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Abstract

Contact structure is believed to have a large impact on epidemic spreading and consequently using networks to model
such contact structure continues to gain interest in epidemiology. However, detailed knowledge of the exact contact
structure underlying real epidemics is limited. Here we address the question whether the structure of the contact network
leaves a detectable genetic fingerprint in the pathogen population. To this end we compare phylogenies generated by
disease outbreaks in simulated populations with different types of contact networks. We find that the shape of these
phylogenies strongly depends on contact structure. In particular, measures of tree imbalance allow us to quantify to what
extent the contact structure underlying an epidemic deviates from a null model contact network and illustrate this in the
case of random mixing. Using a phylogeny from the Swiss HIV epidemic, we show that this epidemic has a significantly
more unbalanced tree than would be expected from random mixing.
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Introduction

Infectious disease epidemiology has a longstanding history of

mathematical modeling. Simple population dynamical models

assuming random-mixing between infected and susceptible individ-

uals have yielded important insights into the dynamics and control of

infectious diseases [1]. The assumption of random mixing has been

made primarily for reasons of mathematical tractability, but it is

unclear under which conditions this assumption is actually justified.

To account for the effects of non-random mixing networks that

describe the explicit contact structure are increasingly being

incorporated into models of infectious disease dynamics [2–7].

These models showed that important epidemiological quantities

such as the size of an epidemic or requirements for an epidemic to

spread depend sensitively on the contact structure [8–11]. While

this has led to important conceptual insights regarding disease

dynamics and control, the applicability of these results to real

world situations has been hampered by the paucity of data on

actual contact networks. Great efforts are currently underway to

infer contact structure from various sources of data [12–16].

However, most approaches for the reconstruction of contact

networks are highly labor-intensive. These approaches are also all

based on host contact structure which is not always easily

translated into contacts that are relevant for transmission. While

some studies have focused on differentiating contacts that may or

may not result in transmission [15], there are many factors that

can cause discrepencies between interactions of hosts and

interactations that are relevant for transmission.

Considerable efforts have recently been made to link methods of

phylogenetic analysis with epidemiological models resulting in a

new research area termed phylodynamics [17–19]. If the

evolutionary rate of a pathogen is sufficiently fast, then it is

conceivable that also the contact structure underlying an epidemic

leaves a traceable fingerprint in the genetic structure of the

pathogen population [20,21]. This contact network will only

contain those contacts that are relevant for disease transmission

and therefore could circuimvent problems of translating host

contacts into disease contacts.

Using simulations of pathogen populations spreading on contact

networks generated by various network models we compare the

resulting phylogenetic trees. We find that quantitative measure-

ments of tree shape such as the Sackin index contain information

that can be used to differentiate between different classes of contact

structures. Such descriptive measures of tree topology have

previously been successfully used to infer evolutionary processes

from phylogenetic trees [22–28]. Most importantly, the Sackin
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index can be used to test whether the contact structure significantly

deviates from what would be expected under random mixing.

Results

Network structure and tree balance
To illustrate the effect of contact structure on the resulting

phylogenetic tree, we perform simulations of epidemic outbreaks

for three different network models: (a) the Erdös-Rényi (ER)

random graph [29], (b) the Barabási-Albert (BA) graph [30] and (c)

the Watts-Strogatz (WS) graph [31] with a low rewiring

probability, p~0:01 (see Methods). Both the BA and the WS

are representative for two important aspects of contact heteroge-

neity. Networks generated by the BA model have both a large

variance in the degree distribution as well as short mean path

lengths. Networks generated by the WS model have low degree

distribution variance and long mean path lengths. We compare

these network models to a full graph (FG), which corresponds to a

model with random mixing.

Each of the three network models can be tuned with different

parameters. The ER model generates networks with Poisson

degree distributions where the mean can be varied. The BA model

produces scale-free networks with a power-law degree distribution.

The WS model produces networks that have a high degree of local

clustering, but a degree distribution that lies between a Dirac

distribution (all nodes have the same degree) and a Poisson

distribution.

We track the exact spreading pattern (i.e. who infects whom)

of a susceptible-infected-removed (SIR) epidemic for 10000
different networks generated by each model to obtain the

infection tree for each of these networks. The parameters for the

network models are chosen such that all networks have the same

mean degree, SkT~8, yet different degree distributions, path

length distributions and clustering coefficients. Figure 1A shows

the imbalance measured by the Sackin index of the resulting

infection trees for the three network models and the full graph at

different values of R0, captured by the transmissibility T (see

Methods for detailed definitions of the Sackin index and the

transmissibility).

