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Abstract 37 

The multi-component nature of executive functions (EF) has long been recognized, 38 

pushing for a better understanding of both the commonalities and the diversity between EF 39 

components. Despite the advances made, the operationalization of performance in EF tasks 40 

remains rather heterogeneous, and the structure of EF as modelled by confirmatory factor 41 

analyses (CFA) is still a topic of debate (Karr et al., 2018). The present work demonstrates 42 

these two issues are related, showing how different operationalizations in task-based 43 

performance indicators impact the resulting models of EF structure with CFA. 44 

Using bootstrapped data from 182 children (8-12 years old) and nine EF tasks (tapping 45 

inhibition, working memory and cognitive flexibility), we first show improved model 46 

convergence and acceptance when operationalizing EF through single tasks’ scores (e.g., 47 

incongruent trials, Flanker task) relative to difference scores (e.g., incongruent minus 48 

congruent trials, Flanker task). Furthermore, we show that reaction times exhibit poor model 49 

convergence and acceptance compared not only to accuracy, but also drift rate. The latter, a 50 

well-known indicator in drift-diffusion models, is found to present the best psychometric 51 

properties to model EF with CFA. Finally, we examine how various operationalizations of 52 

performance in EF tasks impact CFA model comparison in the assessment of EF structure and 53 

discuss the theoretical foundations for these results.  54 

 55 

KEYWORDS: executive functions; confirmatory factor analyses; latent variable analysis; 56 

diffusion model; assessment; indicators.   57 
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Executive functions are considered an «umbrella term» for a number of cognitive 58 

processes relying on frontal lobe functioning (Barkley, 2012), which are fundamental for 59 

school readiness (e.g., Blair & Razza, 2007; Morrison, Ponitz, & McClelland, 2010), scholastic 60 

performance (e.g., Duncan et al., 2007; Jacob & Parkinson, 2015; St Clair-Thompson & 61 

Gathercole, 2006), job success (e.g., Bailey, 2007), or mental health (e.g., Baler & Volkow, 62 

2006; Gardiner & Iarocci, 2018; Penadés et al., 2007; Taylor Tavares et al., 2007). The 63 

importance of executive functions for such variety of life aspects explains, in part, the growing 64 

interest in psychological and neuroscience research around these functions in the last decades. 65 

Unfortunately, the proliferation of studies about executive functions has been coupled with 66 

important methodological differences in their conceptualization and measurement, which 67 

hinders our understanding of the psychological and theoretical mechanisms of executive 68 

functions (Baggetta & Alexander, 2016; Barkley, 2012; Karr et al., 2018; McCabe et al., 2010; 69 

Packwood et al., 2011). Furthermore, recently several publications have expressed their 70 

concern about the poor psychometric properties of many executive functions measures, a 71 

critical point for individual differences research (Draheim et al., 2019; Hedge et al., 2018; Paap 72 

& Sawi, 2016; Rouder & Haaf, 2019). 73 

To understand what executive functions are, what components form them, and how 74 

they organize, first, it is essential to determine how to best operationalize ability in executive 75 

functions tasks to better capture the latent processes under assessment. Traditionally, the field 76 

has relied on the use of single tasks to assess executive functions components (Baggetta & 77 

Alexander, 2016; Chan et al., 2008); however, this approach fails to recognize that no task is 78 

process pure, as each task necessarily involves processes other than the intended one (Conway 79 

et al., 2005; Miyake, Friedman, et al., 2000; Shah & Miyake, 1996), a phenomenon commonly 80 

known in the literature as task impurity. Accordingly, it has been widely documented through 81 

psychometric analyses that the use of a single task to characterize one or multiple executive 82 
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functions components suffers from both validity and reliability issues (e.g., Kane et al., 2004; 83 

Shah & Miyake, 1996; Yang & Green, 2011). Executive functions assessment remains 84 

challenging due to the complexity of the constructs they encompass. This is in part because 85 

commonalities between the components that form it (and the tasks used to measure them) do 86 

exist, and yet some diversity across components is also noted (Friedman et al., 2008; Frischkorn 87 

& von Bastian, 2021; Karr et al., 2018; Miyake, Friedman, et al., 2000). To address the 88 

commonalities and diversity between executive functions components, researchers have 89 

exploited the use of multiple tasks coupled with confirmatory factor analysis (CFA), a special 90 

form of structural equation modeling (SEM) technique, which enables to define and estimate 91 

measurement models to analyze the relationship between manifested variables (or indicators) 92 

and the latent variables that form the models (MacCallum & Austin, 2000). CFA is a powerful 93 

tool for psychometric evaluation and construct validation (Brown & Moore, 2012). Thus, this 94 

approach has been very useful to mitigate both the task impurity problem, enabling a better 95 

evaluation of the cognitive components when the tasks used are not process pure, and the 96 

measurement error problem, removing the unique variance from each task (Engle et al., 1999; 97 

Kane et al., 2004; Miyake, Emerson, et al., 2000; Miyake, Friedman, et al., 2000; Shah & 98 

Miyake, 1996). The present study builds on this approach to investigate how different methods 99 

proposed in the literature to operationalize executive functions impact the assessment of the 100 

underlying structure of executive functions when using CFA.  101 

Executive functions latent variable studies  102 

Prior to the seminal article by Miyake et al (2000), which introduced the use of CFA to 103 

assess executive functions components and its multidimensional structure, the earliest models 104 

already viewed executive functions as a higher-order global construct that managed lower-level 105 

cognitive processes (Baddeley & Hitch, 1974; Norman & Shallice, 1986). Although these 106 

models did not include the term executive functions explicitly, they form the foundation for 107 
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subsequent models of executive functions, which have described the construct as 108 

multidimensional, including higher-order and lower-order cognitive processes, which are 109 

moderately to strongly correlated  (Diamond, 2013; Engle, 2018; Friedman & Miyake, 2017; 110 

Miyake, Friedman, et al., 2000). The existence of different models of executive functions 111 

illustrates, in part, the complexity of defining what are executive functions or in other words, 112 

the challenge of characterizing which combination of cognitive processes they encompass. 113 

There is general agreement, however, that executive functions is a multidimensional construct, 114 

which involves core components such as (i) inhibition, (ii) cognitive flexibility and (iii) 115 

working memory, which are fundamental for higher-order processes, such as planning, 116 

reasoning or goal-directed behavior (Baggetta & Alexander, 2016; Diamond, 2013; Hughes, 117 

2011). Inhibition is globally defined as the ability to suppress the processing of irrelevant 118 

stimuli or the outcome of impulsive reactions (MacLeod, 2007); cognitive flexibility, also 119 

termed shifting, refers to the capacity to swiftly change focus whether in terms of task goals or 120 

attention distribution (Best & Miller, 2010; Ionescu, 2012); finally, working memory refers to 121 

the ability to keep information active in mind and mentally manipulate it (Diamond, 2013; 122 

Kane et al., 2004). Note that working memory is a multidimensional construct, with 123 

components that can be distinguished based on their emphasis on (i) content material (e.g., 124 

verbal and visuospatial) or (ii) constituent processes (e.g., updating and maintenance) (Smith 125 

& Jonides, 1997; Waris et al., 2017). These three components form the core of most studies 126 

investigating executive functions (Karr et al., 2018; Packwood et al., 2011). Note that in part 127 

of the literature, and in the present work, the terms shifting and cognitive flexibility are used 128 

interchangeably, as well as the terms updating and working memory (Baggetta & Alexander, 129 

2016; Diamond, 2013).  130 

CFA has thus been helpful in mitigating the task impurity problem, as it has highlighted 131 

time and time again that the predictive validity and reliability of a latent construct is greater 132 
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than that of the single measures from which it is derived (Conway et al., 2005; Kane et al., 133 

2004; Willoughby et al., 2017). Furthermore, SEM techniques are a powerful statistical tool 134 

for individual differences research in the fields of working memory (Engle et al., 1999; Kane 135 

& Engle, 2002; Ørskov et al., 2021; Rey-Mermet et al., 2019; Shah & Miyake, 1996) and 136 

executive functions (Arán Filippetti & Richaud, 2017; Friedman et al., 2008; Schmidt et al., 137 

2017; Sluis et al., 2007; Spencer et al., 2020). It comes thus as no surprise that in the last decade 138 

many studies have used SEM techniques to investigate executive functions development, their 139 

structure, as well as their neural organization (Alfonso & Lonigan, 2021; Brydges et al., 2014; 140 

Cirino et al., 2018; Huizinga et al., 2006; Lambek & Shevlin, 2011; Lee et al., 2013; Lerner & 141 

Lonigan, 2014; Monette et al., 2015; Montroy et al., 2019; Ritchie et al., 2019; Rose et al., 142 

2012; Usai et al., 2014; Wiebe et al., 2011; Willoughby et al., 2012; Xu et al., 2013). For 143 

example, latent variable studies suggest that executive functions develop and differentiate from 144 

a rather unitary structure to a multidimensional structure throughout childhood and 145 

adolescence. Below 8 years of age, most studies document either a unitary structure (Brydges 146 

et al., 2014; Shing et al., 2010; Wiebe et al., 2008, 2011; Willoughby et al., 2012) or a two 147 

factor structure (Lerner & Lonigan, 2014; M. R. Miller et al., 2012; Monette et al., 2015; Usai 148 

et al., 2014). In that age range, the three basic processes of executive functions seem to be 149 

initially undifferentiated, and then inhibition is often reported as emerging first. Studies in 150 

middle childhood and adolescence show a gradual differentiation of executive functions to the 151 

three-factor structure most often described in young adults (e.g., Brydges et al., 2014; Lehto et 152 

al., 2003; Rose et al., 2012; Shing et al., 2010). 153 

Recently, in an extensive literature review of studies that applied CFA to assess the 154 

structure of executive functions, Karr et al. (2018) pointed out several weaknesses when 155 

applying CFA to executive functions research. They performed a literature search resulting in 156 

40 articles, 17 of which provided sufficient data for re-analysis through bootstrapping methods. 157 
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This literature search also identified seven different measurement models of executive 158 

functions being the most commonly found in the literature. As displayed in Figure 1, these are: 159 

one unidimensional model merging all three factors of inhibition, cognitive flexibility, and 160 

working memory; three two-factor models (merging the three factors above two by two, so 161 

inhibition with working memory, inhibition with cognitive flexibility, and working memory 162 

with cognitive flexibility); one three-factor model (inhibition, cognitive flexibility, and 163 

working memory); one nested factor model (a common factor, plus two specific orthogonal 164 

factors of cognitive flexibility, and working memory); and one bifactor model (a common 165 

factor, plus three specific orthogonal factors of inhibition, cognitive flexibility, and working 166 

memory).  167 

 168 

 169 

Figure 1. Measurement models of executive functions (adapted from Karr et al., 2018). 170 

 171 
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For each of the 17 studies that provided sufficient data for re-analysis, these seven 172 

measurement models were fitted to 5000 data sets generated through bootstrapping. Their main 173 

objective was to determine the replicability of the measurement models of executive functions 174 

published up to date, and to evaluate which published model best fitted the data across 175 

bootstrapped samples. Strikingly, none of the seven measurement models of executive 176 

functions consistently both converged and fitted well the data. Moreover, no model was 177 

consistently selected as the best model when it was directly compared with other models. Karr 178 

et al. (2018) concluded that the observed low rates of acceptance and selection might be due to 179 

a possible bias towards well-fitting models tested with underpowered samples, but also, that 180 

one of the core challenges for the field remains in identifying the methodological choices that 181 

enhance the consistency of executive functions measurement with CFA. The present work 182 

addresses this challenge. In the next section, we review the heterogeneity of methods proposed 183 

in the literature to measure and operationalize executive functions, with a specific emphasis on 184 

the tasks’ conditions and indicators used.   185 

Heterogeneity of tasks’ conditions in executive functions studies: single versus difference 186 

of conditions 187 

Executive functions tasks have been traditionally designed by contrasting two task 188 

conditions with the aim of disentangling both executive and non-executive processes involved 189 

during task performance. This approach has its origin in Donders’ subtraction method 190 

(Donders, 1868), and has been hugely successful in the early days of experimental psychology. 191 

Accordingly, some of the most used executive functions tasks’ paradigms are built following 192 

this approach since it gives robust experimental effects (Eriksen & Eriksen, 1974; Rogers & 193 

Monsell, 1995; Simon & Rudell, 1967; Stroop, 1935). Yet, the subtraction method has also 194 

been under criticism as the additivity of processing time is largely unsubstantiated (Gomez et 195 

al., 2007; Ulrich, 1999; Wundt, 1880). Given our interest in the use of latent variable models 196 
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for executive functions research, we focus our discussion of the heterogeneity of tasks’ 197 

conditions across studies to those that have used a CFA approach to assess executive functions; 198 

yet this same issue applies throughout the large executive function literature. Table S1 (online 199 

supplementary material) provides a list of studies that applied CFA to investigate the structure 200 

of executive functions in pre-school and school-aged children, and information about the tasks, 201 

tasks’ conditions and indicators used to measure executive functions on each study. 202 

Classical inhibition tasks, such as the Flanker task or the Simon task, contrast congruent 203 

trials, hypothesized to tap non-executive abilities, with incongruent trials, intended to tap both 204 

non-executive abilities and the core executive process of inhibition. Studies have commonly 205 

operationalized performance on these tasks either through performance on incongruent trials  206 

