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Summary

Explosive volcanic eruptions inject large quantities of magma fragments (tephra)

into the atmosphere. Dispersion and sedimentation of tephra particles can cause

significant impact such as damage to infrastructure, pollution of the ecosystem and

paralysis of economic and transport sectors. Recent eruptions (e.g., 2010 Eyjaf-

jallajökull, Iceland; 2021 Cumbre Vieja, Spain) have shown that even moderate

events can significantly impact our society. Also, significant effort has been involved

to improve Volcanic Ash Transport and Dispersal Models (VATDMs) used for the

forecasting necessary to emergency management during volcanic crises.

Field observations and laboratory experiments have shown that tephra sedimen-

tation can be significantly affected by collective settling mechanisms that promote

premature ash deposition (i.e., deposition of particles < 2 mm). This has important

implications for dispersal and associated impacts. Indeed, the amount of ash in the

atmosphere may be overestimated by VATDMs that do not take in account the pro-

cesses that promote premature sedimentation. These mechanisms include particle

aggregation and settling-driven gravitational instabilities (SDGIs) taking the form

of downward moving ash fingers. Volcanic ash aggregation has been documented

over the past decades while SDGIs remain poorly described as well as the combi-

nation of both processes. The main objectives of this thesis include to: i) develop

an accurate numerical model able to simulate the dynamics of SDGIs; ii) use this

model alongside field and experimental studies in order to constrain the parame-

ters controlling the formation of SDGIs; and iii) combine the modelling of both ash

aggregation and SDGIs to better interpret their associated roles in premature ash

sedimentation.

First, a single-phase model has been developed using a novel approach involving

a Lattice Boltzmann model in order to solve the fluid motion, while a Weighted

Essentially Non Oscillatory (WENO) finite difference scheme is employed to solve

the particle transport. The model is then validated thanks to comparison with ex-
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periments and theoretical works. Second, the model is applied to experimental and

natural configurations in order to study the effect of controlling parameters such as

the particle concentration and size. I found that increasing the particle concentra-

tion enhances the development of SDGIs while increasing the particle size beyond

a threshold prohibits the formation of fingers. The study also revealed that the

critical Grashof number usually used to characterise such instabilities is about ten

times larger than the value suggested by previous studies. The addition of shear

has also confirmed that SDGIs are able to produce similar ground signature as ash

aggregation. Third, a numerical scheme has been integrated in order to include

the aggregation process, the goal being the study of possible effects of aggregation

on SDGIs. Simulations showed that aggregation enhances all the sedimentation

modes including individual settling and SDGIs. Conversely, the turbulence gener-

ated within SDGIs can also promote ash aggregation. Finally, a two-phase model

has also been developed. This model solves the motion of individual particles but,

given the numerical cost, the use of this model is limited to the study of small scale

processes involving only a reasonable number of particles.

My numerical investigations have demonstrated that the triggering of SDGIs at

the base of volcanic clouds is controlled by several parameters such as the particle

concentration, the particle size and the shear induced by the wind. Volcanic ash

aggregation and SDGIs present the same ground signature and the two processes

enhance each other. However, further work is needed regarding the effect of turbu-

lence, the analytical scaling of the fingers vertical velocity and the development of a

comprehensive parametrisation of SDGIs to model the loss of fine ash in the cloud

due to SDGIs.



Résumé en Français

Les éruptions volcaniques explosives injectent de grandes quantités de fragments de

magma (téphra) dans l’atmosphère. La dispersion et la sédimentation de ces partic-

ules de téphra peuvent avoir des impacts significatifs tels que les dégâts d’infrastructures,

la pollution de l’écosystème et la paralysie de secteurs économiques et liés aux trans-

ports. Des éruptions récentes (par exemple 2010 Eyjafjallajökull, Islande; 2021

Cumbre Vieja, Espagne) ont montré que même des événements d’intensité modérée

peuvent affecter notre société de façon significative. De nombreux moyens ont été

mis en oeuvre dans le but d’améliorer les modèles de transport et dispersion de cen-

dres volcaniques (Volcanic Ash Transport and Dispersal Models (VATDMs)) utilisés

pour la prévision nécessaire à la gestion de crises liées aux éruptions volcaniques.

Des observations de terrain ainsi que des expériences en laboratoire ont mon-

tré que la sédimentation de téphras peut être significaivement affectée par les mé-

canismes de sédimentation de groupe provoquant le dépot prématuré de cendre

(c’est-à-dire le dépôt de particules < 2 mm). Ceci comporte d’importantes impli-

cations pour la dispersion et les impacts associés. En effet, la quantité de cendres

dans l’atmosphère peut être surestimée par les VATDMs ne prenant pas en compte

les processus provoquant la sédimentation prématurée. Ces mécanismes incluent

l’agrégation de particules mais aussi les instabilités gravitationelles générées par

sédimentation (settling-driven gravitational instabilities (SDGIs)) ayant la forme de

colonnes de cendres verticales. L’agrégation de cendres volcaniques a été documen-

tée durant les dernières décennies alors que les SDGIs restent très peu décrites, au

même titre que la combination des deux phénomènes. Les objectifs principaux de ce

mémoire de thèse sont: i) le développement d’un modèle numérique précis capable

de simuler la dynamique des SDGIs; ii) l’utilisation du modèle parallèlement aux

études expérimentales et de terrain, dans le but d’étudier les paramètres contrôlant

la formation de SDGIs; et iii) combiner la modelisation à la fois de l’agrégation

et des SDGIs afin de mieux interpréter leur rôle sur la sédimentation prématurée.



xviii Résumé en Français

Premièrement, un modèle monophasique a été developpé au moyen d’une nouvelle

approche mettant en oeuvre un modèle Lattice Boltzmann resolvant l’écoulement

fluide, et un schéma en différences finies de type Weighted Essentially Non Oscilla-

tory (WENO) pour résoudre l’équation de transport des particules. Le modèle est

ensuite validé grâce à des comparaisons avec des travaux théoriques et expérimen-

taux. Deuxièmement, le modèle est appliqué à des configurations expérimentales

et naturelles dans le but d’étudier l’effet de paramètres tels que la concentration

en particules mais aussi leur taille. J’ai découvert qu’augmenter la concentration

en particules accroît le développement de SDGIs alors qu’augmenter la taille des

particules au delà d’une valeur seuil à tendance à annihiler le phénomène. L’étude

a aussi révélé que le nombre de Grashof, habituellement utilisé pour caractériser

ce type d’instabilité, est dix fois plus grand que la valeur suggérée par l’analogie

au cas thermique. L’ajout du cisaillement a également confirmé que les SDGIs sont

capables de produire une signature au sol similaire à celle donnée par l’agrégation de

cendres. Troisièmement, un schéma numérique décrivant l’agrégation a été intégré

au modèle, le but étant l’étude de possibles effets de l’agrégation sur les SDGIs. Des

simulations ont montré que l’agrégation renforcait tous les modes de sédimentation

incluant la sédimentation individuelle ainsi que les SDGIs. A l’inverse, la turbu-

lence générée dans les SDGIs peut aussi favoriser l’agrégation de cendres. Enfin,

un modèle diphasique a également été développé en parallel. Ce modèle résout le

mouvement de particules individuellement et étant donné le coût numérique associé,

l’utilisation de ce modèle est limité à l’étude de processus à petite échelle mettant

en jeu un nombre raisonnable de particules.

Mes investigations numériques ont démontré que la formation de SDGIs à la

base de nuages volcaniques est contrôlée par plusieurs paramètres tels que la con-

centration en particules, leurs tailles mais aussi le cisaillement induit par le vent.

L’agrégation de cendres volcaniques ainsi que les SDGIs présentent la même signa-

ture au sol et les deux procédés se renforcent mutuellement. Cependant, des futurs

travaux sont nécessaires concernant les effets de la turbulence, les études analytiques

sur la vitesse verticale des fingers ainsi que le développement d’un paramétrage pour

modéliser la perte en cendres fines liée aux SDGIs dans les nuages volcaniques.



Chapter 1

Introduction

Volcanic eruptions are among the most drammatic natural events, not only on Earth

but also on other rocky extraterrestrial bodies and are associated with the expulsion

of material (magma) coming from the depth. In the case of explosive volcanic erup-

tions, large quantities of magma fragments (tephra) are ejected in the atmosphere

and dispersed over wide areas, depending on their sizes [Bonadonna et al., 2015a].

Ultimately, the dispersal and sedimentation of tephra may cause a wide range of haz-

ards at both local and global scales. Recent events have demonstrated the extent of

the impacts associated with tephra dispersal and sedimentation. Evidently, we can

mention the different disruptions (especially to air traffic) subsequent to the 2010

eruption of Eyjafjallajökull (Iceland) which affected many countries worldwide and

caused a financial loss of more than a billion euros [Lund and Benediktsson, 2011;

Sammonds et al., 2010]. Another event, more recent, is the eruption of the Cumbre

Vieja volcano in the Canary islands in 2021, which was associated with damage to

buildings and infrastructure. Those examples clearly highlight the potential of the

tephra to impact a variety of public and economic sectors at multiple temporal and

spatial scales. Tephra particles can be divided in categories depending on their size

and thus the associated residence time in the atmosphere. The first class of tephra

concerns ejected material of size ≥ 64 mm (Bombs and Blocks). Given their size,

the area of influence is a few kilometers around the volcano. Lapilli range from 2 to

64 mm and affect an area of few tens of kilometers. Finally, coarse ash of size 63 µm

to 2 mm and fine ash of size ≤ 63 µm can be transported for hundreds to thousands

kilometers from the volcanic source. Considering the wide range of distances of in-

fluence (from few km to thousands km) and the wide spectrum of potential threat
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(e.g. air traffic, infrastructures, building, human health, agriculture) [Guffanti et al.,

2008; Prata and Rose, 2015; Spence et al., 2005; Jenkins et al., 2015; Gudmundsson,

2011; Wilson et al., 2011], having a complete understanding of the dispersal and

sedimentation of tephra in the atmosphere is crucial.

Given that lapilli and ash are transported at long distance, a fundamental ques-

tion concerns how they sediment to the ground. The terminal velocity of such

particles is a relevant parameter describing the sedimentation that can be affected

by many processes. When lapilli or volcanic ash settle individually, their terminal

velocities are determined according to physical parameters such as the shape and

drag coefficient (which quantifies the resistance of an object immersed in a fluid

flow). Several studies have investigated on the shape of lapilli and volcanic ash in

order to characterise how they influence their terminal velocities [Bagheri et al.,

2016; Liu et al., 2015; Riley et al., 2003; Saxby et al., 2018]. In parallel, other

studies have focused on the accurate determination of the drag coefficient [Bagheri

et al., 2015; Dioguardi et al., 2018; Ganser, 1993; James et al., 2003]. Nevertheless,

specific sedimentation processes can also affect the terminal velocity. These sedi-

mentation processes, that can be described as collective settling, can increase the

terminal velocity by clustering particles in bigger structures (particle aggregates)

[Gilbert and Lane, 1994; James et al., 2002, 2003; Durant et al., 2009; Rose and

Durant, 2011; Brown et al., 2012; Van Eaton et al., 2012; Van Eaton and Wilson,

2013; Burns et al., 2017; Vogel et al., 2019; Rossi et al., 2021; Del Bello et al., 2017]

or through settling-driven gravitational instabilities (SDGIs). SDGIs contribute to

the early deposition of fine ash with similar outcomes as aggregation (e.g., grain-

size bimodality, premature sedimentation of fine ash). These instabilities generate

downward-moving ash columns (fingers) which grow from the base of the ash cloud

[Carazzo and Jellinek, 2012; Manzella et al., 2015; Scollo et al., 2017]. Neglecting

collective sedimentation of fine ash (i.e. the premature removal of fine ash from the

cloud) causes the underestimation of the associated concentration in the volcanic

cloud [Scollo et al., 2008]. A detailed understanding and physical description of the

dynamics of collective settling is crucial to improve the atmospheric dispersal mod-

els used for forecasting and risk management [Jones et al., 2007; Bonadonna et al.,
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2012; Folch, 2012; Folch et al., 2020; Prata et al., 2021; Del Bello et al., 2017]. In

this thesis we will specifically treat the description and dynamics of SDGIs including

their interaction with particle aggregation.

1.1 Field and experimental characterisation of settling-

driven gravitational instabilities

By increasing their terminal velocity, SDGIs can explain the depletion of fine ash

observed in large volcanic clouds far from the source [Hoyal et al., 1999; Carazzo

and Jellinek, 2013; Durant, 2015; Gouhier et al., 2019]. Despite the various efforts

dedicated to volcanic ash aggregation [Gilbert and Lane, 1994; James et al., 2002,

2003; Durant et al., 2009; Rose and Durant, 2011; Brown et al., 2012; Van Eaton

et al., 2012; Van Eaton and Wilson, 2013; Burns et al., 2017; Vogel et al., 2019;

Rossi et al., 2021; de’Michieli Vitturi and Pardini, 2021], the attention regarding

SDGIs remains relatively poor.

SDGIs affect the sedimentation of particles in various fields such as river plumes

[Hoyal et al., 1999; Davarpanah Jazi and Wells, 2016; Henniger and Kleiser, 2012],

sedimentation of tephra in oceans [Carey, 1997; Manville and Wilson, 2004; Jacobs

et al., 2013] and volcanic clouds [Carazzo and Jellinek, 2012; Manzella et al., 2015;

Scollo et al., 2017]. SDGIs during volcanic events are poorly documented and one of

the first mentions is given in Bonadonna et al. [2002] where they observed “finger-like

protrusions” in the sedimentation of volcanic ash during the September 1997 erup-

tion of Soufrière Hills (Montserrat) volcano. Later, some “instability structures”

have been described in Bonadonna et al. [2005] and characterised as processes that

potentially enhance the deposition of fine volcanic ash below a weak volcanic plume

from Ruapehu (New-Zealand). Additionally and more recently, the development of

ash fingers has been observed during the 23 November 2013 lava fountain of Etna

volcano (Italy) [Andronico et al., 2015; Scollo et al., 2017]. However, SDGIs have

been quantitatively studied for the first time during the 2010 eruption of Eyjafjal-

lajökull (Iceland) using both video acquisitions and field observations of the tephra

deposit [Manzella et al., 2015]. Manzella et al. [2015] observed the formation of ash
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fingers at the base of the volcanic cloud ∼ 1.4 km from the vent before reaching

the ground approximately 10 km downwind. This distance between initiation and

deposition obviously depends on the fingers vertical velocity, which itself depends

on parameters such as the particle concentration, the wind velocity, etc... Then, in

order to constrain the dynamics underlying SDGIs, several characteristics related to

fingers have been measured:

• the average finger width : 168 ± 26 m,

• the average finger spacing : 180 ± 60 m,

• the downward finger velocity is 1 ± 0.5 m.s−1 while the horizontal velocity is

about 8.5 ± 0.8 m.s−1,

Additionally, the ground signature of premature sedimentation has been observed

in the resulting deposits [Bonadonna et al., 2011]. Indeed, quantitative studies

of the deposit at different distances (i.e. at ∼ 2, 10 and 20 km from the vent)

have been performed and the one at ∼ 10 km revealed the presence of structures

such as aggregates, as well as bimodal deposits with coarse (d ≈ 500 µm) and fine

(d ≈ 150 µm) modes. As 10 km also corresponds to the distance where fingers

have been observed to reach the ground, the mode associated with the fine fraction

in the bimodal deposits can be attributed to both processes enhancing premature

sedimentation: aggregates breaking upon impact and fine ash transported within

SDGIs. The fact that aggregates have been observed at the same location where

SDGIs have supposedly reached the ground highlights a fundamental question about

a possible relation between the two phenomena, especially if particle aggregation

could happen both in the volcanic plume and in ash fingers.

Some experimental investigations have also been performed in the laboratory in

order to constrain the parameters describing SDGIs [Cardoso and Zarrebini, 2001;

Hoyal et al., 1999; Carazzo and Jellinek, 2012; Scollo et al., 2017; Manzella et al.,

2015]. Using the results of experiments involving a layer of particle suspension placed

above a denser fluid layer, Hoyal et al. [1999] derived a critical criterion based on the

ratio between gravitational and viscous forces that needs to be satisfied in order to

trigger SDGIs. Alongside this criterion, a strong coupling between particles and the
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carrier fluid is required, which is the case in numerous volcanic clouds as suggested

by Carazzo and Jellinek [2012]. Scollo et al. [2017] performed dedicated experiments

using glass beads and also samples of volcanic ash. Those experiments in a static

configuration also involved a two-layer system where a particle suspension is placed

above a denser sugar solution. The main goal was to focus on the influence of the

initial particle concentration and size. More recently, Fries et al. [2021] used the

same experimental conditions to extend the range of concentrations, making use

of sophisticated techniques to provide interesting insights about fingers dynamics.

They particularly showed that the initial particle concentration has a significant

influence on the number and also the velocity of fingers. Also, the particle concen-

tration in the cloud depends on parameters such as the initial amount of particles

ejected out of the vent and on the ambient fluid entrained. As these time-dependent

parameters are complex to assess, this shows the difficulty in identifying specific

volcanoes and/or types of eruption likely to trigger fingers. However, Fries et al.

[2021] also derived a dimensionless number that depends on the measurable cloud

mass-loading and thickness, which can be used to assess the potential for SDGIs to

form at the base of volcanic clouds.

