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Abstract—Stochastic modeling is a challenging task for low-
cost inertial sensors whose errors can have complex spectral
structures. This makes the tuning process of the INS/GNSS
Kalman filter often sensitive and difficult. We are currently
investigating two approaches for bounding the errors in the
mechanization. The first is an improved modeling of stochastic
errors through the superposition of several Auto-Regressive
(AR) processes. A new algorithm is presented based on
the Expectation-Maximization (EM) principle that is able to
estimate such complex models. The second approach focuses
on redundancy through the use of multiple IMUs which don’t
need to be calibrated a priori. We present a synthetic IMU
computation in which the residuals are modeled by a single
ARMA model. The noise power issued from the residuals
is then continuously estimated by a GARCH model, which
enables a proper weighting of the individual devices in the
synthetic IMU.

I. INTRODUCTION

The combination of inertial navigation with Global Nav-
igation Satellite Systems (GNSS) through and Extended
Kalman filter (EKF) is a well known and accepted tech-
nique in navigation. During periods of GNSS gaps or

poor GNSS signal quality, inertial navigation operates in
coasting mode, i.e. the navigation states are determined
independently from GNSS data, the reason for which the
overall performance become strongly dependent on the
errors corrupting inertial signals. Generally, the resulting
navigation error increases with time. In the last years, the
use of Micro-Electro-Mechanical System (MEMS)-based
sensors has significantly decreased the cost, size, weight
and power consumption of IMUs. However, their high noise
level and complex error structure (in-run biases and scale
factors) significantly degrade the final Position-Velocity-
Attitude (PVA) provided by the navigation filter. For such
setup, the improvement of navigation can be made at two
levels.

The first is achieving correct a priori calibration of the
individual inertial sensors, i.e. the gyroscopes and ac-
celerometers, that sets the deterministic and stochastic
structure of the error signature. Commonly used error
models for MEMS-based sensors are composed of a bias
and a scale factor, both containing deterministic (e.g. axes
misalignment) errors which are compensated through physi-
cal models, and random components which are described by
stochastic processes. Commonly used stochastic processes
are Gaussian White Noise (WN), Random Walk (RW),
first-order Gauss-Markov (GM), bias instability (BI), rate
ramp (RR) or quantization noise (QN). These are included
in the State-Space Model (SSM) forming the error-states
in the navigation EKF. The questions of which stochastic
processes to use for best describing the stochastic part of
the individual sensors in IMUs and which parameter values
to use in the SSM/EKF lead to the challenging task of filter
tuning. We suggest that in many cases inertial sensor errors
may be best modeled by superposing multiple stochastic
processes. However, we reckon that the estimation of the
parameters of such models might become difficult when
using classical tools like signal Auto-Correlation Func-
tion (ACF) analysis or the Allan Variance (AV) tech-
nique. Although AV is a well-established technique for
identifying processes and estimating their parameter(s), it
works reasonably well only for processes which are clearly
identifiable and separable in the spectral domain and not
subject to spectral ambiguity [1]. The particular case of the
GM parameter (i.e. the inverse correlation time β and the
driving noise power σ2

GM ) estimation is difficult/impossible



to carry out using ACF or AV analysis when mixed with
some other process(es). In practice, the values of these
parameters are approximated through ad hoc tuning, rely
on manufacturers’ specifications or experience [2].

The second level of improvement is the use of Redundant
IMUs (RIMUs). IMU signals can be combined through
several integration schemes [3, 4]. The benefits of using
redundant sensors are multiple. First, the noise level of
the overall system can be reduced and defective sen-
sors detected and isolated. This improves the accuracy
of autonomous navigation, and hence system performance
in GNSS-poor condition [5]. Second, the gyroscope and
accelerometer noise levels can be estimated directly from
the data and provide hence a better view on the reality.
This is an interesting feature with respect to the fact
that sensor stochastic error modeling is often performed
on error signal acquired in static conditions in spite of
the supposition that the error behavior may vary as a
function of environmental conditions applied to the sensors
[6, 7], such as the temperature, electrical power, magnetic
fields or the dynamics. Moreover, if no reliable a priori
calibration of the invidual sensors is available, the direct
noise estimation capability of RIMUs enables performing
a continuous estimation of the RIMU system noise level.