(e.g., Lee et al., 2013; Van der Ven et al., 2013), or through the difference in performance 207 

between congruent and incongruent trials (Bender et al., 2016; Friedman & Miyake, 2004; 208 

Unsworth et al., 2009), also known as interference or difference score.  209 

Cognitive flexibility is typically measured through task-switching paradigms (Monsell, 210 

2003). This sort of tasks frequently includes two types of blocks: a homogeneous condition 211 

(blocks of trials requiring a response only to a feature of the stimuli, for instance, the color), 212 

and a heterogeneous-mixed condition (mixed rule-set of cues to flexibly shift attention towards 213 

the correct target feature - for instance, arms down indicates respond to the color; arms up 214 

respond to the shape). Performance on task-switch paradigms is commonly operationalized 215 

with three different methods: (i) global switch cost (e.g., Miyake, Friedman, et al., 2000), which 216 

is the difference in performance between the heterogeneous-mixed condition (i.e., blocks 217 

including switch and non-switch trials) and the homogeneous condition (blocks including only 218 

non-switch trials); (ii) local switch cost (e.g., Ambrosini et al., 2019; Friedman & Miyake, 219 

2004), which is the difference between switch and non-switch trials in the heterogeneous-220 

mixed condition; and (iii) performance on switch trials from the heterogeneous-mixed 221 
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condition (e.g., Huizinga et al., 2006; Lee et al., 2013). Again, depending on the task 222 

condition(s) selected to operationalize cognitive flexibility, either a single task condition or a 223 

difference between conditions may be considered. 224 

Finally, working memory tasks typically use only a single score that captures the 225 

number of items that can be held or manipulated, as per standard span tasks for example 226 

(Conway et al., 2005). The n-back task departs from span tasks by allowing working memory 227 

assessment under different levels of memory load. Of note, neuro-imaging studies of working 228 

memory often analyze differences in brain activity between two different loads of the n-back 229 

task (e.g., 2-back minus 0-back condition, Braver et al., 1997; Yaple & Arsalidou, 2018); yet, 230 

purely behavioral studies rarely apply the subtractions method to analyze n-back task 231 

performance (e.g., use of only the 2-back condition, Duan et al., 2010; Waris et al., 2017).  232 

In sum, researchers that aim to model performance on this sort of tasks must choose 233 

between operationalizing ability (i) through performance on those trials that require greater 234 

amounts of executive control (i.e., incongruent trails, switch trials), termed thereafter single 235 

task condition or (ii) through a difference score, subtracting the performance in one task 236 

condition from another, termed thereafter conditions difference. Such operationalization 237 

differences between studies are likely to result in different performance assessments, although 238 

the sub-processes evaluated are similarly labelled. For example, the factor termed ‘inhibition’ 239 

can refer to performance on incongruent trials, as well as to the performance difference between 240 

incongruent and congruent trials. The present work highlights that this state of affair is not just 241 

introducing a possible source of confusion in the field, but that the use of single versus 242 

difference scores may have a major impact in the convergence and acceptance of measurement 243 

models of executive functions, which in turn may affect their replicability.  244 

Heterogeneity of indicators in executive functions studies 245 
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The issue of the heterogeneity of indicators concerns mainly reaction time-based tasks, 246 

in which both speed and accuracy are relevant indicators of task performance. For instance, the 247 

Stroop task (Stroop, 1935) has been used by several latent variable studies to assess inhibition, 248 

which differed on how to operationalize performance on this task. Bridges et al. (2014) 249 

subtracted the difference in reaction time (RT) between congruent and incongruent trials of the 250 

Stroop task; van der Sluis et al. (2007) used instead the number of correct items per second on 251 

incongruent trials, whereas van der Ven et al. (2013) operationalize performance on the task 252 

through the accuracy in incongruent trials. Similarly, studies can differ remarkably in the 253 

indicators used to operationalize performance in cognitive flexibility tasks. For instance, both 254 

Rose et al. (2012) and van der Sluis et al. (2007) used the Trail Making Test (Reitan, 1971) to 255 

assess this construct. Rose et al. (2012) subtracted the time in seconds to complete both task 256 

conditions (i.e., Trail-B – Trail-A), whereas van der Sluis et al. (2007) used instead the number 257 

of seconds to complete the Trail-B test, which is the task condition intended to tap cognitive 258 

flexibility. Such heterogeneity in indicators is even observed within the same study for different 259 

tasks tapping the same construct. For instance, Friedman et al. (2008) estimated the inhibition 260 

construct using three different tasks that each allow measurement of speed and of accuracy.  261 

Yet, for the Antisaccade task, the indicator used was accuracy; for the Stop-signal task, the 262 

indicator was mean RT on the stop-signal condition; whereas for the Stroop task, the indicator 263 

was RT difference between congruent and incongruent trials. 264 

As illustrated in Table S1, accuracy, RT, and capacity measures (e.g., maximum 265 

number of items correctly recalled) are most often used indicators in the literature, at least for 266 

those works using CFA as tabulated here. For working memory, performance is standardly 267 

operationalized in terms of span capacity or accuracy (Wilhelm et al., 2013), creating less 268 

variability in the indicators used. For inhibition and cognitive flexibility, performance is more 269 

standardly assessed via RT-based tasks, leading to the possibility of using speed, accuracy, or 270 
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a combination thereof as indicators.  We turn below to the psychometric issues raised by such 271 

varied operationalizations of RT-based tasks, with a special focus on the tasks’ conditions or 272 

the measures used to derive an indicator. 273 

Psychometric issues associated with RT-based measures 274 

RT and RT differences  are two of the most popular indicators used to study the speed 275 

and efficiency of mental processes in psychology and neuroscience research (Draheim et al., 276 

2019). Despite their widespread use in experimental and individual differences research, 277 

several studies have shown that both indicators suffer from reliability and validity issues.  278 

It has been argued that the subtraction method increases the error variance, since it 279 

removes part of the common variance between the two mental processes from which the RT 280 

difference score is calculated (Hedge et al., 2018). As an illustration of this issue, Paap and 281 

Sawi (2016) assessed the test-retest reliability of (i) single RT (e.g., mean RT in congruent or 282 

in incongruent trials from inhibition tasks; mean RT in switching or in non-switching trials in 283 

cognitive flexibility tasks) and (ii) RT difference between task conditions on four classical 284 

executive functions tasks (i.e., Antisaccade, Flanker, Simon & Color-shape switching) in a 285 

sample of undergraduate students (N = 81). Their results indicate that single RT is a more 286 

reliable behavioral indicator (.71-.89, test-retest reliability range) than RT difference scores 287 

(.43-.62). Importantly, such results are in line with those reported in other studies (e.g., Hughes, 288 

Linck, Bowles, Koeth, & Bunting, 2014; Salthouse, Fristoe, McGuthry, & Hambrick, 1998; 289 

Siegrist, 1997). 290 

  RT measures are sensitive to speed-accuracy trade-off, whereby participants as they 291 

are told to react faster will show greater error rates, and vice-versa (Fitts, 1966; Ratcliff & 292 

Rouder, 1998; Stone, 1960). Despite the effort to instruct participants to give a similar weight 293 

to both dimensions, participants tend to adopt different response strategies (Starns & Ratcliff, 294 

2012). Importantly, the literature has shown consistently that age-related differences exist in 295 
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speed-accuracy trade-off strategies. For example, when comparing older adults with younger 296 

adults, the first tend to put more weight on accuracy over speed in order to ensure a higher 297 

accuracy, whereas the latter tend to take more risk speeding up their responses at the cost of 298 

making more errors (e.g., Forstmann et al., 2011; Hertzog, Vernon, & Rypma, 1993; Smith & 299 

Brewer, 1995; Starns & Ratcliff, 2012). Given the complex interaction between speed and 300 

accuracy (see Heitz, 2014, for a review), the point has been made that analyses based solely on 301 

RT cannot fully account for individual differences in cognition; this is particularly the case of 302 

studies with heterogeneous samples, such as on developmental or aging studies, which 303 

inevitably will include participants with different response strategies (Draheim et al., 2016; 304 

Hertzog et al., 1993; Hughes et al., 2014; Ratcliff et al., 2016; Yang et al., 2015).  305 

Several efforts have been made to address this speed-accuracy trade-off issue, through 306 

the development of indicators such as the inverse efficiency score (IES: Townsend & Ashby, 307 

1978), the linear-integrated speed-accuracy score (LISAS: Vandierendonck, 2017, 2018), the 308 

rate-correct score (RCS: Woltz & Was, 2006) or the balanced integration score (BIS: Liesefeld, 309 

Fu, & Zimmer, 2015). These measures provide several benefits over traditional RT- or 310 

accuracy-based measures, such as (i) mitigating speed-accuracy tradeoffs, or (ii) containing 311 

more information about individuals’ ability than RT and accuracy separately. However, there 312 

is debate about the weight that such measures give to speed over accuracy (or vice-versa) to 313 

generate a reliable integrated measure of speed and accuracy (Draheim et al., 2019; Liesefeld 314 

& Janczyk, 2019). Such composite measures have rarely been used in the context of executive 315 

functions latent variable research, although there are some exceptions, such as Gärtner & 316 

Strobel (2021) and Yangüez et al., (2021), who used the IES (or RT divided by response 317 

accuracy) to operationalize performance on different RT-based executive functions tasks. In 318 

the next section, we review another approach to explain patterns of RTs and choices, the Drift 319 

Diffusion Model (DDM).  320 
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Applications of the DDM to executive functions research 321 

 The DDM is likely the most well-known psychometric model of decision making. 322 

Responses in choice tasks are understood as generated through sequential sampling of 323 

Brownian diffusing signals up to a decision boundary. In this view, evidence accumulates for 324 

each of the possible choices until the decision boundary of a given choice is hit, triggering the 325 

execution of the response corresponding to that choice (Ratcliff & McKoon, 2008; Shadlen & 326 

Kiani, 2013). By modelling the underlying generative events that give rise to decision 327 

processes, the DDM provides a natural way of accounting for speed/accuracy tradeoffs 328 

(Ratcliff, 1978; Ratcliff et al., 2016).  329 

The initial diffusion model was developed for two-choice RT paradigms, although it 330 

can be generalized to paradigms that include more than two choices (Ratcliff et al., 2016; 331 

Tajima et al., 2019). When the DDM is applied to a two-choice RT paradigm (represented in 332 

Figure 2), stimulus presentation triggers the decision process, and in particular information 333 

accumulation until one of the two decision boundaries is reached (0 or a, for the two-choice 334 

model in Figure 2). The drift rate (v) represents the average rate of evidence, with a larger drift 335 

rate meaning a faster accumulation of evidence, and vice-versa. The model assumes that drift 336 

rate varies across trials following a Normal or Gaussian distribution according to  ~ N(v,n), 337 

since the accumulation process is subject to moment-to-moment, Brownian variability. The 338 

distance between the two decision boundaries will affect an individual’s speed-accuracy trade-339 

off. Larger values of the boundary parameter a represent a conservative response strategy, as a 340 

larger a means more information needs to be accumulated before a decision can be made 341 

(resulting in longer RTs and higher accuracy). The z parameter can be added into the model to 342 

examine whether an individual has an a priori bias towards one of the two response options, 343 

before the stimulus is experienced. The DDM also enables one to estimate the non-decision 344 

time or the time to execute a motor response, Ter. For a full description of the standard diffusion 345 
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model, the reader is referred to Ratcliff et al. (2004). Here we focus on drift rate as it 346 

characterizes the efficiency of information processing and is thus most promising to 347 

characterize core executive functions processes, in contrast to decision boundary, which is 348 

related to strategic factors, and to non-decision time, which captures additive processes such 349 

as preparation and motor execution (Ratcliff, 1978; Ratcliff et al., 2016). 350 

 351 

 352 

Figure 2. Diffusion model account of evidence accumulation (image adapted from 353 
Wagenmakers et al., 2007). 354 

 355 

Diffusion models have been applied to some of the most well-known executive 356 

functions tasks, such as the Flanker (Ong et al., 2017; Servant & Evans, 2020; White et al., 357 

2011), Simon (McIntosh & Mehring, 2017; McIntosh & Sajda, 2020; Servant et al., 2014) 358 

Go/No-Go (Gomez et al., 2007; Ratcliff et al., 2018), Stroop (Fennell & Ratcliff, 2019; 359 

Gajewski et al., 2020), task-switch (Ging-Jehli & Ratcliff, 2020; Schmitz & Voss, 2012; Weeda 360 

et al., 2014), and n-back tasks (Thurm et al., 2018). Some of these studies have also successfully 361 

applied DDM, and in particular drift rate, to investigate individual differences in executive 362 

functions (Gajewski et al., 2020, Ging-Jehli et al., 2020, Ong et al., 2017, Servant & Evans, 363 
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2020, Ratcliff et al., 2018, Weeda et al., 2014). Yet, the use of drift rate as an indicator for 364 

modeling executive functions with SEM techniques, such as CFA, remains largely untested 365 

(for an exception, see Rey-Mermet et al., 2021). 366 

In the present work, we take advantage of the EZ-diffusion model (Wagenmakers et al., 367 