1.2 Theoretical studies on settling-driven gravita-

tional instabilities

Carazzo and Jellinek [2012] mentioned SDGIs as "Rayleigh-Taylor-type" instabilities

that can strongly modify the dynamics of umbrella clouds. Indeed, the mechanisms

involved during the development of SDGIs resemble the classical Rayleigh-Taylor

instabilities (RTIs). RTIs are fingering instabilities that grow when a perturbation

is applied at the unstable interface between a dense fluid placed above a lighter one

[Sharp, 1984; Chandrasekhar, 1961]. However, in the case of SDGIs, the mechanism

is different as the settling of particles play an important role, especially in our

cases where the configurations are initially density-stable . Typically, considering

a particle-laden layer placed above a denser fluid layer, the settling of particles

across the density interface creates a Particle Boundary Layer (PBL), unstable if



6 Introduction

the bulk density is greater than the lower layer density [Hoyal et al., 1999; Carazzo

and Jellinek, 2012]. Thus, a quantitative condition to trigger SDGIs can be based

on the dimensionless Grashof number Gr which describes the ratio between the

gravitational and viscous forces

Gr =
g′δ3

ν2
, (1.1)

where ν is the effective kinematic viscosity of the PBL, δ a characteristic length

scale and g′ the reduced gravity of the PBL g′ = g(ρPBL − ρf )/ρf , g = 9.81 m.s−1

being the gravitational acceleration and ρPBL and ρf the density of the PBL and the

ambient, respectively. Hoyal et al. [1999] made an analogy with the thermal case

(i.e. Rayleigh-Bénard convection) [Turner, 1973] and suggested that the growth

of instabilities occurs whenever the Grashof number becomes greater than a critical

value Grc=103. Carazzo and Jellinek [2012] suggested to consider the PBL thickness

as characteristic length scale which ultimately gives the critical PBL thickness for

the development of SDGIs

δPBL = 10

(
ν2

g′

) 1
3

. (1.2)

In addition, dimensional analyses have been used to predict that the downward

propagation velocity of the generated fingers is function of δ and is given by

Vf = g′
2
5

[
πVsδ

2
PBL

4

] 1
5

, (1.3)

where Vs is the particle individual settling velocity [Hoyal et al., 1999; Carazzo and

Jellinek, 2012].

Whilst the critical Grashof number provides a criterion for the formation of fin-

gers, there is also another simple criterion. In fact, fingers form when the growth

rate of the instability at the particle interface is greater than the settling velocity

of individual particles [Carazzo and Jellinek, 2012]. Furthermore, other theoreti-

cal studies have been conducted in order to estimate the instability growth rate

related to SDGIs. They involve linear stability analyses (LSA) of the governing

equations of the problem, focusing on the early linear stage of the instability. LSA

consist of defining a field equation-satisfying base state for each of the unknown

fields in a problem and then applying an infinitesimally small perturbation to each
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of these fields. The equations are then expanded to linear order in the perturbation,

with higher order terms assumed to be negligible. By assigning the perturbation

to have the form of a complex waveform, the system of equations reduces to an

eigenvalue problem, which can be solved to determine which wavelengths will grow

or decay [Burns and Meiburg, 2012; Yu et al., 2013; Chandrasekhar, 1961; Faren-

zena and Silvestrini, 2017]. Interestingly, such analyses have especially revealed that

the instability growth rate strongly depends on the particle individual velocity and

consequently, on the PBL thickness. Some have also highlighted the limits between

instabilities generated by particle settling and by double-diffusive effects [Burns and

Meiburg, 2012].

1.3 Numerical modelling settling-driven gravitational

instabilities

In addition to the field, experimental and theoretical investigations on SDGIs, nu-

merical studies have also provided a significant contribution. Whilst no numerical

studies have been specifically dedicated to SDGIs from volcanic clouds, numerical in-

vestigations on the particle-induced Rayleigh-Taylor instability have been performed

[Burns and Meiburg, 2014; Yu et al., 2014; Jacobs et al., 2013; Chou and Shao, 2016;

Yamamoto et al., 2015]. Indeed, several strategies have been developed in order to

simulate the process, including fully Eulerian (grid-based) and Euler-Lagrange (EL)

models (discrete Lagrangian particles coupled with fluid). In the Eulerian models,

the particle suspension is modelled as a continuum-phase for which the transport is

described by an advection-diffusion law.

In order to accurately resolve sharp gradients, Burns and Meiburg [2014] per-

formed direct numerical simulations using high-order finite difference schemes (up to

tenth order) for the spatial discretisation and Runge-Kutta/Crank-Nicolson for the

time stepping. They showed that the effective settling velocity of particles within

fingers is several order of magnitude greater than the individual settling velocity.

Yu et al. [2014] used a completely different strategy. They applied a pseudo-

spectral method involving Fourier expansions for the variables in the two horizontal
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directions while a rational collocation method (with the associated Chebyshev grid

transformation) is used for the vertical direction [Cortese and Balachandar, 1995].

Here again, a Runge-Kutta/Crank-Nicolson scheme has been used for the time step-

ping. Even though their investigations include also double-diffusive effects, the

crucial outcomes are that the dynamics of the generated instabilities are controlled

by the individual settling velocity of particles, the initial particle concentration in

the upper layer and the ratio between the species diffusivities.

Furthermore, Jacobs et al. [2013] developed a multiphase model in order to

simulate the sedimentation of volcanic ash in water as described in Carey [1997].

An interesting aspect is that the multiphase system is solved with a finite element

method coupled with an adaptive mesh refinement which allows to dynamically

resolve the grid in specific region of interest.

Finally, the works of Yamamoto et al. [2015] and Chou and Shao [2016] bridge

the gap between the fully Eulerian and EL solvers. Indeed, Yamamoto et al. [2015]

performed both Eulerian and EL simulations in order to constrain a dimensionless

number derived by Harada et al. [2013] which illustrates the transition between

particle-like and fluid-like behaviour for particle-induced Rayleigh-Taylor instabili-

ties. This number has been derived using a narrow configuration (Hele-Shaw cell). It

is function of the particle diameter, the particle volume fraction and the instability

wavelength in order to provide a transition between the fluid-like and particle-like

behaviour. On the one hand, they also made use of finite-difference/Crank-Nicolson

schemes to solve the Navier-Stokes equations as well as the advection-diffusion,

applying the interface tracking method which involves binary markers in order to

differentiate the pure fluid from the particle suspension. On the other hand, the la-

grangian method solves explicitly the particle motion equation using the point-force

model [Bosse et al., 2005] while the fluid motion is treated in the same way as for

the eulerian model. Regarding the work of Chou and Shao [2016], the goal was to

compare the dynamics of RTIs using both fully eulerian and EL. The fluid solver

for both eulerian and EL is defined by a finite-volume method while the tracking

of particles for the EL model is performed using a cell-waise particle transport al-

gorithm [Chou et al., 2015]. Then, the use of the EL model allowed to highlight
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that the shape of the vortex ring upstream a finger (and ultimately its dynamic) is

strongly affected by the non-uniformity in the particle distribution caused by fluid

entrainment.

1.4 Parametrisations of SDGIs for VATDMs

There is a strong need to build a comprehensive parametrisation of SDGIs, that

prematurely remove fine ash from the cloud, in order to improve the calculations of

ash dispersal in the atmosphere. Having a good understanding about the dynamics

of SDGIs with the contribution of numerical, theoretical and experimental inves-

tigations is crucial for the improvement of Volcanic Ash Transport and Dispersal

Models (VATDMs) [Folch, 2012]. Indeed, once tephra is present in the atmosphere,

subsequent dispersion can be modelled using VATDMs such as PUFF [Searcy et al.,

1998], NAME [Jones et al., 2007], VOL-CALPUFF [Barsotti and Neri, 2008], HYS-

PLIT [Stein et al., 2015] and FALL3D [Folch et al., 2020] (see [Bonadonna and

Costa, 2013; Bonadonna et al., 2015a; Folch, 2012] for reviews). While ash aggre-

gation are included in some dispersal models such as FALL3D [Folch et al., 2020],

very recently in NAME [Beckett et al., 2022] or even TephraProb used for long-term

hazard assessment [Biass et al., 2016], there is no effect of SDGIs included. For

instance, in the two former models that are respectively eulerian and lagrangian,

aggregation is treated by solving a Population Balance equation (PBE) [Kumar

and Ramkrishna, 1996; Kumar et al., 2006; Pesmazoglou et al., 2016; Rossi, 2018].

TephraProb allows to estimate the ground deposit of ash by applying an analytical

solution of the transport equation and the consideration of aggregation is given by

an empirical parameter which represents a weight fraction of particles that forms

aggregates [Bonadonna et al., 2002; Cornell et al., 1983].

1.5 Objectives of this work

The previous sections highlighted the fact that SDGIs and the associated effects on

volcanic ash sedimentation remain poorly documented. The contribution of numer-

ical investigations, alongside field and experimental works, helps to address funda-
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mental questions regarding the dynamics of SDGIs. This thesis therefore seeks to

answer the following questions:

1. How to build a numerical model in order to accurately study the dynamics of

SDGIs?

2. What are the conditions to trigger the formation of SDGIs?

3. What are the parameters that control the process?

4. How do SDGIs affect the sedimentation of fine ash and the associated accu-

mulation on the ground?

5. What are the effects of external parameters such as the ambient wind?

6. How is the volcanic cloud dynamics affected by the presence of SDGIs?

7. Is there any relation between ash aggregation and SDGIs and is it possible to

somehow distinguish their effects?

8. Finally, how to gather various insights into a general and comprehensive

parametrisation of SDGIs?

This thesis consists of four main chapters. Chapter 2 presents the paper pub-

lished in the special issue of Frontiers in Earth Science, for the special research topic:

"High-Performance Computing in Solid Earth Geohazards: Progresses, Achieve-

ments and Challenges for a Safer World". This paper describes the 3D hybrid

numerical model developed to investigate the dynamics of SDGIs. Indeed, this work

presents a novel approach by coupling the Lattice Boltzmann Method with a low-

diffusive finite difference scheme. The model is validated thanks to comparisons with

experimental data and theoretical studies. The model confirmed the experimental

observations that suggested a critical Grashof number for the triggering of SDGIs

an order of magnitude greater than previous studies. The model also provides some

insights into the ground signature of SDGIs, especially in relation to the particle

accumulation rate.
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Chapter 3 extends the application of the 3D model in order to study the ef-

fect of shear on the development of SDGIs. The shear can be generated by both

gravitational spreading (gravity currents) and wind advection (air flow arround the

volcanic cloud). A quick validation is performed by comparisons of simulations with

experimental and theoretical results for the simple spreading of particle-free gravity

currents. Then the sedimentation is studied with particle bearing simulations for

different spreading velocities and the effect on the cloud geometry is highlighted.

Finally, a case study related to a recent volcanic event (i.e. the 2010 eruption of

Eyjafjallajökull (Iceland)) has been set up in order to investigate on the effect of

wind shear and also on the characteristic ground signature of SDGIs. The main

outcome being that SDGIs can produce a bimodal grainsize in the deposit, without

aggregation.

In Chapter 4, we describe how the Smoluchowski coagulation equation is im-

plemented with the 3D numerical model. The main goal is to study the possible

relation between particle aggregation and SDGIs. Some validations are performed

comparing with an analytical solution of the Smoluchowski equation for a specific

case. Then, we performed a full simulation in order to combine SDGIs and aggrega-

tion and we investigate their mutual effects. Specifically, by observing the particle

accumulation rate on the ground, we show that aggregation enhances both sedimen-

tation modes (i.e. individual and collective settling). I also demonstrate that the

turbulence inside fingers has the potential to cause aggregation.

Finally, the last Chapter 5 is a methods chapter which describes the two-phase

model developed in parallel of the single-phase model presented in the Chapter 2.

This model combines the use of the Lattice Boltzmann Method (in order to solve

the fluid motion) with lagrangian point particles. Indeed, the model solves the

motion equation for each individual particles using the Verlet integration method,

allowing accuracy and performance. Additionally, this model includes drag effects

which allows a full description of the coupling between fluid and particles. The

main outcome is that, given the numerical cost underlying the simulation of a large
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number of particles, the use of this model is limited to the study of the dynamics of

small structures.



Chapter 2

Modelling settling-driven gravitational

instabilities at the base of volcanic clouds

using the lattice boltzmann method1

2.1 Introduction

Explosive volcanic eruptions can inject large quantities of ash into the atmosphere,

generating multiple hazards at various spatial and temporal scales [Blong, 2000;

Bonadonna et al., 2021]. Subsequent volcanic ash dispersal and sedimentation can

strongly disrupt air traffic [Guffanti et al., 2008; Prata and Rose, 2015], affect in-

habited areas [Jenkins et al., 2015; Spence et al., 2005], and impact ecosystems and

public health [Gudmundsson, 2011; Wilson et al., 2011]. A good understanding of

ash dispersal is critical for effective forecasting and management of the response

to these hazards. Modern volcanic ash transport and dispersal models have now

reached high levels of sophistication [Bonadonna et al., 2012; Folch, 2012; Folch

et al., 2020; Jones et al., 2007; Prata et al., 2021] but do not include all of the physi-

cal processes affecting ash transport, such as particle aggregation and settling-driven

gravitational instabilities [e.g. Durant, 2015]. Various studies have highlighted the

need to take these processes into account by revealing discrepancies between field

measurements and numerical models [Scollo et al., 2008], premature sedimentation
1 Published as: Lemus, J., Fries, A., Jarvis, P. A., Bonadonna, C., Chopard, B., and Lätt, J.
(2021). Modelling Settling-Driven Gravitational Instabilities at the Base of Volcanic Clouds Using
the Lattice Boltzmann Method. Front. Earth Sci. 9. doi:10.3389/feart.2021.713175.
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of fine ash leading to bimodal grainsize distributions not only related to particle

aggregation [Bonadonna et al., 2011; Manzella et al., 2015; Watt et al., 2015] and

significant depletion of airborne fine ash close to the source [Gouhier et al., 2019].

Alongside particle aggregation, settling-driven gravitational instabilities con-

tribute to the early deposition of fine ash with similar outcomes (e.g. grainsize bi-

modality, premature sedimentation of fine ash). These instabilities generate downward-

moving ash columns (fingers) which grow from the base of the ash cloud (Figure 2.1)

[Carazzo and Jellinek, 2012; Manzella et al., 2015; Scollo et al., 2017]. This phe-

Figure 2.1: Gravitational instabilities observed at the base of a volcanic plume during (A)
the 2011 Gamalama eruption. (Credit: AP) and (B) the 2010 eruption of Eyjafjallajökull
[Manzella et al., 2015]

nomenon has the potential to enhance the sedimentation rate of fine ash beyond the

terminal fall velocity of individual particles, reducing the residence time of fine ash

in the atmosphere. Thus, a rigorous understanding of these processes is important

in order to build a comprehensive parametrisation that can be included in dispersal

models [Bonadonna et al., 2012; Durant, 2015; Folch, 2012; Scollo et al., 2010].

Settling-driven gravitational instabilities should be fully characterized as they

also have the potential to impact other ash-related processes. First, the high particle

concentration and the turbulence induced by fingers (i.e., the intrinsic turbulence

within fingers as well as the shear generated during the downward motion) may

enhance particle aggregation by increasing the collision rate of particles [Costa et al.,

2010; Scollo et al., 2017]. This process could happen regardless of plume height and

atmospheric conditions contrary to ice nucleation for example, which requires specific

conditions [Maters et al., 2020]. Second, as settling-driven gravitational instabilities

trigger premature deposition of fine ash, this may affect the residence time of other

elements in the plume. Indeed, fine ash is involved in some geochemical processes
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such as the adsorption of volatiles (e.g., sulphur or halogens) [Bagnato et al., 2013;

Zhu et al., 2020]. Considering that the sedimentation rate of volatiles depends on

the sedimentation rate of fine ash, the possible premature deposition of volatiles

can be explained by the presence of both settling-driven gravitational instabilities

and particle aggregation. Finally, fine ash has been shown to play an important

role in the volcanic cloud heating through radiative processes that may affect the

dynamics [Niemeier et al., 2009; Stenchikov et al., 2021]. Thus, in order to model

the large-scale transport of volcanic clouds, there is a need to estimate accurately

the amount of fine ash within the cloud, and, therefore, to constrain all size-selective

sedimentation processes such as settling-driven gravitational instabilities.

Settling-driven gravitational instabilities occur at the interface between an upper,

buoyant particle suspension, e.g., a volcanic ash cloud, and a lower, denser fluid, e.g.,

the underlying atmosphere [Burns and Meiburg, 2012; Davarpanah Jazi and Wells,

2016; Hoyal et al., 1999; Manzella et al., 2015]. Whilst the initial density configura-

tion is stable, particle settling across the density interface creates a narrow unstable

region called the particle boundary layer (PBL) [Carazzo and Jellinek, 2012]. Once

this attains a critical thickness [Hoyal et al., 1999], a Rayleigh-Taylor-like instabil-

ity [Chandrasekhar, 1961; Sharp, 1984] can form at the interface between the PBL

and the lower layer, generating finger-like structures which propagate downwards.

A further critical condition for instability is that the particle settling velocity Vs

must be smaller than the growth rate of gravitational instabilities Vf [Carazzo and

Jellinek, 2012]. Thus, the occurrence of the instability enhances the sedimentation

rate [Manzella et al., 2015; Scollo et al., 2017]. Alternatively, if Vs is greater than the

propagation velocity of fingers Vf , then particles settle individually before a PBL

can form and no instability occurs.

