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Abstract 

Background Adjustment for baseline prognostic factors in randomized clinical trials is usually performed by means 
of sample-based regression models. Sample-based models may be incorrect due to overfitting. To assess whether 
overfitting is a problem in practice, we used simulated data to examine the performance of the sample-based model 
in comparison to a “true” adjustment model, in terms of estimation of the treatment effect.

Methods We conducted a simulation study using samples drawn from a “population” in which both the treatment 
effect and the effect of the potential confounder were specified. The outcome variable was binary. Using logistic 
regression, we compared three estimates of the treatment effect in each situation: unadjusted, adjusted for the con-
founder using the sample, adjusted for the confounder using the true effect. Experimental factors were sample size 
(from 2 × 50 to 2 × 1000), treatment effect (logit of 0, 0.5, or 1.0), confounder type (continuous or binary), and con-
founder effect (logit of 0, − 0.5, or − 1.0). The assessment criteria for the estimated treatment effect were bias, variance, 
precision (proportion of estimates within 0.1 logit units), type 1 error, and power.

Results Sample-based adjustment models yielded more biased estimates of the treatment effect than adjustment 
models that used the true confounder effect but had similar variance, accuracy, power, and type 1 error rates. The 
simulation also confirmed the conservative bias of unadjusted analyses due to the non-collapsibility of the odds ratio, 
the smaller variance of unadjusted estimates, and the bias of the odds ratio away from the null hypothesis in small 
datasets.

Conclusions Sample-based adjustment yields similar results to exact adjustment in estimating the treatment effect. 
Sample-based adjustment is preferable to no adjustment.

Keywords Randomized clinical trials, Baseline imbalance, Statistical adjustment, Over-fitting, Simulation study

Introduction
Randomized trials rely on chance to form patient 
groups that are comparable at baseline. However, ran-
domization balances the trial arms only in expectation, 

as a long term average; it does not guarantee that the 
groups will be comparable in any given instance [1–3]. 
As a result, current guidelines recommend that analy-
ses of randomized clinical trials be adjusted for baseline 
patient characteristics that are associated with the out-
come [4–6]. This approach assumes that the researchers 
are interested in the conditional treatment effect, i.e., 
treatment effect with all other patient characteristics 
held constant [7]. Several adjustment methods exist, 
including multiple regression, use of propensity scores, 
and other methods [8]. Here, we will consider only 
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one case, adjustment for the confounder using logistic 
regression. In this case, as an added benefit, adjustment 
for prognostic factors will eliminate a conservative bias 
due to the non-collapsibility of the odds ratio, which 
occurs even when the trial arms are balanced [9–12].

Ideally, the adjustment model should represent cor-
rectly the effects of the prognostic factors under con-
sideration. For example, if being 10 years older doubled 
the risk of death, this is the effect of age that should be 
used for adjustment. In real life, true effects are typi-
cally unknown, and the analyst estimates the effect of 
age from the trial sample at hand. But this sample-based 
model reflects the associations present in the study sam-
ple and will not necessarily yield the correct effect esti-
mate—possibly, the effect of 10  years of age will be to 
triple the risk in this particular dataset, or to increase 
it by half, or even to reduce the risk. There is no guar-
antee that statistical adjustment based on available data 
will yield the correct estimate of the treatment effect, but 
it is also possible that the effect of over-fitting would be 
negligible.

To what extent using a potentially over-fitted sample-
based adjustment model affects the estimation of treat-
ment effects in randomized trials has not been explored 
to our knowledge. In this study, we use simulated data 
to compare a sample-based adjustment model to a true 
adjustment model, in terms of bias in estimating the 
treatment effect, as well as its variance, accuracy, and 
power.

Methods
We conducted an experimental simulation study. In brief, 
in each iteration, we generated a clinical trial dataset in 
which a patient was either treated or untreated (1:1), and 
each was assigned a specific value of the potential con-
founder. A binary outcome variable was generated for 
each patient, and the trial results were analyzed using 
three logistic regression models: without adjustment 
for the potential confounder, with confounder adjust-
ment using a sample-based model, and with confounder 
adjustment using the true confounder effect. The esti-
mates of the treatment effect were compared in terms of 
bias, variance, proportion of treatment effects that were 
reasonably close to the true value, power, and type 1 
error (when the modeled treatment effect was nil). Each 
experiment was replicated 50,000 times.