2007) to systematically assess how indicator choices, including drift rate, may affect CFA 368 

measurement models of executive functions, in terms of convergence and acceptance. The EZ-369 

diffusion model only estimates the three most relevant parameters of the DDM to characterize 370 

the decision-making process: (i) the drift rate v, (ii) the decision boundary a and (iii) the non-371 

decision time Ter. The EZ-diffusion model is a solution when tasks do not have enough trials 372 

to estimate all the parameters from the DDM simplifying remarkably the standard fitting 373 

procedure (Palmer et al., 2005; Ratcliff, 1978, 2002). This is often the case of executive 374 

functions CFA studies, which use multiple tasks to measure each of the constructs included in 375 

their models, and therefore, the tasks often are not designed to fit more parameters, as is 376 

required by the standard DDM or more recent DDM versions with collapsing bound 377 

(Drugowitsch et al., 2012; Fudenberg et al., 2018).  378 

Aims of the present study 379 

The present study aims to test the impact of different operationalizations of executive 380 

functions in terms of the tasks’ conditions and indicators used, on the modeling of executive 381 

functions with CFA. This investigation focuses not only on the comparison of single versus 382 

difference scores in task’s conditions, but also on the choice of indicators between more 383 

standard measures, such as RT and accuracy, and less common ones, such as the IES and drift 384 

rate. Indeed, our final aim is to determine the impact of such different methodological practices 385 

on executive functions modeling, especially the metrics related to model fitting, such as 386 

convergence and acceptance (i.e., how well a model fits to the data). Latent variable models 387 

are likely sensitive to such operationalization (MacCallum & Austin, 2000), as it is expected 388 
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that some indicators will show greater common variance than others. Thus, beyond the choice 389 

of tasks and conditions, how a researcher operationalizes performance in that very task will 390 

have important implications for the modeling of the construct evaluated. In particular, these 391 

choices may lead to different results when modeling the structure of executive functions (e.g., 392 

model convergence and acceptance, level of factor-loadings, number of latent constructs of the 393 

model, inter-factor correlations, etc.). In line with Karr et al. (2018), the rate of model 394 

convergence and acceptance (or how often, when a model converges, it meets a fitting 395 

threshold) will be examined as tasks’ conditions and indicators vary. In addition, whether the 396 

likelihood of model selection varies depending on the task conditions and indicators used will 397 

also be assessed, to the extent the model converges. In this way, the present work establishes 398 

not only which operationalizations of executive functions should be preferred, but also which 399 

measurement models of executive functions (e.g., one-factor, two-factor, three-factor, etc.) are 400 

most likely representative of executive functions structure during middle childhood.  401 

 402 

Methods 403 

Participants and Procedure 404 

This dataset was already used in a previous study (Yangüez et al., 2021). Below we 405 

briefly describe participants’ characteristics and the data collection procedure. The sample 406 

included 182 children (92 females, mean age 10.53, SD = 1.17, range 8-12.75 years) recruited 407 

from primary schools in Geneva (Switzerland). Data collection was conducted by trained 408 

research assistants in a quiet room within the schools’ facilities, in groups of two to four 409 

children. All procedures were in accordance with the Declaration of Helsinki about ethical 410 

principles regarding human experimentation, and were approved by the Ethics Committee of 411 

the University of Geneva. For more details, see Yangüez et al. (2021). The present study was 412 

not preregistered. 413 
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Measures 414 

We used nine tasks to assess three components of executive functions (i.e., inhibition, 415 

cognitive flexibility and working memory). All tasks were computer-based, except for the Trail 416 

Making Test (Reitan, 1971), which was administered in paper-pencil format. A complete 417 

description of the tasks can be found in Yangüez et al. (2021). 123 children completed the nine 418 

tasks (67.6% of the total sample, n =182), and all the children completed at least six tasks (two 419 

per construct). Table S2 (online supplementary material) reports for each of the nine tasks, the 420 

number of children that completed each of them.  421 

Description of executive functions tasks 422 

Inhibition tasks. Flanker task - Modified (Eriksen & Eriksen, 1974; Pontifex et al., 423 

2013). In this task, an array of five fishes is presented with the central fish pointing either in 424 

the same direction (congruent trials) or in the opposite direction (incongruent trials) as the other 425 

fish. The task is to determine the direction the middle, target fish, is facing. Incongruent trials 426 

in this task require the greatest inhibitory control demands due to perceptual interference.  427 

Simon task - Modified (Morton & Harper, 2007). In this task, children press the 428 

appropriate response key whether a blue or red square appears on the left or right side of the 429 

screen. In congruent trials, the square appears on the same side of the screen as the response 430 

key to which it is associated (e.g., left-left); whereas in incongruent trials, it appears on the 431 

opposite side (e.g., left-right). Incongruent trials in this task require the greatest inhibitory 432 

control demands due to response conflict.  433 

Go/No-Go task (Kamijo et al., 2012). In the first part of this task (sustained attention 434 

condition) children must press the response button to rare-target stimuli (picture of a lion, 0.2 435 

probability), and to withhold their response to frequent non-target stimuli (picture of a tiger, 436 

0.8 probability). Then children perform the second part of the task (impulsivity condition), in 437 

which they must press a button to frequent-target stimuli (tiger, 0.8 probability), and to 438 
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withhold from responding to rare-non-target stimuli (lion, 0.2 probability). That task order is 439 

fixed to induce greater conflict and thus, need for inhibition during the “impulsivity condition”. 440 

Cognitive flexibility tasks. Color-shape switch Task (Espy, 1997). This task requires 441 

children to judge the color (blue or green) or shape (circle or square) of the stimulus presented 442 

and press the appropriate response button. This task includes two types of blocks. The 443 

homogeneous blocks were made of trials requiring a response only to the color of the stimuli, 444 

or alternatively of trials requiring a response only to the shape of the stimuli.  The 445 

heterogeneous-mixed block contained a mixed ruleset of cues to flexibly switch attention 446 

towards the correct target feature. For example, arms down indicated to respond to the color of 447 

the stimulus, and arms up to respond to the shape of the stimulus. Importantly, the 448 

heterogeneous mixed-block includes both switch and non-switch trials, whereby the rule set 449 

changes from trial n to n+1 or stays the same. Switch trials require the greatest cognitive 450 

flexibility demands, as individuals need to switch task goals. 451 

Gender-Smile switch task - Modified (Huizinga et al., 2006). In this task the stimuli are 452 

schematic faces (male or female, happy or sad), appearing in a 2 × 2 grid. At the beginning of 453 

the task (homogeneous condition), the children must answer regarding either gender or 454 

expression in separate blocks. In the third block (heterogeneous-mixed condition), the stimuli 455 

move clockwise through the grid and children must respond regarding the gender, when the 456 

face appears in one of the two upper quadrants, and regarding the expression of the face, when 457 

it appears in one of the two lower quadrants. As in the color-shape task, the heterogeneous 458 

mixed-block includes both switch and non-switch trials, which will be used to derive single 459 

versus difference scores. Unlike the color-shape task, repetitions and switch trials in the 460 

Gender-Smile task follow a predefined sequence and are thus predictable. 461 

Trail Making Test (Reitan, 1971). In Trail A, children are asked to draw lines 462 

connecting numbers by numerical order (numbers from 1-25 are distributed randomly across 463 
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the test-sheet). In Trail B, the test-sheet contains numbers and letters, and children have to 464 

connect numbers and letters by alternating the sequence (i.e., 1-A-2-B-3-C, etc), requiring 465 

continuously switching between two different task sets. Trail-B is the most demanding 466 

experimental condition in terms of cognitive flexibility. 467 

Working memory tasks. Letter-Memory task – Modified (Tamnes et al., 2010). This 468 

is a running memory task, where letters are presented serially in the center of the computer 469 

screen. Children’s task is to recall the last three letters presented in each list. The number of 470 

letters presented (5, 7, 9, or 11) varies randomly across trials to limit strategies and enforce 471 

attention across most material.  472 

Backwards digit-span task (Wechsler, 1991). In this task children must recall the 473 

numbers they have just heard (from the computer) in reverse order. The task starts with three 474 

series of a two digits sequence, and the number of digits increases progressively until reaching 475 

children’s span capacity. The task ends when, within a series of digits (e.g., six digits 476 

sequence), the child gives the wrong answer in two out of three trials of the series.  477 

Spatial n-back task – Modified (Drollette et al., 2012). On each trial of this task, a 478 

schematic yellow happy face appears pseudo-randomly inside one of the six boxes. This task 479 

included three conditions, 0-back, 1-back, and 2-back. The latter is the experimental condition 480 

that requires the greatest working memory demands. On 2-back trials participants are instructed 481 

to press the right-button if the schematic face appears in the same box as two trials back, 482 

otherwise they must press the left-button.  483 

Dependent measures derived from each task 484 

Single-condition indicators represent performance on those trials (or task’s conditions) 485 

that require greater amounts of executive control (e.g., incongruent trials, switch trials, 2-back 486 

trials), whereas condition-difference indicators represent the performance difference between 487 

that single task condition with the greater executive control demands and a baseline task 488 
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condition with low executive control demands (e.g., incongruent minus congruent trials in the 489 

Flanker task; switch minus non-switch trials in the Color-Shape switch task; and 2-back minus 490 

0-back in the Spatial n-back task). Table 1 summarizes the task conditions and indicators used 491 

for each of the nine tasks. For a description of how the four indicators were computed, see 492 

statistical procedures.  493 

Inhibition tasks. On the Flanker and Simon tasks, RT and accuracy were recorded, and 494 

in addition, we computed IES and drift rate. Single-condition indicators were derived from 495 

incongruent trials (RT, accuracy, IES, and drift rate). Condition-difference indicators were 496 

derived by subtracting the score difference between the tasks’ conditions (incongruent minus 497 

congruent trials) for each indicator (i.e., RT difference, accuracy difference, IES difference, 498 

and drift rate difference).  499 

On Go/No-Go tasks, RT, although measured, is not considered as a proper measure of 500 

inhibition, as it is only collected from Go trials or from errors on No-Go trials. Rather, accuracy 501 

measures, such as error rates (i.e., false alarms), have been historically the primary variables 502 

of interest to measure inhibition on Go/No-Go Tasks, as they inform about the proportion of 503 

responses that individuals fail to withheld (Wright et al., 2014). Therefore, a pure RT measure 504 

could not be derived. To compute IES and drift rate, response accuracy was computed 505 

collapsing performance in Go (i.e., hits & misses) and No-Go trials (i.e., correct rejects & false 506 

alarms); RT was derived solely from correct Go trials. Furthermore, single-condition indicators 507 

were extracted from the impulsivity condition (i.e., accuracy, IES, and drift rate); whereas 508 

condition-difference indicators were derived from the difference between the impulsivity 509 

minus the sustained attention condition.  510 

 511 

 512 

 513 

 514 
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Table 1 List of tasks, tasks’ conditions and indicators derived per task 
EF task Tasks’ conditions Indicators 

Single4 Condition difference RT Acc IES DR 
Flanker1 

 
Incongruent Incongruent - 

Congruent 
* * * * 

Simon1 

 
Incongruent Incongruent - 

Congruent 
* * * * 

Go/No-Go1 

 
Impulsivity Impulsivity – SA  * * * 

Color-Shape1 

 
Switch Switch – Non-switch5 * * * * 

Gender-Smile1 

 
Switch Switch – Non-switch5 * * * * 

Trail Making Test2 

 
Trail-B Trail-B – Trail-A *    

Spatial n-back1  
 

2-back 2-back – 0-back * * * * 

Backwards digit-span3 N/A N/A  *   
Letter-Memory3 

 
N/A N/A  *   

Note. EF: executive functions. RT: response time; Acc: accuracy; IES: inverse efficiency score; DR: drift rate; 515 
SA: sustained attention; N/A: not applicable; 1Computer reaction time-based task, RT and response accuracy are 516 
recorded; 2Paper-pencil, time to completion task; 3Computer accuracy-based task, only response accuracy is 517 
recorded. 4Single task condition with greatest EF demands. 5Switch – Non-switch trials mixed-block. 518 

 519 

Cognitive flexibility tasks. On the Color-Shape and Gender-Smile switch tasks RT 520 

and accuracy were recorded; in addition, IES and drift rate were computed. Single-condition 521 

indicators were derived from the switch trials in the heterogeneous-mixed block; difference-522 

condition indicators were derived from the difference between switch and non-switch trials in 523 

the heterogeneous-mixed block. Finally, because the Trail Making Test is a time to completion 524 

task, only response time is recorded, preventing the use of accuracy, IES or drift rate for that 525 

task. The single-condition indicator was derived from the time to completion of the Trail-B 526 

test. The condition-difference indicator was derived from the score difference was between 527 

task’s conditions Trail-B minus Trail-A. 528 

Working memory tasks. The Letter-Memory task is an accuracy-based measured, 529 

where response accuracy is collapsed across all trials (single-condition indicator). On the 530 

Backwards digit-span task, the longest sequence that was remembered correctly (e.g., 5 digits) 531 

was used as a measure of working memory span (single-condition indicator). As these two 532 

accuracy-based tasks are not built to contrast performance between different task conditions, a 533 
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difference score could not be derived. On the Spatial n-back task, RT and accuracy were 534 

recorded, and in addition, IES and drift rate were computed. Single-condition indicators were 535 

derived from the 2-back condition (i.e., RT, accuracy, IES, and drift rate); difference score 536 

indicators were derived by considering performance in 2-back minus 0-back condition.   537 