This paper introduces solutions at both levels by providing
a synthetic description of their principles and empirical
results. Sec. II focuses on the first level where a new
calibration procedure is presented based on a constrained
form of the Expectation-Maximization (EM) algorithm.
This estimates parameters of multiple superposed stochastic
processes [8]. The particular case of GM process parameter
estimation is difficult to be handeld by AV and is therefore
used as a concrete example. An application of the algorithm
on a real data set is provided and its effect on improving the
trajectory estimation is demonstrated. Sec. III deals with the
second level through a new experimental setup that allows
studying errors in dynamical conditions. It focuses on the
potential of instantly estimating varying noise levels in
synthetic IMUs (S-IMU), a particular RIMU mechanization
architecture. For that, we use Auto-Regressive Moving-
Average (ARMA) models for modeling the correlated part
of the noise, and Generalized Auto-Regressive Conditional
Heteroskedasticity (GARCH) models for continuously es-
timating the residual variance for each individual sensor
forming the S-IMU [5]. Finally, Sec. IV closes the paper
by providing perspectives and concluding remarks

II. PRIOR DETERMINATION OF ERROR STRUCTURE

Signals issued from MEMS-based inertial sensors are af-
fected by random errors whose spectral structure is often
complex. The modeling of such errors may be achieved by
superposing several stochastic processes, such as wide band
noise (i.e. WN) and (several) GM processes, which can be
considered as first-order Auto-Regressive (AR) models [9].
In this section, we propose an algorithm that is able to
estimate parameters of such model types when analyzing
the time series of error signal (often collected in static
conditions). The algorithm is based on a constrained form

of the EM principle. For a proper understanding of the
method, the notion of SSM is recalled before moving to
the algorithm principle.

A. Linear Dynamical System

A discrete Linear Time-Invariant (LTI) dynamical system
can be described by the following SSM:

xt+1 = Φxt + wt + ut (1)

with measurements

zt+1 = Hxt+1 + vt+1 (2)

where xt is the p × 1 system state vector at time t, Φ
is the discrete p × p transition matrix, wt is a random
forcing function such that w ∼ N (0,Q), ut is a r × 1
deterministic input vector, zt is an element at time t of
the l × 1 measurement vector z, H is the l × p design
matrix which maps the true state space xt into the observed
space, and vt is an element of the l×1 noise vector v such
that v ∼ N (0,R). The initial state x1 is assumed to be a
normal random vector with mean vector µ and p×p initial
covariance matrix Σ (i.e. P1

1).

B. SSM for Inertial Sensor Errors

For modeling random errors, we have to construct a discrete
SSM from the differential equations describing the process
dynamics. Lets define θ ∈ Θ as the set of SSM parameters
which characterize model (1)-(2):

θ = {u,Φ,Q,R,H,µ,Σ} (3)

In our case, some elements of the SSM parameters are not
known and have to be estimated, while others have to be
kept fixed.

Suppose for example that we want to model the observed
sensor error signal z that is a mixture of WN, RW, GM
processes and a deterministic drift with slope ω. The
discrete process equations are provided in Tab. I.

Process Equation wt ∼ N (0, q)

GM xt+1 = (1− β∆t)xt + ∆twt q = 2βσ2
GM

RW xt+1 = xt + wt q = σ2
RW

WN xt = wt q = σ2
WN

TABLE I: Equations governing the stochastic processes. Note
that the GM equation is a first-order approximation.

Typically, the individual model parameters are impossible
to estimate using classical AV. The state-space represen-
tation of this model in first-order approximation is given
by

xt+1 =
[

1− β∆t 0
0 1

]
xt + wt +

[
0

ω∆t

]
zt+1 =

[
1 1

]
xt+1 + vt+1
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such that wt ∼ N (0,Q) with

Q =
[

2βσ2
GM 0

0 σ2
RW

]
and vt ∼ N(0,R) with

R =
[
σ2

WN

]
The aim of sensor calibration is to estimate the unknown
parameter set

θ = {β, σ2
GM , σ2

RW , σ2
WN , ω}

from the signal z. Such problem typically requires that
some elements in the involved matrices must remain fixed
while others are estimated. For example, all elements in
Φ excepting 1 − β∆t must remain fixed. In u, the first
element must stay null, while only the diagonal of Q
contains free elements. Since all the elements of H are
fixed, this matrix does not need to be estimated. Note that
u can be determined separately, e.g. by a Least-Squares
(LS) regression [8].