Data generation
For each sample, we generated individual observations 
as follows: the treatment variable T was set to 1 in the 
experimental group and to 0 in the control group, and the 
potential confounder variable C was drawn either from a 
uniform distribution or from a Bernoulli distribution. We 

note that since C is independent of treatment under ran-
dom allocation, it cannot be a confounder of the treat-
ment effect in expectation (in other words, the estimator 
of the effect of treatment is unconfounded). However, C 
can cause “realized confounding” when by chance its dis-
tribution is not balanced across the two trial arms (i.e., 
any particular estimate of the effect of treatment can be 
confounded). Hereafter, for simplicity, we use the term 
“confounder” to designate a covariate C that is associated 
with the outcome and may be unbalanced between trial 
arms in any particular sample.

To facilitate comparisons between models, we selected 
the distributions of C so as to obtain the same variance. 
Thus, the uniform distribution of C had bounds − 0.75 
and + 0.75 (variance was 1.52/12, or 0.1875). The binary 
case had a Bernoulli parameter of 0.25 (variance was 
0.25*0.75, or 0.1875). The expectations of C were 0 for the 
continuous case and 0.25 for the binary case.

Then, the probability of outcome r in an individual 
was obtained using the equation Logit(r) = β1T + β2C. 
The value of β1 was set to 0, 0.5, or 1.0 (we used positive 
values of β1 to facilitate the interpretation of the results; 
therefore, the outcome was clinically desirable). The 
value of β2 was set to 0, − 0.5, or − 1.0. We note that the 
sign of β2 is arbitrary and does not alter the estimation of 
the treatment effect. The value of r was obtained as  eβ1T + 

β2C/(1 +  eβ1T + β2C). The individual outcome was generated 
as a Bernoulli random variable Y with parameter r.

Sample sizes in each treatment arm were 50, 100, 200, 
500, and 1000.

Analysis of each replicate
We estimated the treatment effects using these three 
models:

a) Unadjusted analysis: Logit(Y) = b0 + b1T
b) Adjusted for C using the sample-based model: 

Logit(Y) = b0’ + b1’T + b2’C
c) Adjusted for C using the true effect: 

Logit(Y) = b0″ + b1″T + β2C

The unadjusted model was included as a point of ref-
erence, even though it was not required to answer the 
research question. The difference between the two 
adjusted models is that b2’ was estimated from the data, 
whereas β2 took the value used in the simulation; the 
product β2*C was introduced as an offset variable into 
the regression model.

Analysis of the simulated results
For each of the 90 experimental situations (3 treatment 
effects, 3 confounder effects, 2 types of confounder, 5 
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sample sizes) and the 3 models, we report the following 
results:

a) Bias in the estimated treatment effect, i.e., the mean 
of b1—β1.

b) Variance of the estimated treatment effect b1.
c) Proportion of estimated treatment effects b1 

within ± 0.1 of the true parameter value (on the odds 
ratio scale, this corresponds to intervals of 0.89 to 
1.11 when when β1 = 0, 1.49 to 1.82 when β1 = 0.5, 
and 2.46 to 3.00 when β1 = 1).

d) Proportion of treatment effects that were statisti-
cally significant (p < 0.05), i.e., type 1 error rate when 
β1 = 0, and power when β1 = 0.5 or 1.

Because some result patterns were similar across val-
ues of the treatment effect or confounder effect, we show 
herein only selected results.

To better understand the relationships between esti-
mates of treatment effect, estimates of confounder effect, 
and confounder imbalance, we conducted the following 
analyses, for strong confounder and treatment effects 
(β2 =  − 1 and β1 = 1), at N = 2 × 50:

a) Scatterplots of estimates of treatment effect in the 
three models (unadjusted, adjusted for C using the 

sample, adjusted for C using the true effect); for a 
continuous confounder.

b) Scatterplots of observed estimates of the adjusted 
treatment effect b1 versus observed confounder effect 
b2, for both types of confounder, with non-paramet-
ric regression lines (Lowess).

c) Scatterplots of observed estimates of the adjusted 
treatment effect b1 versus baseline imbalance 
between treatment arms in the confounder (using 
Cohen’s d), with non-parametric regression lines 
(Lowess).

The simulations and analyses were performed using the 
R software version R-4.0.2 (R Foundation for Statistical 
Computing, Vienna, Austria. URL https:// www.R- proje 
ct. org/).

Results
All models converged in all 90 experimental conditions.

Bias
When C was not associated with the outcome (β2 = 0), 
treatment effects were biased upward in small samples, 
somewhat more under sample-based adjustment than 
without adjustment or adjustment using the true model, 
for both a continuous and a binary confounder (Table 1). 