Author Summary

One of the recent key innovations in the epidemiology of
infectious diseases was the incorporation of explicit
contact structure (i.e. who can infect whom) into
epidemiological models. Theoretical studies have gener-
ated a broad consensus in the field that knowledge of the
contact network may help to greatly improve the control
of the spread of epidemics. The key problem in the field,
however, is that we lack knowledge regarding the actual
contact structure underlying real epidemics. Much re-
search is focused on trying to reconstruct actual contact
networks in various ways (mobile phone usage data,
electronic devices that measure physical proximity, patient
interviews, etc). All of these approaches are highly labour
intensive and are fraught with many difficulties. Here, we
present a new approach which is based on readily
available sequence data. Using the Swiss HIV epidemic as
an example, we show that it displays strong indications of
a underlying contact structure that strongly differs from
random interactions, thus undercutting the assumption of
random mixing which is commonly made in epidemiolog-
ical models.

Figure 1. Imbalance of the infection tree for contact networks generated by three different models. Panel A shows the Sackin index as a
measure of tree imbalance. Panel B shows the size of the epidemic outbreak for each of the network models at different values of transmissibility T .
All three models have the same mean number of neighbors SkT~8. For the BA model, each vertex added in the preferential attachment is
connected to 4 nodes in the existing network, resulting in a mean degree of 8. The WS networks start with a ring lattice where each node is
connected to its 4 closest neighbors on each side. Every link is then rewired with probability p~0:01. The light shaded area show the values lying
between the 2.5-th and the 97.5-th percentile, the dark shaded area the values between the 25th and the 75th percentile and the solid lines are the
mean of the simulations. Each data point corresponds to 10000 simulation runs on independent graphs. A plot showing the normalized Sackin index
for these three network models can be found in the supporting text S2.
doi:10.1371/journal.pcbi.1002413.g001

Epidemic Contact Structure from Phylogenetic Trees
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For large values of T (large R0) the whole network is infected,

independent of the contact structure. Not surprisingly, the

epidemic size is similar for all network types in this parameter

range, since almost all individuals in the population eventually

become infected before the epidemic dies out. The balancedness of

the resulting trees, however, differ significantly for the three

networks types. The ER model is virtually indistinguishable from

the random mixing model (FG). For sufficiently large T the BA

model has higher imbalance than the ER and FG. Finally, the

most striking difference in imbalance is observed for the WS.

For low T (low R0) the imbalance vanishes for all networks for

the simple reason that no epidemic outbreak occurs (see Figure 1B).

Interestingly, the imbalance is generally largest at T~Tc, where

the transmissibility is just large enough for an epidemic outbreak to

occur. In this case each individual infects just one other individual

on average, which results in an infection tree that continuously

mostly branches off to one side and thus is maximally unbalanced

(Figure S2).

For all network types except the BA model, the imbalance of the

transmission tree is maximal for values of T right around Tc, but

then converges to a smaller value as T approaches unity. This can

be explained by the fact that the SIR infection process is

equivalent to a birth-death process. When T&1, the death rate

is de facto zero (birth rate & death rate) and thus all lineages

survive to the end. If the death rate vanishes the expected

imbalance of the resulting transmission trees is minimal and is

given by the Yule model (see Methods).

The level of imbalance of the transmission trees for the different

network types shown in Figure 1 obviously depends on the choice

of the network model parameters. In the following we will

investigate how imbalance depends on the average number of

neighbors and on local connectivity. Moreover, we henceforth use

the expected Sackin index given by the Yule model to define a

normalized Sackin index (see Methods), which has an expected

value of zero for infection trees based on an SIR model with death

rate zero.

The effect of the mean number of neighbors on tree
imbalance

We focus on the ER graph because in the limit of a large

number of neighbors this model is expected to converge to the

random mixing model. Furthermore, to eliminate contributions to

imbalance resulting from a non-zero death rate we show the

results for T~1. Figure 2 shows the imbalance for an ER model

with N~1000 nodes and an average number of neighbors

4ƒkƒ100. The effect of k on networks generated by the WS and

BA model are reported in the supporting text S2.

Increasing the mean number of neighbors essentially increases

the number of infections caused by a single individual and

therefore the imbalance is expected to decreases with increasing

number of neighbors. This is confirmed by the results presented in

Figure 2. A small average number of neighbors results in more

unbalanced transmission trees for a reason that is similar to why

nonzero death rates increase imbalance. Once a node has infected

all of its k%N neighbors, it can no longer infect anyone else and is

essentially removed from the system despite remaining infectious.

The effect of mean path length on tree imbalance
In the WS model, the mean path length is directly related to the

rewiring probability [31]. The WS model with rewiring probability

p~1 essentially generates the same type of network as the ER

model. Therefore the imbalance of the transmission trees resulting

from epidemics spreading on such networks should converge with

increasing rewiring probability to the same value as for ER

random graphs. Figure 3 shows imbalance as a function of the

rewiring probability and transmissibility.