Settling-driven gravitational instabilities have been widely studied in laboratory

experiments that simulate various natural settings. Many experiments have consid-

ered an initial two-layer system, where the particle suspension is initially separated

from the underlying denser layer by a removable horizontal barrier [Davarpanah Jazi

and Wells, 2016; Fries et al., 2021; Harada et al., 2013; Hoyal et al., 1999; Manzella

et al., 2015; Scollo et al., 2017] whilst other experiments have involved injection of
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the suspension into a density-stratified fluid at its neutral buoyancy level [Carazzo

and Jellinek, 2012; Cardoso and Zarrebini, 2001]. Similar instabilities can also be

studied by allowing fine particles to sediment through the free surface between water

and air [Carey, 1997; Manville and Wilson, 2004]. Additionally, dimensional analysis

has been used to predict that the downward propagation velocity of the generated

fingers is given by [Carazzo and Jellinek, 2012; Hoyal et al., 1999]

Vf =

[
g

(
ρPBL − ρf

ρf

)] 2
5
[
πVsδ

2
PBL

4

] 1
5

, (2.1)

where ρPBL is the PBL bulk density, ρf the underlying fluid density, g = 9.81 m.s−2

the gravitational acceleration and δPBL the PBL thickness, which by analogy with

thermal convection [Turner, 1973] is taken to be [Hoyal et al., 1999]

δPBL =

(
Grcν

2

g′

) 1
3

, (2.2)

where g′ = g (ρPBL − ρf ) /ρf , ν the kinematic viscosity and Grc a critical Grashof

number (see Table 2E.1 in 2.E for all acronyms and symbols used in this paper).

The reduced gravity g′ describes the change in the gravitational acceleration due

to buoyancy forces. Continuing the analogy with thermal convection, it has been

proposed that Grc = 103 [Hoyal et al., 1999], although recent experimental obser-

vations suggests Grc ≈ 104 may be more accurate [Fries et al., 2021]. Therefore,

for known particle and fluid properties, it is possible to predict whether collective

settling will occur and fingers subsequently form using the condition Vf > Vs [Hoyal

et al., 1999]. According to this relation, the limit between collective and individual

settling occurs when Vf = Vs. However, the transition is likely to be smooth, with

a transitionary regime where both fluid-like and particle-like settling occur at the

same time, as suggested by Harada et al. [2013].

For the initial two-layer configuration, Hoyal et al. [1999] also developed a series

of analytical mass-balance models predicting the average particle concentration in

the lower layer depending on whether the upper and lower layers were convecting or

not. In the case of a quiescent upper layer and a convective lower layer (convection

initiated by finger propagation), the evolution of the mass of particles in the lower
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layer M2 depends on the balance between the mass flux of particles arriving from

the upper layer Ṁin and the mass flux of particle leaving by sedimentation Ṁout

dM2

dt
= Ṁin − Ṁout, (2.3)

where t is time. Assuming that M2 (t) = Ah2C2 (t), where C2 (t) is the average

particle concentration in the lower layer, h2 the lower layer thickness and A the

horizontal cross section of the tank, Hoyal et al. [1999] solved this equation using

Ṁin = AVsC1 (0), Ṁout = AVsC2 (t) and the initial condition C2 (0) = 0. Thus

C2 (t) = C1 (0)
[
1− e

−Vs
h2

t
]
, (2.4)

where C1 (0) is the initial particle concentration in the upper layer.

Further studies of settling-driven gravitational instabilities have taken theoretical

approaches, such as using linear stability analyses to predict the growth rate and

characteristic wavelengths of the instability at very early stages [Alsinan et al., 2017;

Burns and Meiburg, 2012; Yu et al., 2013]. Moreover, various numerical models

simulating settling-driven gravitational instability have also been developed [Burns

and Meiburg, 2014; Chou and Shao, 2016; Jacobs et al., 2013; Keck et al., 2021;

Yamamoto et al., 2015]. Most numerical approaches to this problem have used

continuum-phase models, where the coupling between particles and fluid is strong

enough to describe them as a single-phase [Burns and Meiburg, 2014; Chou and Shao,

2016; Yu et al., 2014]. This Eulerian description is valid under the assumptions of

sufficiently small particles and a large enough number of particles such that they

remain fully coupled with the fluid (i.e. the drag force is in equilibrium with the

gravitational force). The condition on the particle size can be quantified through

the Stokes number [Burgisser et al., 2005; Roche and Carazzo, 2019], one possible

definition of which is

St =
ρpD

2
pU

18µL
, (2.5)

where ρp is the particle density, Dp the particle diameter, µ the dynamic viscosity

and U and L characteristic velocity and length scales of the flow. For St < 1,

the particles and fluid can be considered coupled and, providing there are enough
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particles, the continuum approach is valid.

The Eulerian description can be extended to multiple phases in order to simu-

late their interaction (e.g., gas-liquid interaction) using adaptive mesh refinements

to resolve the phase interfaces [Jacobs et al., 2013]. However, for large particle di-

ameters and small particle volume fractions, collective behaviour no longer occurs

and the continuum-phase method cannot be applied. In this case, there is a need

to explicitly model particle motion, taking the drag force into consideration [Chou

and Shao, 2016; Yamamoto et al., 2015].

This paper presents an innovative method to implement a continuum model by

coupling the Lattice Boltzmann Method (LBM) with a low-diffusivity finite differ-

ence (FD) scheme. This model takes advantage of the LBM capabilities to simulate

complex flows through uniform grids and thus, the ease of coupling with finite dif-

ference methods. This hybrid model has been validated by comparing the results

with those from linear stability analysis and laboratory experiments [Fries et al.,

2021]. The validated model then allows us to gain new insights into the funda-

mental processes by exploring experimentally-inaccessible regions of the parameter

space. We first describe the general framework and governing equations that de-

scribe settling-driven gravitational instabilities, then the configuration of the val-

idatory experiments to which we apply the model. Next, we propose a numerical

strategy involving a hybrid model in order to solve the system of equations. We then

go on to present the linear stability analysis before finally describing and discussing

the results of our simulations.

2.2 Methods

2.2.1 Problem formulation

The model consists of a two-way coupling between fluid momentum, fluid density,

and particle volume fraction, based on the assumption that the particle suspension

can be represented by a continuum concentration field. Moreover, particles have

no inertia (drag force in equilibrium with the gravitational force) such that the

forcing term in the fluid momentum equation is equivalent to a buoyant force term
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(Boussinesq approximation), which depends on the particle volume fraction ϕ (x⃗, t)

[Burns and Meiburg, 2014; Chou and Shao, 2016; Yu et al., 2014]. ϕ (x⃗, t) satisfies

the advection-diffusion-settling equation

∂ϕ

∂t
+ ∇⃗.[ϕ(u⃗f − Vse⃗z)] = Dc∇2ϕ, (2.6)

where u⃗f (x⃗, t) is the fluid velocity, Dc the particle diffusion coefficient, e⃗z the vertical

unit vector and x⃗ = (x, y, z) the position coordinate. The particle settling velocity

Vs can be fixed or allowed to be a function of other parameters. Its formulation

will be set later according to the assumptions of the flow configuration. The fluid is

considered incompressible meaning ∇⃗.u⃗f = 0. Thus, equation 2.6 becomes

∂ϕ

∂t
+ (u⃗f − Vse⃗z).∇⃗ϕ− ϕ∇⃗.(Vse⃗z) = Dc∇2ϕ. (2.7)

The particle settling velocity depends on the ambient fluid density ρ, which in

turn depends on any transported density-altering properties, such as temperature or

the concentration of a chemical species, e.g., the sugar in our validatory experiments

[Fries et al., 2021]. We incorporate the effect of a single density-altering property

on the fluid density through a classical advection-diffusion equation

∂ρ (ρ0, S)

∂t
+ u⃗f .∇⃗ρ (ρ0, S) = Ds∇2ρ (ρ0, S) , (2.8)

where ρ0 is a reference density of the carrier fluid, S the density-altering quantity

(temperature or concentration), and D the associated diffusion coefficient. Addi-

tionally, under the Boussinesq approximation, we assume that the density depends

linearly on S. The fluid momentum is modelled with the incompressible Navier-

Stokes momentum equation

∂u⃗f
∂t

+ (u⃗f .∇⃗)u⃗f = − 1

ρ0
∇⃗p+ ν∇2u⃗f + F⃗ , (2.9)

where p is the pressure and F⃗ the buoyant body force term. We complete the system

of equations by taking this force term to be a function of ϕ and ρ
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F⃗ =

[(
ρp − ρ0
ρ0

)
ϕ+

(
ρ

ρ0
− 1

)
(1− ϕ)

]
g⃗. (2.10)

The system of equations presented so far assumes that all particles are of uniform

size. In order to generalise to systems with polydisperse particle size distributions,

we consider N different particle concentration fields ϕi, where each one is associated

with a different size class and individually satisfies equation 2.7. Furthermore, the

body force term becomes

F⃗ =

[(
ρp − ρ0
ρ0

)
ϕtot +

(
ρ

ρ0
− 1

)
(1− ϕtot)

]
g⃗ (2.11)

where

ϕtot =
N∑
i=1

ϕi. (2.12)

2.2.2 Flow configuration and experiment description

Full details of the validatory laboratory experiments can be found in Fries et al.

[2021] but we summarise the essential details here. The experiments are performed

in a configuration identical to that of Manzella et al. [2015] and Scollo et al. [2017]

(Figure 2.2) and consist of a water tank divided into two horizontal layers, initially

separated by a removable barrier. The upper layer is an initially mixed particle

suspension, which represents the ash cloud, and the lower layer is a denser sugar

solution, analogue to the underlying atmosphere. The particles are spherical glass

beads with a median diameter of 41.5 ± 0.5 µm (measured using laser diffraction

with a Bettersizer S3 Plus) and a density ρp of 2519.4 ± 0.09 kg/m3 (measured using

helium pycnometry UltraPyc 1200e), and are sufficiently small to be well-coupled

with the fluid, whilst the initial particle concentration C1 (0) of the upper layer is

varied from 1 to 10 g/l i.e. for volume fractions from 3.97× 10−4 to 3.97× 10−3 (see

Table 2.1 for the conversion to particle volume fraction ϕ0). The lower layer density

is kept constant at ρf = 1008.4 kg/m3 (corresponding to a sugar concentration of

S0 = 35 g/l), always ensuring an initially stable density configuration.

Before starting an experiment, the upper layer is manually and carefully stirred
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using a brush. Then the barrier separating the two layers is immediately removed,

allowing particle settling through the interface. A PBL subsequently forms and fin-

ger formation is initiated. Experiments are illuminated from the side of the water

tank with a planar laser and recorded with a high-contrast camera. We measure

the vertical finger velocity by tracking the progression of the finger front with time.

Additionally, Planar Laser Induced Fluorescence (PLIF) [Crimaldi, 2008; Kooches-

fahani, 1984] and particle imaging are used to quantify the spatial distribution of

the fluid phase density and particle concentration.

Figure 2.2: Experimental setup used by Fries et al. [2021] and the initial density profiles
associated with the contributions from particles (blue dashed) and sugar (red dotted), as
well as the bulk density (black solid). The density of fresh water is given by ρ0

Application to flow configuration

We apply the general system of equations presented in section 2.2.1 to the config-

uration of the validatory experiments. The particles are spherical and sufficiently

small that their terminal settling velocity in water is given by the Stokes velocity

[Stokes, 1851]

Vs =
D2

pg [ρp − ρ (S)]

18µ
, (2.13)

where S is the sugar concentration and ρ = ρ0 (1 + αS), with α the sugar expansion

coefficient.
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Initial
particle

concentration
(g/l)

Volume
fraction

Particle
diameter

(µm)
zH (mm) zϕ (mm) zs (mm)

1 3.97× 10−4 40 12.11 2.59 0.67
2 7.94× 10−4 40 7.37 2.20 0.63
3 1.19× 10−3 40 5.47 1.99 0.61
4 1.59× 10−3 40 5.01 1.99 0.61
5 1.98× 10−3 40 4.20 1.84 0.60
6 2.38× 10−3 40 3.45 1.72 0.59
7 2.78× 10−3 40 3.25 1.70 0.60
8 3.18× 10−3 40 3.17 1.72 0.61
9 3.57× 10−3 40 3.01 1.71 0.62
10 3.97× 10−3 40 2.54 1.58 0.61
3 1.19× 10−3 25 - - -
3 1.19× 10−3 55 - - -
3 1.19× 10−3 70 - - -
3 1.19× 10−3 85 - - -
3 1.19× 10−3 100 - - -
3 1.19× 10−3 115 - - -
3 1.19× 10−3 130 - - -
9 3.57× 10−3 25 - - -
9 3.57× 10−3 55 - - -
9 3.57× 10−3 70 - - -
9 3.57× 10−3 85 - - -
9 3.57× 10−3 100 - - -
9 3.57× 10−3 115 - - -
9 3.57× 10−3 130 - - -
9 3.57× 10−3 145 - - -
9 3.57× 10−3 160 - - -

Table 2.1: List of simulations performed. All the simulations have been performed using
an initial lower layer fluid density of 1008.4 kg/m3. zH , zϕ and zs are parameters used in the
linear stability analysis (LSA) in order to describe the different base states associated with
the particle and sugar profiles in equations 2.39 and 2.40. The LSA has been performed
only for a constant particle size of 40 µm in order to study the effect of the particle volume
fraction.

The diluted system ensures the Boussinesq assumption is valid as the ratio ∆ρ/ρ0

is much less than 1 (about 6× 10−3 for the highest initial particle volume fraction).

We simulate the solid walls of the tank around our domain with a no-slip boundary

condition for the fluid velocity. No-flux boundary conditions are employed for ϕ and

ρ to avoid any flux of particles or sugar across the walls. Thus we impose
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∂ϕ

∂x
= 0, (2.14)

and

∂ρ

∂x
= 0, (2.15)

on the walls. Furthermore, we define the following initial states for ϕ and S

ϕ (x⃗, t = 0) =

 0 for z < H0

ϕ0 for z > H0

(2.16)

and

S (x⃗, t = 0) =

 S0 for z < H0

0 for z > H0

(2.17)

where ϕ0 and S0 are the initial particle volume fraction in the upper layer and ini-

tial sugar concentration in the lower layer, respectively, and H0=0.25 m the initial

height of the interface (z = 0 corresponds to the base of the tank). We also add

a small perturbation to the particle volume fraction field in order to initiate the

instability. Without this numerical perturbation, even though the PBL is unstable,

the numerical system would remain at its equilibrium state and the perturbation

is needed to slightly move the system away from the equilibrium and initiate the

instability. Applying the perturbation at each numerical node ensures we can repro-

duce the shortest-possible wavelength modes of the instability. Finally, the system

is initially stationary so u⃗f (x⃗, t = 0) = 0⃗.

2.2.3 Numerical methods

The 3D numerical model is implemented using a hybrid strategy where a LBM

solves the fluid motion and is coupled with finite difference schemes that solve the

advection-diffusion equations for ϕ and S.
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Fluid motion

The LBM is an efficient alternative to conventional Computational Fluid Dynam-

ics (CFD) methods that explicitly solve the Navier-Stokes equations at each node

of a discretised domain [Chen and Doolen, 2010; He and Luo, 1997]. It is a well-

established approach for simulating complex flows, including multiphase fluids [Leclaire

et al., 2017] and thermal and buoyancy effects [Noriega et al., 2013; Parmigiani

et al., 2009]. The LBM originates from the kinetic theory of gases and provides

a description of gas dynamics at the mesoscopic scale. This scale exists between

the microscopic, which describes molecular dynamics, and the macroscopic, which

gives a continuum description of the system with variables such as density and ve-

locity. Thereby, the mesoscopic scale considers a probability distribution function

of molecules described by the Lattice Boltzmann equation. This model reduces the

process to two main steps: streaming (i.e., displacement of populations between

consecutive calculation nodes), and collision (i.e., interaction of populations on a

node). The Bhatnagar-Gross-Krook (BGK) model [Bhatnagar et al., 1954] provides

a simple collision process based on a fundamental property given by kinetic theory

which describes gas motion as a perturbation around the equilibrium state. Then,

the LBM-BGK model solves, for the particle population fi, which are a discrete

representation of the probability distribution function, the equation

fi (x⃗+ c⃗iδt, t+ δt) = −δt
τ
(fi (x⃗, t)− f eq

i ) , (2.18)

where δt is the time step, f eq
i (ρ, u⃗f ) the equilibrium distribution function, τ the

relaxation time associated with the flow viscosity and c⃗i the local particle velocity.

The LBM is applied to specific types of lattices that describe how the populations

move through the calculation nodes [Kruger et al., 2017]. These types of lattice are

commonly summarized in the form DrQm where r denotes the dimension of the

system and m the number of directions in which populations can propagate.

Figure 2.3 shows the scheme D3Q19 used for our 3D simulations and the associ-

ated set of local velocities.

The macroscopic fluid state is described through the usual macroscopic variables

such as density, velocity and kinematic viscosity. These variables are related to the



Chapter 2 25

Figure 2.3: Depiction of the D3Q19 lattice. The red arrows show the different possible
directions of propagation. The associated local velocities are summarised in the velocity
set c⃗i.

moments of the populations fi through

ρ =
∑
i

fi, (2.19)

and

ρu⃗f =
∑
i

fic⃗i, (2.20)

whilst the kinematic viscosity controls the relaxation to equilibrium through the

relaxation time

τ =
ν

c2s
+
δt

2
, (2.21)

The variable c2s is commonly called the speed of sound and is equal to (1/
√
3)(δx/δt)

where δx is the spatial step. However, the classical LBM-BGK model described

above does not take into account any forcing term. One way to include forcing is to

rewrite equation 2.18 as
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fi (x⃗+ c⃗iδt, t+ δt) = −δt
τ
(fi (x⃗, t)− f eq

i ) + Fiδt, (2.22)

where Fi is the forcing term, which can be expressed by a power series in the local

particle velocities, and the equilibrium distribution is now given by f eq
i = f eq

i

(
ρ, u⃗∗f

)
,

where ρu⃗∗f =
∑

i fic⃗i + bF⃗ δt. The determination of the coefficient b, as well as the

power series expansion of Fi, are described by Guo et al. [2002]. Finally, no-slip

boundary conditions in the LBM, to simulate walls for example, can be implemented

using the classical bounce− back boundary condition [Kruger et al., 2017] where the

populations arriving on a wall node during the streaming step are simply reflected

back to their previous nodes.

