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Abstract: Rare earth (RE) metal borohydrides have recently been receiving attention as possible
hydrogen storage materials and solid-state Li-ion conductors. In this paper, the decomposition
and reabsorption of Er(BH4)3 in composite mixtures with LiBH4 and/or LiH were investigated.
The composite of 3LiBH4 + Er(BH4)3 + 3LiH has a theoretical hydrogen storage capacity of
9 wt %, nevertheless, only 6 wt % hydrogen are accessible due to the formation of thermally stable
LiH. Hydrogen sorption measurements in a Sieverts-type apparatus revealed that during three
desorption-absorption cycles of 3LiBH4 + Er(BH4)3 + 3LiH, the composite desorbed 4.2, 3.7 and
3.5 wt % H for the first, second and third cycle, respectively, and thus showed good rehydrogenation
behavior. In situ synchrotron radiation powder X-ray diffraction (SR-PXD) after ball milling of
Er(BH4)3 + 6LiH resulted in the formation of LiBH4, revealing that metathesis reactions occurred
during milling in these systems. Impedance spectroscopy of absorbed Er(BH4)3 + 6LiH showed
an exceptional high hysteresis of 40–60 K for the transition between the high and low temperature
phases of LiBH4, indicating that the high temperature phase of LiBH4 is stabilized in the composite.

Keywords: borohydride; rare earth element; hydrogen storage; decomposition; solid state electrolyte

1. Introduction

One of the most promising candidates for solid state hydrogen storage applications is LiBH4,
which has a theoretical capacity of 18.5 wt % H2. The practical hydrogen amount that can be desorbed
is 13.8 wt %, due to the formation of very stable LiH during decomposition, but LiBH4 is still among
the materials with the highest hydrogen capacity considered for solid state storage [1,2]. However,
it requires very tough conditions for rehydrogenation [3] and suffers from capacity loss on cycling
due to the formation of higher boranes [4]. Another class of materials to be considered is rare earth
(RE) borohydrides, with hydrogen capacities varying between 9.0 wt % for Y(BH4)3 and 5.5 wt %
for Yb(BH4)3 [5–19]. Li-containing RE borohydrides are also considered as solid state electrolytes
for new battery applications, due to their high Li-ion conductivities [20–23]. RE borohydrides have
shown novel properties such as luminescence, and a magnetocaloric effect has also been recently
published [24–26].
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Gennari et al. investigated the composite mixtures of 6LiBH4 and RECl3 with RE = Ce, Gd and
found a decrease in decomposition temperature of LiBH4 due to an in situ formed REH2 phase [17].
Additionally, the decomposed composite showed the ability to reabsorb 20% of the initial hydrogen
content. Frommen et al. investigated the composite mixtures of LiBH4, LiH and RE(BH4)3 with
RE = La, Er [27]. It was reported that the desorption temperature of LiBH4 in the mixture with RE = Er
decreased by about 100 ◦C compared to pure LiBH4. Reabsorption at 340 ◦C under 100 bar H2 yielded
a hydrogen uptake of 66% after desorption against vacuum, and 80% after desorption against 5 bar H2,
respectively, of the initially release of 3 wt % H2.

The established technique to synthesize RE borohydrides is the solid state metathesis approach,
as it has the advantage of direct synthesis of a RE borohydride without complicated in vacuo
manipulations or possible decomposition [28,29]. The RE chloride and an alkali metal borohydride
(i.e., Li, Na, K) are mixed in a one-step mechanochemical synthesis to form the RE borohydride and the
alkali metal chloride via a metathesis reaction. LiBH4 has proven to be an efficient precursor, but also
other metal borohydrides e.g., NaBH4, have been successfully used [30–32]. As an alternative method,
the solvent-based synthesis of borohydrides has been used for over 50 years with the advantage of
removing the alkali metal chloride (i.e., LiCl) [28], which is necessary to increase the hydrogen capacity.
The halide-free synthesis in this paper is based on a mechanochemical synthesis [33] and wet-chemical
extraction, as described by Hagemann et al. [34,35].

