaction test in the regression models to determine whether the effect of treatment
differed significantly across categories for that variable.”) to answer the question with Yes
Good, but the extracted text evidence was incorrect. LLM correctly extracted informa-
tion about the intention-to-treat analysis which led to correcting the final annotation in
RoBuster.

The evaluation for third domain of bias brought to light the subjectivity of bias as-
sessment. A lenient assessor will judge a risk of bias as low in comparison to a stringent
assessor judging a bias risk as high for any SQ, but it is more pronounced in subjective SQs.
In [321], LLM and the expert used the same text evidence “...104 (82%) were randomized
in January 2011. Five residents withdrew during Phase 1, and 99 continued participation
in Phase 2...” to answer SQ 3.1 but LLM produced the response option “Yes Good” and
the expert rated it as “No Bad”. It was also because our placards have a stringent rule
whereby if outcome data was not available for more than 95% of the participants, the as-
sessor/annotator was instructed to judge the risk as high risk of bias without considering
other factors like total number of participants randomized and the kind of study. For
answering SQ 3.2 across the evaluation RCTs [243, 320], the LLM was more lenient than
the experts and consistently extracted information about the sensitivity analysis carried
out by the study authors to account for missing outcome data, but the authors were not
explicit that there was no bias due to missing outcomes data. LLM judged signalling
question 3.3 9 out of 10 times as “No information”. It questions whether the missingness
in outcomes depended on its true value and is quite subjective because assessor needs to
contemplate on the reasons for missingness for a particular outcome and if its true value
could have affected the missingness. For example, they need to assess whether the fact
that data on falls is missing can be attributed to the actual occurrence of falls in the study.

The LLM exhibited a lower overall agreement with the annotators for the domain 4
despite the data for outcomes measurement was available in the RCTs. The reason for low
agreement was the use of simple prompts in our work. For RoB assessment, the annotators
assess bias pertaining to the pre-decided target outcome and not all the outcomes reported
in the trial. However, the information about the target outcome being assessed was not
available in the simple prompts used to test LLMs. Consequently, the LLMs extracted
information that did not necessarily pertain to the target outcome but rather to other
outcomes reported in the trial. This situation suggests a potential avenue for improvement,
involving the exploration of adapted prompting styles, such as chain-of-thought (CoT)
and tree-of-thought (ToT), commonly used in language generation tasks, for the RoB
text extraction task [355]. While the LLM demonstrates promise in automating RoB
span extraction, additional research is necessary, particularly in the domains of prompt
engineering to tackle the subjectivity inherent in SQs and the scarcity of information in
RCTs required to answer SQs.

5.4.4 Limitations

We have the following limitations with this work. The first limitation arises from the
relative scale of our annotations, with only 41 documents undergoing the annotation pro-
cess. This limitation is primarily due to financial constraints, as the availability of funds
limited our ability to hire a larger number of expert annotators. Despite the limitation,
the robustness of the annotations provided by the experts remains noteworthy, as they



thoroughly assessed the selected RCTs within the resources at hand. A second limitation
stems from the narrow focus of annotations, concentrated exclusively on physiotherapy and
rehabilitation clinical trials. This specificity arises from our reliance on domain experts
for annotations, who possess the requisite expertise in these areas. Though this approach
inadvertently restricts the broader applicability of the annotated corpus, it guarantees
high-quality annotations within the specified domains.

The LLM evaluation was limited by the fact that we chose to work with PDFs. There
are limited platforms that interact with PDFs and this restricts our choice of the models
to evaluate. Another limitation is the stochastic nature of LLMs. Specifically, Google
Bard is freely available tool that interacts with PDFs, but we observed that the Bard
results were less deterministic than ChatPDF. Another drawback was associated with the
prompts used. The prompts employed were relatively simple and lacked information about
the target outcome assessed for bias. Certain SQs in the domain 4 and 5 seek information
pertaining to specific target outcomes being assessed. Therefore, when LLMs are not
provided this information via prompts, they tend to provide general information about
outcomes reported in the RCT but did not specifically consider the target outcome of
interest, as it was not instructed to do so.