Transport of particles and other density-altering quantities

The particles and other density-altering quantities are described by continuum fields

that follow an advection-diffusion law coupled with the fluid motion as simulated

with the LBM. The numerical solution of the advection equation is particularly

challenging for methods which, like ours, are Eulerian (i.e., mesh-based). Indeed,

such methods exhibit numerical diffusion which may strongly reduce model accuracy

and, in some cases, even exceed the amplitude of the actual, physical diffusion term.

The lack of physical diffusion in our problem and the presence of sharp interfaces

restrict our ability to solve the advection equations with the LBM. In fact, the

advection-diffusion equation can be solved by the LBM with a BGK approach in

analogous fashion to the fluid motion by modifying the equilibrium distribution and

the relaxation time to depend on the diffusion coefficient D rather than ν

τ =
D

c2s
+
δt

2
. (2.23)

However, a stability condition for a LBM-BGK algorithm is τ/δt = 1/2. Thus,

since the problem is convection dominated, the low diffusion coefficient (D ≪ 1)

drives the model towards the stability limit, introducing strong numerical errors

near sharp concentration gradients [Hosseini et al., 2017]. For this reason, we solve

the advection term using two finite-difference schemes which are selected depending
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on the required accuracy: the classical first-order upwind finite difference and the

third-order Weighted Essentially Non Oscillatory (WENO) finite difference scheme

[Jiang and Shu, 1996; Liu et al., 1994].

Coupling the LBM with an upwind finite difference scheme allows us to avoid

the stability problem. First-order FD schemes however, still suffer from the problem

of numerical diffusion due to the truncation error associated with terminating the

Taylor expansion after the first spatial derivative. The induced numerical error NE

for the convective term in the advection-diffusion equation is given by

NE ∼ u
δx

2

∂2ϕ

∂x2
, (2.24)

where u is the transport velocity. NE acts like an additional diffusion term because

of the presence of the second-order derivative (a quantitative estimate of the nu-

merical diffusion for both first order and WENO procedure is available in Appendix

2.B). The numerical diffusion associated with the solution of S is negligible due to

the low fluid velocity and consequently the use of the first order FD scheme does not

significantly affect the accuracy. However, in the solution of ϕ, which includes an

additional velocity contribution due to the settling, the truncation error associated

with the first-order scheme becomes non-negligible. Whilst decreasing δx would re-

duce numerical diffusion, we would require an unpractically small value in order to

get a sufficiently accurate solution. Additionally, simply increasing the order of the

scheme introduces dispersion (spurious oscillations) near regions of high gradient,

according to the Godunov theorem [Godunov, 1954, 1959]. Therefore, we choose

here to implement the low diffusive WENO procedure for the solution of ϕ, thus

achieving a stable and high-resolution scheme without dispersion.

Further information on how we discretise the convective term in the advection-

diffusion equation using the first order upwind and the third order WENO finite

difference schemes is detailed in Appendix 2.A.

Numerical implementation

Our model is implemented using Palabos (Parallel Lattice Boltzmann Solver), a

Computational Fluid Dynamics (CFD) solver based on the Lattice Boltzmann Method
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and developed by the Scientific Parallel Computing group of the Computer Science

Department, University of Geneva [Latt et al., 2020]. Palabos is designed to per-

form calculations on massively parallel computers, thus allowing very high spatial

resolutions in order to accurately simulate the finger dynamics.

2.3 Linear stability analysis

In order to validate our model, we compare the early-time simulated behaviour

against predictions from linear stability analysis (LSA). LSA is applied to the on-

set of the physical instability at the interface between layers of different particle

concentration. It involves defining a field equation-satisfying base state for each of

the unknown fields in a problem and then applying an infinitesimally small pertur-

bation to each of these fields. The equations are then expanded to linear order in

the perturbation, with higher order terms assumed to be negligible. By assigning

the perturbation to have the form of a complex waveform, the system of equations

reduces to an eigenvalue problem, which can be solved to determine which wave-

lengths will grow or decay [Chandrasekhar, 1961]. In this section, we assume that

the system is invariant under translation in the x-y plane, thus reducing the anal-

ysis to a 2D problem. We strongly follow the procedure described by [Burns and

Meiburg, 2012] in order to solve our problem.

2.3.1 Nondimensionalisation

We nondimensionalise our system of equations by defining

lc =

(
ν2

g

) 1
3

, (2.25)

tc =

(
ν

g2

) 1
3

, (2.26)

and

pc = ρ0 (νg)
2
3 , (2.27)
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where lc, tc and pc are characteristic quantities. We also define the dimensionless

parameters

S∗ = αS0, (2.28)

ϕ∗ = ϕ0, (2.29)

Fr =
1

tc

√
lc

g
, (2.30)

and

Sci =
ν

Di

, (2.31)

noting that Fr is a Froude number and Sci are Schmidt numbers. Furthermore, the

stream function ψ is defined such that u⃗f = (∂ψ/∂z,−∂ψ/∂x) and the vorticity as

ω⃗ = ∇⃗×u⃗f . Then, applying the characteristic quantities to the vorticity formulation

and equations (2.7-2.9), we obtain the dimensionless system (for the rest of the

analysis, all the symbols used represent dimensionless quantities)

ω = −∇2ψ, (2.32)

∂ω

∂t
+
(
u⃗f .∇⃗

)
ω = ∇2ω+

∂ϕ

∂y

ϕ∗

Fr2

[
SS∗ −

(
ρp − ρ0
ρ0

)]
− ∂S

∂y

S∗

Fr2
(1− ϕϕ∗) , (2.33)

∂S

∂t
+ u⃗f .∇⃗S =

1

Scs
∇2S, (2.34)

and

∂ϕ

∂t
+ (u⃗f − Vse⃗z) .∇⃗ϕ =

1

Scc
∇2ϕ. (2.35)

Note that here we have neglected the term −ϕ∇⃗. (Vse⃗z) in equation 2.7 assuming
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that the fluid density variation across the interface is sufficiently small that it does

not affect the particle settling velocity.

2.3.2 Variable expansion and eigenvalue problem

We linearise the system of equations by expanding each variable in terms of a base

state and a perturbation

φ (y, z, t) = φ̄ (z) + φ′ (y, z, t) , (2.36)

where φ (y, z, t) = {ψ, ω, ϕ, S}, φ̄ (z) = {ψ̄, ω̄, ϕ̄, S̄} the associated base state and

φ′ (y, z, t) = {ψ′, ω′, ϕ′, S ′} the perturbation. We choose the following base states

ψ̄ = 0, (2.37)

ω̄ = 0, (2.38)

ϕ̄ (z, t) =
1

2

[
1 + erf

(
z

zϕ

)]
, (2.39)

S̄ (z, t) =
1

2

[
1− erf

(
z − Vst

zS

)]
, (2.40)

where zϕ (T ) and zS (T ) are coefficients fitted in order to have similar base states to

the profiles observed in the simulations prior to the onset of the instability which

starts growing at the time T . We choose these base states to represent the initial

conditions of the validatory experiments; equations 2.37, 2.38 ensure an initially-

zero velocity field whilst the error functions in equations 2.39, 2.40 ensure sigmoidal

distributions for S and ϕ.

Solutions for the perturbation are assumed to have the form of normal modes

φ′ (y, z, t) = φ̂ (z) exp (iky + σt) , (2.41)

where φ̂ (z) is the perturbation amplitude, k the wavenumber and σ the instability
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growth rate. The linearised system of equations is then formulated in matrix form

so that the problem is reduced to the eigenvalue problem Kx⃗ = σWx⃗ where

x⃗ =


ψ̂ (z)

ω̂ (z)

Ŝ (z)

ϕ̂ (z)

 , (2.42)

and, in a reference frame moving downward at Vs, the matrices K and W are given

by

K =


M I 0 0

0 M − VsDz −ik S∗

Fr2

(
1− ϕ̄ϕ∗) I ik ϕ∗

Fr2

[
SS∗ −

(
ρp−ρ0
ρ0

)]
I

ik dS̄
dz
I 0 1

ScS
M − VsDz 0

ik dϕ̄
dz
I 0 0 1

Scc
M

 ,

(2.43)

and

W =


0 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I

 , (2.44)

where Dz = ∂/∂z, M = −k2 +D2
z and I is the identity operator.

The eigenvalues σ determine the stability of the system:

• If all the eigenvalues have negative real parts, the system remains stable

• If at least one eigenvalue has a positive real part, the system is unstable.

In order to solve the eigenvalue problem, the spatial derivatives are discretised

using the linear rational collocation method with a grid transformation allowing a

fine resolution around narrow interfacial regions [Baltensperger and Berrut, 2001;

Berrut and Mittelmann, 2004].
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The key result of the LSA is the dispersion relation between σ and k. Figure 2.4

presents the growth rate as a function of the wavenumber, for different initial particle

volume fractions. The parameters for the different base states used to produce these

curves are summarised in the Table 2.1. We use this result in Section 2.4.1 in order

to compare the predictions of the LSA with the results of our numerical model.

Figure 2.4: Dispersion relation obtained from LSA for several initial particle concentra-
tions.

2.4 Results

We validate our numerical model by comparing the results with predictions from

LSA and experimental observations. The LSA predicts the growth rates of different

perturbation wavenumbers during the very early stage of the instability, which can

be compared with the spectrum of wavenumbers present in the particle concentration

interface in the numerical model. Additionally, the experiments of Fries et al. [2021]

employ imaging techniques to measure quantities, such as the particle concentration

field and finger velocity, at times beyond the linear regime. Finally, our results

are compared with some results of previous analyses on settling-driven gravitational

instabilities [Carazzo and Jellinek, 2012; Hoyal et al., 1999].
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2.4.1 Comparison of model results with predictions from lin-

ear stability analysis

In order to compare our 3D simulations with the 2D linear stability analysis, we

consider just the central plane of the simulation domain, i.e., a slice in the (y, z)

plane located at x = lx/2 (lx being the tank depth) (Figure 2.2). We define the

front of the particle field to be the lowest position where ϕ = ϕ0/2 and also define

H (y) to be the separation between z = 0 and this front. Our study has shown that

the front position is only weakly affected when using other possible thresholds, i.e.,

ϕ0/10 or ϕ0/5 (relative change 3%). Figure 2.5A shows an example of a space-time

diagram showing the evolution of H (y) through time. Furthermore, by calculating

the Fourier transform H̃ (k, t) of H (y) at different times, we can identify different

dominant wavenumbers and their associated amplitudes as shown in the space dia-

gram of the power spectral density (PSD) ΓH (k, t) = (1/ (kSLS)) |H̃ (k, t) |2 (Figure

2.5B), where kS is the sampling wavenumber and LS the number of samples. We

extract the dominant mode and its associated growth rate from ΓH (k, t) and com-

pare the results with the predicted growth rates from LSA. We apply this analysis

during a period when the amplitude |H̃ (k, t) | of any given mode does not exceed

40% of its wavelength, thus ensuring we are still in the linear regime [Lewis, 1950].

During the linear regime, we can assume that the growth of the spectral ampli-

tude can be described as [Völtz et al., 2001]

|H̃ (k, t) | = |H̃i (k) |exp (σsim (k) t) , (2.45)

with |H̃i (k) | the initial amplitude and σsim (k) the instability growth rate as deter-

mined from the simulations. Thus, the PSD can be expressed as

ΓH (k, t) = ΓHi
exp (2σsim (k) t) , (2.46)

where ΓHi
is the initial spectral density.

At each time step, we extract the PSD and the wavenumber ksim associated with

the dominant mode as shown in Figure 2.6. However, we observe that the dominant

mode remains at the same wavenumber during instability growth except for three
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Figure 2.5: (A) Space-time diagram of the particle front height H (y, t). (B) Evolution
of the power spectral density of the particle interface over time. Initial particle volume
fraction: ϕ0 = 3.97× 10−4.

cases (ϕ0 = 1.59 × 10−3, 2.38 × 10−3 and 3.97 × 10−3) where we observed that the

dominant mode changed its position in the spectral space. For these simulations

only, we have a set of several wavenumbers ksim,i, (i = 1, 2, 3) associated with the

dominant mode. With the computed PSD of the dominant mode as a function

of time ΓH (ksim, t), we apply our exponential fitting (equation 2.46) to determine

the growth rate σsim,i (Figure 2.6B). For the simulations which resulted in several

values of ksim,i for the dominant mode, we measured the growth rates of each mode

σsim,i and found identical values, up to a precision of 5%. Additionally, for each

simulation, we find the time T when the instability starts growing, easily identified

as the time at which the modal wavenumber becomes non-zero (e.g., in Figure 2.6A

this is at approximately 6 s). At this time, we extract the associated vertical profiles

of particle and sugar concentration which are used to find the coefficients zϕ(T ) and

zS(T ) (equations 2.39-2.40) and thus determine the base states of ϕ̄(z, T ) and S̄(z, T )

(Figure 2.7). We then perform the LSA for each ϕ0, using the appropriate base

states, and obtain a dispersion relation σ = f(k). Using this relation, we predict

the different growth rates σ = σLSA,i associated with k = ksim,i and we compare with

σ(ksim,i) as measured in our simulations. Figure 2.8 shows the comparison between

σsim (black dots) and σLSA,i (red triangles), as predicted from the LSA, for the

dominant wave mode. The error bars associated with the simulation data show the

uncertainty on the fitted results of σsim (given by the 95% confidence interval). For
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the cases including a moving dominant mode, we plotted the growth rates associated

with the different measured wavenumbers. We see that the dependence of the largest

value of σLSA,i on the initial particle concentration is in good agreement with the

simulated growth rate.

Figure 2.6: (A) Example of dominant wavenumbers extracted from the maximum of the
PSD. Initial particle volume fraction ϕ0 = 7.94 × 10−4. (B) Exponential fitting to the
temporal evolution of the PSD for the first maximum in (A), ksim,1 = 0.517mm−1.

2.4.2 Comparison with experimental investigations

Figures 2.9A and 2.9B show a qualitative comparison between snapshots taken from

experiments [Fries et al., 2021] and simulations (slice in the numerical domain).

First, we note that our model is able to qualitatively reproduce the shape and size

of fingers, especially their fronts where we observe the formation of lobes and eddies

due to the Kelvin-Helmholtz instability [Chou and Shao, 2016]. Second, we provide

a quantitative validation of the non-linear regime by comparing our model with

experiments, through measurements of the PBL thickness and the vertical finger

velocity as functions of the particle volume fraction and size.

Characterisation of the PBL and effect of the initial particle volume frac-

tion on the finger velocity

The bulk density profile ρblk, derived from the contributions of the particle concen-

tration and sugar profiles, is given everywhere by the relation
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Figure 2.7: Example of LSA base states extracted from the simulations for ϕ0 = 3.97×
10−4. Dots: profiles extracted from the simulations at T = 9.55s (start of the instability
growth). Dotted lines: Fit with equations 2.39 and 2.40. i.e., base states used for the LSA.
Blue: particle volume fraction. Red: Sugar concentration.

ρblk = ϕρp + (1− ϕ) ρf . (2.47)

Figure 2.10 shows the profiles of ϕ, ρf and ρblk in the numerical simulations as

well as in the experiments 8 seconds after the barrier removal for the same initial

conditions (ϕ0 = 3.18× 10−3 ). Despite some differences associated with limitations

in achieving idealised initial conditions in the experiments, as well as the exper-

imental data collection method, it can be seen that, in both the model and the

experiments, there is an increase of the bulk density below the initial interface, ow-

ing to the particle front moving downwards. This zone of excess density corresponds

to the unstable PBL from which instabilities occur, generating fingers. To calculate

the finger velocity using the same method as in experiments, we extract slices from

the 3D numerical domain and manually track the fronts of several fingers (6 to 15

fingers) from when they become fully developed until just before they become too

diluted. For each simulation with different volume fraction, we then average the ve-

locity of all tracked fingers and the uncertainty is the standard deviation associated
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Figure 2.8: Comparison of the instability growth rate measured in the simulations (black
circles) and that predicted by the linear stability analysis (red triangles).

with each set of fingers used for the measurements. Figure 2.11A shows the average

finger velocity Vf as a function of ϕ0, for both experiments [Fries et al., 2021] and

simulations. Our simulation results are in good agreement with the experimental

measurements and highlight that the increase of Vf with ϕ0 is non-linear.

By analogy with thermal convection, it has previously been assumed that Grc =

103 [Hoyal et al., 1999], but this is only an order of magnitude estimate and its ap-

plication to settling-driven gravitational instabilities remains uncertain [Fries et al.,

2021]. Figure 2.11A shows good agreement between the simulations and equation

2.1 for a fitted Grc of 1.2 ± 0.4 × 104 (R2 = 0.92), which is an order of magnitude

higher than the value previously assumed [Carazzo and Jellinek, 2012; Hoyal et al.,

1999]. This agrees reasonably with the experiments, where the best fit is obtained

for Grc = 1.9 ± 0.7 × 104 (R2 = 0.75), but the experimental results show more

scatter. However, neither of these fits have completely satisfactory values of R2.

We therefore further investigate the applicability of equation 2.1 by examining the

dependence of Vf on ϕ0, assuming a more general power law of the form Vf ∝ ϕq
0.