This work presents two new composite materials: Er(BH4)3 + 6LiH and 3LiBH4 + Er(BH4)3 + 3LiH.
The decomposition and reabsorption of hydrogen have been studied in detail by in situ synchrotron
radiation powder X-ray diffraction (SR-PXD). Desorption-absorption cycling measurements were
conducted in a Sieverts-type apparatus. The rehydrogenation properties of the 3LiBH4 + Er(BH4)3 + 3LiH
system were investigated during three desorption-absorption cycles. One cycle was studied for the
Er(BH4)3 + 6LiH system. The latter was also investigated by impedance spectroscopy. Finally, thermal
gravimetric (TG) and differential scanning calorimetry (DSC), as well as mass spectrometry (MS)
were conducted.

2. Results & Discussion

2.1. Er(BH4)3 + 6LiH (S1)

Figure 1 shows the in situ synchrotron radiation powder X-ray diffraction (SR-PXD) data of
Er(BH4)3 + 6LiH (S1) from room temperature (RT) to 280 ◦C. At RT, Bragg peaks corresponding to
LiH, orthorhombic-LiBH4 (o-LiBH4) and ErH2, as well as minor peaks from Er(BH4)3, are present,
suggesting the reaction pathway of Equation (1) for the ball milling reaction.

Er(BH4)3(s) + 3LiH(s)
ball milling−−−−−−→ ErH2(s) + 3LiBH4(s) + 0.5H2(g) (1)

The small amount of Er(BH4)3 present (Table 1) indicates that Equation (1) has almost gone to
completion during milling. The in situ SR-PXD data show the phase transition of o- to hexagonal-LiBH4

(h-LiBH4) at 100 ◦C. The Bragg peaks of Er(BH4)3 start to decrease simultaneously and are gone at
240 ◦C. ErH2 is present in significant amounts (44.1(4) wt %) directly after ball milling. Its lattice
parameters increase more than expected from the thermal expansion from 186 ◦C, indicating that
it is further hydrogenated, induced by the hydrogen pressure in the in situ SR-PXD measurements
setup, with a likely intermediate state of ErH2+δ with (0 ≤ δ ≤ 1) as shown in Figure S1. Bragg peaks
from LiBH4 disappear at 270 ◦C, caused by its melting. Above 280 ◦C, the sample oxidizes, as evident
from strong Bragg peaks of Er2O3 (not shown), and further analysis of the decomposition process was
therefore not possible.

Figure 2a shows the differential scanning calorimetry (DSC) data of S1. The phase transition
from o- to h-LiBH4 occurs at 105 ◦C and its melting at 260 ◦C (peak temperatures), which is in good
agreement with the SR-PXD data. A rather minor exothermic DSC event (dashed circle in Figure 2a)
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can be seen in analogy to the increase in the lattice parameter observed in SR-PXD starting at 186 ◦C,
corresponding to the reaction from ErH2 towards ErH3. The decomposition of the Li borohydride
appears at 326 ◦C. There is a minor endothermic peak after the major endothermic event, which can be
assigned to desorption of ErH3 to ErH2 (a similar decomposition temperature is observed for pure
ErH3, as shown in Figure S2). Thermogravimetric (TG) data for S1 are also presented in Figure 2 and
show mass loss of 3.4 wt % between RT and 400 ◦C, including a 30-min isotherm.

The powder X-ray diffraction (PXD) pattern of one complete desorption absorption cycle in the
Sieverts apparatus is shown in Figure 2b. The main product after desorption at 400 ◦C and 5–10 bar
H2 is ErH3, formed by additional hydrogen absorption by ErH2 upon cooling. Minor Bragg peaks of
ErB4 are also observed. Reabsorption at 340 ◦C under 100 bar H2 for 12 h resulted in the formation of
LiBH4, as well as increased intensity of ErH3 peaks.

Table 1. Compositions and synthesis method of the investigated samples. The products after ball
milling are given with lattice parameters and fractions from Rietveld refinements of diffraction data at
room temperature (RT). Refinements are shown in Table S1. Sample S2 was stored in a glove box for
nine months before measurements were taken. Estimated standard deviations are given in parentheses.

