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The numerical simulation of thrombosis in stented aneurysms is an important
issue to estimate the efficiency of a stent. In this paper, we consider a Lattice
Boltzmann (LB) approach to bloodflow modeling and we implement a non-
Newtonian correction in order to reproduce more realistic flow profiles. We
obtain a good agreement between simulations and Casson’s model of blood
rheology in a simple geometry. Finally we discuss how, by using a passive
scalar suspension model with aggregation on top of the LB dynamics, we can
describe the clotting processes in the aneurysm.

KEY WORDS: Lattice Boltzmann; aneurysm; stent; blood clotting; Casson’s
rheology model; thrombosis.

1. INTRODUCTION

Numerical simulations offer a promising way to investigate bloodflow in
complex situations. Recently, the Lattice Boltzmann (LB) method®-3? has
proved to be a flexible and powerful bloodflow solver.*:13:18:19) In this
paper we are interested in the case of modeling bloodflow in aneurysm
and to describe the effect of placing a stent in the damaged parent vessel.
The first use of stents? in aneurysm treatments have been proposed
in 1994330 byt it is only recently that neuro-surgeons started to use this
technique in the reduction of intracranial aneurysms that affect large seg-
ments of the population, in their forties or older. About five to eight in
10, 0000 of western populations end up with an aneurysm rupture causing
subarachnoid haemorrhage (SAH) every year, that can be lethal.(!9)

IComputer Science Department, University of Geneva, 24 rue General-Dufour, CH-1211
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Before stents, procedures like heavy by-pass surgery or slightly-inva-
sive endovascular intervention with soft platinum coils occluding the aneu-
rysms have been widely used and continue to be used with mitigated
success, efficacy, and safety. Although no reliable intracranial aneurysms
follow-up results are available today, the stents are subject to intensive
study worldwide to optimize its efficacy and safety in the treatment of
cerebral aneurysmal diseases.

As illustrated in ref. 19, it is admitted that stents reduce the blood-
flow within the aneurysm and thus triggers the coagulation formation
therein.®® As a result, the aneurysm stops growing in volume and
stops the rupture countdown as long as it is occluded by the throm-
bus. The efficiency of stent treatment depends on several parameters
which are the object of intensive numerical simulations and experimental
programmes, (1:6:15:17.18.21.24.29.33) The velocity reduction in the aneurysm
resulting from the presence of the stent has been proposed as a first indi-
cator of its efficiency. As shown in refs. 18 and 19, velocity reduction relies
on both the geometry of the aneurysm and the structure design of the
stent along with its positioning inside the parent vessel.

Blood clotting is an other way of measuring stent efficiency since
it is the key to the aneurysm self-repair. Clotting is sensitive to the red
blood cells behavior, hence to the non-Newtonian features of the blood.!%
Indeed, the blood clotting process, clinically observed in stented aneu-
rysms, reveals the strong dependency of the increase of viscosity with
small shear-rate flows.

The main goal of this paper is to propose a non-Newtonian exten-
sion to the standard LB model that incorporates correct blood rheology in
case of small shear stress. In Section 3, we implement the so-called Cas-
son’s rheological model and compare LB simulation with the analytical
velocity profile in a channel flow. In Section 4, we propose another exten-
sion whose purpose is to model the dynamics of clotting. Our approach
is based on the transport by the plasma of red blood cells as well as an
aggregation process starting in the low shear stress regions, near the aneu-
rysms walls or stents struts. Next section starts with a short review of LB
fluids and gives the relation between the shear stress and the strain rate.
Finally, some conclusion are drawn in Section 5.

2. THE LATTICE BOLTZMANN METHOD

The lattice Boltzmann (LB) method is a rather new numerical tech-
nique aimed at modeling a physical system in terms of the dynamics
of fictitious particles.®3? This method is now considered as a serious
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alternative to standard computational fluid dynamics and has been widely
used for simulating various complex fluid flows.