According to equation 2.1, q = 4/15 ≈ 0.27. However, from the experiments, we

obtain q = 0.50 ± 0.16 (with R2 = 0.95) while for our simulations q = 0.37 ± 0.08

(with R2 = 0.98). Here Grc, q and their associated uncertainties have been calcu-
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Figure 2.9: Settling-driven gravitational instabilities observed 19.5 s after the barrier
removal (A) in the laboratory [Fries et al., 2021] and (B) in numerical simulations. Particle
size: 40 µm and initial volume fraction : ϕ0 = 2.78× 10−3.

lated accounting for the uncertainty on Vf with the SciPy (Python-based ecosystem)

procedure scipy.optimize.curve_fit.

Effect of particle size on the finger vertical velocity

Since gravitational instabilities cause particles to sediment faster than their settling

velocity, it is of interest to explore the transition from collective to individual settling,

since this has implications for which grain sizes may prematurely sediment from a

volcanic cloud [Scollo et al., 2017]. Figure 2.11B shows the effect of particle size

on the finger velocity as measured from the model, for two different initial volume

fractions, in the experiments configuration (i.e. in the tank filled with water). We

clearly observe two regimes:

• For particle sizes less than or equal to 115 µm (for ϕ0 = 1.19 × 10−3) and

145 µm (for ϕ0 = 3.57 × 10−3), we observe fingers, with the finger velocity

increasing with particle size.

• For greater particle sizes, no fingers are observed to form.

From our simulations, we constrain the transition between the two regimes to

occur at a critical particle diameters around 115 µm and 145 µm respectively for

ϕ0 = 1.19×10−3 and ϕ0 = 3.57×10−3. We also note that this size range corresponds

to the particle size at which the Stokes velocity exceeds the predicted finger velocity.

This result agrees with the experimental observations of Scollo et al. [2017], who



Chapter 2 39

Figure 2.10: Density profile after 8 seconds for experiments (left) [Fries et al., 2021] and
simulations (right) with ϕ0 = 3.18× 10−3 and a particle size of 40 µm.

observed that no fingers form for particles with diameter larger than ∼ 125 µm with

in initial particle volume fraction of ϕ0 = 1.19−3. We also compare the dependence

of Vf on the particle diameter with that predicted by equation 2.1 and find a best fit

for Grc = 7.6±3.6×103 (with R2 = 0.91) and Grc = 2.7±0.8×104 (with R2 = 0.87)

respectively for the two initial volume fractions (Figure 2.11B). We observe again

that the values for the fitted Grc are greater than the one proposed by Hoyal et al.

[1999] by analogy with thermal convection, whilst they also substantially differ from

one another. We therefore also fit the results to a power law Vf ∝ Dη
p finding

η = 0.38± 0.13 (R2 = 0.94) and η = 0.42± 0.10 (R2 = 0.88) respectively to the two

volume fractions which is in very good agreement with the analytical formulation

(equation 2.1) that suggests η = 0.4.

Particle mass flux, particle concentration in the lower layer and accumu-

lation rate

Given the excellent agreement between the proposed model and both LSA anal-

ysis and analogue experiments described above, we take advantage of having 3D

data from the numerical simulations in order to extract other parameters which are
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Figure 2.11: (A) Average finger speed (Vf ) as a function of the initial volume fraction
(ϕ0) for a particle diameter of 40 µm. Red and black dotted lines show the best fits to
the experiments [Fries et al., 2021] and simulations, respectively, using equation 2.1 with
Grc as the fit parameter. For the simulations, we find Grc = 1.2 ± 0.4 × 104 whilst for
the experiments Grc = 1.9± 0.7× 104. (B) Average finger speed (Vf ) as a function of the
initial particle diameter (Dp), for two different particle volume fractions. The green line is
the Stokes velocity for individual particles. The black dotted lines show the best fits to the
simulations using equation 2.1 with Grc as the fit parameter. For ϕ0 = 1.19 × 10−3, the
best fit gives Grc = 7.6× 103 and no fingers are observed to form for particle sizes higher
than 115 µm. For ϕ0 = 3.57× 10−3, the best fit gives Grc = 2.7× 104 and no fingers are
observed to form for particle sizes higher than 145 µm. In the two plots, the blue dashed
line shows equation 2.1 using Grc = 103 from the analogy with thermal convection [Hoyal
et al., 1999].

difficult to obtain otherwise [Fries et al., 2021]. Three interesting parameters are

the particle mass flux across a plane, the particle concentration in the lower layer

and the amount of particles accumulated at the bottom of the tank, which can be

related to the accumulation rate. The latter is especially interesting as, when the

model is applied to volcanic clouds, it could eventually be compared with field data

[Bonadonna et al., 2011].

We calculate the mass flux across a horizontal plane (actually a thin box of

thickness δx) as shown in Figure 2.12A with

J =
∆m

A∆t
, (2.48)

where ∆m is the mass crossing the yellow plane of area A in time ∆t, and is given

by the mass difference in the volume below the plane between t and t − ∆t. The

mass below at each time is calculated by summing the mass of particles in each cell

i of volume ∆V , which is individually given by mi = ∆V ϕiρp. Figure 2.12B shows
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the temporal evolution of the particle mass flux settling through the yellow plane

(located at 0.15 m below the barrier), for several initial particle volume fractions.

The vertical black dashed line indicates the theoretical time Ti when particles would

be expected to reach the plane if they were settling individually at their Stokes ve-

locity. For the different simulations, we clearly observe that the moments when the

flux starts initially increasing (i.e. the arrival of the fastest finger) are much ear-

lier than Ti and this shows the extent to which the collective settling enhances the

premature sedimentation. After the initial increase, the fluxes exhibit strong oscilla-

tions around a high plateau. These oscillations are associated with the intermittent

nature of PBL detachment and convection in the lower layer. Finally, the particle

mass flux reaches a plateau after some time which shows the end of convection and

a transition to individual settling. Throughout, the average mass flux, as well as

the amplitude of the oscillations increases with the initial volume fraction.

Another way to highlight the enhancement of the sedimentation rate by collec-

tive settling is to study the spatial distribution of particles beneath the interface.

Assuming a quiescent upper layer and a convective lower layer, akin to our sim-

ulations, Hoyal et al. [1999] derived equation 2.4 for the evolution of the particle

concentration in the lower layer. The derivation of this formulation assumes that

Ṁout ̸= 0 since t = 0 but in fact, Ṁout = 0 for t < ta where ta is the time when

the first particles reach the bottom of the tank. Also, equation 2.4 only remains

valid for t < tlim, where tlim = h1/Vs , h1 being the thickness of the upper layer.

After this time, there are no longer any particles remaining in the upper layer and

Ṁin = 0. We therefore propose an extension for the solution of the problem (see

Appendix 2.C) which becomes

C2 (t) =
Vs

h2
C1 (0) t, for t < ta, (2.49)

C2 (t) = C1 (0)
[
1 +

(
Vs

h2
ta − 1

)
e
−Vs

h2
(t−ta)

]
, for ta ≤ t < tlim, (2.50)



42 Chapter 2

C2 (t) = C1 (0)
[
1 +

(
Vs

h2
ta − 1

)
e
−Vs

h2
(tlim−ta)

] (
1 + h1

h2
− Vs

h2
t
)
, for t ≥ tlim,

(2.51)

where h2 is the thickness of the lower layer. Equation 2.51 assumes that the

convection stops at tlim, which suggests a quiescent settling in the lower layer after

that time with a constant flux Ṁout = AVsC2 (tlim).

Figure 2.12: (A) Horizontal planar surface (yellow slice) located 0.15 m below the barrier,
across which the particle mass is computed in the simulation domain. (B) Temporal
evolution for the mass of particles crossing the plane. Black dashed line: theoretical time
for the particles to reach the plane at their individual Stokes velocity.

An interesting result coming out of the previous analytical study is the mass of

particles accumulating at the bottom of the tank and the associated accumulation

rate. We can derive an analytical prediction for the mass of particlesmb accumulated

at the bottom of the tank for the different regimes highlighted above. Thus, by

integration of the flux (see Appendix 2.C) we have

mb = 0, for t < ta, (2.52)

mb = m0
Vs

h1

[
t+

(
h2

Vs
− ta

)
e
−Vs

h2
(t−ta) − h2

Vs

]
, for ta ≤ t < tlim, (2.53)
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mb = m0
Vs

h1
{tlim − h2

Vs

[
1 +

(
Vs

h2
ta − 1

)
e
−Vs

h2
(tlim−ta)

] (
1 + h1

h2
− Vs

h2
t
)
}, for t ≥ tlim,

(2.54)

where m0 is the initial mass of particles injected in the upper layer. Finally, at

the time tlim + h2/Vs , all the particle have settled through the lower layer, thus

mb = m0. Figure 2.13A shows the simulated particle accumulation at the bottom of

the tank through time, for different particle sizes as well as the analytical prediction

(equations 2.52-2.54). We compare as well with the analytical formulation of the

mass which assumes that the lower layer is still turbulently convective even after the

time tlim (equation 2C.20 in Appendix 2.C, dashed lines in Figure 2.13A). In order to

compare between this prediction and the model results, ta is fitted in order to have

the best agreement between the numerical data and equations 2.52-2.54. The results

show clearly that the quiescent model of the lower layer for t ≥ tlim agrees very well

with the simulations and suggest that the entirely convective model underestimates

the accumulation rate. Additionally, the fitted parameter ta is coherent with the

time for the first fingers to reach the bottom of the tank in the simulations. Figure

2.13B shows the instantaneous accumulation rate computed from the numerical data

for several initial volume fractions, as estimated by

1

A

dmb

dt
. (2.55)

We observe, for each initial particle volume fraction, an initial increase of the ac-

cumulation rate with time which reflects the enhancement of the sedimentation pro-

cess due to convection. Interestingly, the accumulation rate then reaches a plateau

at around t = tlim, indicating that the system switches to a steady settling regime

once all particles have left the upper layer. We compare also with the analytical

relations which again have very good agreement with our simulations.

Finally, using the determined ta, we can also calculate the concentration C2 (t), as

calculated with the analytical expressions in equations 2.49-2.51. Figure 2.14 shows

a comparison with the average C2 (t) as measured in simulations for a particle size

of 40 µm and three different initial upper layer concentrations, finding very good
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Figure 2.13: (A) Temporal evolution of the mass of particles accumulating at the bottom
of the tank for several particle sizes. The dashed and dotted lines represent the extended
analytical model of Hoyal et al. [1999]. Particle volume fraction ϕ0 = 1.19 × 10−3. (B)
Accumulation rate calculated at the bottom of the tank for several particle volume fractions
and a particle size of 40 µm. The coloured dashed lines are the rate derived from the
analytical model. The black dashed line is the theoretical time at which all particles have
settled across the interface.

agreement.
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Figure 2.14: Evolution of the average particle volume fraction in the lower layer for
particle of size 40 µm. Black: C0 = 2g/l (ϕ0 = 7.94 × 10−4), Red: C0 = 4g/l (ϕ0 =
1.59 × 10−3) and Blue: C0 = 6g/l (ϕ0 = 2.38 × 10−3). Solid lines: numerical model.
Dashed lines: modified Hoyal et al. [1999] model (equations 2.4 and 2.49-2.51).

2.5 Discussion

2.5.1 Model caveats

Our numerical model has been validated by comparing various outputs with results

from linear stability analysis, lab experiments [Fries et al., 2021] and theoretical

predictions from previous studies [Carazzo and Jellinek, 2012; Hoyal et al., 1999].

Even though these comparisons are good (Figures 2.9-2.14), the results provided by

the model inherits the caveats of the experiments. Indeed, the static and confined

configuration, as well as the fact that we performed the simulations in water, mean

that we cannot fully extend the results to the volcanic case yet. Thus, further

investigations are necessary to better simulate the volcanic environment (e.g., in

air, with wind, etc.). Additionally, it is necessary to consider the limits of validity of

the different assumptions. In our study, particles are small enough that they have

no inertia and thus the fluid-particle interaction force is governed by the buoyant
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force term in the fluid momentum equation. However, as soon as the particle size

increases, we need to consider some other dynamics. Indeed, a rigid particle moving

in a fluid produces locally a disturbance flow which generates other contributions to

the fluid-particle force terms. The assumption that particles settle at their Stokes

velocity will then no longer be valid as the created local flow affects Vs [Maxey and

Riley, 1983; Cartwright et al., 2010; Patočka et al., 2020].

Whilst the condition on the particle coupling is given by the Stokes number

(St < 1), there is also a condition on the particle volume fraction to take in ac-

count. Harada et al. [2013] and Yamamoto et al. [2015] derived a dimensionless

number in order to characterise the transition between fluid-like and particle-like

settling. Although this number is only valid for narrow channel configurations,

which are considerably different from ours, it highlights the fact that the particle

size, volume fraction and characteristic length scale of the flow are critical parame-

ters to define the validity of the continuum assumption. Thus, the transition from

fluid-like to particle-like behaviour is achieved by decreasing the volume fraction

and characteristic length scale and increasing the particle size. Near this transition,

the use of a single-phase model, such as that presented here, should be treated with

caution and this reveals the need for a comparison with future models which explic-

itly account for the drag contribution of individual particles. In multiphase models

this contribution has been commonly represented through a force term involving

the ratio between the phases differential velocities and the relaxation time (drag

timescale) [Laibe and Price, 2014; Chou and Shao, 2016].

Another related caveat concerns the numerical diffusion underlying the use of

an Eulerian approach to describe the transport of particles. Compared to classical

first order finite difference methods, the use of the third order WENO procedure

has drastically reduced the numerical diffusion. It is also possible to further reduce

the induced numerical diffusion by increasing the order of the WENO scheme (i.e.

increase also the computational cost). However, for problems purely related to

advection, where the presence of any diffusion is critical, another strategy, such

as two-phase models (using a Lagrangian approach where individual particles are

explicitly modelled), has to be considered.
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2.5.2 Vertical finger velocity

We have compared the simulated vertical velocity of fingers with experimental obser-

vations [Fries et al., 2021] and a theoretical prediction (equation 2.1) from [Carazzo

and Jellinek, 2012; Hoyal et al., 1999] (Figure 2.11). This expression depends on a

critical Grashof number which, by analogy with thermal convection [Turner, 1973],

has previously been assumed to be 103 [Hoyal et al., 1999]. This value effectively

corresponds to a dimensionless critical PBL thickness at which point the PBL can

detach and form fingers. However, both the model results and experimental obser-

vations summarised in Figure 2.11 suggest that Grc > 103 for our configuration.

Furthermore, as seen in Figure 2.11B, the curve for Vf using Grc = 103 (blue dotted

line) crosses the Stokes velocity curve around 95 µm for instance with an initial

particle volume fraction of ϕ0 = 1.19×10−3, suggesting this value should be the up-

per particle size limit for finger formation. However, in agreement with experiments

[Fries et al., 2021; Scollo et al., 2017], we observe a larger threshold for the finger for-

mation to be in the size range [115−125] µm, for ϕ0 = 1.19×10−3, and in the range

[145−160] µm for ϕ0 = 3.57×10−3, in this particular configuration. We also showed

that equation 2.1 poorly predicts the observed dependence of the finger velocity on

the initial particle volume fraction. Indeed, our studies suggests an alternative power

law that better describes the dependence of Vf on ϕ0 (i.e. Vf ∝ ϕ0.37±0.08
0 ). Equation

2.1 has been derived by a scaling theory that considers δPBL as characteristic length

of the problem [Carazzo and Jellinek, 2012; Hoyal et al., 1999]. The discrepancies

highlighted in this paper (Figure 2.11) may suggest that δPBL actually has a slightly

different dependence on the initial particle volume fraction. Future theoretical works

on a different scaling of δPBL, especially concerning its dependence on ϕ0, but also

Vs, would certainly confirm our results. Moreover, the use of the Grashof number as

an appropriate scaling for the PBL thickness remains uncertain. On the one hand,

our results suggest that if instability does occur once a critical Grashof number is

reached, the critical value taken from the thermal convection analogy is not valid.

On the other hand, the Grashof number may simply not be the correct dimensionless

form of the PBL thickness, and different flow configurations will produce different

critical values. The fact that both the experiments and simulations agree very well
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shows that the “true” value for Grc, if it exists, is an order of magnitude higher than

in the thermal case. However, Figure 2.11B shows that we find a ratio of ∼ 3.5

between the two fitted Grc which is interestingly close to the ratio of three between

the two associated particle volume fractions. Whilst the variability of Grc might

come from the measurement itself (fitting of the numerical and experimental data),

this behaviour is coherent considering the definition of Grc (ratio between buoyancy

and viscous forces) and the fact that the buoyancy force is a function of the particle

volume fraction. Obviously, this is only the case so long as the particle concentra-

tion does not affect the bulk viscosity, which is the case in our study. Therefore, we

highlight here that the order of magnitude found for Grc is valid for the flow con-

figuration presented in this study and also that there is a dependence on the initial

particle volume fraction. Further analyses with different flow configurations (i.e.,

different buoyancy and viscous conditions) are required to constrain the variability

of Grc and confirm that it may not be a rigorous scaling for the PBL thickness. A

study involving settling-driven gravitational instabilities in air and in the presence

of shear is currently being performed and will certainly provide some insights on

the dependence of Grc on the flow configuration. The predicted dependence of the

finger velocity on the particle diameter by equation 2.1 shows a very good agreement

with our simulated results, as confirmed by a power-law fitting between Vf and Dp.

Thus, whilst we have demonstrated the need for a better scaling of δPBL, equation

2.1 can still provide a good estimate for the particle size threshold to form fingers.