Sample Reactants Method Products Lattice Parameters (Å) Refined Fractions (wt %)

S1 Er(BH4)3 + 6LiH 1 h ball milling

Er(BH4)3 a = 10.884(3) 1.1(2)

LiBH4

a = 7.174(7)
b = 4.426(5)
c = 6.807(9)

29.9(3)

LiH a = 4.0851(6) 24.8(2)

ErH2 a = 5.1458(4) 44.1(4)

S2 Er(BH4)3 + 3LiBH4 + 3LiH 1 h ball milling

Er(BH4)3 a = 10.8134(3) 29.7(1)

LiBH4

a = 7.172(5)
b = 4.430(3)
c = 6.804(6)

38.2(16)

LiH a = 4.0851 0.0(9)

ErH2 a = 5.1823(3) 32.1(1)
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Figure 1. In situ SR-PXD data of sample S1 during heating from RT to 280 °C (5 °C·min−1) under 1 bar 
H2. Arrows mark the Bragg peaks of Er(BH4)3, o- and h-LiBH4. λ = 0.77787 Å.  

Figure 1. In situ SR-PXD data of sample S1 during heating from RT to 280 ◦C (5 ◦C·min−1) under 1 bar
H2. Arrows mark the Bragg peaks of Er(BH4)3, o- and h-LiBH4. λ = 0.77787 Å.
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Figure 2. (a) TG-DSC data of ball milled S1 (black curves) and reabsorbed S1 (S1 abs) (red curves),
showing TG data (top) and DSC signal (bottom). X-axis in time (min) as the heating from RT to 400 ◦C
proceeded with a 30-min isotherm. Temperature (◦C) is given on the secondary y-axis to the right;
(b) Ex situ PXD data of S1 showing one absorption-desorption cycle with ball milled (bottom), desorbed
(middle), and reabsorbed (top) composite. λ = 1.54056 Å.

The thermogravimetric and differential scanning calorimetry (TG-DSC) data for the
decomposition of reabsorbed S1 is shown in Figure 2a (red curves). TG data show a mass loss
of 3.0 wt %, corresponding to 88% of the initial released hydrogen. An increase in onset temperature
of hydrogen release can be observed (∆T = 70 ◦C). In the DSC data, two peaks occur at rather low
temperatures. The first peak is at 90 ◦C, but the process behind it is not completely understood
(see Li-ion conductivity section). The second one at 105 ◦C corresponds to the o- to h-LiBH4 transition.
The melting of LiBH4 occurs at 278 ◦C. The last endothermic event coincides with the mass loss and
occurs at 390 ◦C, which is probably a superposition of two events. The first is proposed to be the
decomposition of LiBH4, while the second is possibly the reduction of ErH3 to ErH2, see Figure S2.

In general, the desorption-absorption cycle shown in this section follows the reaction pathways
outlined in Equations (2) and (3).

4LiBH4(s) + ErH2(s)
desorption−−−−−→ ErB4(s) + 4LiH(s) + 7H2(g) (2)

ErB4(s) + 4LiH(s) + 7.5H2(g)
absorption−−−−−→ 4LiBH4(s) + ErH3(s) (3)
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2.2. 3LiBH4 + Er(BH4)3 + 3LiH (S2)

Figure 3a shows the ex situ lab PXD patterns of 3LiBH4 + Er(BH4)3 + 3LiH (S2) in the as-milled,
desorbed, and reabsorbed states. The Bragg peaks of the reactants LiBH4, Er(BH4)3 and LiH, are
observed after ball milling. In addition, ErH2 is formed in minor amounts, showing that a reaction has
already started during the milling process. The products after desorption at 400 ◦C and 5–10 bar H2 are
mainly ErB4 and several Er-hydrides. Cubic (c-) ErH3 (Fm-3m) is the main phase, but small amounts of
ErH2, ErH and trigonal (t-) ErH3 (P-3c1) are also present. As suggested above, ErH3 appeared during
cooling under hydrogen pressure. Minor Bragg peaks corresponding to ErB12 are detected as well.
Reabsorption at 340 ◦C under 100 bar H2 for 12 h led to the complete consumption of the Er borides.
Trivalent Er-hydride was found after reabsorption in both the cubic and trigonal modifications.