Table 1 Bias in the estimation of treatment effect (β1 = 1), for different values of the confounder effect (β2) and of sample size, for 3 
logistic regression models: unadjusted for confounder, adjusted in sample-based model, and adjusted in true model

Sample size Unadjusted analysis Adjusted, sample- 
based model

Adjusted, true 
model

Unadjusted analysis Adjusted, sample-
based model

Adjusted, 
true model

Continuous confounder effect β2 = 0 Binary confounder effect β2 = 0

2 × 50 0.021 0.033 0.021 0.023 0.034 0.023

2 × 100 0.011 0.017 0.011 0.012 0.017 0.012

2 × 200 0.006 0.009 0.006 0.005 0.008 0.005

2 × 500 0.003 0.004 0.003 0.001 0.003 0.001

2 × 1000 0.000 0.001 0.000 0.000 0.001 0.000

Continuous confounder effect β2 =  − 0.5 Binary confounder effect β2 =  − 0.5

2 × 50 0.014 0.038 0.025 0.015 0.040 0.026

2 × 100 0.001 0.017 0.011 0.002 0.020 0.013

2 × 200  − 0.005 0.009 0.006  − 0.006 0.008 0.005

2 × 500  − 0.009 0.003 0.002  − 0.010 0.003 0.002

2 × 1000  − 0.009 0.002 0.001  − 0.010 0.002 0.001

Continuous confounder effect β2 =  − 1 Binary confounder effect β2 =  − 1

2 × 50  − 0.018 0.038 0.022  − 0.021 0.038 0.023

2 × 100  − 0.031 0.017 0.010  − 0.034 0.019 0.011

2 × 200  − 0.037 0.008 0.005  − 0.040 0.008 0.004

2 × 500  − 0.039 0.004 0.003  − 0.043 0.003 0.002

2 × 1000  − 0.040 0.002 0.001  − 0.044 0.002 0.001

https://www.R-project.org/
https://www.R-project.org/
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This upward bias was also detected in presence of con-
founding. Furthermore, in presence of potential con-
founding (β2 < 0), unadjusted estimates of treatment 
effect were biased downward, for both types of con-
founder, which corresponds to the expected effect of 
non-collapsibility of the odds ratio. Overall, adjustment 
using the true model (β2) produced less positive bias at 
small sample size than adjustment with the sample-based 
model (b2).

Variance
We limit variance results to simulations under a strong 
confounder effect (β2 =  − 1), as the patterns were similar 
but weaker for the lower value of β2 (Table 2). The vari-
ance of the treatment effect decreased predictably with 
sample size and was slightly lower in the unadjusted anal-
yses. The two adjustment methods performed similarly.

Accuracy of estimation
Proportions of estimates that fell within ± 0.1 of the real 
parameter value were fairly low and even for the largest 
sample size of 2 × 1000 they barely reached 70% (Table 3). 
Unadjusted analyses produced less accurate estimates 
when the treatment effect was strong, which is consistent 
with the conservative bias of the estimates due to non-
collapsibility. The two adjustment methods performed 
similarly.

Type 1 error and power
Type 1 errors were well controlled in all circumstances 
(Table  4). Power rose predictably with sample size and 
was slightly better for adjusted analyses than for unad-
justed analyses (Table  5). The two adjustment methods 
yielded similar power.

Correlations between treatment effect estimates
Unadjusted estimates of treatment effect were more 
strongly correlated with estimates adjusted for the true 
effect than with sample-based adjustment (Fig.  1). The 
Pearson correlation coefficients were 0.97, 0.98, and 0.99 
in the three panels of Fig.  1. Despite the high correla-
tions, the differences between the estimates of treatment 
effect could vary by 0.5 or 1 unit (on the logit scale) in 
some samples.