5.5 Chapter Conclusions
In conclusion, the first pilot annotation project demonstrated that RoB 2 assessment
guidelines cannot be directly used as RoB corpus annotation guidelines because they lead
to poor inter-annotator agreements. It showed that the multi-level annotation scheme
directly adapted from RoB 2 document needed improvement, as detailed in the discussion
section (refer 5.3.3). This exercise gave us detailed insights into the challenging task
of RoB annotation and how to develop crisp annotation guidelines to obtain consistent
annotations.

In our second annotation project, RoBuster, a new, publicly-available corpus, com-
prising 41 full-text RCTs richly annotated with RoB span information for 22 risk of bias
questions was presented. RoBuster fills the need for a corpus to evaluate RoB text span
extraction using machine learning approaches. It is a comprehensive resource with de-
tailed, fine-grained information, presenting individual RoB spans and annotator decisions
on bias risk (high or low). We used RoBuster as a benchmark to evaluate LLMs for
how well LLMs agree with human-led bias assessment. Developed collaboratively by bias
assessors and NLP experts, RoBuster not only supports automated approaches to bias
assessment but can also contribute to Living Systematic Review (LSR) systems. The
work also contributes crisp RoB corpus annotation guidelines in form of visual annota-
tion placards. Our combined work in RoB corpus annotation reaffirms the complexity of
RoB assessment and the necessity of developing comprehensive instruction guidelines to
increase inter annotator reliability across both tasks (assessment and annotation).

We conclude that developing the RoB annotation scheme and an annotated corpus is
complex and ridden with subjective judgments but is feasible with the iterative refine-
ment of annotation guidelines. We filled the research gap by developing visual annotation
guidelines in form of placards that could be used not only for developing a RoB annotated
corpus, but also for training the new RoB assessors. We also demonstrated the utility of
these placards by showing an increase in the IAA between the expert annotators. Finally,
we showed utility of RoBuster as a validation benchmark, by carrying out LLM evalua-
tion on a subset of 10 annotated RCTs from RoBuster. We encountered several challenges



during the development of both RoB annotation guidelines and the actual annotation at-
tributed to how well each RCT reports the study methodology, statistical methods and
outcome information along with how subjective the assessment of each RoB question is
in RoB 2 tool. In the future, we plan to refine our visual placards and extend RoBuster
by adding more annotated RCT full-texts. We also plan to test the visual annotation
placards to guide trainee risk of bias assessors.



Chapter 6

Thesis Result Summary

6.1 Thesis Results Summary
The demand for systematic reviews is growing, but concurrently the new evidence, pri-
marily in the form of clinical trials, RCTs, and other primary studies, published at an
unmanageable pace. The process of writing reviews is rigorous and detail-oriented. The
review team starts with searching and collecting the available studies, filtering the studies
based on relevance to the review question, thoroughly assessing the studies for risk of
bias, performing meta-analysis, writing a manuscript and updating the review once new
primary studies are available. The cost of producing a single systematic review can reach
up to 300,000 US dollars. For academia and industries that generate a minimum of 100
reviews annually, the costs escalate to a staggering 30 million USD.

The thesis included eight articles, six of which have been published, one is currently
under review, and one is ready for submission, spanning 2020 to 2024. In these papers, we
have attempted to develop resources and explore methods for semi-automating three main
stages of conducting SRs: citation screening, PICO information analysis and RoB assess-
ment. Notice that the methods automating PICO analysis and RoB assessment support
the data extraction stage by extracting relevant information. The previous automation
efforts have predominantly focused on systematic reviews of medical interventions, leaving
a gap in validating these methods for domains like physiotherapy and rehabilitation, par-
ticularly in a prospective scenario. In this thesis, we have examined how machine learning
and NLP methods can be used to reduce this workload and how these can fit into differ-
ent systematic review stages and settings, including systematic reviews in physiotherapy,
rehabilitation, and pharmaceuticals.