The main idea of the LB approach is to model the physical reality
at a mesoscopic level: the generic features of microscopic processes can be
expressed through simple rules, from which the desired macroscopic behav-
ior emerges as a collective effect of the interactions between the many
elementary components. An interesting advantage of the LB approach is
their numerical simplicity and the ease to add new physical processes in
the model. Furthermore their implementation on a parallel computer is
straightforward.

In a LB model, a fluid is described in terms of density distribution
functions f;(r,t) giving the probability that a fictitious fluid particle with
velocity v; enters the lattice site r at discrete time ¢. The admissible veloc-
ities v; are dependent on the lattice topology. Usually, i runs between 0
and z, where z is the lattice coordination number (i.e. the number of lattice
links). By convention vo=0 and f{ represents the density distribution of
particles at rest. For many lattice topologies the set of vectors v; can be
divided in slow and fast velocities: slow velocities correspond to a jump
to a nearest-—neighbor site while fast velocities imply a jump to a second
nearest-neighbor.

The dynamics we consider for the f;’s is given by the so-called BGK
model 330

fi+ Ay, 1+ AN =of V@, 0+ (1 —w) fir, 1), (1)

where At is the time step of the simulation, T =1/w a parameter called
the relaxation time. The fi(O)’s are given function (called local equilibri-
ums) which depend only on the fluid density p=3}":_,m; f; and the fluid
velocity u defined through the relation pu=3"7_,m; f;v;. The quantities m;
are weights associated with the lattice directions and mo=1 by definition.

It can be shown (see for instance, refs. 8 and 30) that Eq. (1) repro-
duces a hydrodynamical behavior if the local equilibrium functions are
chosen as follows (Greek indices label the spatial coordinates and summa-
tion over repated Greek indices is assumed)

2
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Table I. The geometrical coefficients necessary to compute the local equilibrium
distributions in a LB simulation. The quantity v is the ratio of the lattice spacing
to the time step dt and my =1 for all models

Model Slow velocities Fast velocities Co Cy Cy
DI1Q3 lvil=v, mj=1 2 2 2/3
D2Q9 lvil=v, m; =4 lvi|=+2v, m;j=1 20 12 4
D2Q7 lvil=v, mj=1 6 3 3/4
D3Q15 lvil=v, mi=1 lvil=+3v, mi=1/8 7 3 1
D3Q19 lvil=v, mj=2 lvil=+2v, mj=1 24 12 4

Table I gives the values of the coefficients Cy and the weight m; for
a few standard lattice topologies noted DdQ(z + 1), where d is the spa-
tial dimension. The quantity v gives the speed unit. It corresponds to
the modulus of the slow velocities. Note that the expression we propose
here for the local equilibrium distribution is exactly equivalent to the stan-
dard one (see ref. 30). However, the formulation in terms of the topologi-
cal coefficients Cy, Cp, and C4 and weights m; more clearly separates the
topology issues from the physical aspects.

As mentioned earlier, Eq. (1) with (2) for the local equilibrium distri-
butions is equivalent to the continuity equation and Navier-Stokes equa-
tion with speed of sound ¢; <v(Cy/Cp) and dynamic viscosity u

Cs (1 1Y\,
—p— (=== At. 2
o pC2<w 2>v 2

A commonly chosen value for ¢ is ¢2=v?(C4/C>). In order to insure a

s
positive viscosity, we have the condition w < 2. Yet values close to 2 are
often numerically unstable.