Joint distributions of estimated adjusted treatment 
and confounder effects
The scatterplots of the estimated treatment and con-
founder effects at size 2 × 50 (Fig.  2) yielded similar 
results for continuous and binary confounders. The esti-
mated confounder effect b2 ranged between approxi-
mately − 3 and 1, for a true parameter value of − 1. 
Treatment effects b1 appeared stronger at negative val-
ues of the estimated confounder effect (i.e., when the 
confounder effect was overestimated). This showed as 

Table 2 Variance in the estimation of treatment effect (b1), for different values of the true treatment effect (β1) and of sample size, with 
a strong confounder effect (β2 =  − 1): unadjusted for confounder, adjusted in sample-based model, and adjusted in true model

Sample size Unadjusted analysis Adjusted, 
sample-based 

model

Adjusted, 
true model

Unadjusted analysis Adjusted, 
sample-based 

model

Adjusted, 
true 

model

Treatment effect β1 = 0, continuous confounder Treatment effect β1 = 0, binary confounder

2 × 50 0.17 0.18 0.18 0.17 0.18 0.18

2 × 100 0.08 0.09 0.09 0.08 0.09 0.09

2 × 200 0.04 0.04 0.04 0.04 0.04 0.04

2 × 500 0.02 0.02 0.02 0.02 0.02 0.02

2 × 1000 0.01 0.01 0.01 0.01 0.01 0.01

Treatment effect β1 = 0.5, continuous confounder Treatment effect β1 = 0.5, binary confounder

2 × 50 0.17 0.19 0.18 0.17 0.18 0.18

2 × 100 0.08 0.09 0.09 0.08 0.09 0.09

2 × 200 0.04 0.04 0.04 0.04 0.04 0.04

2 × 500 0.02 0.02 0.02 0.02 0.02 0.02

2 × 1000 0.01 0.01 0.01 0.01 0.01 0.01

Treatment effect β1 = 1, continuous confounder Treatment effect β1 = 1, binary confounder

2 × 50 0.19 0.21 0.20 0.18 0.20 0.19

2 × 100 0.09 0.10 0.10 0.09 0.10 0.09

2 × 200 0.05 0.05 0.05 0.04 0.05 0.05

2 × 500 0.02 0.02 0.02 0.02 0.02 0.02

2 × 1000 0.01 0.01 0.01 0.01 0.01 0.01
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Table 3 Proportion of treatment effects within ± 0.1 of the true value, for different values of the true treatment effect (β1) and of 
sample size, with a strong confounder effect (β2 =  − 1): unadjusted for confounder, adjusted in sample-based model, and adjusted in 
true model

Sample size Unadjusted analysis Adjusted, 
sample-based 

model

Adjusted, 
true model

Unadjusted analysis Adjusted, sample-
based model

Adjusted, 
true 

model

Treatment effect β1 = 0, continuous confounder Treatment effect β1 = 0, binary confounder

2 × 50 0.23 0.19 0.19 0.24 0.19 0.19

2 × 100 0.28 0.27 0.27 0.27 0.26 0.26

2 × 200 0.34 0.37 0.37 0.35 0.37 0.37

2 × 500 0.57 0.56 0.56 0.58 0.56 0.56

2 × 1000 0.73 0.73 0.73 0.73 0.72 0.72

Treatment effect β1 = 0.5, continuous confounder Treatment effect β1 = 0.5, binary confounder

2 × 50 0.23 0.18 0.19 0.24 0.19 0.19

2 × 100 0.28 0.27 0.27 0.28 0.27 0.27

2 × 200 0.38 0.37 0.37 0.38 0.37 0.37

2 × 500 0.55 0.55 0.55 0.57 0.56 0.56

2 × 1000 0.71 0.72 0.72 0.72 0.72 0.72

Treatment effect β1 = 1, continuous confounder Treatment effect β1 = 1, binary confounder

2 × 50 0.18 0.17 0.18 0.19 0.18 0.18

2 × 100 0.26 0.25 0.25 0.26 0.26 0.26

2 × 200 0.35 0.35 0.36 0.36 0.36 0.36

2 × 500 0.53 0.53 0.54 0.52 0.54 0.54

2 × 1000 0.66 0.70 0.70 0.66 0.70 0.71

Table 4 Proportion of type 1 errors, for different values of the confounder effect (β2) and of sample size, for 3 logistic regression 
models: unadjusted for confounder, adjusted in sample-based model, and adjusted in true model