Statistical procedures 538 

Raw data cleaning 539 

For computer tasks in which response-time was recorded (see Table 1), trials with RT 540 

below 200 milliseconds were considered anticipatory responses and removed. For each 541 

participant, trials with a RT beyond ± 2.5 SD from within-subject’s mean were removed.  542 

Raw data transformation to indicators 543 

RT. On RT-based tasks, mean RT was computed from correct trials per task condition. 544 

Accuracy. On RT-based tasks, the proportion of correct responses was computed per 545 

task condition separately. For the Letter-Memory task, accuracy was computed across all trials, 546 

whereas for the Backward digit span, capacity was derived from the longest sequence correctly 547 

recalled.  548 

IES (Townsend & Ashby, 1978). For RT-based tasks, individual IES scores were 549 

computed dividing RT by Accuracy. 550 

Drift rate (Ratcliff, 1978). For RT-based tasks DDM parameters (drift rate, decision 551 

boundary, non-decision time) were computed for each task condition separately using the 552 

equations from the EZ-diffusion model (R code provided in, Wagenmakers et al., 2007 - Using 553 

RT, Accuracy, and RT SD).  554 

Then, univariate analyses on each indicator were conducted to remove outlier data 555 

before fitting the models to the data. Values ± 3 SD from the sample mean were excluded from 556 

the analyses, this affected less than 1.5% of observations (Table S2 reports the % of missing 557 
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data for each task after removing outlier values). No other data cleaning procedure was 558 

conducted.  559 

Structural equation models 560 

Indicator-based models. Two types of indicator-based models were considered. 561 

Single condition indicator-based models represent performance in those tasks’ conditions 562 

requiring the greatest demands for executive control (see Table 2A, single-condition indicator-563 

based models), for the four indicators examined in the present study (RT-based model, 564 

accuracy-based model, IES-based model, and drift rate-based model). Condition-difference 565 

indicator-based models represent the score difference between tasks’ conditions (see Table 2B, 566 

condition-difference indicator-based models) for each of these four indicators (i.e., RT 567 

difference-based, accuracy difference-based, IES difference-based, drift rate difference-based). 568 

Note that for the remainder of the article, when we compare these two types of models, we will 569 

refer to them either as (i) single-condition indicator-based models, or as (ii) condition-570 

difference indicator-based models, respectively.  571 

Note that it was not possible to have models with the same indicator for all tasks because 572 

as described above, for some tasks RT was either not collected or collected only for some 573 

conditions (i.e., Letter-Memory, Backwards digit-span, Go/No-Go) and for others, time to 574 

completion was collected preventing proper assessment of accuracy and RT (i.e., Trail Making 575 

Test). Yet, although not homogeneous, each of the eight models has a dominant indicator across 576 

tasks, which was used to name the model. 577 

 578 
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 579 
 580 
 581 
 582 
 583 
 584 
 585 
 586 
 587 
 588 
 589 
 590 
 591 
 592 
 593 
 594 
 595 
 596 
 597 
 598 
 599 
 600 
 601 
 602 
 603 
 604 
 605 
 606 

Note. 1Computer reaction time-based task, RT and response accuracy are recorded; 2Paper-pencil, time to completion task; 607 
 3Computer task, only response accuracy is recorded. DR: drift rate.   608 

 609 

Table 2A List of tasks, single-condition indicator-based models and indicators per model 

Task RT–based model Accuracy–based 
model 

IES–based model Drift Rate–based model 

Flanker1  RT incongruent trials Accuracy incongruent 
trials 

IES incongruent trials DR  
incongruent trials 

Go/No-Go1 Accuracy impulsivity 
trials 

Accuracy impulsivity 
trials 

IES   
impulsivity trials 

DR  
impulsivity trials 

Simon1 RT incongruent trials Accuracy  
incongruent trials 

IES incongruent trials DR incongruent trials 

Color-Shape1 RT  
switch trials 

Accuracy  
switch trials 

IES  
switch trials 

DR  
switch trials 

Gender-Smile1 RT switch trials Accuracy   
switch trials 

IES switch trials DR  
switch trials 

Trail Making Test2 Trails B seconds Trails B seconds Trails B seconds Trails B seconds 

Backwards Digit 
Span3 

Span length Span length Span length Span length 

Spatial n-back1 RT  
2-back trials 

Accuracy  
2-back trials 

IES  
2-back trials 

DR 
 2-back trials 

Letter Memory3 Accuracy  Accuracy  Accuracy  Accuracy  
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 611 

 612 

 613 

 614 

 615 

 616 

 617 

 618 

 619 

 620 

 621 

 622 

 623 

 624 

 625 

Table 2B List of tasks, condition-difference indicator-based models and indicators per model 

Task RT difference – based 
model 

Accuracy difference –
based model 

IES difference – 
based model 

Drift Rate difference – 
based model 

Flanker  RT difference 
(incongruent – congruent 
trials) 

Accuracy difference 
(incongruent – congruent 
trials) 

IES difference 
(incongruent – 
congruent trials) 

DR difference  
(incongruent – congruent 
trials) 

Go/No-Go Accuracy difference 
(impulsivity block – 
sustained attention block) 

Accuracy difference 
(impulsivity block – 
sustained attention block) 

IES 
(impulsivity block – 
sustained attention 
block) 

DR difference  
(impulsivity block – 
sustained attention block 

Simon RT difference  
(incongruent – congruent 
trials) 

Accuracy difference 
(incongruent – congruent 
trials) 

IES difference 
(incongruent – 
congruent trials) 

DR difference  
(incongruent – congruent 
trials) 

Color-Shape RT difference  
(switch – non-switch trials) 

Accuracy difference 
(switch – non-switch 
trials) 

IES difference  
(switch – non-switch 
trials) 

DR difference 
(switch – non-switch trials) 

Gender-Smile RT difference  
(switch – non-switch trials) 

Accuracy difference 
(switch – non-switch 
trials) 

IES difference  
(switch – non-switch 
trials) 

DR difference  
(switch – non-switch trials) 

Trail Making Test Trail B – Trail A  Trail B–Trail A  Trail B–Trail A  Trail B – Trail A 

Backwards Digit 
Span 

Span length Span length Span length Span length 

Spatial n-back RT difference  
(2-back trials – 0-back trials) 

Accuracy difference  
(2-back trials – 0-back 
trials) 

IES difference  
(2-back trials – 0-back 
trials) 

DR difference  
(2-back trials – 0-back 
trials) 

Letter Memory Accuracy  Accuracy  Accuracy  Accuracy  
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Bootstrap resampling 626 

Parametric bootstrap resampling with replacement was conducted to generate 5000 data 627 

sets of equal sample size and mean age to that of the original data set (n = 182). Then, for each 628 

of the eight indicator-based models described above, seven measurement models of executive 629 

functions (k = 7, Figure 3) were generated and fitted to the data. Note that these seven models 630 

are the same ones that Karr et al. (2018) tested in their simulation study. Thus, 56 different 631 

models (8 indicator-based models * 7 measurement models of executive functions) were fitted 632 

to each of the simulated 5’000 data sets. In total, 280’000 models (56* 5’000) were generated 633 

and analyzed. Fit indices were calculated for models that converged without any errors or 634 

warnings, also termed improper solutions (e.g., variance-covariance matrix not positive 635 

definite, negative residual variances, correlations larger than 1.0). The bootstrap analysis was 636 

conducted in R (version 3.6.1). The Lavaan package (Rosseel, 2012), was used to fit all the 637 

latent factor models to the data. Missing data was estimated with full information maximum 638 

likelihood method.  639 

Bootstrap analysis – Model convergence, acceptance, and selection 640 

The present study analyzed the simulated data in two different ways, following the 641 

procedure conducted in Karr et al (2018). First, we looked at the rate of model convergence, as 642 

well as the rate of model acceptance. The rate of model convergence represents the percent of 643 

models that converged across the 5’000 data sets, regardless of the fit indices. The rate of model 644 

acceptance analyzes the percent of models meeting the fitting thresholds (i.e., lenient and 645 

strict), among the models that converged. This first step enables to estimate the frequency that 646 

any of the models tested in the present study would (i) converge without any errors or (ii) meet 647 

the fitting thresholds proposed. Therefore, this first analysis enabled to determine the most 648 

suitable indicator-based model(s), in terms of rate of model convergence and model 649 

acceptance, to model executive functions with latent variable methods. Importantly, we aimed 650 
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not only to identify the indicator(s) with the best psychometric properties to model executive 651 

functions, but also, we examined potential differences between single-condition indicator-652 

based models and condition-difference indicator-based models. 653 

Second, we investigated which measurement model of executive functions is preferred, 654 

among the seven measurement models tested for each of the different indicator-based models. 655 

More precisely, we looked at the probability that a given model is selected as the best model 656 

over alternative models, based on the direct comparison of their fit indices. 657 

 658 
 659 

 660 

Figure 3. Illustration of measurement models of executive functions tested. 661 
Note. Tasks’ acronyms: FT: Flanker; GNG: Go/No-Go; ST: Simon; CSST: Color-Shape Switch; GEST: 662 
Gender-Smile Switch; TMT: Trail Making Test; BDST: Backwards digit-span; SNBT: Spatial n-back; 663 
LMT: Letter-Memory. 664 
 665 

Model fit interpretation 666 

Model acceptance. To determine the rate of model acceptance, goodness of fit to the 667 

data of the models tested was evaluated using the comparative fit index (CFI) and root mean 668 
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square error of approximation (RMSEA). These two fit indices have a common metric and 669 

provide complementary information, as the CFI is an incremental fit index that compares an 670 

hypothesized model with a baseline model (i.e., a model in which no items covary) in terms 671 

of goodness of fit, whereas the RMSEA is an absolute fit index that assesses how far an 672 

hypothesized model is from a perfect model (Xia & Yang, 2019). Furthermore, the RMSEA 673 

favors parsimony since it penalizes model complexity, unlike the CFI (Hooper et al., 2008). 674 

Importantly, these indices provide cutoffs thresholds that enable to determine whether 675 

a model has poor, acceptable or good fit to the data, and also can be interpreted in terms of 676 

their absolute fit value. Following Hu and Bentler (1999) recommendations, a model has 677 

acceptable fit to the data, if it has a CFI ≥ .90 and RMSEA ≤ .08 (lenient thresholds), and good 678 

fit to the data if it has a CFI ≥ .95 and RMSEA ≤ .05 (strict thresholds).  679 

Model selection. To determine the probability of model selection, we assessed the fit 680 

of the models with two different indices, Akaike’s information criterion (AIC; Akaike, 1973), 681 

and the Bayesian information criterion (BIC; Schwartz, 1978). Both indices are measures of 682 

comparative fit, which are meaningful only when used to compare different models (Kenny, 683 

2015). Models with lower values indicate a better fit to the data. Both indices balance goodness-684 

of-fit and complexity. Lack of parsimony is penalized according to the number of parameters 685 

of the model. The AIC index applies a linear penalty of two for every parameter estimated, 686 

whereas the BIC applies a bigger penalty to model complexity, since the BIC increases the 687 

penalty exponentially as model complexity increases (Vrieze, 2012). 688 

The model selection analysis was conducted based on the estimation of the relative AIC 689 

weight (AICw) and BIC weight (BICw) of each model, a method proposed by Wagenmakers 690 

and Farrell (2004) for model selection. First, for each data set in which the seven measurement 691 

models of executive functions converged without warning/errors, we computed the difference 692 

in fit, ΔAIC and ΔBIC, between the best fitting model (indicated by the lowest AIC and BIC 693 
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value) and the other models. Therefore, the best fitting model always has a ΔAIC (or ΔBIC) = 694 

0, and the other models a ΔAIC (or ΔBIC) > 0. Then, we computed the AICw and BICw for 695 

each model using the equations provided in Wagenmakers & Farrell (2004). This method 696 

enables to estimate the probability that model Mi is the best model given data and the candidates 697 

models tested. Note that the relative model probabilities are normalized by dividing by the sum 698 

of the probabilities of all the models.  699 

Data Availability Statement 700 

Data and R code are available in the OSF website (Yangüez et al., 2022). Note that 701 

we provide the original preprocessed data (z-transformed), the bootstrapped data (i.e., 5000 702 

data sets), and the R code. To reproduce the exact results published in the manuscript, use the 703 

bootstrapped data file. 704 

 705 

Results 706 

Model convergence  707 

Single-condition vs Condition-difference indicator-based models’ comparison 708 

First, we examined potential differences in model convergence, as a function of the 709 

tasks’ conditions that can be used to operationalize performance in executive functions tasks. 710 

Thus, indicator-based models were grouped as (i) single-condition indicator-based models 711 

versus (ii) condition-difference indicator-based models. Collapsed across all seven models, 712 

single-condition indicator-based models showed a remarkably higher rate of convergence (�̅� = 713 

66.63%, min = 2.2%, max = 100%), compared to condition-difference indicator-based models 714 

(�̅� = 31.56%, min = 0.98%, max = 94.92%).  715 

https://osf.io/yvcj7/
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When we looked more in detail at differences between both groups across measurement 716

models of executive functions, we observed that single-condition indicator-based models 717

showed systematically higher rates of convergence compared to condition-difference indicator-718

based models (Figure 4). As a case example, the three-factor models showed a much higher 719

rate of convergence on single-condition indicator-based models (�̅� = 51.58%, min = 3.4%, 720

max = 96.26%) compared to condition-difference indicator-based models (�̅� = 11.01%, min = 721