Since the (log) likelihood function logL(θ|zt,xt) is a
highly nonlinear and complicated function, the estimation
of the SSM parameters through its maximization is in gen-
eral quite challenging [10]. [11] proposed the EM algorithm
originally developed in [12] to maximize logL(θ|zt,xt).
In navigation, the EM algorithm has mainly been used for
estimating Q and R in which all parameter elements are
estimated [13, 14]. However, when using EM for more
complex SSMs such as in our case, where additional SSM
matrices are included in θ, a constrained version of the EM
needs to be used.

C. Constrained Expectation-Maximization (EM)

The aim of the EM is to find θ that maximizes
logL(θ|zt,xt). As xt is unobservable in our case, it
is replaced by the “complete-data” likelihood Ψ =
E [logL(θ|zt,xt)] whose full expression is given in [11,
15]. The EM algorithm switches iteratively between an
Expectation (E-)step and a Maximization (M-)step [16]. On
the (j + 1)th iteration, the E- and M-steps are defined as
follows:

E-Step. Calculate Q
(
θ|θ(j)

)
, where

Q
(
θ|θ(j)

)
= E

[
logL(θ(j)|zt,xt)

]
= Ψ(j)

M-Step. Choose θ(j+1) to be any value of θ ∈ Θ which
belongs to:

θ(j+1) = argmax
θ∈Θ

Q
(
θ|θ(j)

)
The E- and M-steps are iteratively repeated until some con-
vergence criterion is fulfilled (e.g. until |L

(
θ(j+1)|zt,xt

)
−

L
(
θ(j)|zt,xt

)
| < ε for some arbitrarily small amount

ε) [16]. In the E-step, the expected states together with
their associated covariance matrices are computed using
a Kalman smoother such that they could be considered
fixed in the M-step where Ψ(j) will be maximized [11].
In the M-step, the parameter vector is updated to θ(j+1)

by finding the parameters that maximize Ψ(j) considering
the smoothed states and covariances obtained in the E-
step as fixed. For doing that, the expression yielded by
Ψ(j) is minimized by computing the partial derivatives with
respect to θ(j) and setting them to zero. The results of these
derivatives for the classical unconstrained case can be found
in many articles like [11, 15]. However, the work in [15, 17]
provides the way of constraining elements in the matrices
of θ. The update equations for each individual parameter of
θ in the M-step of the constrained EM algorithm, together
with the practical issues encountered when applying it to
inertial sensors, can be found in [8].

D. Algorithm Validation through Simulations

We apply the constrained EM algorithm on 200 realizations
of a synthetic error signal z of length 6000 generated under
the model of the example in Sec. II-B. The following
parameter values are used:

θ = {0.008, 0.25, 10−8, 0.09, 10−4}

The initial parameters are set to:

θ(0) = {10−4, 10−6, 10−10, 2.5 · 10−7, 0}

The results of the 200 runs are shown in Fig. 1. Note
that u has been estimated beforehand by LS regression.
This improves the estimation of the remaining parameters
in EM as shown in [8]. The estimation appears to be
biased, specially for the inverse correlation time of GM
and RW strength. This is due to the difficulty of clearly
separating them in the spectral space. We now study the
restitution of AV plots by the parameter set θ̂ estimated
via EM. We computed the AV for 20 realizations issued
from 3 (among the 200 runs) randomly selected solutions
θ̂ (see Fig. 2). The effect of the bias in some parameters is
visible through the systematic overbounding in the middle
part of the AV sequences. However, despite the estimated
parameters do not reconstruct the error structure exactly,

Fig. 1: Performance of the EM algorithm where u has been
removed by LS for 200 simulations of a mixture
containing WN, GM, RW and a drift. The true
parameters are marked by horizontal lines.
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Fig. 2: Results for the signals containing GM, RW, and WN
mixed with a drift. Each panel shows the AV of one
realization issued from θ (thick curve) and 20
simulations driven from the corresponding estimated
parameter sets θ̂ (thin curves).

it provides an tight overbound of the true AV signal (i.e.
when considering the 95% confidence interval associated
with the AV estimation of the true signal), similarly to the
methodology proposed in [18].