Sample size Unadjusted analysis Adjusted, sample-
based model

Adjusted, 
true model

Unadjusted analysis Adjusted, sample-
based model

Adjusted, 
true 

model

Continuous confounder effect β2 = 0 Binary confounder effect β2 = 0

2 × 50 0.056 0.053 0.056 0.056 0.052 0.056

2 × 100 0.056 0.053 0.056 0.055 0.051 0.055

2 × 200 0.050 0.050 0.050 0.052 0.051 0.052

2 × 500 0.049 0.050 0.049 0.050 0.051 0.050

2 × 1000 0.050 0.049 0.050 0.050 0.049 0.050

Continuous confounder effect β2 =  − 0.5 Binary confounder effect β2 =  − 0.5

2 × 50 0.057 0.052 0.050 0.056 0.052 0.050

2 × 100 0.055 0.050 0.049 0.056 0.052 0.050

2 × 200 0.051 0.050 0.050 0.050 0.049 0.048

2 × 500 0.048 0.048 0.048 0.052 0.050 0.050

2 × 1000 0.053 0.051 0.051 0.051 0.051 0.050

Continuous confounder effect β2 =  − 1 Binary confounder effect β2 =  − 1

2 × 50 0.059 0.051 0.050 0.056 0.051 0.050

2 × 100 0.057 0.051 0.051 0.053 0.049 0.048

2 × 200 0.052 0.051 0.051 0.049 0.050 0.050

2 × 500 0.049 0.051 0.050 0.050 0.048 0.048

2 × 1000 0.053 0.051 0.051 0.050 0.049 0.049



Page 6 of 9Perneger et al. Trials          (2023) 24:107 

an asymmetry of the scatterplots and was confirmed by 
the non-parametric regression lines. Pearson correlation 
coefficients between the confounder effect and the treat-
ment effect were − 0.10 for both types of confounder.

Estimated treatment effects as a function of baseline 
imbalance
The scatterplots of the estimated adjusted treatment 
effect as a function of baseline confounder imbalance 
were symmetric and  did not reveal any bias or obvi-
ous heteroscedasticity (Fig.  3). Results were similar 
for continuous and binary confounders. Cohen’s d—
i.e., between-arm difference in C expressed in pooled 

observed standard deviation units—ranged from approx-
imately − 0.6 to + 0.6 (since confounder variance was 
0.1875 by design, one standard deviation unit was 0.4330, 
and 0.6 of this value corresponds to 0.26). Pearson corre-
lation coefficients between the confounder effect and the 
treatment effect were null in both scenarios.

Discussion
This simulation study indicated that a sample-based 
adjustment model has only a small disadvantage vis-à-vis 
a true model when analyzing the results of a clinical trial. 
Specifically, the sample-based model produced estimates 
of the treatment effect that were more positively biased, 

Table 5 Observed power for different values of the treatment effect (β1) and of sample size, with a strong confounder effect 
(β2 =  − 1), for 3 logistic regression models: unadjusted for confounder, adjusted in sample-based model, and adjusted in true model

Sample size Unadjusted analysis Adjusted, sample-
based model

Adjusted, true 
model

Unadjusted analysis Adjusted, sample-
based model

Adjusted, 
true 

model

Treatment effect β1 = 0.5, continuous confounder Treatment effect β1 = 0.5, binary confounder

2 × 50 0.24 0.23 0.23 0.24 0.22 0.22

2 × 100 0.40 0.40 0.40 0.41 0.40 0.40

2 × 200 0.66 0.68 0.68 0.67 0.68 0.68

2 × 500 0.96 0.97 0.97 0.96 0.97 0.97

2 × 1000 1.00 1.00 1.00 1.00 1.00 1.00

Treatment effect β1 = 1, continuous confounder Treatment effect β1 = 1, binary confounder

2 × 50 0.64 0.65 0.65 0.67 0.67 0.67

2 × 100 0.90 0.91 0.91 0.92 0.92 0.92

2 × 200 1.00 1.00 1.00 1.00 1.00 1.00

2 × 500 1.00 1.00 1.00 1.00 1.00 1.00

2 × 1000 1.00 1.00 1.00 1.00 1.00 1.00

Fig. 1 Scatterplots of unadjusted and adjusted estimates of treatment effect (b1), for a strong treatment effect (β1 = 1), a strong continuous 
confounder (β2 =  − 1), and sample size 2 × 50
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Fig. 2 Scatter plots of (sample-based) adjusted estimates of the treatment effect (b1) as a function of the estimated confounder effect (b2), with 
true parameter values β1 = 1 and β2 =  − 1, for continuous and binary confounders, at sample size 2 × 50. Grey lines represent non-parametric 
regression functions (Lowess)

Fig. 3 Scatter plot of (sample based) adjusted estimates of the treatment effect (b1) as a function of the confounder imbalance between the 
two groups (Cohen’s d), with true parameter values β1 = 1 and β2 =  − 1, for continuous and binary confounders, at sample size 2 × 50. Grey lines 
represent non-parametric regression functions (Lowess)
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but only at small sample sizes (2 × 50). There were no 
losses in terms of accuracy, type 1 error, or power. Fur-
thermore, we found no relation between the magnitude 
in the baseline imbalance in the potential confounder and 
the estimation of the treatment effect, after sample-based 
adjustment. This indicates that sample-based adjustment 
works adequately across levels of imbalance. We found 
that the adjusted treatment effect was overestimated 
when the effect of the confounder was over-estimated as 
well, but this occurred only in rather extreme situations 
(observed confounder effect at least twice as strong as 
the true effect). Overall, these results are reassuring; the 
current practice of adjusting based on the sample at hand 
appears reasonable.