Interestingly, the Bragg peaks of ErB4 show less intensity in the ex situ PXD pattern of desorbed
S1 in Figure 2b than in desorbed S2, although the conditions were the same. This observation let us
to a hypothesis that the excess of LiBH4 somehow increases the crystallinity of the material. This is
supported by the observations in another recently published study, where the decomposition of pure
Er(BH4)3 resulted in a completely amorphous material [36]. The crystallinity was improved by addition
of LiH and by reabsorption. The products were ErH3 and LiBH4, and the final material was crystalline.
Whether this observation is caused by amorphous Er–B–H species, which simply decrease when LiBH4

is formed, or if the process is triggered directly by LiBH4/ErH3 formation, cannot be concluded.
TG-DSC data of S2, stored for three months in a glove box, is presented in Figure 3b. TG data

show a mass loss of 3.9 wt % up to 400 ◦C, and DSC data show three endothermic events, two sharp
and one broad. The two sharp events are the phase transition and melting of LiBH4 occurring at
111 and 271 ◦C, respectively. These events are not related to any mass loss in the TG data. The third
endothermic peak is broad, and therefore probably a superposition of the decomposition of Er(BH4)3

and LiBH4 with peak temperatures at 336 and 391 ◦C, respectively. Figure 3bii shows H2 (m/z = 2)
desorption between 275 and 400 ◦C. Minor amounts of B2H6 (m/z = 26) are also seen in Figure 3bi,
as well as S(CH3)2 (m/z = 62) between 75 and 125 ◦C.

Figure 4a shows in situ SR-PXD desorption data of S2, which was stored for nine months in a
glove box. The RT data show significant Bragg peaks from ErH2. Compared to the rather minor peaks
of ErH2 directly after ball milling in Figure 3a, it becomes clear that ErH2 is formed during the storage
in Ar. This observation suggests that the reaction in Equation (1) even occurs at ambient temperature
for S2. Equation (1) is an intermediate reaction, showing the formation of LiBH4, initiated during the
milling of Er(BH4)3 and LiH, as well as the formation of ErH2. Bragg peaks of the other phases appear
for the as-milled S2 (Figure 3a) at RT. The atomic positions for Er in Er(BH4)3 were refined (Figure S3
and Table S1) and are within the standard deviations of those reported for Y in Y(BH4)3 [5]. The in situ
SR-PXD desorption starts with a heating ramp from RT to 400 ◦C with a heating rate of 5 ◦C·min−1 and
a 30-min isotherm at 400 ◦C. The gap in the data is due to a lost connection to the detector for 15 min
in the temperature interval of 30–80 ◦C. The phase transition of LiBH4 occurs at 100 ◦C. The Bragg
peaks of Er(BH4)3 decrease and are gone at 195 ◦C, which is 55 ◦C lower compared to the in situ
SR-PXD desorption data of S1. In any case, these observations are in agreement with earlier reports,
where the halide free yttrium borohydride turns into “an X-ray amorphous solid” without melting
at ~200 ◦C [35]. Therefore, we assume an amorphisation, as all Bragg peaks of Er(BH4)3 disappear
and the DSC data indicate no melting. The amorphisation temperatures in S1 and S2 are, however,
50–100 ◦C lower than the reported amorphisation temperature of pure Er(BH4)3 [36]. The melting
of LiBH4 can be observed by the in situ SR-PXD data at 295 ◦C. The hydrogenation of the bivalent
to trivalent erbium hydride occurs simultaneously, which is evident from a shift to lower 2θ angles
for the Er hydride peaks (Figure 4a and Figure S1) and in good agreement with the in situ SR-PXD
desorption data of S1. The Bragg peaks of ErH3 increase in intensity until the heating is stopped after
30 min at 400 ◦C, concluding that the timeframe of the in situ SR-PXD desorption measurement for S2
does not allow for the formation of ErB4, which is the suggested desorption product, see Equation (2).
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Figure 3. (a) Ex situ PXD data of S2 at RT showing one absorption-desorption cycle with ball milled
(bottom), desorbed (middle), and reabsorbed (top) composite. λ = 1.54056 Å; (b) MS-TG-DSC of ball
milled S2 from RT to 400 ◦C (heating rate 5 ◦C·min−1) showing: (i) release of S(CH3)2 and B2H6; (ii) H2;
(iii) TG data; and (iv) DSC data.