E. Application on a Real Signal

We apply the constrained EM algorithm on signals issued
from a tactical-grade IMU (IMAR-FSAS [19]). Three hours
long static data were collected in constant temperature
conditions at a sampling frequency of 100 Hz. The ob-
served variations in signal output are considered as errors
which can be used as observations zt in Eq. (2). The
AV plots revealed that the gyroscope error signals are
mainly composed of a white noise and thus present no
need for more sophisticated modeling. However, the AV
plot of accelerometer errors (thick curve in Fig. 3 for Y-
axis accelerometer) show a more complex error structure.
The analyses are similar for the X- and Z-axis sensors and
are therefore not shown here. Since the slopes of the linear
parts in the thick AV curve do not correspond to any of the
theoretical processes identifiable through AV, we choose to
model this error by superposing two GM processes and a

Fig. 3: Results of the estimation of 2 GM processes and a WN
process applied on the IMAR-FSAS Y-axis accelerometer
error signal. The figure shows the AV of 100 realizations
issued from θ̂ (thin curves) and the AV of the sensor
signal (thick curve).

WN. Such model can be written as:

xt+1 =
[

1− β1∆t 0
0 1− β2∆t

]
xt + wt

zt+1 =
[

1 1
]
xt+1 + vt+1

such that wt ∼ N (0,Q) with

Q =
[

2β1σ
2
GM,1 0
0 2β2σ

2
GM,2

]
and vt ∼ N(0,R) with

R =
[
σ2

WN

]
The goal is to estimate the parameter set:

θ = {β1, β2, σ
2
GM,1, σ

2
GM,2, σ

2
WN}

from the signal z. The estimated values for the parameters
obtained with the EM algorithm are:

θ̂ = {0.0004, 0.10, 4 · 10−8, 10−8, 3.6 · 10−5}

where the units of the β and variances are [1/s] and
[(m/s2)2], respectively. The estimation quality is illustrated
in Fig. 3 in which AV plots of 100 realizations issued
from the estimated set θ̂ (thin curves) are compared with
that of the real sensor signal (thick curve). The estimated
power level of WN appears to fit well the real signal (left
part of AV curve). Although staying within the estimated
intervals of confidence, the long-term errors modeled by
the two GM processes match the signal AV sequence
only approximately (right part of AV curve). This can be
explained by the following reasons, which highlight the
limitations of the constrained EM algorithm:

• The identification of the GM parameters within a
process containing much higher power of WN is
difficult and induce very long convergence time in the
likelihood-maximization step.

• When some parameters to be estimated are of small
magnitude, an accumulation of numerical imprecision
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Fig. 4: Position errors along North (first panel), East (second
panel) and Down (third panel) component occuring
during the 20s-long GPS outage when using the
traditional error model (full curves) and the new model
(dotted curves) in the EKF.

in many iteration may influence the quality of estima-
tion.

• Using longer time series would most likely improve
the uncertainty of parameter estimation, especially for
processes with long memory. Indeed, a longer signal
may improve the observation of the underlaying long-
term processes (right part in the AV plot), in other
words, decreasing the 95% confidence intervals in this
region, while improving the estimation of the GM
parameters by the EM algorithm.

In the sequel, we analyze the impact of the estimated
model on the INS/GNSS integration via optimal forward
Kalman filtering and backward smoothing. For that, the
IMAR-FSAS IMU was mounted together with a high-grade
dual-frequency GPS receiver (JAVAD) on a car, and the
motion was sampled at 100 Hz and 10 Hz, respectively (see
Fig. 6). The carrier-phase GPS observations were double-
differenced in post-processing to yield high-precision (cm-
level) GPS positioning. These have been combined with
the inertial observations in a loosely-coupled EKF. To
highlight the impact of proper stochastic modeling, we
introduced artificially two outages in GPS solutions of
different duration, at times where good and reliable GPS
solutions were actually available and can be used as a
reference. During these outages, the navigation solution

Fig. 5: Position errors along North (first panel), East (second
panel) and Down (third panel) component occuring
during the 130s-long GPS outage when using the
traditional error model (full curves) and the new model
(dotted curves) in the EKF.

is solely dependent on inertial navigation, meaning that
the residual systematic errors affecting these signals are
integrated with time. We then recomputed the INS/GPS
trajectory using the traditional IMAR-FSAS stochastic error
model provided by the manufacturer, and compared it to the
EKF/smoothed solution using the EM-estimated model. In
both cases we compared the positioning differences (N-E-
D) with respect to the reference trajectory (the one without
gap) and take them for errors.