We identify two limiting cases for the imbalance of the

epidemic. For values of pvpc there is essentially no epidemic

outbreak and the imbalance remains small. For values of p close to

but larger than pc an epidemic can occur and the imbalance is

Figure 2. Imbalance (normalized Sackin index) of the infection
tree for ER random graphs with varying number of average
neighbors. The light shaded area show the values lying between the
2.5-th and 97.5-th percentile, the dark shaded area those between the
25th and 75th percentile. The dashed line is the expected value of the
imbalance for a tree with the same number of leaves under the Yule
model (equation (7)). The transmissibility is chosen T~1. The inset
show the same data points on a log-log scale.
doi:10.1371/journal.pcbi.1002413.g002

Figure 3. Normalized Sackin index for epidemics occurring on
Watts-Strogatz graphs with varying rewiring probability. The
total size of the population is N~5000 and the color shows the size of
the epidemic outbreak. The network is constructed by connected each
node to its 8 closest neighbors on a ring lattice, and then rewiring each
link with a probability p. At low rewiring and transmission probabilities,
p and T respectively, the epidemic only infects a small portion of the
population and thus the Sackin index remains fairly small. Imbalance is
largest for values of p close to the critical value pc where the epidemic
transition occurs.
doi:10.1371/journal.pcbi.1002413.g003

Epidemic Contact Structure from Phylogenetic Trees

PLoS Computational Biology | www.ploscompbiol.org 3 March 2012 | Volume 8 | Issue 3 | e1002413



maximal. As p increases further, the number of shortcuts in the

network increases and the mean path length decreases, as does the

imbalance. For values substantially larger than pc the network

converges to something similar to an ER graph and the hence

normalized imbalance converges to zero (for N?? and k!N) or

to a fixed value for finite populations and small mean degree.

Analytical insight
In the supporting text S1 we derive an analytical approximation

for the normalized Sackin index given the transmission network

(see Figure S1),

E ISð Þ~N kz
kz1

2
‘

� �
: ð1Þ

Here, k is the average number of infections caused by an infected

individual until that individual is removed (i.e. the excess degree in

the transmission network) and ‘ is the mean shortest path length in

the transmission network. This equation shows that assuming the

transmission network were known, imbalance depends on one

hand on the mean path length, ‘, and on the other hand on the

average excess degree k. For networks generated by the

configuration model, k depends on the first and second moment

of the degree distribution. BA networks are characterized by a

large degree distribution variance, as well as a short mean path

length. For low rewiring probabilities, WS networks have small

degree distribution variances and large mean path lengths. These

observations together with the analytical approximation in

equation (1) can help explain why it is not always possible to

distinguish between the BA and WS models when considering the

Sackin index as a measure of tree topology (see Figure 1). This

ambiguity is most pronounced when considering two idealized

networks: a chain and a star. These two topologically very different

networks would result in identical transmission trees (see Figure

S2) and therefore be indistinguishable using tree imbalance alone.

Note that ‘ and k in equation (1) refer to the transmission

network rather than the actual contact network. The connection

between contact networks and transmission networks has recently

been studied in the context of epidemic percolation networks [32].

Unfortunately, the exact relationship between the quantities k and

‘ in the transmission network and the contact network has not yet

been described. However, since the transmission network is a

subgraph of the contact network, it is feasible to assume that

contact networks that display long or short mean shortest paths

also result in transmission networks with long or short mean

shortest paths, respectively, and contact networks that have large

or small mean excess degrees result in transmission networks with

large or small mean excesss degrees, respectively.

Sampling robustness
Up to this point we have only considered the case where the full

transmission network is known and we can thus infer the average

phylogenetic tree of the disease outbreak. It is clear, however, that

in the real world we only have access to a limited subset of leaves

from a phylogenetic tree. It is thus necessary to study the

robustness of the tree shape under random sampling of leaves.

Figure 4 shows the imbalance of the tree as a function of the

number of sampled lineages. All non sampled branches are pruned

from the tree and the sampled branches are joined together at

their last common ancestor to create the sample tree (see

Figure 5A). For small enough sampling sizes (around 1%) the

ER and WS graphs become indistinguishable, indicating that the

imbalance is driven by the finer structures of the tree, rather than

the backbone. The imbalance of the BA network converges much

slower to that of the ER network.

Figures 5B and 5C show two schemes of time sampling for

which we study the effect on tree imbalance. In the first scheme we

truncate the tree at a time point t before the end of the epidemic

(Figure 5B). This corresponds to the situation where samples of all

individuals in an ongoing epidemic are available. In the second

scheme, we use only those sequences from individuals that are

infectious at a time point t and exclude sequences from individuals

who are no longer infectious or have died before t (Figure 5C).

This corresponds to a snapshot of an epidemic.