In a LB scheme, the stress tensor

M =2 miviavig(fi = f{) (3)

is related to the strain rate tensor Syg= %(aﬂua +dqup) as (see ref. 8)

C N
Sop=——"——TI_, 4
op 2pAtt,v2Cy p @
where 7, = 1/w is the relaxation time corresponding to the viscosity u
given by relation 2.
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3. THE NON-NEWTONIAN MODEL

In the case of a non-Newtonian rheology, one expects that the viscos-
ity u also depends on the strain rate according to some phenomenologi-
cal relation. In this case, Eq. (4) together with (2) must be solved for u so
as to satisfy the desired non-Newtonian shear-stress versus strain rate rela-
tion. In this section, we address this question in the case of the so-called
Casson’s Rheology Model.!¥ Our goal is to show that the LB framework
can describe hemodynamics beyond the Newtonian regime. As in previous
works such as for instance,>2® we locally adjust the relaxation parame-
ter w as a function of the shear stress but here, in addition, we take into
account the fact that the shear stress also depends on w. Thus, we solve a
consistency relation that was neglected in previous approaches.

3.1. Casson’s Rheology Model

The Casson’s model is only valid under specific conditions and should
not be regarded as an exhaustive description of blood. Blood with small
shear rates (y <10s~!) and hematocrit less than 40%, can be described by
Casson’s equation (see ref. 14)

W:{(\{E—@ if o > oy, 5)

otherwise,

where 7 is a constant viscosity, o the shear stress, |y| is the shear strain
rate defined as 2|S,g| and oy, is the so-called yield stress. This relation
expresses the fact that below some stress oy, no strain rate is observed.
The quantity oy is of the order of 0.05dyn/cm? and is almost independent
of the temperature in the range 10-37° C. Without fibrinogen, a suspen-
sion of red cells has zero yield stress.

From Casson’s model we also see that, at high shear rate, blood
behaves like a Newtonian fluid in which o =n|y|

It is a common practice to write Casson’s model in the standard form

o=ply| where p=pn(yl). (6)

From Eq. (5), one obtains the following expression for u as a function of
the shear strain rate y

(Voy+/nlyD?
n= 71
00 for o <oy.

for U>(7y, (7)
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3.2. Case of a Channel Flow

Here we consider the stationary velocity profile resulting from Cas-
son’s theology in the case of a cylindrical tube of radius a. The application
of Stokes equation leads to(*)

—rdp du
V5 gy =V VI o ®)

where r is the distance from the channel center. This equation leads to the
definition of a critical radius r. through the condition:

—d 2
—‘D>ﬂ for ro <r<a. 9)
dx r
The meaning is that, below the critical radius, the shear is not
perceived.
Integrating Eq. (8) gives the following velocity profile!®)

® 1 dp {az—rz—gﬁ(m—ﬁ)+2rc(a—r) if r>re, 10)

4n dx (az_g\/zvaz_i_zrca_%rcz) if r<re.

Note that, in the Newtonian case, the Poiseuille velocity profile is equal to
u(r) =—g-(a’> —r?)(dp/dx).

3.3. LB Casson’s Model

We shall now inject the above rheology model into the LB scheme. It
can be shown that the results obtained in Section 2 are still valid when the
relaxation time 7, =1/w depends on the strain rate, at least to first order
in the Knudsen number.

The fundamental equations are (5), which by substituting o = ul|y|,
can be rewritten as (for o >o,)

. oy
lyl= m (1)
and Eq. (4) which can be expressed as
. CZU
|V|=2\/ SO!,BSO(,BZ (12)

T,02CapAt’
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where the stress o =,/l‘[élﬂ) Hfjﬁ) is directly computed from the density dis-
tribution functions, as indicated in Eq. (3).

Since, from Eq. (2), 7, = (%H%), Eqs. (11) and (12) must
be solved for u. After equating |y| from both relations, one gets the
condition

— 7 . (13)
(VA= M2 1= (pArv2Cy)/(2C2)
The physically meaningful solution of this equation for u is
m 1 pAtv? Cy4
—=—11 o[1 — -]/, 14
N 1-6 +\/[+ . 2C2( )] (14)

where 0 =0, /0.