The first 20s-long outage has been introduced in a time
during which the car was turning in a roundabout. Fig.
4 depicts the processed position differences along each
axis when using the traditional IMAR-FSAS model (full
curves) and the new model (dotted curves). Except for
the East component, the new model significantly decreased
the trajectory errors based on inertial coasting during this
period.

The second outage was longer (about 130s) and affected
a period in which the car was moving on a straight
road, and its acceleration varied. As shown in Fig. 5, the
filtered trajectory errors were better bounded at the end
of this outage (by a factor of 2-4) when using the new
model. Indeed, the maximum observed difference could be
decreased from 23 m to 10 m along the North component,
from −6 m to −1.2 m along the East component, and from
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Fig. 6: Instrumental setup used for the experiment dedicated to
the individual sensor error modeling.

16 m to 4.2 m along the vertical component.

III. ADAPTIVE MODELING THROUGH SYNTHETIC IMU

The computation of an S-IMU together with the ex-
tended and geometrically-constrained IMU mechanization,
are ways of achieving redundancy in inertial navigation [3,
4, 20, 21]. An S-IMU is formed by fusing the observations
of several IMUs before being introduced to the INS/GNSS
integration based on single IMU mechanization (Fig. 9). In
such a simple setup, traditional scheme of INS/GNSS inte-
gration is kept while defective sensors can be detected prior
to strapdown navigation. Furthermore, realistic noise level
and covariance terms for EKF can directly be estimated
[3, 20]. However, the compound error-states estimated by
the EKF cannot be fed back to the individual IMUs.
This means that the EKF has to deal with a synthetic
observation set which is affected by compound errors issued
from the individual sensors. Since the structure of the
compound errors can be complicated, the filter design (i.e.
the choice of the error processes in the SSM) may not
be straigtforward in such a case. Note that a corollary to
that statement is that the computation of an S-IMU may
be relevant for designs in which arrays of non-calibrated
sensors have to be used. Therefore, we propose anticipating
this issue and propose simplifying the error structure of the
individual sensors through an adequate one-step removal
of the correlated error components. We model these errors
as an ARMA process and estimate its coefficients by
whitening the residuals for each sensor. Subsequently, this
allows optimal weighting of the individual signals in the
S-IMU computation. Indeed, the weights will be given by
the ARMA residual variance which can be estimated for
each period of time by a GARCH model requiring an
unpredictable signal as input (i.e. the whitened residuals).
In such a scenario, the synthetic signal noise level is
reduced and a simplified error model can be assumed in the
EKF used for S-IMU/GNSS integration. The next section
describes some practical issues related to the realization of
an S-IMU, before focusing on ARMA-GARCH modeling
and estimation.

A. Redundant IMU Realization

The RIMU system under test was built from three IMUs of
the same type (XSens MTx MEMS-IMUs) and one XSens

Fig. 7: Instrumental setup used for the realization and study of
an S-IMU (MEMS-based system).

MTi-G unit (containing a GPS receiver and a MEMS-IMU),
all sampling at 100 Hz. Reference signals were issued
from an Ixsea Airins INS (noise < 0.0015 deg/

√
Hr, drift

< 0.01 deg/Hr), combined with a geodetic grade Javad
Alpha L1/L2 GPS rover receiver (sampling at 10 Hz), and
a Topcon Hiper Pro L1/L2 GPS base receiver (sampling
at 5 Hz), both used for computing a double-differenced
carrier-phase GPS solution. The reference data was post-
processed through Kalman filtering yielding compensated
inertial signals. All IMUs were sampling simultaneously at
100 Hz and all observations were aligned in a common
spatial and temporal frame (see Fig. 7). The individual
IMU measurements were transformed from the associated
sensor frames to a unique body frame (b-frame) defined
as the Airins instrumental frame. The relation between the
transformed gyroscope observations ωb