2.82%, max = 19.24%). The same pattern was observed across the seven measurement models 722

of executive functions (Figure 4). 723

Figure 4. Average rate of convergence across single-condition vs. condition-difference 724
indicator-based models, as a function of measurement models of executive functions.725

726

Given this striking difference, the remainder of our analyses will focus exclusively on 727

single-condition indicator-based models, which showed the best psychometric properties when 728
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it comes to convergence, that is, they showed a much lower percentage of improper solutions. 729 

Full results of model convergence and acceptance of condition-difference indicator-based 730 

models are provided in Table S3 (online supplementary material) for the interested reader. 731 

Importantly, Table S3 confirms that the poor performance of condition-difference indicator-732 

based models does not hide a tradeoff between convergence and acceptance. Single-condition 733 

indicator-based models perform better based on their enhanced rates of acceptance when both 734 

CFI and RMSEA fit indices are taken into account. Furthermore, for the interested reader, 735 

Table S4 (online supplementary material) reports the percentage of measurement models that 736 

(i) converged (without warning), (ii) did not converge, and (iii) that converged with a warning 737 

message (e.g., negative variance; variance-covariance matrix not positive definite, etc.) 738 

Impact of the indicator used  739 

Table 3 lists the mean percent of models that converged across the 5’000 data sets, as a 740 

function of the indicator-based model tested for each of the seven measurement models of 741 

executive functions models. Within each measurement model, there were remarkable 742 

differences in model convergence depending on the indicator used. While unidimensional 743 

models all converged regardless of the indicator used, two factor models also showed high rate 744 

of convergence overall, but less so when RT was used as an indicator. As model complexity 745 

increased convergence rates not only decreased as expected, but surprisingly this effect was 746 

much more marked for RT-based and IES-based models than for accuracy-based and drift rate-747 

based models. This information is illustrated in Figure 5 (thick black line). Furthermore, 748 

averaging across measurement models of executive functions, we observed remarkable 749 

differences between single-condition indicator-based models in model convergence. On 750 

average, accuracy-based models (�̅� = 85.54%, min = 28.88%, max = 100%) showed the  751 

greatest rate of model convergence followed closely by drift rate-based models (�̅� = 752 

81.93%, min = 24.12%, max = 100%), whereas IES-based models (�̅� = 53.36%, min = 12.44%, 753 
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max = 100%), and RT-based models (�̅� = 45.70%, min = 2.2%, max = 99.98%) showed much 754 

lower convergence rates, as often failed to converge.  755 

Table 3 Percent of Models that Converged for 5,000 Bootstrapped data sets & Percent of 
Models that Meet CFI and RMSEA Lenient and Strict Criteria among Converged Models  

 Indicator-based 
model 

Converged 
(%) 

CFI 
≥ .90 (%) 

CFI 
≥ .95 (%) 

RMSEA 
≤ .08 (%) 

RMSEA 
≤ .05 (%) 

Unidimensional 

RT- based 99.98 0 0 0.02 0 
ACC-based 100 0.28 0 1.56 0 
IES-based 100 1.56 0 2 0 
DR-based 100 46.28 6.18 38.94 2.72 
Mean 99.99 12.03 1.55 10.63 0.68 
Median 100 0.92 0 1.78 0 

WM-Flexibility 
merged 

 

RT- based 80.62 0.02 0 0.02 0 
ACC-based 99.94 20.29 2.4 30.34 2.3 
IES-based 97.7 4.03 0.1 3.73 0.02 
DR-based 99.88 83 33.9 74.89 19.02 
Mean 94.54 35.77 12.13 36.32 7.11 
Median 98.79 20.29 2.4 30.34 2.3 

WM-Inhibition 
merged 

 

RT- based 93.86 0 0 0.04 0 
ACC-based 99.88 4.91 0.2 10.01 0.22 
IES-based 98.06 3 0.02 2.9 0 
DR-based 98.92 65.93 16.24 55.44 7.3 
Mean 97.68 24.61 5.49 22.78 2.51 
Median 98.49 4.91 0.2 10.01 0.22 

Inhibition-
Flexibility 

merged 
 

RT- based 2.2 0 0 0.91 0 
ACC-based 95.68 3.72 0.13 8.13 0.13 
IES-based 15.98 2.75 0 2.25 0 
DR-based 98.16 59.15 11.61 48.43 4.69 
Mean 53.01 21.87 3.91 19.60 1.61 
Median 55.83 3.72 0.13 8.13 0.13 

Three-factor 
 

RT- based 3.4 0 0 0 0 
ACC-based 96.26 51.96 12.2 54.87 8.48 
IES-based 12.44 7.88 0.16 4.98 0 
DR-based 94.2 91.42 47.32 80.83 26.09 
Mean 51.58 50.42 19.89 46.89 11.52 
Median 53.32 51.96 12.2 54.87 8.48 

Nested-factor 
 

RT- based 34.4 0.06 0 0 0 
ACC-based 78.16 34.34 3.79 27.71 1.54 
IES-based 34.72 7.32 0.06 2.36 0 
DR-based 58.22 86.95 36.1 63.21 12.47 
Mean 51.38 42.87 13.32 31.09 4.67 
Median 46.47 34.34 3.79 27.71 1.54 

Bifactor 

RT- based 5.44 0 0 0 0 
ACC-based 28.88 64.75 16.9 42.04 6.44 
IES-based 14.6 23.7 1.23 4.79 0.14 
DR-based 24.12 97.43 65.51 77.11 27.11 
Mean 18.3 62.0 27.9 41.3 11.2 
Median 19.36 64.75 16.9 42.04 6.44 

Average 

RT- based 45.70 0.01 0.00 0.14 0.00 
ACC-based 85.54 25.75 5.09 24.95 2.73 
IES-based 53.36 7.18 0.22 3.29 0.02 
DR-based 81.93 75.74 30.98 62.69 14.20 
Mean 66.63 27.17 9.07 22.77 4.24 
Median 94.03 6.12 0.15 4.89 0.08 
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Model acceptance 756 

The second step of the analysis aimed to examine potential differences in model 757 

acceptance between single-condition indicator-based models. Thus, we looked at the percent 758 

of models meeting either lenient (CFI ≥ .90 or RMSEA ≤ .08) or strict fit thresholds (CFI ≥ .95 759 

or RMSEA ≤ .05), which indicate acceptable and good fit to the data, respectively. Table 3 760 

includes the percentage of models that met lenient and strict fit thresholds for each 761 

measurement model of executive functions, as a function of the single-condition indicator-762 

based model tested. Note that the rate of model acceptance was computed among the models 763 

that converged. That is, when a model converged, we computed how often the model meets the 764 

lenient (or strict, respectively) thresholds for each fit index (CFI and RMSEA) separately. This 765 

information is visually represented on Figure 5.  766 

Impact of the indicator used  767 

As seen in Figure 5, the rate of executive functions model acceptance differed 768 

remarkably according to the specific indicator used (RT, accuracy, IES or drift rate). Model 769 

acceptance was defined based on two fit indices, CFI (in red), and RMSEA (in turquoise), for 770 

lenient (solid thin colored line) and strict thresholds (dashed thin colored line).  771 

In sum, averaging across the seven measurement models of executive functions, drift 772 

rate-based models (Figure 5D) showed the highest rate of model acceptance based on both 773 

lenient (CFI: �̅� = 75.74%; RMSEA: �̅� = 62.69%) and strict thresholds (CFI: �̅� = 30.98%; 774 

RMSEA: �̅� = 14.20%). These rates are remarkably higher than those of any other indicator-775 

based model. More precisely, RT-based models (Figure 5A) showed extremely low rates of 776 

acceptance, for both lenient (CFI: �̅� = 0.01%; RMSEA: �̅� = 0.14%) and strict thresholds (CFI: 777 

�̅� = 0%; RMSEA: �̅� = 0%). The same pattern was observed on IES-based models (Figure 5C), 778 

for both lenient (CFI: �̅� = 7.18%; RMSEA: �̅� = 3.29%) and strict thresholds (CFI: �̅� = 0.22%; 779 

RMSEA: �̅� = 0.02%). Furthermore, although accuracy-based models (Figure 5B) showed a 780 
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slightly higher rate of convergence than drift rate-based models (as discussed in the previous 781 

section), they showed only modest to low rates of acceptance for both lenient (CFI: �̅� = 782 

25.75%; RMSEA: �̅� = 24.95%) and strict thresholds (CFI: �̅� = 5.09%; RMSEA: �̅� = 2.73%).  783 

 784 

 785 

Figure 5. Rate of model convergence and acceptance as a function of single-condition 786 
indicator-based models.  787 

Note. Figure 5A: RT-based models; Figure 5B: accuracy-based models; Figure 5C: IES-based models; 788 
Figure 5D: drift rate-based models; Rate of convergence: black solid lines; Rate of acceptance (lenient 789 
and strict thresholds): CFI >.90 = red solid lines; CFI >.95 = red dashed lines; RMSEA < .08 = 790 
turquoise solid lines; RMSEA < .05 = turquoise dashed lines.  791 

 792 
 793 



In search of better practice in executive functions assessment: methodological issues and potential solutions 

 

36 
 

Relationship between model convergence, acceptance, and complexity 794 

Figure 5 illustrates a tight relationship between model convergence (thick black line) 795 

and acceptance (thin colored lines). As expected, the most complex models (e.g., three-factor, 796 

nested-factor and bifactor) converged less often than simpler models (e.g., unidimensional or 797 

two-factor); however, when they converged, they showed better fit to the data as indicated by 798 

their higher rate of acceptance. This expected trend was seen for both CFI & RMSEA fit 799 

indices, as well as for both fit thresholds (see Table 3). This pattern is best illustrated by 800 

accuracy-based models (Figure 5B) and drift rate-based models (Figure 5D) due to their higher 801 

rates of acceptance; indeed, RT-based (Figure 5A) and IES-based models (Figure 5C) showed 802 

too poor rates of acceptance.  803 

To conclude, drift rate-based models and accuracy-based models showed the highest 804 

(and similar) rates of convergence across the seven measurement models of executive 805 

functions; however, drift rate-based models showed a much higher rate of acceptance and thus, 806 

better fit to the data. Therefore, drift rate-based models appear preferable to accuracy-based 807 

models, as only the former achieve high rates of both convergence and acceptance. This work 808 

also makes clear that both RT-based and IES-based models show overall only modest rates of 809 

convergence and very low rates of acceptance, questioning the usefulness of these indicators.  810 

Model selection 811 

The last step of the analysis examined how the choice of indicator may impact which 812 

of the seven measurement models of executive functions is preferred. To do so, firstly, we 813 

selected those data sets in which the seven measurement models of executive functions 814 

converged, to ensure that even models with lesser convergence rates (e.g., nested-factor and 815 

bifactor models) be both run on the same samples and equally represented in the model 816 

selection analysis. Only drift rate-based (n = 996) and accuracy-based (n = 1320) models 817 

provided enough data sets (see Table 4).  818 
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AIC weights (AICw) and BIC weights (BICw) were then computed comparing the seven 819 

measurement models of executive functions, using separately accuracy and drift rate as 820 

indicator. Figure 6 shows the distribution of these weights. The reader can find in Table S5 821 

(online supplementary material) the mean AICw and BICw, as a function of the seven 822 

measurement models of executive functions.  823 

 824 

 825 

 826 

 827 

 828 

 829 

 830 

 831 

Based on AIC weights, the three-factor model showed the strongest evidence as the 832 

best model. More precisely, on drift rate-based models (Figure 6A), the average AIC weight of 833 

the three-factor model is of .521, with the next best model, two-factor WM-Flexibility merged, 834 

being at .212. Similarly, based on accuracy-based models (Figure 6B), the average AIC weight 835 

of the three-factor model is of .711, whereas the weight of the next best model (i.e., nested-836 

factor model) is as low as .108. 837 

BIC weights point to the two-factor model with WM-Flexibility merged as the one with 838 

the greatest evidence for drift rate-based models (.541) followed by the three-factor model 839 

(.212), whereas for accuracy-based models the strongest evidence is observed for the three-840 

factor model (.595) followed by the two-factor model with WM-Flexibility merged (.314) 841 

(Figure 6C and 6D, respectively).  842 

Table 4 Data sets where the seven executive functions measurement 
models converged out of 5000 data sets 
Indicator-based model Data sets (n) Data sets (%) 
RT-based 1 0.02 
ACC-based 1320 26.4 
IES-based 14 0.28 
DR-based 996 19.32 
RTdiff-based 12 0.24 
ACCdiff-based 36 0.72 
IESdiff-based 0 0 
DRdiff-based 10 0.2 
Note. RT: response time; ACC: accuracy; DR: drift rate; IES: inverse efficiency 
score; diff: difference 
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In sum, despite the AIC and BIC fit indices yielding a slightly different pattern of 843 

results, the three-factor model appears, overall, as the best model among the seven 844 

measurement models tested, which is also the best fitting model based on CFI and RMSEA 845 

indices (see table S6 online supplementary material, Mean CFI and RMSEA, and percent of 846 

measurement models that meet lenient thresholds). 847 

 848 

 849 

Figure 6. AIC weights and BIC weights of measurement models of executive functions, as a 850 
function of drift rate-based and accuracy-based models.  851 
 852 
Note. Figure 6A: AIC weights drift rate-based models; Figure 6B: AIC weights accuracy-based 853 
models; Figure 6C: BIC weights drift rate-based models; Figure 6D: BIC weights accuracy-based 854 
models. Black dots represent mean weights; top and bottom horizontal black bars represent 855 
bootstrapped 95% confidence intervals. Note that the relative model probabilities are normalized by 856 
dividing by the sum of the probabilities of all the models.     857 
 858 
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Three-factor model - mean fit indices, inter-factor correlations, and factor-loadings 859 