Consequently, if the size threshold to form fingers is given when equation 2.1 equals

the Stokes velocity (equation 2.5) we can derive a formulation for the threshold

D∗
p =

[
(18µ)2 ϕδPBL

g (ρp − ρf ) ρf

√(π
4

)] 1
4

. (2.56)

The main caveats for this formulation are that it strongly depends on having a

correct scaling for δPBL and obviously, this estimation is valid under the assumption

that particles settle at their Stokes velocity, which is reasonable for our study but

might be uncertain in nature where the ambient fluid is air and for non-spherical

particles.
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2.5.3 Particle concentration in the lower layer and mass ac-

cumulation rate

We have proposed a modified analytical formulation for the particle concentration

in the lower layer C2 (t) and consequently for the mass of particles accumulated at

the bottom of the tank mb (t). Despite some numerical artefacts that can be seen

in Figure 2.13B where the computed accumulation rate seems to be non-zero before

ta, there is very good agreement between the simulations and the analytical model.

The artefacts themselves are due to fluctuating numerical errors that do not affect

the final results.

The analytical predictions for C2 (t) and mb (t) are step-wise functions depending

on ta, the time it takes for the first particles to reach the bottom. For t < ta, the

analytical model predicts that C2 (t) increases linearly with time since the formula-

tion assumes that, during this period, particles are settling individually. In fact, our

numerical results show that convective settling does occur for t < ta but, since this

time period is short, the linear law seems to be a satisfactory approximation for the

early-time average lower layer particle concentration. However, in order to compare

our simulated results with the analytical prediction, we fitted the parameter ta in

this study. Although we are able to obtain excellent agreement between model and

theory, it would be better to develop a fully independent formulation. To achieve

this, it is necessary to also provide an analytical estimation for ta. One possible ap-

proach would be to assume the decomposition ta = t
′
a+t

′′
a where t′a is the time during

which the PBL initially grows beneath the interface at the individual particle settling

velocity, i.e., t′a = δPBL/Vs , and t′′a is the time between the PBL detachment and the

first arrival of particles at the base of the domain. If, during this stage, we assume

that the particles are advected at the finger velocity then t
′′
a = (h2 − δPBL) /Vf .

We therefore see that ta strongly depends on δPBL, which highlights once again the

need for a correct scaling of the PBL thickness, as discussed in the previous section.

Another interesting result concerns the accumulation rate of particles at the base

of the domain in the presence of fingers. Figure 2.13B shows the accumulation rate

increases with time for ta < t < tlim, in agreement with the analytical prediction

(i.e. combination of equations 2.53 and 2.55 which provides an exponential increase



50 Chapter 2

of mb). Conversely, if the particles had settled individually, the accumulation rate

would be temporally constant. This shows that temporally resolved measurements

of the accumulation rate of particles from volcanic clouds may record temporal sig-

natures of sedimentation via settling-driven gravitational instabilities. Whilst there

is already a spatial deposit signature of settling-driven gravitational instabilities (i.e.

bimodal grainsize distribution) [Bonadonna et al., 2011; Manzella et al., 2015], this

is not unique and can be generated by other mechanisms such as particle aggregation

[Brown et al., 2012]. Accumulation rate data from the field may therefore provide a

powerful tool for distinguishing the efficiency of convective sedimentation beneath

volcanic clouds.

2.6 Conclusions

We have presented an innovative hybrid Lattice Boltzmann Finite Difference 3D

model in order to simulate settling-driven gravitational instabilities at the base of

volcanic ash clouds. Such instabilities occur when particles settle through a density

interface at the base of a suspension, leading to the formation of an unstable particle

boundary layer [Carazzo and Jellinek, 2012; Hoyal et al., 1999; Manzella et al.,

2015], and also occur in other natural settings, such as river plumes [Davarpanah

Jazi and Wells, 2016]. Our numerical model makes use of a low-diffusive WENO

procedure to solve the advection-diffusion-settling equation for the particle volume

fraction. The use of such a routine allows us to minimise errors associated with

numerical diffusion and has the advantage of being applied to simple uniform meshes,

which makes the coupling with the LBM easier. This innovative use of the WENO

scheme, therefore, represents an effective tool for the solving of advection-dominated

problems. Our implementation of the third order WENO finite difference scheme

will be integrated in a future release of the open-source Palabos code. Our model

has been successfully validated by comparing the results with i) predictions from

linear stability analysis where we show that the model is able to simulate settling-

driven gravitational instabilities from the initial disturbance through the linearly-

unstable regime, ii) analogue experiments [Fries et al., 2021] and iii) theoretical
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models [Carazzo and Jellinek, 2012; Hoyal et al., 1999] in order to reproduce the

non-linear regime which describes the downward propagation of fingers. We also

confirmed the premature sedimentation process through collective settling compared

to individual settling.

Our model provides new insights into:

• the value of the critical Grashof number. From measurements of the vertical

finger speed, we have found Grc ∼ 104 in our configuration. This value differs

from the one suggested by analogy with thermal convection (Grc ∼ 103) [Hoyal

et al., 1999]. Our results suggest that either the critical Grashof number for

settling-driven gravitational instabilities is greater than in the thermal con-

vection case or that the Grashof number may not be the correct dimensionless

form of the PBL thickness. In any case, this highlights the need for further

investigation of the scaling of the PBL thickness δPBL.

• the presence of a particle size threshold for the finger formation. Using our

results, we have proposed an analytical formulation for this threshold depend-

ing on the density of particles, the viscosity of the medium and also the bulk

density difference between the two fluid layers.

• the signature of settling-driven gravitational instabilities (i.e. accumulation

rate). We show that the accumulation rate of particles at the tank base initially

increases with time before reaching a plateau. This contrasts with the constant

accumulation rate associated with individual particle settling. This suggests

that accumulation rate data could be used during tephra fallout to distinguish

between sedimentation through settling-driven gravitational instabilities and

individual-particle sedimentation.

We have also demonstrated how our numerical model can be used to expand the

initial conditions and configuration settings that can be explored through experi-

mental investigations. The results presented so far in an aqueous media permitted

model validation but have also opened fundamental questions that will be addressed

in future works involving configurations more similar to the natural system. Indeed,
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thanks to the strengths of the LBM, the model can easily be applied to more com-

plex systems and provide a robust tool for the transition from the laboratory studies

to volcanic systems, as well as other environmental flows.

Author Contributions

Jonathan Lemus integrated the WENO procedure in the Palabos framework, con-

ducted the simulations and data analysis under the supervision of Paul Jarvis, Jonas

Lätt, Costanza Bonadonna and Bastien Chopard. Jonathan Lemus drafted the

manuscript. Jonas Lätt and Bastien Chopard were involved in the development of

the Palabos code. All authors have contributed to data interpretation as well as the

editing and finalising of the paper.

Acknowledgments

All the simulations presented in this paper have been performed using the High

Performance Computing (HPC) facilities Baobab and Y ggdrasil of the University

of Geneva. We would like to thank Amanda B. Clarke and Jeremy C. Phillips for

constructive discussions about the problem.



Appendix

2.A Description of the finite difference schemes

2.A.1 First-order upwind finite difference scheme

In the following description, we describe only the one-dimensional scheme as the

method is easily generalised to higher dimensions by simply applying the procedure

separately to each dimension [Ferziger and Peric, 2002]. The finite difference method

is based on the approximation of the derivatives at the node locations of a discretised

domain and can be applied to both uniform and non-uniform meshes. However, we

describe here the case where the numerical domain is uniformly discretised with the

spatial step δx, such that the domain is divided in a set of equally-spaced points

{x0, x1, ..., xi..., xn}. We also consider the one-dimensional conservation equation

∂a

∂t
+ u

∂a

∂x
= 0, (2A.1)

where a is the transported information and u the advection velocity. In our

discrete domain, we use the notation ani = a (x = xi, t = tn),with n denoting the

time coordinate and i the spatial coordinate.

Among the numerous methods used to approximate the derivative ∂a/∂x at

location xi, the Taylor expansion is the most common. Following this procedure,

there are two ways to estimate the derivative with a first order accuracy:

• Using the Taylor expansion at the location xi+1 = xi + δx, we get the forward

difference

(
∂a

∂x

)
F

≈
ani+1 − ani

δx
. (2A.2)

• Using the Taylor expansion at the location xi−1 = xi−δx we get the backward

difference
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(
∂a

∂x

)
B

≈
ani − ani−1

δx
. (2A.3)

The central finite difference approximation can be determined by combining

the forward and backward differences. Thus, we have the second order accurate

discretisation

(
∂a

∂x

)
C

≈
ani+1 − ani−1

2δx
. (2A.4)

The upwind finite difference method scheme is an adaptive procedure to dis-

cretise the problem based on the direction of propagation of the information. The

estimation of the quantity an+1
i depends on the sign of u:

• If u > 0, the backward difference is used

an+1
i = ani −

δt

δx
u
[
ani − ani−1

]
. (2A.5)

• If u < 0, the forward difference is used

an+1
i = ani −

δt

δx
u
[
ani+1 − ani

]
. (2A.6)

All these properties of the first order upwind scheme guarantee a strong stability

of the solution providing the Courant–Friedrichs–Lewy (CFL) condition is satisfied

[Courant et al., 1928]

δt

δx
u ≤ 1. (2A.7)

2.A.2 Third-order Weighted Essentially Non-Oscillatory (WENO)

finite-difference scheme

In the following description, the numerical domain is discretized using the same set

of points as presented in the previous section. The low-diffusive WENO scheme

belongs to a family of high-resolution methods and was developed in order to solve

hyperbolic partial differential equations of the form
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∂a

∂t
+
∂h

∂x
= 0, (2A.8)

where, in our case, the flux takes the form h (a) = ua (x) [Jiang and Shu, 1996;

Liu et al., 1994]. The WENO scheme provides a third order accurate method in

smooth regions, i.e., where the spatial gradient is small. On the other hand, the

scheme adapts where the gradient is high. In these cases, the accuracy tends toward

second-order. This adaptive aspect of the WENO procedure ensures the suppression

of spurious oscillations, predicted by the Godunov theorem [Godunov, 1954, 1959],

around shocks (regions of high gradient). The principle is to build a convex com-

bination of interpolants for the flux at given points of the domain, using different

stencils. The third-order WENO procedure uses two adjacent stencils of two points

each (Figure 2A.1).

Figure 2A.1: Numerical stencil used for the 3rd order WENO procedure

It is possible to approximate the spatial derivative with the commonly used

half-node flux:

∂h

∂x
≈
hi+ 1

2
− hi− 1

2

δx
, (2A.9)

where hi+ 1
2
= h

(
a
(
xi+ 1

2

))
is the numerical flux at the half-node location xi+ 1

2

(i.e., the central position between the points xi and xi+1). There are three ways to

construct the half node flux hi+ 1
2
. Firstly, we can use polynomial interpolants of

degree 1 p1 (x) and p2 (x), respectively, in the two-point stencils 1 and 2. Then, the

flux at the location xi+ 1
2

is given either by h
(1)

i+ 1
2

≡ p1

(
xi+ 1

2

)
or h(2)

i+ 1
2

≡ p2

(
xi+ 1

2

)
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and for u > 0 we have

h
(1)

i+ 1
2

=
1

2
(hi + hi+1) , (2A.10)

and

h
(2)

i+ 1
2

= −1

2
(hi−1 − 3hi) . (2A.11)

Note that the flux approximations for each stencil in this case have an accuracy

of second order. The last way to determine the flux hi+ 1
2

is with an interpolating

polynomial p3 (x) of degree 2 inside the three-point stencil 3 (i.e., the union of

stencils 1 and 2 in Figure 2A.1). Then, the third-order flux at the location xi+ 1
2

is

given by

h
(3)

i+ 1
2

=
3

4
hi −

1

8
hi−1 +

3

8
hi+1. (2A.12)

The three interpolations of the half-node flux presented above are efficient as-

suming that the function h is smooth through the associated stencil and it is even

possible to write the third-order flux h(3)
i+ 1

2

as a linear combination of h(1)
i+ 1

2

and h(2)
i+ 1

2

h
(3)

i+ 1
2

= γ1h
(1)

i+ 1
2

+ γ2h
(2)

i+ 1
2

, (2A.13)

where γ1 = 3/4 and γ2 = 1/4. However, the presence of any discontinuity would

break the stability of the procedure, introducing spurious oscillations in the calcu-

lated solution. The treatment of this aspect constitutes the essence of the WENO

method which retains the property of relating the total flux hi+ 1
2

to a convex combi-

nation h(1)
i+ 1

2

and h(2)
i+ 1

2

, similarly to equation 2A.13, but including non-linear weights

h
(3)

i+ 1
2

= ω1h
(1)

i+ 1
2

+ ω2h
(2)

i+ 1
2

, (2A.14)

where ω1 and ω2 are functions of the smoothness of h and must satisfy ω1 +ω2 = 1.

If h is smooth in all the stencils, ωi → γi and ensures a third-order accuracy. Con-

versely, the presence of any discontinuity in the ith stencil means ωi → 0, decreasing

the accuracy to second-order. This property is guaranteed by determining ωi
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ωi =
ω̃i∑
j ω̃j

, (2A.15)

where

ω̃j =
αj

(ϵ+ βj)
2 , (2A.16)

and, in the third-order WENO case, α1 = 2/3, α2 = 1/3, β1 = (hi+1 − hi)
2 and β2 =

(hi − hi−1)
2 (βj are referred to as smoothness indicators). A positive mathematical

coefficient ϵ is introduced in order to avoid any division by zero for the calculation

of ω̃j.

The WENO reconstruction presented above is valid for u > 0. In order to include

potential changes of the flow direction, we use an upwind splitting of the flux. Thus,

as a mirror image of the procedure described above, we have for u < 0

h
(1)

i+ 1
2

= −1

2
(hi+2 − 3hi+1) , (2A.17)

and

h
(2)

i+ 1
2

=
1

2
(hi+1 + hi) . (2A.18)

β1 = (hi+1 − hi+2)
2 , (2A.19)

and

β2 = (hi − hi+1)
2 . (2A.20)

With an appropriate time discretisation, the third-order WENO procedure re-

mains a Total Variation Diminishing (TVD) scheme, i.e.,
∑

i |a
n+1
i+1 −an+1

i | ≤
∑

i |ani+1−

ani | [Harten, 1983]. This property avoids the introduction of new local extrema in the

solution. Therefore, a TVD third-order WENO scheme is given using an iterative

third-order Runge-Kutta method for the time discretisation:

a(1) = an + δtW (an) , (2A.21)
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a(2) =
3

4
an +

1

4
a(1) +

1

4
δtW

(
a(1)

)
, (2A.22)

and

an+1 =
1

3
an +

2

3
a(2) +

2

3
δtW

(
a(2)

)
, (2A.23)

with W (a) is the spatial derivative given by the WENO algorithm described

above.

2.B Numerical diffusion

In this subsection, we demonstrate the reduced numerical diffusivity of the WENO

procedure compared to the first order upwind scheme. We performed some simula-

tions involving a rectangular signal moving at a velocity equivalent to the settling

velocity of 40 micron particles in water. We used both the WENO and first order

upwind schemes and compared with the expected analytical solution. The spatial

and temporal discretisation are the same as used for the different simulations in the

main manuscript. Figure 2B.1 shows the simulations results after 60 s and we clearly

observe the reduced numerical diffusion provided by the WENO procedure as well

as the lack of dispersion. Moreover, we also computed the mean absolute difference

(error) of each method with the analytical solution and find that, for this case study,

the error associated with the first order upwind scheme is ∼3 times greater than the

WENO error.
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Figure 2B.1: Advection of a rectangular signal. Comparison between the analytical
solution (dashed black line), the first order upwind (red solid line) and the WENO scheme
(blue solid line).

2.C Extension of analytical model of Hoyal et al.

[1999]

2.C.1 Particle concentration

For a particle suspension placed above a denser fluid, an estimate for the evolution

of the particle concentration in the lower layer has been derived by Hoyal et al.

[1999]. We provide here an extension of this formulation.

Upper layer

First, let’s consider a quiescent upper layer of thickness h1 with an initial particle

concentration C1 (0). For a quiescent settling at the velocity Vs, the constant flux

of particles leaving the upper layer is given by −AVsC1 (0). Thus, the evolution for

the mass of particles is described by the equation

dM1

dt
= −AVsC1 (0) . (2C.1)

Assuming that the mass of particles depends on the concentration as
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Mi (t) = AhiCi (t) , (2C.2)

A being the horizontal cross section of the tank (where i = 1 for the upper layer

and i = 2 for the lower layer), the temporal evolution of the particle concentration

in the upper layer is the solution of

dC1

dt
= −Vs

h1
C1 (0) . (2C.3)

Then

C1 (t) = C1 (0)

[
1− Vs

h1
t

]
. (2C.4)

Lower layer

Now, let’s define Ṁin as the flux of particle entering the lower layer (i.e. the particles

arriving from the upper layer) and Ṁout the flux of particles leaving (i.e. particles

that deposit at the bottom of the tank). Thus, the mass of particle in the lower

layer M2 (t) is governed by the equation

dM2

dt
= Ṁin − Ṁout, (2C.5)

• There is a time ta before which particles have not yet reached the bottom of

the tank and evidently Ṁout = 0. Still assuming a quiescent upper layer, we

have also

Ṁin = AVsC1 (0) . (2C.6)

So, combining 2C.2, 2C.5 and 2C.6 the particle concentration in the lower

layer for t < ta is the solution of

dC2

dt
=
Vs
h2
C1 (0) . (2C.7)

that is to say (assuming C2 (0) = 0)
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C2 (t) =
Vs
h2
C1 (0) t. (2C.8)

• Once the first particles have reached the bottom of the tank (i.e. t ≥ ta), the

flux of particles leaving the lower layer becomes

Ṁout = AVsC2 (t) . (2C.9)

Similarly to the previous point, combining equations 2C.2 (which assumes that

the lower layer is turbulently convecting and is homogeneous), 2C.5, 2C.6 and

2C.8 we obtain

dC2

dt
+
Vs
h2
C2 =

Vs
h2
C1 (0) . (2C.10)

Using the initial condition C2 (ta) = (Vs/h2)C1 (0) ta (continuity with 2C.8),

the solution of this equation is

C2 (t) = C1 (0)

[
1 +

(
Vs
h2
ta − 1

)
e
−Vs

h2
(t−ta)

]
. (2C.11)

It is evident that when ta = 0, 2C.11 is equivalent to the original formulation

of Hoyal et al. [1999] (equation 4 in the Introduction).