ib and the signals
expressed in the kth sensor frame (k-frame) is given by

ωk
ik = Ck

bω
b
ib (4)

where ωk
ik is the angular rate signal measured by sensor

k in the k-frame, and Ck
b is the direction cosine matrix

expressing the relative orientation between the b- and k-
frames. The transformed accelerometer signal f b can be
obtained through the following equation:

fk = Ck
b f b + ω̇b

ib × rk +
(
ωb

ib × ωb
ib × rk

)
(5)

where fk is the specific force signal measured by sensor
k, and rk is the eccentricity vector relating the origins
of the b- and k-frames. All sensors were mounted on a
manufactured platform for which Ck

b and rk are precisely
known. Beside the spatial alignment, the realization of
the S-IMU requires the less straightforward definition and
calibration of the timing relationship at two levels: the
first level is the synchronization of the IMUs forming the
RIMU system, while the second is the time alignment of
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Fig. 8: Demonstration of relative timing: MTi-G and MTx (at
100 Hz) sampling intervals in software (upper panel)
and hardware (lower panel) syncronization mode.

the RIMU with the reference system. Since both systems
include GPS yielding access to a globally available timing
and synchronization framework, GPS time will be used as
common absolute time frame at both levels.

A RIMU logging and synchronization software, named
XDL, has been developped for achieving data alignement
within the RIMU system in real time. XDL implements two
options of time synchronization. The first is the Software
Sync mode in which time synchronization is performed by
using the operating system (OS) time as a timing base.
The time offset between GPS time (coming from MTi-G
data packets) and the OS time is continuously estimated to
calibrate the timing based on sample counter interval (in
the MTx devices). However, relying on data packets can
be problematic due to variable processing speeds and trans-
mission delays of the IMU packets on the sensor end. Fur-
thermore, indeterminate timing behaviors from software-
based synchronization on a non real time OS can induce
timing errors higher than 10 milliseconds [22]. The second
implemented option is the Hardware Sync mode in which
a periodic sync pulse delivered by the MTi-G serves as
base for sampling all IMU measurements. This hardware-
generated pulse is aligned to UTC time and is used to
correct the internal MTi-G clock bias. The pulse marks
the time instance at which the MTi-G samples the internal
sensors. This sync signal is brought as input through a
manufactured cable to the XBus Master device supervising
and triggering the MTx devices. The absolute timing of the
IMU messages is performed by the XDL software which
exploits available GPS time messages and the guaranteed
(by hardware) synchronous MTx internal sensor triggering.
This relative timing capability is demonstrated in Fig. 8
which compares the varying sampling intervals of the MTx

devices (slaves) with respect to the MTi-G (master) in the
Software Sync mode (upper panel). These are perfectly
aligned in Hardware Sync mode (lower panel in Fig. 8).
where the syncronization precision is below 1 millisecond.

B. Direct Noise Estimation

Let {zt,k, : t = 1, 2, . . . , N}, k = 1, 2, . . . ,K be a set
of N observations issued from one sensor type (i.e. an
accelerometer or a gyroscope) of the K IMUs forming the
S-IMU. Each observation zt,k is affected by an error yt,k

with its corresponding variance σ2
t,k.

Theoretically, at a given time t, the best estimate of the
expected value ẑt can be computed as a weighted average
of the K measurements. Assuming homogeneous measure-
ments (i.e. constant σt,k, k = 1, . . . ,K), its power σ̂2

t can
be derived as

σ̂2
t =

K∑
k=1

w2
kσ̂

2
t,k =

σ̂2

K
(6)

where wk are the weigthing factors, and σ̂ = σ̂t,k, ∀k.

However, the research in [5] revealed that the assumption of
giving equal weights to all sensors is not realistic since the
noise powers across sensors may vary significantly. In [5],
an ARMA model was used for modeling the auto-correlated
signal part while GARCH models were introduced as direct
noise estimation technique for S-IMUs able to estimate
changes of sensor variances.

Fig. 9: Principle of INS/GNSS integration using an S-IMU.