We used the true adjustment model as a yardstick to 
demonstrate the possible impact of an incorrectly esti-
mated sample-based confounder effect, but in real-life, 
the true confounder effect β2 is usually unknown. Rea-
sonably solid estimates may exist for some confounder 
effects: e.g., the prediction of death following brain injury 
has been modeled in trials that enrolled thousands of 
patients [13], and various mortality prediction models are 
available for intensive care patients, patients hospitalized 
with COVID-19, patients with coronary artery disease, 
etc. In other instances reasonable guesses are possible, at 
least as to the direction of the effect—e.g., greater sever-
ity of disease, presence of comorbidities, or older age are 
typically associated with less favorable outcomes. If the 
observed associations ran in the opposite direction, it 
may be prudent either to remove the paradoxical covari-
ate from the adjustment model (effectively setting the 
regression coefficient to 0) or to apply other regulariza-
tion methods. In any case, such adaptive procedures 
should be pre-specified in the statistical analysis plan, to 
avoid post hoc selection of the main analysis model.

This simulation study also confirmed two established 
results. One is the conservative bias present in unad-
justed analyses of binary outcomes, due to the non-col-
lapsibility of the odds ratio [9–12]. This bias increases 
with the effect of the confounding factor under consid-
eration. This confirms the utility of adjusting trial results 
for known risk factors regardless of any imbalance at 
baseline. Such adjustment was particularly useful at 
larger sample sizes; indeed, with 2 × 1000 observations, 
adjusted estimates were substantially more accurate than 
unadjusted estimates.

The other confirmatory result was the positive bias of 
logistic regression coefficient estimates at small sam-
ple sizes. This too has been described previously [14, 
15]. This bias away from the null in small samples was 
revealed by the adjustment procedures, and this is one 
area where the true adjustment model performed better 
than sample-based adjustment.

Finally, we did not observe any gain of power in 
adjusted models, compared with unadjusted analyses. 
This too is consistent with current knowledge. Power 
gains from confounder adjustment are expected in linear 
regression models for continuous outcomes, but not nec-
essarily in analyses of binary outcomes [16], as adjusted 
estimates of treatment effect are generally less biased 
toward the null but also less precise. This was also shown 
in a previous simulation study partly based on actual trial 
results [17].

While estimates of treatment effect and of sample-
based confounder effect were only weakly corre-
lated, a notable bias in the treatment effect was seen 
only when the confounder effect was overestimated 
(Fig. 2). This suggest that analysts should remain cau-
tious when the confounder effect is much larger than 
expected, based on prior knowledge. Furthermore, 
while unadjusted and adjusted treatment effects were 
highly correlated, substantial differences occurred on 
occasion (Fig. 1). This indicated that data dredging has 
the potential for yielding spurious results and rein-
forces the recommendation that adjustment models be 
always pre-specified.

A limitation of this study is that we did not explore 
all possible situations, such as different levels of base-
line risk, or multiple adjustment variables. However, 
we believe that this simulation study provides a realistic 
assessment of the potential of true adjustment models to 
improve the analysis strategy for clinical trials. We found 
this potential to be minor; the risk inherent in relying on 
sample-based models seems negligible.

Another limitation is that we did not examine what 
happens if the treatment effect varies across subgroups 
(i.e., effect-modification, assuming that the effect-
modifier is distinct from the confounder). If the effect-
modifier is measured, then stratum-specific estimates 
of β1 can be obtained, with adjustment for the potential 
confounder. However, the estimation of the confounder 
effect can be pooled over strata  of the effect-modifier, 
which may reduce potential overfitting, according to our 
results. This would particularly benefit the estimation of 
treatment effects in small strata.

In conclusion, we saw on average little or no disadvan-
tage to using a sample-based model, rather than a true 
regression model, for the adjustment for baseline prog-
nostic factors. Adjusted estimates performed better than 
unadjusted estimates.
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