A recurrent issue when using CFA concerns the appropriateness of the tasks selected to 860 

assess the different latent constructs. While we have shown through model selection that the 861 

three-factor model is to be preferred, the values of the respective factor loadings from each task 862 

provide additional information about the construct validity of each task. Table 5 provides the 863 

mean CFI and RMSEA and mean inter-factor correlations of three-factor accuracy-based and 864 

drift rate-based models. Table 6 provides the mean factor-loadings for both indicator-based 865 

models, as well as two coefficients (i.e., omega ω and H index) that inform about the reliability 866 

of the latent factors from both indicator-based models. Furthermore, the reader can find in 867 

Table S7 (online supplementary material) the mean factor loadings of the eight indicator-based 868 

three-factor models, as well as the omega ω and H index reliability coefficients of the latent 869 

factors from each indicator-based model.  870 

The drift rate-based three-factor model on average showed good fit to the data (CFI: 871 

x ̅= .95; RMSEA: x ̅= .06). The observed correlations between the three latent constructs on 872 

average were high, inhibition-cognitive flexibility (�̅� = .75), inhibition-working memory (�̅� = 873 

.76), working memory-cognitive flexibility (�̅� = .79), and were stronger compared to those 874 

observed in three-factor accuracy-based model. Importantly, all the tasks loaded significantly 875 

into their corresponding latent construct, showing moderate-to-strong factor loadings (x ̅= .61; 876 

min = .41; max = .75).  The accuracy-based three-factor model on average showed acceptable 877 

fit to the data (CFI: x ̅= .90; RMSEA: x ̅= .08). The three constructs on average were strongly 878 

correlated, inhibition-cognitive flexibility (�̅� = .59), inhibition-working memory (�̅� = .56), 879 

working memory-cognitive flexibility (�̅� = .62). All the tasks loaded significantly into their 880 

corresponding latent construct and more importantly, they showed moderate-to-strong factor 881 

loadings (x ̅= .60; min = .43; max = .76). 882 
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In sum, both indicator-based models achieved satisfactory factor loadings, except for 883 

the Backwards digit-span task and the Letter-Memory task (working memory latent construct). 884 

In addition, both indicator-based models included latent factors that achieved levels of 885 

reliability remarkably higher compared to any other indicator-based model (see Table S7).  886 

 887 

Note. This information corresponds to three-factor models that converged without warnings/errors out of 5000 888 
data sets. DR-based (n) = 4710 data sets; ACC-based (n) = 4813 data sets.  889 

 890 

Note. * Models that converged with no warning and errors. EF: executive functions; DR: drift rate; ACC: 891 
accuracy. In brackets (): standard deviations.  892 
 893 

Table 5 Three-factor Drift rate-based and Accuracy-based models. Mean Fit Indices and 
Inter-Factor Correlations and Standard Deviation. 

Indicator-
based 
model 

CFI RMSEA 

Inhibition – 
Cognitive 
Flexibility 

Inhibition – 
Working 
Memory 

Cognitive 
Flexibility – 

working 
Memory 

�̅�  SD �̅� SD r SD r SD r SD 
DR-based 0.95 ± .03 0.06 ± .02 0.75 ± .08 0.76 ± .10 0.79 ± .11 
ACC-based 0.90 ± .04 0.08 ± .02 0.59 ± .12 0.56 ± .11 0.62 ± .15 

Table 6 Three-factor Drift Rate and Accuracy-based models*. Mean Factor Loadings and 
Latent Factors’ Reliability Coefficients 
EF Factor – reliability 
coefficients 

Task – factor loadings DR-based model 
(n = 4710) 

ACC-based model 
(n = 4813) 

Inhibition 
Flanker 0.71 (± .06) 0.71 (± .07) 
Simon 0.65 (± .06) 0.56 (± .07) 
Go/No-Go 0.74 (± .06) 0.74 (± .07) 

    
       Omega  0.75 (± .03) 0.71 (± .04) 
       H index  0.76 (± .04) 0.75 (± .05) 

Cognitive flexibility 
Color-Shape switch 0.50 (± .08) 0.50 (± .09) 
Gender-Smile switch 0.67 (± .07) 0.60 (± .10) 
Trail Making Test 0.58 (± .07) 0.61 (± .09) 

    
       Omega  0.61 (± .05) 0.60 (± .05) 
       H index  0.63 (± .05) 0.63 (± .06) 

Working memory 
Backwards Digit-Span 0.43 (± .08) 0.46 (± .09) 
Spatial n-Back 0.75 (± .08) 0.76 (± .10) 
Letter-Memory  0.41 (± .07) 0.43 (± .08) 

    
        Omega  0.55 (± .06) 0.57 (± .06) 
       H index  0.65 (± .08) 0.67 (± .11) 
 Mean factor loadings 0.61 0.60 
 Median factor loadings 0.63 0.60 
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Discussion 894 

The main objective of the present study was to investigate to what extent measurement 895 

models of executive functions are sensitive to different methodological practices proposed in 896 

the literature to operationalize executive functions. The heterogeneity of methods addressed in 897 

the present study concerns both, the indicators (e.g., RT, accuracy, etc.), as well as the tasks’ 898 

conditions (score in single conditions vs score difference between tasks conditions) employed 899 

to operationalize executive functions. By examining the impact of different operationalizations 900 

of executive functions on important aspects of model replicability, such as the rate of model 901 

convergence and acceptance, the present study documents four notable findings, which provide 902 

novel insights regarding better practices for the modeling of the structure of executive 903 

functions. 904 

The first striking finding is the remarkable differences in the rate of model convergence, 905 

depending on the tasks’ conditions used to assess executive functions. More precisely, the use 906 

of single-condition indicators, which reflect performance in the tasks’ conditions most 907 

representative of the component under study (e.g. incongruent condition in a Flanker task, 908 

inhibition component), led to a convergence rate remarkably higher compared to condition-909 

difference indicators, which reflect the difference in performance between the task condition 910 

representative of the component under study, and a baseline task condition (e.g. incongruent 911 

minus congruent condition in a Flanker task). The subtraction method is rooted in the seminal 912 

work of Donders and was once argued to be essential to subtract effects of no interest (Donders, 913 

1868; for a review, see Roelofs, 2018). The present work, however, confirms that difference 914 

scores have rather poor psychometric properties, in line with previous claims (Draheim et al., 915 

2019; Griffin et al., 1999; Hughes et al., 2014; Miller & Ulrich, 2013; Paap & Sawi, 2016). 916 

Our findings suggest that the difference score method should be avoided when modeling 917 

executive functions with SEM techniques, such as CFA. The second most striking finding of 918 
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the present study is that measurement models that included RT-based measures fared quite 919 

poorly as compared to measurement models that included accuracy-based measures, which 920 

showed much greater acceptance rates. A third finding is that drift rate, modeled by the EZ-921 

diffusion model, was the indicator that showed the best psychometric properties to model 922 

executive functions, in terms of both model convergence and acceptance. A fourth main finding 923 

is that when considering models that converge, the three-factor model remains the most 924 

preferred model based on the direct comparison of the fit indices of the seven measurement 925 

models of executive functions tested. Finally, measurement models that included drift rate as 926 

the main indicator, showed comparatively moderate to high contribution (i.e., factor loadings) 927 

from most of the tasks into their corresponding latent construct, providing a path forward for 928 

re-analysis of existing data set or future ones, as the tasks used in the present study tend to be 929 

commonly used in the field of executive functions.   930 

The advantage of using single scores over difference scores in measurement models of 931 

executive functions  932 

One of the most robust findings of the present study was the remarkable difference in 933 

model convergence between single versus condition difference indicator-based models. The 934 

advantage of single-condition indicator-based models most likely owes to the fact that latent 935 

variables from structural equation models are defined by what their indicators have in common 936 

(MacCallum & Austin, 2000). As single scores are expected to show greater common variance 937 

than difference scores (for a review about RT and RT difference, see Draheim et al., 2019), the 938 

use of the former is seen to result in higher convergence of the models, hence, a lower 939 

probability of improper solutions. Although expected, the systematicity of that effect is notable.  940 

The use of the difference score method has produced robust experimental effects, such 941 

as the well-known Stroop effect (Stroop, 1935), Simon effect (Simon & Rudell, 1967), Flanker 942 

effect (Eriksen & Eriksen, 1974), or task-switch costs (Monsell, 2003). However, robust 943 
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experimental effects often fail to produce reliable individual differences in cognition (Hedge 944 

et al., 2018). This phenomenon likely occurs due to distinct nature of two historical approaches 945 

in psychological research, experimental research versus correlational research. The former 946 

aims to characterize the cognitive mechanisms underlying responses to different experimental 947 

manipulations (e.g., within-subject variance), whereas the latter aims to characterize the 948 

cognitive mechanisms underlying inter-individual differences in cognitive processing (e.g., 949 

between-subjects variance). Recently, Hedge et al. (2018) assessed in three studies the 950 

reliability of seven classical cognitive tasks using different scoring methods (i.e., mean RT, RT 951 

difference, accuracy rate, and accuracy difference), with most tasks showing test-retest 952 

reliabilities below .70 when performance was operationalized through the difference score 953 

method. Thus, the pattern of low convergence of condition-difference indicator-based models 954 

is likely due to the psychometric issues of difference scores reported in the literature by Hedge 955 

et al. (2018), in line with other claims (Caruso, 2004; Draheim et al., 2016, 2019). Accordingly, 956 

several studies have consistently shown that RT difference measures tend to show weaker 957 

association with other variables of interest, compared to the single RT measures from which 958 

RT differences are computed, as discussed in the introduction (e.g., Hughes et al., 2014; Paap 959 

& Sawi, 2016; Salthouse et al., 1998; Siegrist, 1997). The main reason is that the subtraction 960 

method removes part of the common variance between the two variables from which the score 961 

difference is computed increasing the proportion of error variance of this sort of measures 962 

(Cronbach & Furby, 1970; Hedge et al., 2018).  963 

To shed further insight into the psychometric issues of condition-difference indicator-964 

based models, we looked at the factor loadings of the tasks’ indicators in the three-factor model, 965 

for each indicator-based model (see online supplementary material, Table S7). Factor loadings 966 

of condition-difference indicator-based models were, on average rather low (RT difference: 967 

�̅� = .38); Accuracy difference: �̅� = .40; IES difference: �̅� = .38; Drift rate difference: �̅� =968 
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 .34), compared to most single-condition indicator-based models (RT: �̅� = . 47; Accuracy: �̅� = 969 

.60; IES: �̅� = .55; Drift rate: �̅� = .61). Lower factor loadings have been associated with 970 

convergence issues regardless of sample size (Gagné & Hancock, 2006; Marsh et al., 1998). 971 

Thus, the systematic lower factor loadings observed in condition-difference indicator-based 972 

models, possibly account for their convergence issues. It is also in line with a recent 973 

investigation that reported a pattern of factor loadings that differed between difference scores 974 

and single scores, when modeling tasks such as the Stroop, Simon, Flanker, Global-Local ones 975 

with CFA (Rey-Mermet et al., 2021). In addition, the latent factors from condition-difference 976 

models showed consistently lower reliability (i.e., omega ω and H index) compared to those 977 

from single-condition indicator-based models. This is a matter of concern because many latent 978 

variable studies still use difference scores, such as RT difference, to operationalize executive 979 

functions in their RT-based tasks (e.g., Agostino, Johnson, & Pascual-Leone, 2010; Brydges et 980 

al., 2014; Duan, Wei, Wang, & Shi, 2010; Xu et al., 2013). Although less commonly used, 981 

accuracy difference has the same psychometric issues than RT difference, but the former is 982 

more prone to reduced variance issues due to ceiling effects (Wang et al., 2008).  983 

In sum, many paradigms in psychology still rely on difference score methods following 984 

a long tradition started with Donders. While this is certainly a valuable approach for a number 985 

of research questions, in the context of latent variable research and CFA, our work 986 

demonstrates it is a poor methodological choice, which compromises the quality of analyses 987 

downstream.    988 

Impact of indicators on model convergence and acceptance of measurement models of 989 

executive functions 990 

The poor psychometric properties of RT-based compared to accuracy-based measures 991 

RT-based models showed moderate rates of convergence, and very low rates of 992 

acceptance for both fit index and thresholds. Accuracy-based models, on the other hand, show 993 
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greater convergence rates and low-to-moderate rates of acceptance, suggesting better 994 

psychometric properties than RT-based measures. Note that the relative low rate of acceptance 995 

of RT-based and accuracy-based models was to some extent expected given the low rates of 996 

acceptance across executive functions models reported by Karr et al. (2018), as most of the 997 

studies included in their re-analysis used RT or accuracy-based measures to operationalize 998 

executive functions (e.g., Carlson et al., 2014; Lee et al., 2013; Lerner & Lonigan, 2014; Miller 999 

et al., 2012; Monette et al., 2015; Rose et al., 2012; Wiebe et al., 2011).  1000 