C. ARMA-GARCH Modeling and Sensor Weighting

The research in [5, 7, 23, 24] demonstrated the presence
of colored noise in MEMS-based IMUs. In case of S-
IMU, ARMA models can be used to remove the auto-
correlated noise components when forming the synthetic
observations [9, 25, 26]. Nevertheless, once ARMA models
are applied, the residuals may not be homoskedastic as
shown in [5], and their variance needs to be estimated
via GARCH models. In the sequel, we briefly outline this
methodology that is described in [5], before focusing on
empirical testing.

Lets define Ωt as the information set at time t and {εt :
t = 1, 2, . . . , N} as the set of observations to be modeled
using a GARCH process, the residuals of an ARMA in
our context. Then, the best prediction for t + 1 at time t



h
is the conditional expectation E[εt+1|Ωt] based on Ωt. In
GARCH models, one assumes that the best prediction εt+1

at t satisfies
E[εt+1|Ωt] = E[εt+1]

Furthermore, GARCH models are based on the idea that
the signal variance tends to form clusters, which implies
that squared values of the residuals (i.e. ε2t ) are positively
correlated. Thus, εt is conditionally heteroskedastic, i.e.

var[εt+1|Ωt] 6= var[εt+1] (7)

We have now all prerequisites for defining a ARMA(d,h)
- GARCH(p, q) model. Such model is defined as

yt = ν +
d∑

i=1

αiyt−i +
h∑

i=1

βiεt−i + εt (8)

σ2
t = γ0 +

p∑
i=1

γiε
2
t−i +

q∑
i=1

δiσ
2
t−i (9)

where εt ∼ N (0, σ2
t ). The estimation of such a model (8)-

(9) is in practice a difficult task and the Quasi-Maximum
Likelihood (QML) is generally used in this context. Indeed,
[27] proved that under (8)-(9), the QML estimate is con-
sistent and asymptotically normally distributed.

The selection of the appropriate orders d, h and p, q was
realized based on the Akaike Information Criterion (AIC)
(proposed in [28])

AIC = 2k − 2 ln[L(θ̂ML,y)]

where y is the vector containing the error samples yt, θ̂ML

is the Maximum Likelihood (ML) estimate parameter vec-
tor containing the k parameters which characterize model
(8)-(9):

θ = [α1, . . . , αd, β1, . . . , βh, γ0, . . . , γp, δ1, . . . , δq]T

(10)
and L(θ,y) its log-likelihood function which can be ex-
pressed as

L(θ,y) =
N∏

t=max(d,h)

1√
2πσ2

t

× exp

−
(
yt − ν +

∑d
i=1 αiyt−i +

∑h
i=1 βiεt−i

)2

2σ2
t


In our case, an ARMA(3,2) and GARCH(1,1) was selected.
Note that since QML estimation is used instead of ML
in such models, the AIC is only an approximation of the
prediction in this case and should be used with precau-
tion. Using the AICc proposed by [29] may improve this
approximation but goes behond the scope of this article.

D. Results on Corrected S-IMU Computation

In practice, the true error signal y is unavailable and hence
must be approximated by the estimated residuals

ŷt,k = zt,k −
1
K

K∑
k=1

zt,k (11)

Fig. 10: Boxplot of the residuals of the Z-axis gyroscope
signals of the four individual devices, the classical
S-IMU, and the CS-IMU.

where ŷt,k is the estimated residual of the kth sensor at
time t. The variance estimation using the ARMA-GARCH
modeling technique enables weighting the measurements
issued from the individual sensors according to their esti-
mated variances. Thus, we compute the Corrected S-IMU
(CS-IMU) according to

ẑt =

∑K
k=1 σ̂

−2
t,k (zt,k − E[yt,k])∑K

k=1 σ̂
−2
t,k

(12)

where σ̂2
t,k is the variance of the measurement error esti-

mated with the ARMA-GARCH model at time t, i.e. an
estimate of

σ2
t,k = var [zt,k − E[yt,k|Ωt−1]|Ωt−1] (13)

The conditional expectation E[yt,k|Ωt−1] can be estimated
by means of ŷt,k, i.e. Ê[yt,k|Ωt−1], given by

ŷt,k = ν̂k +
d∑

i=1

α̂i,kŷt−i,k +
h∑

i=1

β̂i,k ε̂t−i,k (14)

and the estimated residuals of the model (8)-(9) are yielded
by

ε̂t,k = yt,k − ŷt,k (15)

In our case, the yt,k values are computed using the reference
system described in Sec. III-A.