In Figure 6A, we observe that tree balancedness saturates at a

certain value for ER and BA models, even before the epidemic has

stopped. In the case of the WS model, tree imbalance continues to

grow exponentially until the last individual has been infected. This

indicates that in the ER and BA models, the early stages of the

epidemic contribute more strongly to tree imbalance. In contrast,

in the WS model the late stage infections contribute more strongly

than the early stage infections. This is consistent with the

observations made in the case of random sampling, since random

sampling tends to destroy the tree structure towards the tips of the

tree, while conserving the structure towards the root of the tree.

This differentiation can no longer be observed when a snapshot of

the epidemic is used to create the tree (Figure 6B).

The two schemes of time sampling are studied here because

they are characteristic for data sampling in different biological

contexts. The first scheme reflects the typical situation for real

epidemics for which sequence information is sampled over a broad

time window. The second scheme is more applicable to

phylogenetic trees based on pathogen populations from within

an individual host. While we have concentrated so far on the

inference of epidemiological contact structure from phylogenetic

trees, we note that our approach can also be used to study the

Figure 4. Effect of random sampling on tree balance for
infection trees of an ER graph (red), WS graph (green) and BA
graph (blue). The mean degree and the transmissibility are the same
for all networks: SkT~8 and T~0:8. The rewiring probability for the
WS is p~0:01. The solid lines show the median over 10000 simulations
and the light and dark shaded areas the 95% and 50% quantiles
respectively. The dotted lines show the median normalized Sackin index
for fully sampled trees of size equivalent to the sample size.
doi:10.1371/journal.pcbi.1002413.g004

Epidemic Contact Structure from Phylogenetic Trees
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imbalance of within-host trees, which may result from spatial

structure or compartmentalization. Both these schemes are

idealizations of available real data. In most situations the sample

structure will in fact be a combination of one of the two time

sampling schemes and random sampling as discussed in the

previous section.

HIV epidemic
Above we demonstrated that contact structure can result in

strongly unbalanced trees. Here we investigate whether real

epidemics also result in unbalanced trees. To this end we examine

the imbalance of a phylogenetic tree constructed from 5961

patient sequences of the Swiss HIV cohort study [33] (see Figure 7).

Since SIR dynamics with low R0 (i.e. small mean degree SkT or

transmissibility T close to the critical value Tc) can potentially also

generate strongly unbalanced trees, we compare the imbalance of

the HIV tree to an SIR epidemic with random mixing and an

R0[½1:5,3�, corresponding to the range of realistic R0 that has been

estimated for the HIV epidemic in Switzerland [34]. The sampled

individuals cover 30–40% of all Swiss HIV infected individuals

and we therefore restrict the total epidemic size to the range

½15000,30000�. It has been argued that the HIV epidemic is still in

the exponential stage in developed countries [35]. However,

because saturation of an epidemic also causes increased imbal-

ance, we make the conservative assumption that the total

population is finite and can be equal to the current epidemic

size. We take the range of possible population sizes to be

½30000,100000�. As a null model, we use a likelihood-free test of

departure from random mixing based on [36]. We repeatedly

sample parameters uniformly from the intervals above and

simulate an epidemic outbreak using these parameters under the

assumption of random mixing. We then randomly sample between

10 and 6000 individuals from the simulated tree and calculate the

normalized Sackin index of the resulting subtree (blue line and

shaded areas in Figure 7). We compare this to subtrees with

identical number of sampled individuals from the HIV tree from

[33] (red line and shaded areas in Figure 7; see Figures S3, S4 and

S6 for an analysis using an alternative imbalance measure, as well

as a more detailed view of the effect of individual parameters on

tree imbalance).

Comparing the HIV tree with an SIR epidemic with equal

number of individuals connected by random mixing shows that the

HIV tree exhibits strong imbalance. The normalized Sackin index

of the HIV tree is 1:68 with a minimum/maximum of 0:90/2:64
based on 100 bootstrap trees constructed from sequences with the

amino acid positions resampled. The range of values of the

normalized Sackin index of the HIV tree as well as the bootstrap

trees is outside the 95% confidence interval for the SIR model,

implying that the imbalance of the HIV tree is statistically highly

significant.

One important component of contact structure in the HIV

epidemic is the preferential transmission within transmission

groups (such as heterosexuals, intravenous drug users, and men

having sex with men) [33]. Subepidemics occurring within these

transmission groups are therefore expected to show decreased

levels of imbalance. Indeed, calculating the Sackin index for the

three largest transmission clusters [33] reveals much more

balanced trees in these subepidemics (see Figure 7). However,

the observed level of imbalance is still significant, suggesting that

contact structure is present even within these transmission groups.

As we pointed out above, the imbalance in the SIR model

increases with T approaching Tc. Therefore, the significance of

the imbalance of the subepidemics depends on the choice of T and

thus R0.

In summary, our analysis of the HIV tree reveals substantial

imbalance in the entire epidemic, possibly extending to the

subepidemics, which is consistent with what would be expected

from our knowledge of HIV transmission.