6.1.1 Semi-Automation of Citation Screening
Chapter 3 presented two approaches to citation screening. The first approach explored
static models trained on the Hilfiker dataset, a citation screening dataset for the physio-
therapy domain. A static model is a fully supervised model that can only be deployed to
update a systematic review, but its applicability for a de-novo SR tackling a completely
different clinical question is limited to none. In the analysis using the static model, we
highlighted class imbalance and class overlaps as primary obstacles to citation screening
when treating the task as a binary classification task.

The second approach introduced an active citation screening system, evaluated specifi-
cally for de-novo systematic reviews in both retrospective and prospective scenarios. While

159



the static model was evaluated only on one dataset, the AL system was rigorously tested
on 25 datasets representing domains of biomedicine, physiotherapy, and pharmaceuticals
amongst others. Furthermore, the models were evaluated using two most important eval-
uation metrics: WSS and recall and tie breaker metrics like ROC-AUC and F1-score in
case WSS and recall were consistently similar.

Most AL experimental setups saved some form of workload as measured by WSS also
ensuring the AL system was only trained only using 30% of the training data. Therefore,
for us recall of the “relevant” studies became the vital measure in evaluating different AL
settings. To recall, the prospective / future facing scenario assumes an unlabelled citation
screening dataset and was tested using hasty seed sampling triggering active classifier
training as soon as one relevant citation is available. The retrospective simulation tested
patient sampling technique initiating training with at least five relevant citations.

For both prospective PAL and retrospective HAL scenarios, diversity seed sampling
using clustering consistently and significantly outperformed recall compared to random
sampling. The best AL approaches, utilizing diversity and certainty query sampling meth-
ods, consistently outperformed random sampling. These findings reinforce the importance
of selecting diverse samples for AL. The differences between certainty and diversity sam-
pling were modest, and the choice between them may depend on deployment restrictions,
considering the fact that diversity sampling took four times longer to execute compared
to certainty query sampling.

We observed that be it hasty or patient sampling, the seed cost, which is the number of
citations need hand labelling initially before the active training can begin, is high for low
prevalence datasets. The reviewers might need to label as many as 300 citations before at
least one relevant citation can be sampled. We examined if coverage was related to recall
of the “relevant” citations and did not find a strong link between the both. With the focus
on Coverage, we are ignoring the persistent class imbalance here. Further experiments are
required to measure the impact of class imbalance for each training iteration on the recall
of “relevant” citations.

6.1.2 PICO Information Analysis

In Chapter 4, we addressed a research gap by developing affordable methods for semantic
PICO+ information extraction. The evaluation of these methods consistently utilized two
gold-standard datasets to ensure comparability across methods: I) the EBM-PICO dataset
and II) the Hilfiker dataset, both labelled with multilevel PICO annotations. EBM-PICO
is representative of biomedical and clinical RCTs while Hilfiker dataset is representative of
RCTs from physiotherapy. The first level of annotations include top-level coarse-grained
PICO text descriptions and the second level of annotations further decompose PICO into
more semantic, fine-grained categories. Firstly, we formulated the task as a multi-task
learning problem allowing us to simultaneously extract fine-grained and coarse-grained
information. Acknowledging the lack of a larger, more representative dataset for areas
beyond biomedical and clinical fields to train deep learning models, we proposed a novel
distantly supervised information extraction method. This method was validated with
a proof-of-concept on “Intervention” information extraction. Finally, we introduced a
weak supervision approach using generative modeling for successfully extracting PICO
information, extending its utility to include “study type and design” information. The
weak supervision approach showed promising performance over PICOS extraction even in
the absence of any labeled data.



6.1.2.1 Multitask Learning Models

With multi-task learning, our assumption was that training simultaneously on two tasks
could improve the model performance on both of them. We anticipated that the inductive
bias from coarse-grained PICO (Population, Intervention, Comparison, Outcome) extrac-
tion might enhance performance in fine-grained PICO entity extraction.

The multi-task learning approach did indeed surpass the single-task learning counter-
part for both “Participant” and “Intervention” extraction in the fine-grained extraction
task on the Hilfiker physiotherapy corpus, showing a 2% F1 improvement. Moreover, in
the EBM-PICO corpus, MTL outperformed STL for “Intervention” extraction with a 4%
F1 improvement. However, effectively weighing and combining these two tasks and to
design the optimal MTL architecture proved to be a non-trivial challenge.