• However, 2C.11 is only valid for the condition that particles keep settling

across the interface, i.e., for a time t < tlim (where tlim = h1/Vs ). We have

extended the formulation to later times once all particles from the upper layer

have settled across the interface i.e. for a time t ≥ tlim. As there are no longer

particles in the upper layer, the flux Ṁin drops to zero. Two possibilities

are now available. On one hand, if we consider that the lower layer is still

turbulently convecting after tlim, equation 2C.10 becomes:

dC2

dt
+
Vs
h2
C2 = 0. (2C.12)

Assuming that all particles have crossed the interface by the time tlim, we
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substitute tlim into 2C.11 in order to find the initial condition for equation

2C.12. Thus the initial condition is now

C2 (tlim) = C1 (0)

[
1 +

(
Vs
h2
ta − 1

)
e
−Vs

h2
(tlim−ta)

]
. (2C.13)

which allows to solve equation 2C.12 and to find the solution of C2 (t) for a

convective lower layer at t > tlim

C2 (t) = C1 (0) e
h1
h2

[
1 +

(
Vs
h2
ta − 1

)
e
−Vs

h2
(tlim−ta)

]
e
−Vs

h2
t
. (2C.14)

On the other hand, if we assume that the convection stops at tlim, then we

have to consider a quiescent settling in the lower layer. Thus the associated

constant flux becomes

Ṁout = AVsC2 (tlim) , (2C.15)

and 2C.12 becomes

dC2

dt
+
Vs
h2
C2 (tlim) = 0. (2C.16)

Then, keeping the initial condition 2C.13 to solve 2C.12, the solution of C2 (t)

for a quiescent lower layer at t > tlim is

C2 (t) = C1 (0)

[
1 +

(
Vs
h2
ta − 1

)
e
−Vs

h2
(tlim−ta)

](
1 +

h1
h2

− Vs
h2
t

)
. (2C.17)

2.C.2 Mass of particles accumulating at the bottom

From the mass balance models, Hoyal et al. [1999] derived an estimate for the mass

of particle which accumulate at the bottom of the domain. Here we detail the

calculation of the mass and extend it by including the solution of C2 (t) for t > tlim

(presented above). Particles start to accumulate as soon as they reach the bottom

of the tank (i.e. after a time ta). Then for t < ta, we have
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mb = 0. (2C.18)

where mb is the mass at the base of the tank. Furthermore, for ta ≤ t < tlim we

integrate the flux AVsC2 (t) between ta and t, using equation 2C.11 for C2 (t). Thus

we have

mb = m0
Vs
h1

[
t+

(
h2
Vs

− ta

)
e
−Vs

h2
(t−ta) − h2

Vs

]
, (2C.19)

where m0 is the initial mass of particles introduced in the upper layer. We observe

that this relation is equivalent to equation 24 derived in Hoyal et al. [1999], but

delayed by ta. Finally, for t > tlim we integrate the flux between tlim and t, tak-

ing into account that some particles have already accumulated between ta and tlim

according to 2C.19. As we have presented two different cases for the lower layer

after tlim (convective and quiescent), there are also two possibilities for the mass of

particles. Then, for a convective lower layer we have

mb = m0
Vs
h1

{
tlim − h2

Vs
e

h1
h2

[
1 +

(
Vs
h2
ta − 1

)
e
−Vs

h2
(tlim−ta)

]
e
−Vs

h2
t

}
, (2C.20)

and for a quiescent lower layer

mb = m0
Vs
h1

{
tlim − h2

Vs

[
1 +

(
Vs
h2
ta − 1

)
e
−Vs

h2
(tlim−ta)

](
1 +

h1
h2

− Vs
h2
t

)}
, (2C.21)

2.D 2D Fourier analysis of the interface

We performed a 2D Fourier analysis of the interface for one initial particle volume

fraction (ϕ0 = 1.98×10−3) in order to compare with the results given by the Fourier

analysis in the central section of the domain. At different time steps, we extract

the particle field interface with the same threshold as in section 4.1 (Figure 2D.1).

Then we can compute a 2D map of the interface height which allows to perform the

2D Fourier analysis. The result is a map in the spectral space (kx, ky) as shown in
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Figure 2D.2 and as usual, at different time steps we extract the main peak which

correspond to the main mode and the associated coordinates (kx, ky) in the spectral

space. We observe that the norm k =
√
k2x + k2y very well with the previous results

provided in our study for this initial particle volume fraction (Figure 2D.3).

Figure 2D.1: Particle field interface for an initial particle volume fraction ϕ0 = 1.98×10−3

at time T=4s.

Figure 2D.2: Map of the power spectral density associated with the particle field interface
shown in Figure 2D.1
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Figure 2D.3: Wavelength of the dominant mode extracted from (A) the Fourier analysis
in the central plane of the domain and (B) from the 2D Fourier analysis of the particle
interface. (initial particle volume fraction ϕ0 = 1.98× 10−3

2.E Acronyms and symbols

A
Area of the plane through which the particle mass flux

is computed

b
Coefficient used to compute the force term in the Guo

et al. [2002] formulation

ci
Local particle velocity associated to a given lattice

type in the LBM

cs Speed of sound used in the LBM

C1 Particle concentration in the upper layer

C2 Particle concentration in the lower layer

D,Dc, DS

Diffusion coefficients respectively for the

density-altering quantity, the particle field and the

sugar

Dp Particle diameter

Dz Differential operator

e⃗z Vertical unit vector

fi, f
eq
i

Particle population and equilibrium distribution

function

F⃗ Body force term
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Fi

Power series expansion in the Guo et al. [2002]

formulation

Fr Froude number

g, g′ Gravitational acceleration and reduced gravity

Grc Critical Grashof number

h1, h2 Thicknesses of the upper and lower layer respectively

H,Ho

Heights of the particle interface at any time and at

time t = 0

H̃, |H̃i|
Fourier transform of H and the associated initial

amplitude

I Identity operator

J Particle mass flux

k, ksim
Wavenumber associated with the instability and the

value computed from the simulations

kS Sampling wavenumber

K
Left term in the matrix form of the eigenvalue problem

in the LSA

lc Characteristic length used in the viscous scaling

lx, ly, lz Domain extent respectively in the x,y and z directions

L Characteristic length of the flow

LS Number of samples in the instability Fourier analysis

mb

Mass of particles accumulated at the bottom of the

domain

M
Compacted form of the second order differential

operator (M = −k2 +D2
z)

M2 Mass of particles in the lower layer

Ṁin, Ṁout

Particle mass flux entering and leaving the lower layer

respectively

NE
Numerical diffusion error in the first order

finite-difference scheme
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p, pc
Fluid pressure and characteristic pressure in the

viscous scaling

q Power used in the law defining Vf as a function of ϕ

S, S0, S
∗, S̄, Ŝ

Sugar concentration, sugar concentration at time t = 0

and S∗(= S0) is used in the nondimensionalisation,

base state and perturbation amplitude for the sugar

concentration

Sci Schmidt number

St Stokes number

t, ta, t
c, tlim

Time, time for the particle first arrival at the bottom

of the tank, characteristic time in the viscous scaling

and time at which all particle have settle across the

initial interface.

T Time at which the instability starts growing

u, u⃗f Transport velocity and fluid velocity

U Characteristic velocity

Vf , Vs
Respectively the fingers velocity and individual particle

settling velocity

W
Right term in the matrix form of the eigenvalue

problem in the LSA

x⃗ = (x, y, z) Position vector and associated 3D components

zϕ, zs
Error function parameters used for the base states of

volmue fraction and sugar respectively

α Sugar expansion coefficient

ΓH ,ΓHi

Power spectral density (PSD). The i index stands for

the initial PSD

δt, δx Temporal and spatial steps

δPBL PBL thickness

∆t Integration time for the particle mass flux

η Power used in the law defining Vf as a function of Dp
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µ Fluid dynamic viscosity

ν Fluid kinematic viscosity

ρ, ρ0, ρf , ρp, ρPBL, ρblk

Density, fresh water density, fluid density (including

sugar), particle density, PBL density, bulk density

(including sugar and particles)

σ, σsim, σLSA,i

Growth rate of the instability, growth rate computed

from simulations and growth rate predicted by LSA

τ Relaxation coefficient in the LBM

φ, φ̄, φ′, φ̂
Arbitrary variable, associated base state, perturbation

and perturbation amplitude

ϕ, ϕtot, ϕi, ϕ0, ϕ
∗, ϕ̄, ϕ̂

Particle volume fraction, total particle volume fraction

(polydisperse case), volume fraction of the i− th size

class, initial particle volume fraction, ϕ∗ (= ϕ0) is used

in the nondimensionalisation, volume fraction base

state, perturbation amplitude

ψ, ψ̄, ψ̂
Stream function, associated base state, perturbation

amplitude

ω, ω̄, ω̂
Vorticity, associated base state, perturbation

amplitude s

Table 2E.1: List of symbols used in the main manuscript
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Effect of gravitational spreading and wind

shear on settling-driven gravitational

instabilities within volcanic ash clouds

3.1 Introduction

In the previous chapter (i.e., published as [Lemus et al., 2021]), we presented a

newly-developed numerical model which extended previous investigations studying

settling-driven gravitational instabilities (SDGIs) at the base of volcanic clouds.

This model has been validated against theoretical studies (linear stability analysis),

laboratory experiments and analytical predictions for the vertical mass transfer of

volcanic ash [Lemus et al., 2021]. Furthermore, we confirmed that the instability

growth rate during the early linear stage, as well as the finger vertical velocity dur-

ing the later nonlinear regime, increase with the particle volume fraction. Finally,

we have demonstrated that characteristic signatures of SDGIs may be preserved in

measurable parameters such as the sedimentation mass flux or the accumulation

rate on the ground. These results complement the fundamental insights into fin-

ger dynamics obtained based on analogue laboratory experiments [Manzella et al.,

2015; Scollo et al., 2017; Fries et al., 2021]. However, these studies, as well as our

prior work [Lemus et al., 2021], consider a static configuration and do not take into

account the possible effect of shearing at the base of the cloud, which can be due

to either gravitational spreading, wind advection or both. In fact, the first exper-

imental studies on settling-driven gravitational instabilities mostly focused on the
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conditions for the formation of fingers in relation to the development of a bound-

ary layer [Manzella et al., 2015; Scollo et al., 2017; Fries et al., 2021]. Nonetheless,

gravitational and/or wind spreading is almost ubiquitous in natural volcanic ash

plumes and clouds; as a result, accurate modelling of settling-driven gravitational

instabilities needs to also describe the effect of shear.

Evidence for shear at the base of volcanic plumes and clouds comes from both

direct observations and analysis of deposits. Strong plumes form laterally-spreading

umbrella clouds at their neutral-buoyancy level [Constantinescu et al., 2021; Web-

ster et al., 2020; Costa et al., 2013; Bonadonna and Phillips, 2003], which can be

modelled as intrusive gravity currents (GCs) [Bursik et al., 1992; Johnson et al.,

2015]. Meanwhile, weak-plumes exhibit bent centre-line trajectories leading to elon-

gated ash deposits [Bonadonna et al., 2005, 2015b; Ernst et al., 1994; Carey and

Sparks, 1986]. In both cases, a vertical gradient in the horizontal flow profiles ex-

ists, i.e., a shear flow. Such shear flows, which occur in density-stratified fluid, are

susceptible to a range of shear instabilities, including the Kelvin-Helmholtz instabil-

ity (KHI) [Kelvin, 1871; von Helmholtz, 1886]. This wave-like instability appears at

the interface between two fluids placed on top of each other and moving at different

velocities and can be related both to gravitational spreading and wind advection. It

grows from initial perturbations at the density interface to form billows that finally

collapse, inducing turbulent mixing [Thorpe, 1973]. Indeed, KHI billows have been

observed at the base of bent volcanic plumes due to the velocity gradient between

the plume and the surrounding atmosphere [Bursik et al., 2021]. Specific conditions

are required to trigger instabilities such as KHIs. Indeed, we saw in the previous

chapter that a stratified configuration involving a fluid layer placed above a denser

one provides a stable configuration [Chandrasekhar, 1961; Sharp, 1984]. Nonethe-

less, the addition of velocity shear (whether this is related to gravitational spreading,

to wind or to both) tends to destabilise the system and linear stability analysis pro-

vides a condition on the gradient Richardson number Rig [Drazin, 1958; Goldstein,

1931; Miles, 1961]. Assuming an inviscid and incompressible flow under the action

of gravity, the instability occurs for Rig < 1/4 where
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Rig =

g
ρ(z)

dρ(z)
dz(

du(z)
dz

)2 , (3.1)

with g = 9.81 m s−2 the gravitational acceleration, z the vertical position coordinate,

ρ (z) the vertical density profile and u (z) the horizontal velocity.

KHIs have been widely studied in numerous fields such as meteorology [Chap-

man and Browning, 1997; Reiss and Corona, 1977], oceanography [van Haren and

Gostiaux, 2010; Smyth and Moum, 2012] and even astronomy [Ray, 1981; Cavus

and Kazkapan, 2013]. KHIs represent an important mechanism for mixing density-

stratified fluids [Ellison and Turner, 1959; Christodoulou, 1985; Strang and Fer-

nando, 2001] and, consequently, an analysis of the effect of shear on SDGIs needs

to consider interactions between the two types of instability (i.e. SDGIs and KHIs).

Some theoretical studies involving linear stability analyses have been carried out,

with results showing that the instability growth rate and wavelength depend on the

Richardson number and the particle settling velocity [Farenzena and Silvestri, 2017;

Konopliv et al., 2018]. In particular, it has been found that the presence of shear

tends to dampen the growth of SDGIs, as it also does for double-diffusive instabil-

ities (DDIs) [Linden, 1974; Smyth and Kimura, 2007; Kimura and Smyth, 2007].

These have also been proposed as mechanism for fingering processes in volcanic ash

clouds [Linden, 1974; Smyth and Kimura, 2007; Kimura and Smyth, 2007; Carazzo

and Jellinek, 2013].

Whilst the interaction between KHIs and SDGIs is understudied, the interaction

between Rayleigh Taylor instabilities (RTIs) and KHIs is more documented. Linear

stability analyses of combined RTI-KHI have shown that the presence of shear be-

tween two unstable layers tends to increase the instability growth rate during the

early linear stage (compared to non-sheared RTIs) [Chandrasekhar, 1961; Guzdar

et al., 1982; Zhang et al., 2005]. Interestingly, numerical studies focused on the

later nonlinear regime have highlighted some conditions for which the opposite sit-

uation occurs, i.e., the shear stabilises the Rayleigh-Taylor process (decreases the

RTI growth rate) until a point where KHIs dominate [Olson et al., 2011; Shumlak

and Roderick, 1998]. Furthermore, it appears that the addition of shear tends to
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suppress the RTI isotropy property [Olson et al., 2011]. Indeed, our 2D Fourier

analysis of the particle interface in non-sheared experiments showed that SDGIs

are isotropic within the plane perpendicular to the settling direction (cf. Appendix

chapter 2). Given the lack of study on KHI-SDGI interactions, these results on

KHI-RHI interactions provide a crucial starting point for interpreting the effect of

shear on SDGIs.

In this chapter, we use the previously-developed numerical model [Lemus et al.,

2021] to investigate the interaction between shear and SDGIs, as well as the as-

sociated implications for volcanic ash settling. First, we perform simulations of

laboratory-scale, lock-release particle bearing gravity currents that propagate over

a denser ambient [Jarvis et al., in prep]. These experiments allow us to investigate

the fundamental physics of SDGIs in a sheared environment, as well as validate our

model against experimental results. Second, we expand our model to the natural

setting by simulating ash sedimentation during the 2010 eruption of Eyjafjallajökull

volcano, Iceland, where the plume was largely affected by wind [Bonadonna et al.,

2011].