The starting point of the in situ SR-PXD reabsorption is the ex-situ desorbed S2, see Figure 3a
(middle, red curve). The in situ SR-PXD reabsorption of desorbed S2 was performed with a heating
ramp of 5 ◦C·min−1 from RT to 340 ◦C under 93 bar H2. From RT to 261 ◦C, the intensities of all
phases appear constant. The connection to the detector was lost at 261 ◦C for 1 h until 42 min into the
isothermal regime at 340 ◦C. During the connection loss, the Bragg peaks of c-ErH3 increase moderately,
while those of ErB4 decrease slightly. This trend continues during the additional 2-h isotherm shown
in Figure 4b. The minor changes in intensity indicate that it is again not possible to follow a complete
hydrogenation during the timeframe of the in situ measurement.
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Figure 4. In situ SR-PXD data showing (a) desorption of S2 during heating from RT to 400 ◦C
(5 ◦C·min−1) under 6 bar H2. A detector connection loss is the reason for the gaps in intensity (heating
continued). λ = 0.77787 Å; (b) reabsorption of Sieverts apparatus desorbed S2 during heating from RT
to 340 ◦C (5 ◦C·min−1) under 93 bar H2 followed by a 2-h isotherm, and cooling to RT. λ = 0.77787 Å.

Three desorption-absorption cycles were measured for S2 in a Sieverts-type apparatus.
The volumetric desorption data after 5 h at 400 ◦C and 5–10 bar H2 is illustrated in Figure 5. The first,
second and third desorption show a hydrogen release of 4.2 wt %, 3.7 wt % and 3.5 wt %, respectively.
During the first desorption of S2, Er(BH4)3 is decomposed to Er-hydride according to the ex situ PXD
data, which resulted in a slower hydrogen release at the beginning of the first desorption (black curve
in Figure 5). As Er(BH4)3 is not formed on rehydrogenation, this step is not repeated after the first
desorption, thus resulting in a faster desorption for the second/third reabsorption.
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The hydrogen pressure is 5–10 bar.

The TG-DSC data of S2 after the first reabsorption is shown in Figure 6. The DSC signal is
similar to the ball milled sample in Figure 3b. The phase transition of LiBH4 shifts to a slightly lower
temperature, 103 ◦C (111 ◦C for ball milled S2). The melting of LiBH4 still occurs at 270 ◦C. The third
minor endothermic peak at 322 ◦C in Figure 6 cannot be explained. Although the set temperature
for the isotherm is 400 ◦C, the fourth peak was observed at a peak temperature of 403 ◦C (due to
a slight temperature overshoot) in Figure 6. It is suggested to be the decomposition of LiBH4, and
hence slightly higher than for S2 after ball milling. The mass loss starts simultaneously with the fourth
endothermic DSC event, also suggesting the decomposition of LiBH4. The fifth peak in the isothermal
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regime after 7 min at 400 ◦C is suggested to be the reduction of ErH3 to ErH2 as the mass loss continues
through this event (Figure S2). The TG data in Figure 6 show a mass loss of 4.5 wt % for reabsorbed S2.
Although it was reported that hydrogen pressure has a beneficial effect on desorption behavior, the TG
and Sieverts data for the reabsorbed S2 show a weight loss of 4.5 and 3.7 wt %, respectively. The total
hydrogen content of S2 is 9.0 wt %, but only 6.0 wt % can be obtained when forming LiH, meaning
that our TG data shows a hydrogen uptake of 75%, compared to the nominal maximum value.
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To summarize, we observe from the PXD and SR-PXD data an increasing amount of ErB4 during
thermal decomposition and an increasing amount of ErH2+δ during reabsorption for S2. This is in
good agreement with the following reaction pathway, with an assumed start of decomposition similar
to reaction products in Equation (1)

ErH3(s) + 4LiBH4(s)↔ ErB4(s) + 4LiH(s) + 7.5H2(g) (4)

The theoretical storage capacity of Equation (4) of 5.1 wt % H was not achieved, which is
possibly caused by the uncompleted decomposition reactions, as residuals of ErH3 have been found in
decomposed samples.