The psychometric issues of RT-based measures are likely due to a combination of 1001 

factors, such as the low reliability of RT-based measures and their sensitivity to speed-accuracy 1002 

trade-offs. This is not the first work to highlight such weaknesses. For example, Miller and 1003 

Ulrich (2013) proposed a model to investigate the psychometric properties of mean RT and RT 1004 

difference to predict individual differences on these measures. Their model estimated three 1005 

different parameters underlying RTs, that is, (i) common processing speed across tasks, (ii) 1006 

processing speed for individual tasks, and (iii) residual differences in RT related to neither 1007 

general nor task-specific processing speed. Their model showed that mean RT can be reliable 1008 

across tasks, provided that the model parameters show a reasonable amount of variability. As 1009 

a consequence, mean RT reliability can come to depend on a parameter of no interest for 1010 

researchers such as the residual differences in RT, a state of affair which is problematic. 1011 

Interestingly, their model showed that the mechanisms underlying RT during decision making 1012 

are far more complex that what is commonly assumed in the literature, in line with recent views 1013 

(Frischkorn & Schubert, 2018; Ratcliff et al., 2016). A well-known source of that complexity 1014 

arises from the sensitivity of RT-based measures to speed-accuracy trade-off, whereby 1015 

individuals adopt different response strategies emphasizing speed over accuracy and vice-versa 1016 

(Starns & Ratcliff, 2012). Research exploring individual or developmental differences in 1017 

cognition based on RT analyses might be particularly impacted by such trade-offs (Draheim et 1018 
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al., 2016; Hertzog et al., 1993; Yang et al., 2015), with the potential for misleading conclusions 1019 

due to the complex interplay between speed and accuracy. 1020 

Accuracy-based models although showing higher rates of convergence, displayed rather 1021 

low-to-moderate rates of acceptance. Accuracy-based measures suffer from two weaknesses. 1022 

First, they are often subject to speed-accuracy trade-offs, and in doing so confound information 1023 

processing efficiency with strategic issues of boundary setting (Drugowitsch et al., 2015; Maris 1024 

& van der Maas, 2012; Ratcliff & Rouder, 1998; Starns & Ratcliff, 2012). Second, accuracy-1025 

based models often suffer from a lack of sensitivity with most individuals operating around a 1026 

narrow range of high accuracies. It has been noted before that accuracy-based measures are 1027 

reliable for individual differences research, only if individuals make enough errors during the 1028 

task and thus, there exist sufficient between subjects’ variability in the rate of errors (Wang et 1029 

al., 2008). Note this is the case of the present study. Although the level of accuracy (%) on our 1030 

RT-based tasks was relatively high in the most demanding tasks’ conditions (e.g., incongruent, 1031 

switch, 2-back trails), the variability was quite large even after removing univariate outlier 1032 

values (Flanker: �̅� = 87 %, range = 56-100 %; Simon: �̅� = 88%, range = 53-100 %; Go/No-1033 

Go: �̅� = 93 %, range = 74-100 %; Color-Shape switch: �̅� = 82 %, range = 50-99 %; Gender-1034 

Smile switch: �̅� = 87 %, range = 55-99 %; N-back: �̅� = 76 %, range = 40-100 %. Nevertheless, 1035 

despite their low-to-moderate acceptance rates, it is important to point out that the most likely 1036 

accuracy-based model (i.e., three-factor), on average showed acceptable fitting to the data. 1037 

Furthermore, all the tasks showed moderate-to-high factor loadings, except for the Backwards 1038 

digit-span task and Letter-Memory updating task, and more importantly, most of the tasks 1039 

showed similar factor loadings, which indicates that the three latent factors of the model 1040 

reflected to a greater or lesser extend common variance across the tasks. This is in line with 1041 

accuracy-based measure having been useful to investigate CFA measurement models of 1042 

executive functions (e.g., Agostino et al., 2010; Alfonso & Lonigan, 2021; Brocki & Tillman, 1043 
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2014; Carlson et al., 2014; Lerner & Lonigan, 2014; Masten et al., 2012; Monette et al., 2015; 1044 

Willoughby et al., 2012), working memory (Engle, 2018; Luck & Vogel, 2013; Waris et al., 1045 

2017; Wilhelm et al., 2013), and of intelligence (Conway et al., 2002; Rey-Mermet et al., 2019). 1046 

Moreover, accuracy-based and capacity measures have been the measures of excellence in the 1047 

broad field of working memory (Engle, 2018; Luck & Vogel, 2013; Waris et al., 2017; Wilhelm 1048 

et al., 2013). This is the case during clinical and educational evaluations with the forward and 1049 

backward digit span task, as part of standard batteries such as the WAIS (Wechsler, 1981) or 1050 

the WISC (Wechsler, 1991), as well as in most laboratory experiments, albeit using more 1051 

sophisticated forms of span tasks, such as the operation span (Kane et al., 2004). The 1052 

introduction about 20 years ago of change detection tasks to measure working memory capacity 1053 

point to possible changes. In particular, recently several authors have proposed to go beyond 1054 

capacity, as measured in terms of memory slots (Rouder et al., 2011; Zhang & Luck, 2008), to 1055 

rather characterize working memory in terms of processing efficiency (Lew & Vul, 2015; Ma 1056 

et al., 2014).  1057 

In sum, our results confirm that the use of accuracy-based models, despite the two 1058 

weaknesses described above, is a sound choice to model executive functions based on (i) their 1059 

high convergence rates, and (ii) the fact that the most likely model of executive functions, 1060 

which also tends to be the most accepted model in the literature, showed acceptable fitting to 1061 

the data, and moderate-to-high factor loadings.  1062 

The promising psychometric properties of Drift Rate to model executive functions with 1063 

latent variable methods  1064 

An issue when considering just RTs or accuracy is that neither fully capture behavioral 1065 

performance as illustrated by the speed-accuracy trade-off discussed earlier. To address this 1066 

issue, other indicators have been developed, such as the IES, which is often used in the 1067 
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developmental or aging literature (Vandierendonck, 2017), or drift rate, a measure rarely 1068 

considered in the executive functions’ literature. 1069 

The present work tested the IES, a measure that combines speed and accuracy in a single 1070 

metric in an effort to mitigate the issue of speed-accuracy trade-offs (Townsend & Ashby, 1071 

1978). IES-based models on average showed moderate rates of convergence and very low rates 1072 

of acceptance. These results were very similar to the ones observed on RT-based models, which 1073 

was not surprising since an individual’s IES can be considered as the RT corrected by the 1074 

proportion of errors committed. 1075 

A unique contribution of the present study is to show that drift rate has excellent 1076 

psychometric properties to model executive functions with latent variable methods, such as 1077 

CFA. Drift rate-based models were the most stable in terms of model convergence and 1078 

acceptance, showing moderate-to-high rates of convergence and acceptance, across all 1079 

measurement models of executive functions, regardless of fit index (CFI or RMSEA) and 1080 

thresholds (lenient or strict).  1081 

Drift rate is an appealing measure as it can be relatively easily computed from the EZ-1082 

diffusion model, provided each participant’s response accuracy, mean RT and RT standard 1083 

deviation is available (Wagenmakers et al., 2007). By acknowledging that speed and accuracy 1084 

arise from the same underlying generative process of integration to a bound, diffusion models 1085 

allow to assess the rate at which information processing accumulates, or the quality of 1086 

information processing, separately from the height of the bound to be reached for a decision to 1087 

be triggered. In doing so, drift rate provides a better estimation of information processing 1088 

quality than RT or accuracy separately (Ratcliff et al., 2016). Accordingly, drift rate, by 1089 

capturing sensitivity to information processing, appears as a more valid representation of the 1090 

executive processes evaluated than using RT-based or accuracy-based measures, which are 1091 

conflated with other processes such as response conservativeness or non-decision time. 1092 
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Although seldom used in executive functions latent variable research, the reliability and 1093 

stability of DDM parameters has been previously documented. The within-session and 1094 

between-session reliability of DDM parameters in a lexical decision task was investigated by 1095 

Yap et al. (2012 - n = 819) and confirmed by Lerche and Voss (2017 - n = 105). More precisely, 1096 

Yap et al. (2012) reported that the three parameters of the DDM of greatest psychological 1097 

interest showed excellent within-session reliability (drift rate: .81; boundary separation: .91; 1098 

non-decision time: .93), and acceptable between-session reliability (drift rate: .69; boundary 1099 

separation: .71; non-decision time: .72). Moreover, some works point to the criterion validity 1100 

of diffusion model parameters, in particular drift rate, in the context of individual differences 1101 

in intelligence. These studies have shown that a drift rate latent factor (derived from non-1102 

executive RT-based tasks) is associated with intelligence, thus suggesting that individuals with 1103 

larger drift rate show greater scores in tests of intelligence (Lerche et al., 2020; Ratcliff et al., 1104 

2010; Schmiedek et al., 2007; Schmitz & Wilhelm, 2016). Furthermore, Schmiedek et al. 1105 

(2007) and Schmitz and Wilhelm (2016) included measures of working memory capacity, and 1106 

both studies modeled latent constructs for each of the three main parameters of the DDM (i.e., 1107 

drift rate, boundary separation, and non-decision time). Interestingly, the drift rate latent 1108 

construct was the main predictor of working memory capacity and intelligence latent 1109 

constructs, whereas boundary separation and non-decision time showed very low associations 1110 

with intelligence. Therefore, the better psychometric properties shown by drift rate in the 1111 

present study are in line with the results from previous studies, which have highlighted the 1112 

reliability and validity of drift rate for research in cognitive psychology.  1113 

Finally, post-hoc analyses, not included in the present study, were performed to 1114 

examine the convergence and acceptance rates of measurement models of executive functions 1115 

when drift rate was replaced by, either boundary separation or non-execution time, the other 1116 

two parameters from the EZ-diffusion model. These models showed extremely poor 1117 
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convergence and acceptance rates, which was not surprising given that drift rate is the main 1118 

parameter of the DDM capturing the quality of information processing. Accordingly, drift rate 1119 

has been consistently associated with cognitive ability, such as fluid intelligence or working 1120 

memory (Lerche et al., 2020; Ratcliff et al., 2010; Schmiedek et al., 2007; Schmitz & Wilhelm, 1121 

2016).  1122 

The interplay between model complexity and the rate of convergence and acceptance  1123 

Our results indicate that the simplest models (i.e., unidimensional, two-factor) despite 1124 

converging more often, on average showed low rates of model acceptance, whereas the most 1125 

complex models showed an opposite pattern. These results are expected and in line with the 1126 

re-analysis of published models from Karr et al. (2018), who observed a similar trade-off 1127 

between model convergence/acceptance and model complexity in both children/adolescent and 1128 

adult samples.  1129 

The likelihood that a model converges and fits well the data depends on multiple 1130 

factors, but mainly on a complex interplay between sample size, model parameters, and the 1131 

level of commonality between the variables that form the model (Gagné & Hancock, 2006; 1132 

Kyriazos, 2018; MacCallum et al., 1999; Wolf et al., 2013). These are important aspects of the 1133 

study design, which along with statistical power, must be considered by researchers prior to 1134 

conducting their study. More complex models, which have more parameters, often need larger 1135 

samples to converge than simpler models (Green & Yang, 2018; Kline, 2016; Nicolaou & 1136 

Masoner, 2013). In our case, the two most complex models, the nested-factor and bifactor 1137 

models, had an important difference compared to the simpler models; they both included a 1138 

common factor and specific sub-factors. Thus, the indicators had to load at the same time in 1139 

the common factor and their corresponding sub-specific factor (note that in the nested-factor 1140 

model, indicators from inhibition tasks loaded only in the common factor). There are several 1141 

reasons that might explain why nested-factor and bifactor models showed a remarkably lower 1142 
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rate of convergence. A first reason concerns sample size; our study may be underpowered to 1143 

identify these models with high frequency. Unlike in other domains of psychology, the field of 1144 

latent variable research has not yet fully tackled how to best determine the sample size prior to 1145 

conducting a study. There exist recommendations about how to estimate the sample size based 1146 

on Monte Carlo simulation studies. For instance, Tanaka (1987) suggested a ratio 5:1 between 1147 

N and parameters, whereas Bentler & Chou (1987) suggested a ratio of 10:1. More recently, 1148 

Wolf et al. (2013), conducted a series of Monte Carlo simulations to understand sample size 1149 

requirements, as a function of model type, number of factors and indicators, strength of the 1150 

factor loadings and the amount of missing data. Their results show that the sample size 1151 

requirements are far more complex than the recommendations from Tanaka (1987) and Bentler 1152 

& Chou (1987). They observed that sample size requirements ranged from 30 cases (one-factor 1153 

model with four indicators loading at .80), to 460 cases (two-factor model with three indicators 1154 

per factor loading at .50). Importantly, they pointed out that inter-indicator correlations and the 1155 

factor loadings also play an important role on statistical power and model identification, 1156 

beyond sample size. Thus, our two most complex models, nested-factor and bifactor models, 1157 

may be difficult to identify due to the complex interplay between sample size, the number of 1158 

model parameters, the inter-indicator correlations, and the factor loadings from each indicator 1159 

into both the common factor and their corresponding specific sub-factor.   1160 

The rate of acceptance followed an opposite pattern. That is, more complex models, 1161 

when they converged, tended to have higher rates of acceptance than simpler models. These 1162 

results are consistent across indicator-based models. The observed higher acceptance of two-1163 

factor and three-factor models over unidimensional models was expected given that an 1164 

important number of studies have shown that executive functions tend to organize as a two-1165 

factor or three-factor structure during middle childhood (Brydges et al., 2014; Lehto et al., 1166 