Discussion

In this paper, we have studied the effect of different classes of

contact networks to model SIR type epidemics. We show that

simulations of epidemics on networks with non-random contact

structure result in transmission trees with topologies that exhibit

strong differences from tree topologies that would be obtained

under the assumption of random mixing. Measures of tree

imbalance such as the (normalized) Sackin index can be used to

reveal such differences and to quantify the statistical significance of

departure from models assuming random mixing.

Figure 5. Sampling schemes of tree leaves. The grey lines
represent the full transmission tree. The red dashed lines are the
reconstructed coalescent events of the sampled branches. (A) Random
sampling: branches are randomly selected from the complete tree. (B)
Sampling up to time t: all transmission events that happened before
time t are kept. (C) Sampling at time t: only branches alive at a given
time t are kept and the coalescent events are reconstructed.
doi:10.1371/journal.pcbi.1002413.g005

Epidemic Contact Structure from Phylogenetic Trees
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Epidemiological properties, such as rate of spread or probability

of outbreak, are known to depend sensitively on contact structure.

If appropriate genetic data are available, then the approach

presented here allows testing whether an epidemic may be

appropriately modeled by standard models assuming random

mixing. Conversely, if one is interested in phylogenetic tree

structure of infectious pathogens, then knowledge of the contact

structure in the host population will be important for the correct

interpretation of the tree topology. Such contact structure may be

on a coarse grained level (e.g. in between cities for human

infectious diseases) or on a fine grained level (e.g. contact patterns

between individuals). The level at which a phylogenetic tree is able

to resolve any contact structure depends on the rate of evolution of

the pathogen. In cases such as HIV, where the rates of evolution

are high enough to result in substantial genetic differences between

virus populations of individual hosts, a phylogenetic tree may

reveal contact structure down to the individual level. Indeed our

analysis of the phylogenetic tree underlying the Swiss HIV

epidemic provides evidence for non-random contact structure on

the population level as well as the individual level. A considerable

part of the imbalance of the HIV tree is likely attributable to a

high-level contact structure that arises from preferential transmis-

sion within transmission groups (such as heterosexuals, intravenous

drug users, and men having sex with men). An analysis of the

imbalance of subtrees corresponding to individual transmission

groups, however, also reveals a signal indicative of non-random

contact structure within these transmission groups.

The importance of contact structure for epidemiological

processes has been clearly demonstrated by a large number of

theoretical studies [2,4,5,8,10,11,37]. This has sparked consider-

able interests in determining the contact structure that underlies

the transmission of different pathogens [12,13,16]. The determi-

nation of such contact networks is fraught with difficulties. Contact

networks based on patient interviews may suffer from incomplete-

ness, inaccuracy and in some cases also lack of reliability of patient

information. Contact networks derived from devices that measure

physical proximity often do not have sufficient spatial resolution or

may neglect to account for important pathogen specific factors.

Our method takes a first step to infer contact structure from

genetic data. In comparison to the other methods mentioned

above it has the advantage of being based on data that are readily

available for many important pathogens. Moreover, our approach

focuses only on those contacts that have led to transmission rather

than other contacts between individuals that may be irrelevant for

the spread of the epidemic. The method presented here allows

testing for deviations from the assumption of random mixing. It is

possible to extend the approach to test departure from BA or WS

networks or other network models (e.g. configuration model

networks with specific degree distributions), equivalent to the Swiss

HIV epidemic (see Results). Thus our approach is able to

distinguish between different types of contact networks in a

statistical sense, but it does not yield the actual contact network

that underlies the epidemic. The choice of null model will strongly

depend on the epidemic studied. Different diseases have different

transmission routes and thus a contact that is relevant for

transmission for one disease may not be relevant for transmission

of another disease.

Our method is based on imbalance, which is only a crude

measure of tree topology. We have shown that imbalance cannot

distinguish between BA and WS networks in our case. We expect

that using other independent measurements of tree topology can

reveal further information on the structure of the underlying

contact network. Branch lengths are one such measure [22,27]. In

simulated epidemic outbreaks, where the exact waiting times

Figure 6. Time evolution of the normalized Sackin index, �IIS~(IS{E½IS �)=E½IS � for the networks generated by the ER (red), BA (blue)
and WS (green) model respectively. For all models, the mean number of neighbors SkT~8 and the total population size N~5000. The
epidemic parameters are T~0:8. For the WS model, the rewiring probability is p~0:01. 1000 epidemics on different networks were simulated for
each of the three networks models. (A) Tree imbalance when all individuals that have been infected prior to the time t are included in the tree. While
both the ER and BA models saturate at a certain value of the normalized Sackin index, the WS model continues to grow exponentially with new
infected individuals. (B) Only those individuals which are infectious at time t are included in the tree.
doi:10.1371/journal.pcbi.1002413.g006