The comparison of S2 to the recently investigated 6LiBH4 + ErCl3 + 3LiH composite by Frommen
et al. [27] shows that the two systems behave very similar with respect to rehydrogenation. During the
first reabsorption, 80% to 85% of the original hydrogen content could be reabsorbed for both systems
at similar conditions. The weight loss for our system shows 4.5 wt % after one desorption-absorption
cycle while 2.4 wt % was reported for the other composite [27], meaning that the absorption in our
composite has almost double the hydrogen capacity after the first cycle.

There are some differences in the hydrogenation products. In our halide-free S2 composite, c-ErH3

and t-ErH3 are both formed during rehydrogenation with 27.4(2) wt % and 14.4(1) wt %, respectively.
LiBH4 is the major reabsorption product with refined 58.1(2) wt %, suggesting, as reported recently, that
LiH plays a crucial role in the formation of new LiBH4 at the employed conditions [36]. In Reference [27]
only c-ErH3 was observed after rehydrogenation, but no t-ErH3, similar to our absorbed S1 sample.

2.3. Li-Ion Conductivity

The Li-ion conductivity of absorbed S1 was measured with alternating current (AC) impedance
spectroscopy from RT to 140 ◦C (Figure 7). Further details to the experimental setup are given in
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Reference [37] and the references therein. The measurement was motivated by the hypothesis that the
high temperature phase of LiBH4 was stabilized in the composite, thus shifting the phase transition to
lower temperatures. Evidently, the absorbed S1 showed an endothermic DSC event as low as 90 ◦C,
which we first considered to be the phase transition in LiBH4 (see DSC data, red curve in Figure 2a).

Figure 7 shows the Li+ ionic conductivity for absorbed S1, and the values are systematically
lower than for pure LiBH4 as expected, since LiBH4 only makes up 21 wt % in the present sample
(The low conductivity values for the samples can be explained by minor amounts of LiBH4 after
rehydrogenation. For absorbed S1 the content is approx. 2.5 molar equivalent of LiBH4 corresponding
to 21 wt %. This value was calculated from the mass loss shown by TG data of absorbed S1). However,
upon heating above 110 ◦C, the conductivities reach about four orders of magnitude higher than the
RT modification, which is in good agreement with the conductivity enhancement in pure LiBH4 [38].
The conductivity in absorbed S1 (Figure 7) shows a slightly steeper slope than pure LiBH4 [38],
which manifested in the absence of the “conductivity jump” in our data. We first suggested that this
observation was caused by the initial ball milling of S1. In a recent publication, it was shown that ball
milled LiBH4-LiI samples have a higher conductivity before annealing caused by the formation of a
“defect rich microstructure,” which influences the conductivity positively [39]. However, the sample
chosen for impedance spectroscopy was heated to 400 ◦C during the first decomposition and then
reabsorbed at 340 ◦C. This heat treatment should heal all defects and disregard their influence [39].
In summary, the high temperature phase transition is observed at 110 ◦C, which is in agreement with
pure LiBH4 [38,40]. From the Li-ion conductivity measurements, the DSC event at 90 ◦C for absorbed
S1 cannot be explained by the high temperature phase transition of LiBH4.
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However, a rather wide hysteresis is observed in Figure 7, which is in the range of 40–60 K.
That is in strong contrast to the hysteresis of pure and ball milled LiBH4, which is only 4 K [41], but
rather close to the LiBH4-LiCl system in which the hysteresis is about 20–40 K [40]. The presence of
lithium halides can be ruled out, as it would significantly lower the phase transition temperature [40].
It has been observed [42] that nanoconfined LiBH4 in mesoporous silica scaffolds shows a remarkable
Li-conductivity in the temperature range of RT-140 ◦C. According to Blanchard et al. [42], the high
conductivity is a consequence of two different fractions of LiBH4, a bulk LiBH4 fraction and a thin
(1.0 nm) interfacial layer of LiBH4. Assuming a morphological change in the grain size and in the
inter-grains arrangement, it could be assumed that the formation of the abovementioned layer between
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LiBH4 and ErH3 after several cycles of hydrogenation has happened. This can explain the inertia of the
system to undergo the transition to the RT phase. The ionic conductivity contribution of this layer is
dominant with respect to the bulk LiBH4, however, it is not visible by diffraction due to its nanoscopic
nature. This effect of nanoconfined LiBH4 could explain the rather low endothermic DSC event, which
were discussed above, as similar events were also reported in Reference [42].