Equation (14) is valid when 6 <1, i.e,, when o >o,. Otherwise, from
Casson’s rheology, we know that the viscosity is infinite. In the numeri-
cal model, however, we have introduced a ceiling viscosity i for small
shear stress values. This cutoff viscosity is reached when o =0, +¢ and
remains constant for all the smaller values of the stress. The value of
is obtained from Eq. (14) by taking 0 =0,/(oy+€)~1—¢/o,. The choice
of € is, on the other hand, somehow arbitrary. Here we chose it so as
to produce a relaxation time 7o, =5. We have checked numerically that a
smaller value for € no longer improves the velocity profile in the channel
flow simulation.

Figure 1 plots the resulting value of \/u/n as a function of the pos-
sible values of 6. Here, no cutoff on the viscosity has been applied.

We now discuss a D209 LB simulation in which the relaxation time
l/w=1, is locally adjusted as a function of the local value of o, in agree-
ment with relation (14). The channel flow geometry has been considered
because analytical solution 10 can be used to validate the non-Newtonian
behavior.

The channel width L was set to 41 lattice sites, the yield shear stress o,
was 107°, the characteristic Casson’s width was r.=0.01L and the driving
force was 0.0001. The value of n in Eq. (5) was chosen so as to correspond to
a relaxation time 7, =1. The so-called full-way bounce-back!?39 boundary
condition has been imposed at the channel boundary.

The upper left panel in Fig. 2 shows that the u, profile fits very well
with the expected analytical profile of Eq. (10). The channel width is rep-
resented along the horizontal axis. The upper right panel shows the sym-
metry of the absolute value of the shear rate around the center of the tube.
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Fig. 1. The solution for the effective viscosity as a function of the shear stress, for
C4/Cr=1/3 and pArv?/n=1.
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Fig. 2. Poiseuille and Casson’s profiles are shown in the upper left panel. On the right of it,
the shear rate is displayed. Down, from left to right, the density p and the relaxation time 7,
are sketched.
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The variation of the relaxation time t, against the channel width is drawn
in the lower right panel of the figure. At boundaries, 7, is close to 1, the
imposed value for large stress, and at the center of the tube it grows up
to its maximum artificially allowed value. The lower left panel shows that
the density p is constant across the tube width.

4. THE THROMBOSIS MODEL

A blood clot, also called thrombus, consists of a plug of plate-
lets enmeshed in a network of insoluble fibrin. It typically appears in
low-shear stress regions and thus may depend on non-Newtonian prop-
erties of bloodflow. Thrombosis stops the bleeding in the vessel through
hemostasis, a complex cascade process involving the contribution of more
than 20 proteins.”® During the next stage, platelets aggregate and initiate
a cascade of reactions which then accelerate the thrombosis formation and
transforms a fragile soft clot into a stable hard clot in which the red blood
cells (RBC) aggregate tightly in a network of stabilizing fibrin molecules.

Here, we describe a preliminary mesoscopic model of blood clotting.
Thrombosis formation will be simulated in the LB approach by adding
RBC as discrete point particles (suspensions) transported by the plasma.
This process will be modeled according to the rules described in ref. 26
and extensively validated in refs. 11 and 12, in the case of a LB model
for sediments transport and deposition. Note that here we want to con-
sider a simple, mesoscopic description of RBC and we assume that they
can be represented as passive scalars. Therefore, detailed models for col-
loid suspensions such as that proposed by Ladd®® or the more micro-
scopic approach by Ahlrichs and Diinweg® are not approriate for the
desired level of description and computational efficiency.

Note also that, in our approach, the intensity of non-Newtonian
behavior described earlier in this paper, that is the value of the yield stress
oy can be adjusted locally as a function of the RBC density, in accordance
to what is observed for real blood. However, this feature has not yet been
implemented.

A scenario which is commonly proposed for the clotting®? is that RBC
aggregation can take place at the vessel walls if the shear stress is smaller
than some threshold (endothelium barrier). In a non-stented aneurysm, the
shear stress at the wall is usually larger than this threshold. However, if the
stent design is approriate, it will reduce the flow in the aneurysm and the
shear stess at its wall, thus allowing clotting to start and grow.