6.1.2.2 Distant Supervision Models

The distant supervision approach for extracting “Intervention” information utilized clin-
icaltrials.gov as a knowledge base, generating 977,682 pseudo-annotation labels across 11
semantic types through alignment to raw text. The alignment parameter ds ensures high-
quality pseudo-annotations. Two deep BiLSTM models were trained: one solely on these
pseudo-annotations and another combining them with the EBM-PICO dataset containing
manually labeled ”Intervention” annotations. The model based on pseudo-annotations
alone exhibited a 9% increase in recall from the original baseline provided by Nye et al.
and demonstrated a 10% improvement in F1 compared to the SciBERT model, which is
a much larger model trained with 3.1 billion parameters. In contrast, the combination
model, trained on both the pseudo-annotations and the hand-labeled data from EBM-
PICO, outperformed the state-of-the-art by 0.93% in recall and 5.15% in F1-score, high-
lighting the effectiveness of this approach. Furthermore, the combined model showcased
a 10% F1 improvement on the Hilfiker physio dataset compared to the model using only
pseudo-labels.

6.1.2.3 Weak Supervision Approach

The distant supervision method relied on a single source for pseudo-labelling the target
entity. In contrast, our weak supervision approach to PICOS extraction leveraged over
500 sources of pseudo-labelling to annotate the EBM-PICO corpus with these entities.
Generative modeling was employed to derive consensus labels by combining individual
labels based on the confidence of labelling sources.

The weakly-labelled EBM-PICO corpus was used to fine-tune PubMedBERT model,
thus incorporating contextual information from EBM-PICO sequences. When evaluated
on the EBM-PICO test set, this approach outperformed the fully-supervised model by
1.71% on the F1 score for ”participant” extraction. While the performance on ”interven-
tion” extraction showed promise, it did not surpass that of the fully-supervised model.

However, the weakly supervised model under-performed in ”outcome” extraction by
17.65 percentage points compared to full supervision. In the absence of any labeled data for
”study type and design” information, the weakly supervised model achieved an excellent
F1 score of 85.02%. Ablation experiments revealed that removing non-UMLS labelling
sources improved the F1 by 3.06%, while removing rules deprecated the F1 by more
than 5%, underscoring the importance of selecting representative weak labelling sources.
Similar conclusions were drawn from ”outcome” extraction results, where the addition of



non-UMLS ontologies degraded the F1 by 3.0%, indicating the unrepresentativeness of the
selected non-UMLS vocabularies for labelling outcomes.

In addition to the representativeness of the labelling source, the class composition
had a visible impact on performance. The weakly supervised model outperformed full
supervision for the ”participant” class due to its comparatively less heterogeneity compared
to the intervention and outcomes classes. This class encompasses a more homogeneous
pattern representing about patient demographics, including numerical information about
age. The gender and sexual orientation could be represented by a limited dictionary, as
well as ontologically well-defined disease and symptom classes. We observed a similar
situation for the study type class, which is intuitively even more homogeneous than the
participant class.

6.1.3 Risk of Bias Assessment
Chapter 5 addressed the research gap in the automation of RoB assessment arising from
the absence of an annotated corpus. We introduced RoBuster, a corpus comprising 41
full-text RCTs annotated with 22 categories of risk of bias text spans, each classified with
one of the two bias judgement classes. RoBuster to our knowledge the first of its kind
dataset and our hope is that it will aid for better understanding of how reviewers perform
RoB assessment and for modelling the process with automated methods.

We identified that the most challenging aspect of RoB corpus annotation was devel-
oping clear annotation guidelines given bias assessment is intricate, convoluted, and an
expert-led task. The revised Cochrane risk of bias assessment tool for RCTs (RoB 2) pro-
vide a valuable foundation with comprehensive and structured bias assessment guidelines.
Through pilot experiments, we discovered that Rob 2 guidelines, though being compre-
hensive and step-by-step, couldn’t be directly employed as corpus annotation instructions.
So, we collaborated with experts to adapt them for annotation purposes. These adapted
instructions took the form of visual placards, which two reviewers then used to annotate
22 RoB text spans within a subset of RoBuster. Research on corpus annotation can only
be as good as the annotations and the annotations can only be as good as the annotation
guidelines. We quality control the annotations measuring annotator agreements over a
portion of RoBuster.