SEM images (see Figures S4–S6) were collected, but their resolution is not sufficient to observe a
1.0-nm thin interfacial layer. Further measurements with TEM are necessary to conclude with certainty
that an interfacial layer of LiBH4 has formed. Due to the paramagnetic properties of erbium, it was not
possible to conduct NMR.

3. Materials and Methods

ErCl3 (99.9%), LiBH4 (>95%), LiH (>95%) and dimethyl sulfide (S(CH3)2, anhydrous, 99.9%) were
purchased from Sigma Aldrich, St. Louis, MO, USA and used as received.

The synthesis of Er(BH4)3 has been described in Reference [36]. The composite mixtures were ball
milled using a Fritsch Pulverisette 6 planetary mill (Fritsch, Idar-Oberstein, Germany) employing an
80-mL tungsten carbide-coated steel vial and balls. A ball to powder ration of 40:1 was used. All sample
descriptions of the composite mixtures are given in Table 1, including their composition and synthesis
method as well as refined lattice parameters and phase fractions obtained by Rietveld refinements.

The samples were stored and handled in an MBraun glove box (MBraun Inertgas-Systeme GmBH,
Garching, Germany) fitted with a recirculation system and oxygen/humidity sensors with H2O/O2

levels below 1 ppm. All procedures outside of the glove box were performed using in vacuo or
Schlenk line techniques under a purified Ar atmosphere. An in-house manufactured Sieverts-type
apparatus [43] was used for hydrogen desorption–absorption cycling experiments. Desorption was
performed using a temperature ramp of 5 ◦C·min−1 from room temperature to 400 ◦C under 3 bar H2,
followed by a 12 h isothermal step. Absorption was conducted for 12 h at 340 ◦C and 100 bar H2.

Powder X-ray diffraction (PXD) data were collected using a Rigaku SmartLab diffractometer
(Rigaku, Tokyo, Japan). The samples were measured within rotating glass capillaries, with an
inner diameter of 0.5 mm and sealed with silicone grease. All measurements were completed in
Debye-Scherrer geometry using CuKα radiation with λ = 1.54056 Å, over the scattering angles
2θ = 10◦–70◦.

In situ synchrotron radiation powder X-ray diffraction (SR-PXD) was executed at Swiss Norwegian
Beam Lines, BM01 [44], at the European Synchrotron Radiation Facility (ESRF), Grenoble, France.
The cycling experiments were conducted using a heating/cooling rate of 5 ◦C·min−1 with a typical
H2 pressure of ~100 bar for absorption and ~3 bar for desorption. Hydrogen pressure was employed
for all volumetric and in situ SR-PXD experiments, as similar conditions were reported to increase
gas desorption compared to desorption under vacuum [17,27,45]. Data were collected using a Pilatus
2 M detector (DECTRIS Ltd., Baden-Daettwil, Switzerland) and a sample-to-detector distance of
146 mm at wavelengths of 0.77787 Å. Wavelength and sample-to-detector distance were calibrated
from an NIST LaB6 standard. Exposure time was set to 30 s, giving a temperature resolution of
2.5 K/pattern. The sample was contained in a single-crystal sapphire tube (inner diameter 0.8 mm)
connected to the cell with Vespel ferrules and Swagelok fittings. Hydrogen was introduced and
removed from the cell with an in-house built computer-controlled gas rig. The cell was rotated by 10◦