Epidemic Contact Structure from Phylogenetic Trees
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between infection and recovery events are known, branch lengths

can be used together with tree imbalance to distinguish between

ER, BA and WS models (Figure S7). It is important to note that

maximum likelihood analyses typically provide trees where branch

lengths represent evolutionary time. The branch length statistic

used in Figure S7 requires edge lengths in calender time. In order

to obtain accurate branch length estimates in calender time rather

than evolutionary time, we need to allow for the observed

variation in evolutionary rates across branches, such as relaxed

clock models [38]. Due to the model complexity, these analyses are

typically done in a Bayesian MCMC framework which does not

converge for datasets of our size using the current implementation

[39]. Thus the reliability of branch length estimates in our

reconstructed phylogenies is questionable and this measure should

only be used when confidence in branch lengths of the

reconstructed tree is very high.

The imbalance of the reconstructed phylogenies depends on the

the genetic data used. Sampling biases at the genetic level can

result in a strongly unbalanced tree [27], even if the underlying

population is randomly mixed. This sampling bias will be reflected

in the inferred contact structure. In this sense, if connected subsets

of the population are more densely sampled than others, the

resulting contact structure will show that these individuals are

much more highly interconnected than the other individuals that

belong to those sub-populations that are only sparsely sampled.

This can be both advantageous as well as disadvantageous,

depending on what the contact structure should reflect. If the

sampling of genetic data is high in those sub-populations where we

require high resolution, then the inferred contact structure will be

representative of this sub-population, but not of those that are

poorly sampled. Our method would therefore reject an epidemic

model of contact structure where all individuals are equally likely

to be interconnected for one where some individuals are highly

connected (i.e. those from the densely sampled sub-population)

and others are weakly connected (i.e. those from the sparsely

sampled sub-population).

We also note that the approach presented here can be applied

to the analysis of phylogenetic trees based on pathogen

populations within an infected individual. The models for the

dynamics of pathogen populations within an infected individual

typically are also based on the assumption of random mixing and

our approach would allow to test whether this assumption is

fulfilled. For phylogenetic trees based on within-host data

imbalance would likely reflect a compartmentalization of pathogen

replication and could thus provide important insight into

mechanisms of pathogenesis.

Materials and Methods

Ethics statement
The Swiss HIV cohort study was approved by individual local

institutional review boards of all participating centers (www.shcs.

ch). Written informed consent was obtained for each SHCS study

participant.

Deterministic SIR/SI model
We consider a disease spreading amongst a susceptible

population that displays susceptible-infected-removed (SIR) type

dynamics [1,40]. In the limit of large population size and random

mixing the model can be described by the simple system of

differential equations

dS

dt
~{bIS, ð2Þ

dI

dt
~bIS{cI , ð3Þ

dR

dt
~cI : ð4Þ

S, I and R are the number of susceptible, infected, and removed

individuals in each compartment at time t. Here, b is the rate of

transmission per contact between a susceptible and infected

individual and c is the removal rate of infected individuals. In the

context of a network the transmissibility T is the probability that

an individual will transmit the disease across a single contact over

the whole duration of the epidemic. This can be calculated from b
and c by averaging over the distribution of waiting times for

transmission and recovery. For a given recovery time t, the

probability that transmission occurs before the individuals recovers

is given by 1{e{bt. Thus, if the recovery times are exponentially

distributed [5],

T~

ð?
0

1{e{bt
� �

ce{ctdt~
b

bzc
: ð5Þ

Figure 7. Tree imbalance of the Swiss HIV phylogenetic tree
and 100 bootstrap trees (candlestick). The solid red curve shows
the behavior of the normalized Sackin index for a tree with randomly
sampled leaves from the complete HIV tree. The blue curve is the
normalized Sackin index of an epidemic in a susceptible population
displaying random mixing. The size of the susceptible population is
chosen uniformly from the interval ½30000,100000�. The total epidemic
size is chosen uniformly from the interval ½10000,30000�. The removal
rate c was chosen to be 1 and transmission rate such that R0~bN=c.
We simulated 2000 outbreaks for each of the sample sizes of
(10,20,50,100,200,500,1000,2000,5000,5961). The light shaded areas
show the 95% credible intervals, the dark shaded areas the 50%
credible intervals. The individual data points are the values of the
normalized Sackin index for the three largest transmission clusters:
heterosexuals/intravenous drug users (HET/IDU) and two men having
sex with men (MSM) clusters.
doi:10.1371/journal.pcbi.1002413.g007
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The basic reproductive ratio R0 is the number of secondary

infections caused by an infected individual placed into a wholly

susceptible population (S(t~0)~N ) [1]. In fully mixed popula-

tions, an epidemic can occur when R0w1. Here, R0~bN=c~
NT=(1{T). In non-homogeneous populations this threshold also