6.1.3.1 Inter-Annotator Agreement

We measured annotator agreements at two levels. On level 1, the F1 agreement was
measured for how well two annotators agreed on text spans indicating risk of bias. This
agreement was calculated between two annotator pairs before and after the development of
visual annotation guidelines. After implementing visual annotation guidelines, we observed
a significant improvement in agreement for text span annotations, with an increase of over
17% F1 percentage points compared to when the guidelines were not employed.

Investigating a bit deeper, we found that the substantial increase in F1 agreement
was observed in the signalling questions where the agreement was non zero before the
visual placard development (except the questions 4.4 and 5.2). Nine signaling questions
showed zero agreement both before and after guideline development, most likely due to
limited information availability. Zero agreement often resulted from the absence of textual
descriptions for annotators to evaluate.

Information related to signalling questions with non-zero agreement was mandated to
be reported in clinical trials by the CONSORT statement. For example, signaling ques-



tion 1.3 demonstrated almost perfect agreement at 90.9%, as the necessary information
for assessment was found in a table presenting baseline demographic and clinical charac-
teristics for each treatment group—a requirement outlined by CONSORT guidelines [71].
These questions which are characterized by high information availability, were crucial in
achieving non-zero agreement, and it was in these instances that the visual guidelines
significantly enhanced agreement scores.

On level 2, kpabak agreement was measured for how well two annotators chose the risk
of bias level based on the selected text spans. For the first two risk of bias domains, there
was moderate agreement (> 60 kpabak) while for the rest the agreement was minimal to
slight to low. We attribute the lower agreement kpabak values to combined low information
availability and subjectivity of the signalling questions. For instance, signaling question 2.3
exhibited minimal agreement of 0.5, primarily due to the subjectivity in the question asking
reviewers to make a judgment based on trial context. Moreover, approximately 79% of
the already minimal agreement of 0.5 was credited to “No Information” availability labels,
leading us to classify this question as a low-information-availability question. The high
subjectivity in these signalling questions is caused by subjectivity in the RoB 2 guidelines
and a need to improve them for better reliability.

6.1.3.2 LLM Evaluation

RoBuster was utilized to evaluate GPT-3.5 where we recorded agreement between LLM
and the expert on how well LLM extracted text descriptions to answer the signaling ques-
tion and how well it classified the text with a risk level response option. The agreement
scores showed promising but variable performance across different bias questions. LLM’s
extraction and response agreements varied across risk domains, with higher agreement in
domains with good information availability and lower agreement in domains with subjec-
tive assessment and less available information.

In summary, agreements calculated at both annotation levels and the LLM evaluation
favored more objective, high-information-availability questions and demonstrate solid util-
ity of the visual annotation guidelines. The minimal to no agreement in low-information-
availability and more subjective signaling questions signals that further research is required
not only to improve the visual annotation guidelines but also to address subjectivity in
RoB 2 and improve the reporting in published literature.

6.1.4 Summary
• Our investigation into the potential of active citation screening, supported by semi-

supervised learning, helps bridge the gap between the current approaches and ex-
pected prospective approaches aligned with industrial automation processes.

• The generative weak and distant supervision approaches developed in this study
provide a practical solution compared to fully supervised information extraction
methods. Weak supervision can effectively label static datasets for new types of
information where labeled data isn’t easily available.

• RoBuster, our publicly available corpus annotated with risk of bias text spans, helps
address the resources needed for training and evaluating NLP techniques, especially
large language models.