2003; Rose et al., 2012). The high acceptance of nested-factor and bifactor models was less 1167 
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expected, as the use of these models is not an extended practice in executive functions research. 1168 

The nested-factor model has been proposed in adolescents and adults studies (e.g., Friedman, 1169 

Miyake, Robinson, & Hewitt, 2011; Friedman et al., 2008), and one study in children 9-to-12 1170 

years old (Sluis et al., 2007). The bifactor model reported in the present study and in Karr et 1171 

al. (2018) is uncommon in children’s executive functions research; indeed, a bifactor model 1172 

based on a battery of tasks tapping inhibition, working memory and cognitive flexibility is 1173 

rarely considered (for an exception see Yangüez et al., 2021). The higher acceptance of these 1174 

two models must be taken with caution since there are several concerns about the tendency of 1175 

these models to overfit the data (Bonifay et al., 2017; Karr et al., 2018; Murray & Johnson, 1176 

2013; Sellbom & Tellegen, 2019). Indeed, as noted by Hancock and Mueller (2008), a model 1177 

with better fitting does not necessarily represent the true model for the population, but perhaps 1178 

it is just a model that captures the data well, thanks in part to their ability to overfit the data 1179 

(Preacher et al., 2013). Re-analyses with models that have a better balance between 1180 

convergence and acceptance seems to be a healthy practice to adopt for the field. Unfortunately, 1181 

rarely papers report on the necessary simulations to estimate the rate of convergence, when 1182 

applying CFA to more practical ends. The present work calls for a more systematic assessment 1183 

and report of convergence rates as a given model structure is chosen. 1184 

Impact of tasks’ operationalization on model selection  1185 

A concern raised by the present study is that of the dependence of the most likely model 1186 

on how executive functions are operationalized. Given the expected differences between 1187 

indicator-based models in model convergence and acceptance, one could have expected that 1188 

the preferred model, based on direct comparison of fit indices, would differ across indicator-1189 

based models. Only drift rate-based and accuracy-based models provided sufficient data sets 1190 

to conduct model selection based on the seven measurement models of executive functions 1191 

tested. This state of affair limits our understanding of the impact of the choice of indicators on 1192 
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model selection, since RT-based or IES-based models, as well as condition-difference 1193 

indicator-based too often failed to converge and showed poor fitting to the data.  1194 

Nevertheless, the results of model selection indicate the preferred model to be the three-1195 

factor model, and the next preferred one being the two-factor model (working memory-1196 

cognitive flexibility merged). These results are in line with the bulk of the literature on 1197 

executive functions reporting a three-factor structure on children of a similar age range 1198 

(Agostino et al., 2010; Arán Filippetti & Richaud, 2017; Duan et al., 2010; Lehto et al., 2003; 1199 

Rose et al., 2012), although for a sample of  8-to-12 years old, a  two-factor structure has been 1200 

also documented (Brydges et al., 2014; Huizinga et al., 2006; Lee et al., 2013; Monette et al., 1201 

2015; Scionti & Marzocchi, 2021; Usai et al., 2014; Van der Ven et al., 2013). That is, when it 1202 

was directly compared against alternative models, the three-factor model was the best fitting 1203 

model regardless of which indicator was used (i.e., accuracy or drift rate), except for drift rate-1204 

based models when using BICw; here, the two-factor model merging working memory and 1205 

cognitive flexibility was preferred. The discrepancy between AICw and BICw most likely 1206 

reflects how both fit indices penalize model complexity with the BIC favoring more parsimony 1207 

than the AIC (Vrieze, 2012). The finding that the second most preferred model might be a more 1208 

parsimonious two-factor model, with working memory merged with cognitive flexibility is in 1209 

line with the view that cognitive flexibility develops later (Diamond, 2013; Karr et al., 2018). 1210 

It is also well aligned  with previous latent variable studies that report a non-differentiated 1211 

cognitive flexibility (also termed shifting in some works) factor from working memory in pre-1212 

school and school-aged children (Monette et al., 2015; Scionti & Marzocchi, 2021; Usai et al., 1213 

2014). Indeed, our sample included children with a varied age range extending from 8 years of 1214 

age all the way to 12 years of age, a period of development during which executive functions 1215 

undergo rapid developmental changes (Zelazo et al., 2016). Interestingly, not only 1216 

improvements in efficiency whereby children become faster and more precise have been 1217 
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documented during that age range (e.g., Anderson et al., 2001; Davidson et al., 2006; Huizinga 1218 

et al., 2006; Lee et al., 2013; Zelazo & Carlson, 2012), but also qualitative changes in the 1219 

structure and organization of executive functions with greater likelihood of two-factor models 1220 

in younger samples and of the three-factor model in older samples (e.g., Brydges et al., 2014; 1221 

Huizinga et al., 2006; Lee et al., 2013; Lehto et al., 2003; Rose et al., 2012; Wiebe et al., 2011). 1222 

Last but not least, to confirm the selected model fits well to the data, we looked at the 1223 

average CFI and RMSEA values shown by accuracy-based and drift rate-based models, which, 1224 

unlike AIC or BIC, can be interpreted based on their absolute value (Hu & Bentler, 1999). Both 1225 

fit indices show not only the three-factor model on average fits well the data, but also that it 1226 

shows better fit to the data than the second model that received further support based on AIC 1227 

and BIC weights (i.e., two-factor model with cognitive flexibility and working memory 1228 

merged). Indeed, among the seven measurement models tested, the three-factor model showed 1229 

the best trade-off between convergence, acceptance, and parsimony. Importantly, this was the 1230 

case whether all samples were considered (see table 3) or only the subset used for model 1231 

selection (for the interested reader see table S6). It would seem good practice in future works 1232 

that apply AIC/BIC model selection as we did here, to also check that the selected models fit 1233 

well data by looking at indices that can be interpreted based on their absolute values, such as 1234 

the CFI and RMSEA as used in the present study, or root mean squared residual (SRMR), or 1235 

the goodness-of-fit index (GFI) among others (for a review see, Hu & Bentler, 1999). Finally, 1236 

it would also seem important when evaluating best models to check for model convergence 1237 

more systematically, as one should avoid drawing strong conclusions based on well-fitting 1238 

models that often show convergence or estimation issues. 1239 

Limitations 1240 

This study offers a comprehensive empirical evaluation of the sensitivity of cognitive 1241 

functions latent variable models to different methods proposed in the literature to 1242 
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operationalize such functions. We have provided a list of robust findings based on thousands 1243 

of models and bootstrapped samples. However, these findings should also be interpreted 1244 

considering the limitations of this work.  1245 

First, we could not derive the same exact indicators for each task because for some 1246 

tasks, either RT (i.e., Backwards digit-span task, Letter-Memory task) or accuracy (Trail 1247 

Making Test) were not recorded. Ideally, studies should aim for homogeneous models with the 1248 

same type of indicators. Indeed, mixed-indicators models that use the most common indicator 1249 

for each task appear not only weak on theoretical grounds, but also arbitrary in its application. 1250 

For instance, on RT-based tasks (i.e., Flanker, Simon, Color-Shape switch, and Gender-Smile 1251 

switch), the most common measure is unclear as both RT and accuracy have been used as 1252 

relevant indicators of performance in such tasks, as discussed in the introduction. Models that 1253 

search for the combination of indicators that result in the greatest rates of convergence and 1254 

acceptance, would result in an explosion of combinations and not be necessarily valid. 1255 

Therefore, due to the wide variety of possible combinations of indicators across tasks, the 1256 

present work was systematic in the choice of indicators, by creating the most homogeneous 1257 

model for each dominant indicator. It is possible that a principled combination of indicators, 1258 

for instance, combining drift rate as indicator of performance on RT-based tasks (e.g., 1259 

inhibition and cognitive flexibility), with accuracy-based or capacity-based measures when 1260 

modeling performance in capacity tasks (e.g., working memory) may be a possible avenue for 1261 

future research.  1262 

Second, the sample size of the present study was modest (n = 182). As discussed above, 1263 

there is little consensus about how to estimate the required sample size for latent variable 1264 

models, even if there exist some recommendations (or rules of thumb) from several studies 1265 

based on the results from Monte Carlo simulations (Bentler & Chou, 1987; MacCallum & 1266 

Austin, 2000; Tanaka, 1987; Wolf et al., 2013). Thus, given the sensitivity of latent variable 1267 
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models to sample size, model complexity, and the quality of the data, it would be welcome to 1268 

see the present results confirmed in an even bigger sample. For now, we note that the sample 1269 

size of this study (n = 182) is comparable to the one reported by most of the studies from the 1270 

field (e.g., Brydges et al., 2014; A Miyake et al., 2000; Rose et al., 2012; Sluis et al., 2007; 1271 

Usai et al., 2014; Van der Ven et al., 2013). 1272 

Third, the present work was not designed to address whether the different 1273 

operationalizations of executive functions investigated lead to valid representations of the 1274 

constructs. To the extent that we limited ourselves to well-known tasks that are accepted in the 1275 

executive functions literature, this work is in line with the view that a key to validity is the 1276 

choice of tasks, that is, whether the task measures what is intended to measure (Borsboom et 1277 

al., 2009). To the extent that factor loadings in the preferred single-condition indicator-based 1278 

models were to a greater or lesser satisfactory (e.g., three-factor model), this work is in line 1279 

with the existing literature interested in identifying which operationalizations of performance 1280 

in executive functions tasks, allow to reliably capture individual differences in the underlying 1281 

cognitive constructs evaluated.  1282 

Fourth, the seven measurement models of executive functions tested were identified in 1283 

a literature review that shows a strong influence by Miyake & Friedman’s work, adopting a 1284 

CFA measurement approach, that is a reflective approach, to examine the structure of executive 1285 

functions (Friedman et al., 2008; Miyake, Friedman, et al., 2000; Shah & Miyake, 1996). Yet, 1286 

other statistical methods exist to assess cognitive and psychological processes, such as 1287 

formative models (e.g., principal component analysis), which are less affected by the low 1288 

shared variance between executive functions tasks (Willoughby et al., 2014; Willoughby & 1289 

Blair, 2016). Exploratory SEM (ESEM) could also be an interesting approach in future works 1290 

as it overcomes some limitations of CFA, such as model misspecification and misfit (Perry et 1291 

al., 2015), and the excessive flexibility of exploratory factor analysis (Marsh et al., 2014). 1292 
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Traditional ESEM, nevertheless, has been challenged since it often lacks parsimony, and might 1293 

cluster together constructs that are supposed to be separated in relation to theory, specially, 1294 

when ESEM is applied to complex models and small samples (Marsh et al., 2014). Another 1295 

interesting extension could be to complement CFA-based model selection with exploratory 1296 

approaches, such as exploratory factor analysis (EFA), as Waris et al. (2017) did to investigate 1297 

the structure of working memory. Finally, network modeling, which  proposes that cognitive 1298 

processes are conceptualized as networks of directly related manifested variables, has been 1299 

proposed to overcome the limitations of reflective and formative models (Schmittmann et al., 1300 

2013). Interestingly, network modeling has proven to be an effective tool to study the 1301 

differentiation process of executive functions during development (Hartung et al., 2020; Karr 1302 

et al., 2022).  1303 

Finally, we recognize there also exists alternative modeling specification approaches to 1304 

the seven considered here. For instance, second-order (hierarchical) models, which are more 1305 

common in intelligence research (Canivez et al., 2019; Reynolds & Keith, 2017; Schneider & 1306 

Newman, 2015) could be evaluated as recently done by Hartung et al. (2020) and Wolff et al. 1307 

(2016) in the case of executive functions. Similarly, other bifactor structure could be considered 1308 

(e.g., inhibition and cognitive flexibility tasks loading into the same specific factor and working 1309 

memory tasks loading into another specific factor). In short, future works will certainly benefit 1310 

from combining the strengths of different statistical techniques (e.g., CFA and networking 1311 

modeling) to further investigate the underlying structure of executive functions; in doing so, 1312 

the present work highlights the importance of not just the task selection but also the choice of 1313 

indicators. 1314 
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Conclusions 1315 

 The present study confirms the sensitivity of measurement models of executive 1316 

functions to the different methods proposed in the literature to operationalize executive 1317 

functions. Below we summarize the highlights from this work:  1318 

• Difference scores should be avoided when modeling executive functions with latent 1319 

variable methods. Measurement models that included difference scores often failed to 1320 

converge and showed poor fit to the data, but in addition, they showed systematically 1321 

lower factor loadings compared to measurement models that included single scores.   1322 

• RT-based models showed poor fit to the data compared to measurement models 1323 

including accuracy-based measures.  1324 

• Drift rate showed the best psychometric properties for CFA models of executive 1325 

functions among the four indicators tested (RTs, Accuracy, IES and drift rate). Of note, 1326 

drift rate can be easily computed from individual’s response accuracy, mean RT, and 1327 

RT deviation through the EZ-diffusion model (Wagenmakers et al., 2007). 1328 

• This work highlights the benefit of homogenizing indicators through the use of either 1329 

accuracy or drift rate to reach acceptable levels of convergence and acceptance, as well 1330 

as satisfactory factor loadings, when using CFA to model executive functions. 1331 
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