To implement this idea in our model, we will allow the RBC to
aggregate, as is described for instance in Reaction Limited Aggregation
(RLA) or Diffusion Limited Aggregation (DLA) models*” and to form a
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growing thrombus. Here, the RBC aggregation will take place with some
given probablitity only where the shear stress is low enough and near a
boundary (either a wall or a forming clot). The implementation of such
a growth mechanism in a LB model with passive scalars has been largely
used in other applications where aggregation occurs (see for instance refs.
7 and 9). Note that, in the present model, the action of the platelets is
simulated by setting the above aggregation probablitity as function of the
shear stress.

Figure 3 illustrates the behavior of our model with and without stent,
in a y-shaped geometry with an aneurysm. We clearly see that without the
stent, clotting doesn’t occur as the shear stress is too high at the wall,
whereas, when the stent is inserted, a thrombus grows and fills in the
aneurysm.

Obviously, the threshold value for the shear stress has been choosen
arbitrarily in this example. The next step is the calibration and validation
of this thrombosis engineering framework with respect to in vivo or in vitro
clotting experiments.

Figure 4, left and right, shows the effects of the stent on the blood
pressure and velocity at an intermediate stage before the thrombosis model
operates. The pressure intensity in the aneurysm is displayed together with
the velocity steamlines. The stent modifies the blood pressure and velocity
profiles on both the vessels and the aneurysm. In particular, the pressure
decreases dramatically in the small bleb area (at the upper-right part of the
aneurysm) after stent placement. In addition, the vortices change direction
in the neck area (anti-clockwise without stent and clock-wise with stent).

100 200 300 400 500 600 100 200 300 400 500 600

Fig. 3. [Illustration of the clotting model in a non-stented (left) and stented (right) aneu-
rysm that has grown in a y-shaped junction. The gray color indicate the region where blood
flow occur. White dots indicate RBC’s. The bige black dots displayed on the right panel indi-
cate the struts of the stent. Without stent, the shear stress is too high to initiate clotting. The
presence of a stent reduces the flow inside the aneurysm, thus activating the thrombosis for-
mation. The forming clot is shown in the aneurysm as the black region on the right panel.
Notice that the thrombus has formed in the aneurysm only, not in the vessels.



Non-Newtonian Rheology and Clotting Process 219

Pressure and velocity fields without stent Pressure and velocity fields with stent
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Fig. 4. Blood pressure and velocity field in the aneurysm, without stent (left) and with
stent (right). The color levels show the intensity of the displayed quantites.
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Fig. 5. Clotting dynamics (i.e aggregation fraction) in the aneurysm. The horizontal axis

shows the iteration time and the vertical one represents the fraction of the aneurysm that has
clot. The three different curves are produced with three different aggregation factors (AF),

but the same shear stress threshold and same aggregation probability.
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When the thrombosis model is activated, a clot start forming at the
vessel wall where the shear stress is below some given threshold. Figure 5
shows in more detail the dynamics of the clotting process. First, there is
an activation regime, then a growth regime which is linear with time and,
finally a saturation phase reflecting the fact that the clot boundary has
reached a flow region where the shear stress is above the chosen thresh-
old. The speed of the process is related to the aggregation factor (i.e.
the number of RBC needed to fill in a lattice cell) as illustrated by the
different curves on Fig. 5.

It is interesting to notice the correspondance of the above behavior
(activation, growth and saturation) with the high shear rate platelet aggre-
gation and clotting process described in refs. 5 and 32.

5. CONCLUSION

This paper describes on going research addressing bloodflow simu-
lations within the context of the LB approach. A realistic blood rheol-
ogy model has been developed and validated in a simple case. Although
still qualitative in nature, we have outlined how the flexibility of the LB
method allows us to explicitly describe thrombosis formation in stented
aneurysms.
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