depends on the contact structure. For networks generated by the

configuration model [41,42], i.e. random contact networks with a

given degree distribution, the expected total number of second

neighbors (neighbors of my neighbors) is given by z2~(Sk2T{

SkT), where SkT and Sk2T are the first and second moments of

the degree distribution [43]. Then z2=SkT is the average number

of nodes two steps away per neighbor. Thus the expected number

of secondary infections per infected individual is Tz2=SkT. For an

epidemic to occur R0~Tz2=SkT must be greater than 1 or

TwTc~SkT=(Sk2T{SkT) [2,5]. When the population addition-

ally displays community structure (such as clustering and

modularity) this threshold changes again. For example, the

Watts-Strogatz model incorporates local connectedness by starting

with a regular network where every node is connected to a fixed

number of close neighbors. Then, each connection is rewired to a

randomly chosen node with a certain probability, thus creating

shortcuts in the contact network [31]. In this case the threshold for

an epidemic outbreak also depends on this rewiring probability

[37].

Since we are not interested in the exact values of the

parameters, we can choose c~1 by rescaling t without loss of

generality. Furthermore, it should be noted that as T approaches

1, b gets much larger than c. Hence, the SIR model with large b
effectively reduces to an SI model.

Simulation of transmission trees
In order to simulate transmission trees of epidemics occurring in

heterogeneously connected populations, a C++ implementation of

Gillespie’s Next-Reaction Method was used [44]. At the beginning

of the simulation a single node is infected and a recovery time tR is

sampled from the distribution of recovery times, P(tR~t)~ce{ct.

Each of the node’s susceptible neighbors is then infected after a

time tI chosen from the distribution of infections times,

P(tI~t)~be{bt. If the infection time is shorter than the recovery

time, the link is activated and the node is infected at time tI . The

procedure is then repeated for each newly infected node. In case a

node is scheduled to be infected by multiple neighbors, the earliest

infection takes priority. By keeping track of who-infects-whom,

each epidemic outbreak yields an infection tree.

Network generation
We study three different network models: (a) the Erdös-Rényi

(ER) random graph [29], (b) the Barabási-Albert (BA) graph [30]

and (c) the Watts-Strogatz (WS) graph [31]. In the ER random

graph every individual is connected to every other individual with

a certain probability q. This results in a graph with a Poissonian

degree distribution with mean number of neighbors SkT~qN.

The BA graph is constructed by preferential attachment. Each

node is sequentially added to the graph and attached to k
neighbors, where nodes that already have many neighbors have a

higher probability of being connected to the new node. This results

in a degree distribution with a power-law tail. Such graphs are

often referred to as scale-free [30]. Finally, WS graphs start out

with a ring lattice, in which every node is connected to its k nearest

neighbors. Each link is then updated with probability p in such a

way that one end of the link is rewired to a randomly chosen node.

Thus the node that loses the link decreases its degree by one and

the node that the link is rewired to increases its degree by one. This

process introduces shortcuts in the graph (i.e. decreases the mean

shortest path) [31]. For p?0 the graph has strongly connected

communities. For p?1 all links are randomly assigned and the

graph is similar to the ER graph with the same mean number of

neighbors (equal number of edges) [42]. For intermediate values of

p, the graphs often display both strong community structure and

short path lengths, which are characteristics of small-world graphs

[31].

Phylogenetic tree shape
The shape of a phylogenetic tree is described in part by its

imbalance. Here, we use the Sackin index as a measure of

imbalance [45], because of its analogy to path lengths in graph

theory. The Sackin index is defined as follows: Let the distance dj

of a leaf j be the number of internal nodes that need to be

traversed when following the path from the root of the tree to a

leaf j. Then the Sackin index is the sum of all such paths,

IS~
X

j

dj : ð6Þ

When considering transmission trees, it is important to

differentiate between two cases: The first case considers the

complete transmission trees of an epidemic outbreak. This is

essentially equivalent to a birth/death process. From the

perspective of an individual, death corresponds to removal from

the infectious class or the depletion of all its susceptible neighbors.

In either case that individual can no longer infect anyone else.

Thus the transmission trees have branches that do not all survive

until the end of the epidemic.

In the second type of tree, all lineages are extant at the end of

the epidemic. Such a transmission tree could be generated by an

SI-type epidemic in an infinite size population where each

individual can infect every other individual. These trees are

generated by the Yule model.

The expected value of the Sackin index for a given number of

leaves N under the Yule model is given by [26],

E(IS(N))~N
XN

k~2

2=k&2N(ln(Nz1)zce{1), ð7Þ

with Euler’s constant ce~0:577.

An exact expression for the expected value of the Sackin index is

not known in the case where some lineages die before the end of

the epidemic. However, it can be assumed that this will in general

result in slightly more unbalanced trees.