to improve powder averaging during each exposure. The single-crystal reflections from the sapphire
tubes were masked out manually in Fit2D [46]. Rietveld refinements were performed with GSAS and
Expgui software [47,48]. Thompson-Cox-Hastings pseudo-Voigt functions with three Gaussian and
one Lorentzian parameter were used to model the Bragg peak profiles [49]. The background was fitted
with a shifted Chebyshev polynomial with up to 36 terms. The atomic positions for the Er(BH4)3 were
taken from Y(BH4)3 [5] and refined with the data shown in Figure S3 at room temperature. BH4 units
were treated as rigid bodies with B–H distances of 1.13 Å.
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Simultaneous thermogravimetric and differential scanning calorimetry (TG-DSC) experiments
were carried out with a Netzsch STA 449 F3 Jupiter instrument (Netzsch, Bavaria, Germany). In some
measurements, mass spectrometry (MS) was performed simultaneously by connecting a Hiden
Analytical HPR-20 QMS (Hiden, Warrington, UK) to the TG-DSC. The samples were loaded in
aluminum crucibles (~5–10 mg) and were heated up to 400–500 ◦C with a heating rate of 5 ◦C·min−1.
An argon flow of 70 mL·min−1 was used as a protection gas and purge gas. All given temperatures are
peak temperatures, unless stated otherwise.

Li-ion conductivity was measured by impedance spectroscopy, employing an HP 4192A FL
impedance analyzer (Keysight Technologies, Santa Rosa, CA, USA). The frequency range was 5 Hz to
10 MHz with a signal amplitude of 60 mV. The temperature was varied by 10 ◦C for each measurement
from RT to 140 ◦C, and back to RT. Three sets were performed for each measurement in order to improve
reproducibility. A 3-ton mechanical axial press was used for pressing pellets with a typical diameter of
6.35 mm and a thickness of 0.5–1.0 mm. The samples were placed in a BDS 1200 Novocontrol sample cell
(Novocontrol Technologies GmbH Co. KG, Montabaur, Germany) under an argon atmosphere between
two gold ion-blocking electrodes. A single parallel resistor(R)-constant phase element (CPE) was
used as an equivalent circuit at low temperatures, where the noise is higher. At higher temperatures,
additional effects were taken into account, such as the polarization of the electrode interfaces (modeled
with a single CPE) and, eventually, a second R-CPE parallel circuit due to grain boundary contributions.
A Hitachi S-4800 Scanning electron microscope (SEM) (Hitachi, Tokyo, Japan) equipped with a Noran
System Six energy dispersive spectrometer (EDS) was employed for investigating the absorbed S1 after
the conductivity measurements.

4. Conclusions

This work characterized two new composite materials consisting of Er(BH4)3, LiBH4 and/or LiH.
The composites react during ball milling, storage as well as decomposition in a two-step reaction
where Er-hydrides and LiBH4 are formed in the first step. ErB4 is formed in a second step during
thermal decomposition. The composites can be cycled between the first and second decomposition
steps by applying hydrogen pressure. Volumetric measurements show a hydrogen capacity of 88%
after the first cycle of the initially released hydrogen content and seem stable after the third cycle,
with 95% rehydrogenation compared to the second cycle. With a weight loss of 4.5 wt % after the
first desorption–absorption cycle, the hydrogen capacity had almost doubled compared to earlier
investigated systems, which included LiCl.

Li-ion conductivity measurements of absorbed Er(BH4)3 + 6LiH showed an exceptional high
hysteresis of 40–60 K for the transition between the high and low temperature phases of LiBH4, which
may be a good starting point to investigate further, for all solid state Li-ion batteries.

Supplementary Materials: The following are available online at www.mdpi.com/2304-6740/5/2/31/s1.
Figure S1: SR-PXD data of thermal desorption of S1 and S2, Figure S2: TG-DSC data of pure ErH3 between 25
and 1000 ◦C. Figure S3: SR-PXD Rietveld refinement and difference plot of S2, Figures S4–S6: SEM image of the
absorbed S1. Figure S7: SR-PXD Rietveld refinement and difference plot of S1, Figure S8: PXD Rietveld refinement
and difference plot of S2, Table S1: Atomic positions and displacement factor refined for Er and B in Er(BH4)3.
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