6.2 Prospective Future Research Directions

Semi-Automatic Citation Screening:

• Active learning for few-shot prompting LLMs: Language models have shown
improved generalization with few-shot prompting on new tasks [42, 116]. Few-shot
fine-tuning requires prompting any LLM with a minimal number of labelled in-
stances. Active learning using the diversity sampling method could be used to select
these informative citations efficiently. This approach identifies informative citations
representative of “relevant” and “irrelevant” classes, facilitating the few-shot learn-
ing of LLMs. Lightly.ai showed that using active learning to select instances for
few-shot learning reduced 78% of labelling costs or improved the model by up to
4.6x per additional labelled batch in comparison to random selection 72 [316]. By
optimizing the selection of citations for few-shot fine-tuning LLMs, active learning
could enhance the generalization of LLMs in a few-shot citation screening task. It
must be noted that experimentation is required to test this claim for citation screen-
ing given that a recently published study identified that few-shot prompting did not
consistently improve performance, whereas 1-shot prompting did. [102].

• Synthetic citation screening dataset generation: The aim of this work inves-
tigating the active learning systems was to reduce the number of citations needing
hand labelling for every de-novo SR question. AL still requires labelling a subset
of the retrieved citations. Instead, using the PICO framework, LLMs could be em-
ployed to generate synthetic citation screening datasets representative of “relevant”
and “irrelevant” classes. This eliminates the need for any manual annotation of
citations. The synthetic dataset could be used to train active learning or machine
learning models for binary classification. Abogunrin et al. recently carried out the
first steps in this direction, testing the feasibility of using ChatGPT to synthetically
generate abstracts that mimic peer-reviewed journal-looking abstracts [2].

Information Extraction Automation:

• Ontology development: This work tackled the lack of labelled data using weak
and distant supervision approaches for PICO information extraction, but while
studying the compositionality of PICO information and the requirement to extract
more information beyond PICO, we propose development or compilation of ontolo-
gies for SR information extraction. Several ontologies exist in the literature, but
their compilation could aid in consolidating the information that could be extracted
and normalized for the automation of conducting SRs. For example, C-TrO ontol-
ogy, clinical trials ontology (CTO), Ontology of Clinical Research (OCRe), Ontology
of Biomedical Investigations (OBI), ontology of evidence-based medicine and meta-
analysis, and RCT ontology [16, 198, 264, 290, 306].

• LLM evaluation: Comprehensive evaluation of LLMs for information extraction
pertaining to EBM [58, 172, 319].

72www.lightly.ai/post/improve-your-large-language-models-llms-with-active-learning



RoB Assessment Automation: While this work led to the development of RoBuster,
a RoB text span annotated corpus, which was used to evaluate GPT-3.5, these are still
the two promising future research directions [83, 84].

• RoB span annotated corpus in other domains: RoBuster focuses on phys-
iotherapy and rehabilitation domains, meaning its annotations primarily represent
these areas. These annotations might not capture the nuances and patterns of bias
risk descriptions from the other domains, e.g., pharmaceutical clinical trials, ho-
moeopathy trials, and preclinical animal trials. Addressing this challenge requires a
larger, more comprehensive dataset in these diverse domains. We need to identify
individual RoB annotated corpora and test if these could be combined into a single
compendium. For instance, Wang et al.’s preclinical animal trials corpus annotated
with RoB classes could be combined with RoBuster to form a more representative
benchmark [348]. A challenge in forming a larger compendium could be that different
corpora might use different (and not necessarily compatible) Risk of Bias assessment
tools.

• LLM evaluation: LLMs have shown to outperform on a variety of benchmark NLP
tasks and showed promising results over some of the bias classes in our work (refer
Section 5.4), but a thorough evaluation is required for the complex, convoluted task
of RoB text span extraction. One recently published review study has proposed eval-
uating LLMs for extracting patterns, phrases and information relating to bias risk
in clinical trials [247]. LLMs could help efficiently extract bias risk information from
the trials, thereby aiding the human reviewers with faster, more accurate judgments.
Only a comprehensive evaluation of LLMs across multiple RoB annotated datasets
with benchmarked results could help achieve widespread adoption in real-world SR
writing settings. Rose et al. took a step in that direction, recently publishing a
proposed LLM evaluation study protocol for automatic risk of bias assessment on a
larger corpus [284]. Pitre et al. tested the agreement between ChatGPT and risk of
bias assessors over 157 clinical trials. Still, their work did not specifically dive into
extracting bias descriptions from the text about individual signalling questions [265].
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