Since the expected value of the Sackin index increases with tree

size, we introduce a normalized Sackin index defined by

�IIS~
IS{E(IS(N))

E(IS(N))
: ð8Þ

�IIS measures the relative deviation of the tree imbalance from what

would be expected for an SI epidemic (or SIR with T?1).

Supporting Information

Figure S1 An example illustrating the difference between (A) a

contact network, (B) a transmission network where one initially

infected individual (red node) causes a disease to spread along the

red edges and (C) the resulting phylogenetic tree if the order in
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which the infections took place is known. This distinction has

recently also been illustrated by Welch et al., Viruses 2011.

(TIF)

Figure S2 Cartoon of an epidemic outbreak on two idealized

contact networks: (A) A chain representing an extreme case of a

WS network without long-range connections. (B) An extreme case

of preferential attachment, where one single center node is

connected to all other nodes. The branching points in the tree

represent infection events and the colors indicate the lifespan of

the corresponding node in the network. Branch lengths have no

significance in these cartoons.

(TIF)

Figure S3 Density plot of two imbalance measures (x-axis:

normalized Sackin index; y-axis: s-index) for 10 000 trees

generated under the SIR model with random mixing. The

parameters are chosen the same as for figure 7 in the main text:

R0 = 2.14; total susceptible population: N = 40 000; maximum

epidemic size: M = 20 000; number of sampled individuals:

n = 5 961. The colors in the scatter plot indicate the frequency

at which the SIR model resulted in a tree with imbalance measures

in the given range. The large red dot indicates the maximum

likelihood HIV tree and the small red dots are 100 bootstrap trees.

For the normalized Sackin index all HIV trees lie outside of the

distribution of SIR trees (to the right in the x-direction). The s-

index, however, is unable to reject the SIR model for the HIV

data. Only a small number of trees (437/10 000) generated by this

process are rejected by the Sackin index test while not being

rejected by the s-Index test (data lies outside the 95% interval).

(TIF)

Figure S4 s-Index test for sub-trees of the HIV tree. y = 0

indicates the 97.5-th quantile of the s-Index for trees generated by

the SIR model. Positive y-values indicate a rejection of the SIR

model. MSM1 and MSM2 are the two largest MSM (men-having-

sex-with-men) transmission groups in the HIV tree. HET-IDU is

the largest heterosexual/intravenous-drug-user transmission

group. Thus, despite the s-index not being able to reject the SIR

model for the full HIV tree, sub-samples of the HIV tree can reject

the SIR model using the s-index.

(TIF)

Figure S5 Blue: Normalized Sackin index for networks gener-

ated by the WS model for varying rewiring probability,

transmissibility T = 0.6, K = 8 and N = 5000. Green: Normalized

Sackin index for a graph generated by the configuration model

with degree sequence equal to the WS model. The light and dark

shaded areas represent the 95 and 50 percent confidence intervals.

(TIF)

Figure S6 Distribution of tree imbalance statistics for trees

generated under the SIR model with random mixing for different

parameter combinations and R0. The colors in the scatter plot

indicate the frequency at which the SIR model resulted in a tree

with imbalance measures in the given range. The red dot indicates

the real HIV tree. The normalized Sackin index rejects the SIR

model for all choices of R0, total susceptible population size and

maximum epidemic size. (A) Total susceptible population:

N = 40 000; maximum epidemic size: M = 20 000; number of

sampled individuals: n = 5 961. (B) Total susceptible population:

N = 30 000; maximum epidemic size: M = 20 000; number of

sampled individuals: n = 5 961. (C) Total susceptible population:

N = 40 000; maximum epidemic size: M = 10 000; number of

sampled individuals: n = 5 961.

(TIF)

Figure S7 Tree imbalance (normalized Sackin index) plotted

against the mean external branch length divided by the mean

internal branch length at different values of transmissibility. This

figure complements figure in the main text. The different colors

and point shapes are networks generated by the three network

models: ER (green circles), BA (red triangles), WS (blue diamonds).

In all panels, N = 5000 and c= 1. The connectivity for the WS

model is p = 0:01. For each value of T, 2 000 simulations were

performed per network model. Only those simulations where an

outbreak occurred (epidemic size ..05N) are plotted. For those

values of T for which tree imbalance cannot distinguish between

network models (e.g. at T = 0.2 the ER and BA model overlap in

tree imbalance), information about branch lengths can potential

give an additional resolution.

(TIF)

Text S1 Detailed description of the methods. (A) Derivation of

the Sackin index for a random network generated by the

configuration model. (B) Factors leading to imbalanced trees. (C)

Comparison of different tree balance statistics. (D) Testing the

HIV tree using different tree imbalance statistics. (E) Effect of path

length on tree imbalance for WS networks.

(PDF)

Text S2 Detailed analysis of population size N and mean

number of neighbors k on tree imbalance.

(PDF)
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