The resulting noise reduction of this weighting process us-
ing ARMA-GARCH model (i.e. the CS-IMU) is compared
to the classical S-IMU presented in Eq. (6) as well as to
the estimated residuals of each individual sensor. The Fig.
10 shows the example of the Z-axis gyroscope (similar
results where obtained for the other sensors). The results
show that the CS-IMU has significantly reduced noise level



Fig. 11: Demonstration of the quality of the residual (blue
circles) modeling results using the ARMA-GARCH
model (brawn curve) for the Z-axis gyroscope (upper
panel) and the X-axis accelerometer (lower panel) of
the MTi-G IMU.

compared to the classical S-IMU. The MSE associated to
the S-IMU was 4.8 · 10−5 (rad2/s2) and was reduced to
4.0 · 10−5 (rad2/s2) in the CS-IMU. This means that the
precision gain of the CS-IMU compared to the classical
S-IMU (i.e. the ratio of the root MSE) is approximately
90% for the gyroscope. Moreover, the noise level of the
CS-IMU is 0.0063 (rad/s) compared to the 0.0070 (rad/s)
in the S-IMU.

The quality of the variance modeling performed by the
ARMA-GARCH model can be visually evaluated by having
a look on Fig. 11 depicting the Z-axis gyroscope and
X-axis accelerometer of the MTi-G. The accelerometer
signal clearly highlights that the variances estimated with
GARCH (brawn curve) seems to be appropriate to model
the heteroskedacity of the residuals (blue dots).

E. Note on the INS/GNSS Integration using a Synthetic
IMU

Theoreticaly, the residuals εt of model (8) are i.i.d. such
that εt ∼ N (0, σ2

t ) if the true ARMA(d, h) parameters
are known. This would imply that the resulting S-IMU
signal are perfectly whitened when introduced into the
EKF, and thus no additional error-states are required in the
filter. In practice however, the true ARMA(d, h) parameters
are unknown and hence must be estimated. The resulting
estimation error implies that the estimated residuals ε̂t
of Eq. (15) are not i.i.d., meaning that some correlation
may still be present. Moreover, the estimated residuals
may also contain a bias since this was not considered in
the model (i.e. the constant term ν of Eq. (8) was not

estimated). These two issues can be handeled in the EKF
by augmenting the state vector with additional error states
as a random bias or a GM process for example.

IV. CONCLUSION AND PERSPECTIVES

In this paper, we presented two solutions for dealing with
the stochastic errors affecting inertial signals. The first is an
a priori determination of error structure and its parameters
separately for each sensor. An adapted algorithm based on
EM was able to estimate error models in cases where clas-
sical approach based on AV fails. The proposed model was
composed of several AR processes (e.g. GM processes),
parameters of which were determined by the described
algorithm. This method was based on the maximization of
the (log) likelihood which can become complex and highly
nonlinear in cases where the error structure is extremly
complex. The second approach focused on merging several
IMUs to form an S-IMU in which noise can be reduced.
For that we studied signals under dynamical conditions with
specially-developed hardware syncronization and sampling.
The computation of a corrected S-IMU was performed
using ARMA-GARCH technique proposed in [5] that aims
removing correlated errors by weighting the individual
devices. Indeed, the ARMA model provides a mean for
whitening the S-IMU residuals, while the GARCH model
provides adaptive estimation of noise power which is used
for weighting the individual sensors in the S-IMU compu-
tation. The performance of this technique was confirmed
using real signals of long duration and under dynamical
conditions with respect to the classical (i.e. unweighted)
S-IMU.

Further points need to be clarified in this ongoing research.
First, there is still no estimation technique that can suc-
cessfully determine very complex error structures such as
sums of AR processes. New estimators able to deal with
such situations need to be developed. Second, the ARMA-
GARCH modeling has been performed on the estimated
residual signals issued from the sensors themselves. A
comparison with the true errors needs to be done for a
proper understanding of the sensor behavior when subjected
to dynamics. Finally, the impact of the removed error
associated with the estimated ARMA parameters on the
EKF output needs to be studied. In particular, the error
model proposed for dealing with the remaining correlation
and bias needs to be tested.
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