3.1.1 Shear associated with gravitational spreading

Gravity currents (GCs) are flows where horizontal motion follows a pressure gradient

due to a horizontal density difference [Benjamin, 1968; Simpson, 1997]. They are

frequently used to model the dynamics of many processes associated with geological

settings, especially volcanic eruptions [Hallworth et al., 1993; Gladstone et al., 2004;

Castruccio et al., 2010; Sparks et al., 1991; Johnson et al., 2015]. Dedicated labora-

tory experiments have been scaled to be representative of gravitationally-spreading

volcanic clouds [Jarvis et al., in prep]. The experiments involve lock-release con-

figurations and allow the creation of constant-volume GCs. Numerous theoretical,

experimental and numerical studies have been performed in order to characterise

the fundamental properties of such currents [Thomas et al., 2003; Lowe et al., 2002;

Marino et al., 2005; Hallworth et al., 1993; Balasubramanian and Zhong, 2018; Ot-

tolenghi et al., 2018; Mukherjee and Balasubramanian, 2020; Shin et al., 2004]. An

interesting outcome is that, during the propagation of gravity currents, three phases
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can be distinguished. There is first a slumping regime where the current propagates

at a constant velocity. Then, there is a second inertial regime where the current

motion is governed by the balance between buoyancy and inertial forces. Finally, a

viscous regime occurs where the current spreading is dominated by viscous effects

[Huppert and Simpson, 1980; Cantero et al., 2007]. In order to characterise the cur-

rent front velocity throughout these phases, and for Boussinesq currents (i.e., where

the density difference between the current and the ambient is very small), the front

velocity is usually expressed as a dimensionless Froude number given by [Benjamin,

1968]

FrH =
U√
g′H

, (3.2)

where the reduced gravity g′ = g|ρf − ρs|/ρs, where ρf the current density, ρs the

ambient density and H the total fluid depth. Moreover, for an ideal flow config-

uration, i.e., energy conserving, buoyancy-driven and full-depth release, Benjamin

[1968] derived a value of 1/2 for FrH which ultimately gives the front velocity as

U =

√
g′H

2
. (3.3)

This ideal energy-conserving case is, however, difficult to achieve in reality due to

internal dissipative processes and mixing [Benjamin, 1968]. In Benjamin’s model,

the imposition of energy conservation produces a current which occupies a depth

of h = 0.5H (for a full-depth lock-release experiment). More recently, a newer

analytical model has been derived relating the energy loss flux ∆Ė (in practice the

dimensionless energy loss ∆ ˆ̇E) to H and h through the relation [Shin et al., 2004]

∆̂Ė =
∆Ė

ρ1g′3/2H5/2
=
h5/2 (H − 2h) (2H − h)1/2

2H (H + h)3/2 (H − h)1/2
. (3.4)

where ρ1 is the light fluid density in the stratified configuration. Figure 3.1.1 shows

the dimensionless loss of energy as a function of the dimensionless current depth.

Whilst the energy-conserving case, i.e., ∆ ˆ̇E(0.5) = 0, can be seen for h = 0.5H, the

non-conserving regime is given for h < 0.5H with a maximum loss at h = 0.347H,

which also corresponds to the depth for which the current is at its maximum speed
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[Shin et al., 2004]. This region corresponds with lock release experiments that

generate GCs with finite volumes. However, the case h > 0.5H, i.e., when ∆ ˆ̇E < 0

is a priori impossible, unless an external source of energy is supplied to the current.

Figure 3.1.1: Dimensionless energy loss ∆ ˆ̇E as a function of h/H (h being the current
thickness and H the domain depth) [Shin et al., 2004]. The dotted blue line corresponds
to the energy-conserving case [Benjamin, 1968] while the dotted green line denotes the
current thickness associated with maximum energy loss. The black dashed line represents
the energy-conserving case.

The relevance of GCs to this study is that they are a class of stratified shear flow

within which both SDGIs and KHIs, as well as their interaction, can be studied.

Indeed, because of the gravitational spreading, the induced shear at the interface

between the current and the ambient may trigger shear instabilities such as KHIs

[Thorpe, 1973; Patterson et al., 2006]. Those shear instabilities then tend to cause

mixing between the current and the ambient by entrainment [Ellison and Turner,

1959; Christodoulou, 1985; Strang and Fernando, 2001]. This results in local changes

in the density gradient and ultimately affects the buoyancy properties of the cur-

rent. Furthermore, in the presence of particles, this mixing process also affects the

sedimentation of particles. Indeed, among the various studies on GCs, some ex-

perimental ones have focused on the effect of sedimentation during the spreading
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of currents through stratified environments [Maxworthy, 1999; Sutherland et al.,

2018, 2021]. These particle-bearing GC experiments are generally scaled in order

to investigate the deposition of sediments from turbulent plumes in riverine, la-

custrine or coastal environments [McCool and Parsons, 2004; Parsons et al., 2001;

Davarpanah Jazi and Wells, 2020]. Interestingly, similarly to our static experiments

(cf. Chapter 2), McCool and Parsons [2004] highlighted that the sedimentation from

highly concentrated plumes is dominated by convective settling, with the resulting

convective plumes, that can be associated with SDGIs, having a settling velocity

twice the expected Stokes velocity for individual particles. This is an important

outcome as SDGIs are a process with significant implications for sediment removal

from particle-rich plumes such as volcanic clouds [Scollo et al., 2017; Carazzo and

Jellinek, 2012; Manzella et al., 2015].

3.1.2 Shear associated with wind advection: the case of the

2010 eruption of Eyjafjallajökull

In the second part of this chapter, we go beyond the previous laboratory-scale sim-

ulations to consider the more complex configuration of a volcanic ash cloud at the

natural scale. We focus on the 2010 Eyjafjallajökull eruption, for which the second

phase lasted from the 14th of April to the 24th of May. During this event, SDGIs have

been observed and further measurements such as the deposit grainsize distribution

have been performed. A wide range of eruption source parameters (ESPs) exist that

include the volume fraction of ash in the cloud, total grain-size distribution (TGSD),

erupted mass, plume height, mass eruption rate and ash texture [Cioni et al., 2014;

Bonadonna et al., 2011; Kaminski et al., 2011; Taddeucci et al., 2011; Bagnato et al.,

2013; Borisova et al., 2012; Dellino et al., 2012; Gislason et al., 2011; Gudmundsson

et al., 2012; Degruyter and Bonadonna, 2012; Marzano et al., 2016; Mereu et al.,

2015]. Furthermore, the observed SDGIs have been characterised for the first time

using both video acquisitions and field observations of the tephra deposit [Manzella

et al., 2015].

The input parameters used in our model come from the work of Bonadonna et al.

[2011] (for the TGSD and particle density) and Manzella et al. [2015] (for the total
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particle volume fraction, the wind velocity and the cloud spreading velocity) who

performed quantitative observations on the 4th of May. Although satellite measure-

ments could be used to estimate the ash concentration at large scales [Gudmundsson

et al., 2012; Prata and Prata, 2012], there is strong uncertainty on local variations

that could be relevant to SDGI triggering [Manzella et al., 2015]. We therefore use

the observed vertical propagation velocity of fingers [Manzella et al., 2015] and the

analytical formulation of Carazzo and Jellinek [2012] to calculate the approximate

range for the particle volume fraction [Manzella et al., 2015]. Indeed, we recall that,

for a given particle size, the analytical estimation for the vertical velocity of fingers

proposed by Carazzo and Jellinek [2012] is given by

Vf = g′
2
5

(
Vsπδ

2
PBL

4

) 1
5

, (3.5)

where Vs is the individual particle settling velocity, δPBL the thickness of the particle

boundary layer (PBL) and g′ = g(ρPBL − ρa)/ρa, ρa = 1.3 kg.m−3 being the density

of the atmosphere and ρPBL the bulk density within the PBL. Then, assuming a

vertical velocity of fingers measured at Vf = 1.0 ± 0.5 m.s−1, a δPBL measured at

approximately 90 m and Vs = 1 m.s−1, the PBL bulk density can be estimated as

ρPBL = 1.30 − 1.31 kg.m−3. Ultimately, also assuming the density of volcanic ash

in the interval [1400-1700] kg.m−3, the particle volume fraction is estimated in the

range [1× 10−6; 4× 10−6] [Manzella et al., 2015].

Regarding the initial particle size distribution in the cloud, we can assume that

it can be approximated with the TGSD determined by Bonadonna et al. [2011]

for the time period between the 4th and 8th of May. In their study, Bonadonna

et al. [2011] combined the size distribution of the ground deposit with satellite

measurements to characterise the TGSD within a distance range of [2-1000] km from

the vent (Figure 3A.1a). Additionally, the associated pumice densities have been

computed as a function of the grain size (Figure 3A.1b) . We clearly observe that

the TGSD is mostly unimodal and centred around Phi = 1 (Phi = −log2(D/D0),

D being the particle diameter in mm and D0 a reference diameter equal to 1 mm).

However, grainsize distributions at individual locations are often bimodal, suggesting

premature deposition of fine ash [Manzella et al., 2015; Cioni et al., 2014].
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Finally, it was observed that there was a difference between the volcanic cloud

spreading velocity and the ambient wind speed during the 2010 Eyjafjallajökull

eruption. This discrepancy in velocity suggests that the volcanic cloud holds some

inertia and, therefore, the induced shear may have a significant effect on the devel-

opment and dynamics of SDGIs. The volcanic cloud velocity Ucloud = 7.9± 1.3 m/s

has been measured by Manzella et al. [2015] using records of High-Definition videos

captured during the event on the 4th of May (12:49:21 GMT). The associated wind

velocity Uwind = 11± 0.5 m/s has been extracted from meteorological models which

interpolate the conditions at the desired location (European Centre for Medium-

Range Weather Forecasts ERA-40 reanalysis interpolated at 0.25° resolution above

the volcano) [Manzella et al., 2015].

3.1.3 Aims and objectives

In order to investigate the effect of shear on SDGIs, we use the hybrid 3D single-phase

model developed in the previous chapter. This model uses the Lattice Boltzmann

method (LBM) to solve for the fluid motion, a 3rd order WENO (weighted essen-

tially non-oscillatory) scheme to solve for the transport of particles and a 1st order

upwind finite-difference scheme to solve the transport of any density-altering quan-

tity. We consider two configurations which represent different scales and address

shear associated with gravitational spreading and wind advection, respectively:

• First, we reproduce aqueous laboratory experiments where lock-release GCs

that have been generated with the aim of studying the lateral spreading of

volcanic clouds. A first part involving particle-free gravity currents aims at

the validation of the 3D hybrid model regarding the addition of lateral motion.

This validation involves comparison of the simulation results with experimental

and theoretical results including the current front velocity and thickness. We

then consider particle-bearing currents to examine the effect of sedimentation

on current properties.

• Second, we investigate the shear associated with wind advection as a com-

parison with the case study of the 2010 eruption of Eyjafjallajökull where
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SDGIs have been observed and key ESPs have been characterised based on

multidisciplinary strategies. The first goal is to constrain the ranges of input

parameters that enable triggering of SDGIs. Then, we examine the ground

deposits produced during the simulations to identify the specific ground sig-

nature of SDGIs.

3.2 Methods

3.2.1 Gravitational spreading of particle-free clouds and particle-

bearing experiments

The configuration is designed to reproduce laboratory experiments reported in Jarvis

et al. [in prep]. By reproducing these experiments, we can first further validate

the numerical model and, secondly, identify the fundamental physics underpinning

the relationship between gravitational spreading and SDGIs. As an extension of

previous static laboratory experiments [Manzella et al., 2015; Scollo et al., 2017;

Fries et al., 2021], the apparatus involves a flume of dimensions 12.2 × 329 × 50 cm,

with a removable gate 29 cm from one end separating the flume into short and long

sections. Initially, the short part of the flume is filled with the light fluid (freshwater

and dye or freshwater particle suspension) whilst on the other side of the gate is a

denser sugar solution. The height of fluid both sides of the gate is 40 cm. Upon

gate removal, buoyancy-driven lateral motion of the lighter layer initiates, creating a

gravity current that propagates along the free-surface. Using a numerical domain of

size 12.2 × 329 × 40 cm (see Figure 3.2.1), we have performed two sets of simulations

(see Table 3.2.1 for the list of simulations performed).

Particle-free clouds: comparison between laboratory experiments and

numerical model

The first set of simulations involves the lateral spreading of particle-free gravity

currents and allows us to validate the numerical model as well as investigate the

effect of varying the reduced gravity g′ = (ρ1−ρc)/ρ1, where ρ1 is the density of the

sugar solution and ρc is the bulk density of the current, on the lateral spreading. We
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tested two different boundary conditions (no-slip and free-slip) for the top boundary

(corresponding to the free-surface). The no-slip boundary condition, implemented

with the bounce-back method, imposes zero velocity relative to the boundary while

the free-slip imposes zero-gradient for the tangential velocity components. In order

to visualise the spreading current, a red dye was added to the experiments in Jarvis

et al. [in prep]. In these simulations, we track the evolution of this dye by defining

a scalar field a(x, t), initialised as shown in Figure 3.2.1, and relate it to the fluid

density ρ(x, t) through

ρ(x, t) = ρ2a(x, t) + (1− a(x, t)) ρ1. (3.6)

As described previously, we maintain the three-way coupling model using the

LBM to solve for the fluid motion coupled with finite difference schemes for the

fluid density and the dye concentration.

Figure 3.2.1: Numerical domain used to simulate the lock-release experiments (modified
from [Jarvis et al., in prep]).

Gravitational spreading of particle bearing clouds

The second set of simulations involves particle-bearing gravity currents to investigate

the effect of lateral spreading on settling and especially on SDGIs. As shown on

Figure 3.2.1, the particle-suspension is initially set up with Φ0 (with the additional

perturbation to trigger instabilities). In the previous chapter, we showed that SDGIs

are sensitive to the initial particle volume fraction Φ0. Therefore, in order to avoid

the influence of the particle volume fraction and to isolate the effect of the lateral

spreading on the sedimentation process, we keep Φ0 constant and only vary the sugar
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Simulation g′ (m s−2)

Fresh
water

density
(kg/m3)

Sugar
solution
density
(kg/m3)

A1 0.00451 1003.04 1003.5
A2 0.00940 1003.04 1004
A3 0.01912 1003.04 1005
A4 0.0289 1003.04 1006
A5 0.0386 1003.04 1007
A6 0.0483 1003.04 1008
A7 0.0580 1003.04 1009
A8 0.0676 1003.04 1010
A9 0.0773 1003.04 1011
A10 0.0869 1003.04 1012
B1 0.00451 1000 1003.5
B2 0.00550 1000 1003.6
B3 0.00647 1000 1003.7
B4 0.00744 1000 1003.8
B5 0.00842 1000 1003.9
B6 0.00940 1000 1004
B7 0.0192 1000 1005
B8 0.0289 1000 1006
B9 0.0386 1000 1007
B10 0.0483 1000 1008
B11 0.05780 1000 1009
B12 0.0676 1000 1010
B13 0.0773 1000 1011
B14 0.0869 1000 1012

Table 3.2.1: List of performed simulations. Gray shaded part: particle-bearing gravity
currents. For those simulations the particle size is 40 µ m and the initial volume fraction
is Φ0 = 2× 10−3.

solution density. As usual, the transport of particles is described by an advection-

diffusion-settling equation for the volume fraction and solved using the WENO finite

difference procedure.

We use some post-processing procedures in order to compute parameters such as

the current front velocity, the current average thickness and the ground accumulation

rate. Similarly to the static case-study (Chapter 2), we extract a slice in the (y, z)

plane located at the middle of the tank depth for each simulation. Then, we measure

the front head displacement at several time steps in order to compute the spreading

velocity.
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In order to compare with the particle-free experiments, we measure the front

position with the same method used in [Jarvis et al., in prep]. Along a horizontal

line located 2 cm under the free-surface, we evaluate the position at which a(x, t) =

a(x, 0)/2 (see Figure 3.2.2 for an example of the front detection). For particle-

bearing experiments, this method is no long valid because the head of the current

can settle below this transect. In this case, the front head is defined as the maximum

position along the y-axis where Φ = Φ0/2.

Figure 3.2.2: Detection of the front position for a simulation with g′ = 9.40×10−3 m s−2

at the time t = 55 s. The solid blue line is the detection line located 2 cm under the water
free-surface. The red cross is the detected position of the current front. The colorbar is
associated with the value of a(x, t).

In order to measure the average variation of the current thickness we consider a

measurement window between positions x = yi = 1 m and x = yf = 2 m. Whilst

the head of the current is propagating through this window, we measure the current

thickness between the points at 10 and 20 cm upstream of the current front. To

do so, we first compute the profile of a (for the particle-free currents) or Φ (for the

settling currents) along a vertical line. Then, the thickness is defined by the distance

between two points on that line where a and Φ reach half of their initial values (see

Figure 3.2.3). This thickness is then averaged across the distance between 10 and 20

cm upstream of the current front. Finally, we define the thinning rate of the current

head by dividing the absolute change in average thickness divided by the time taken

by the current to cross the measurement window.

Finally, the accumulation rate of sediment on the domain floor Θ is computed

in the same way as in chapter 2 with

Θ =
1

A

dmb

dt
, (3.7)
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Figure 3.2.3: Example of measurement for the current thickness 20cm before the front

where A is the area of the collection surface, t time since start of the simulation and

mb the mass of particles accumulated on the ground.

3.2.2 Case study: the 2010 Eyjafjallajökull eruption

A key difference between these simulations and those presented in Section 3.2.1

is that the carrier fluid is now air instead of water. We, therefore, take an air

density of 1.3 kg.m−3 and a kinematic viscosity of 1.4 × 10−5 m2 s−1 (see Table

3A.1 in Appendix 3.A). Furthermore, the domain is a box of dimensions 3 × 20

× 3 km in order to simulate a volcanic cloud. The longest dimension is aligned

with the spreading direction of the plume. Within this domain, simulations are

initiated with two superposed layers which represent the volcanic ash cloud and the

underlying atmosphere, respectively. Regarding the spatial discretisation, each grid

cell represents a distance of 30 m. As seen in Figure 3.2.4, the velocity field U is

initially imposed with a step change corresponding to the situation where the cloud

spreading velocity is lower than the wind velocity [Manzella et al., 2015]. Thus, the

different boundary conditions used for the fluid field are (Figure 3.2.4):

• inlet at (x, 0, z)

• outlet at (x, 20, z)

• no-slip (i.e. zero value for U on the ground) at (x, y, 0)

• Dirichlet conditions for the others (i.e., cloud spreading and wind velocity

respectively)
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(a)

(b)

Figure 3.2.4: (a) Sketch of the numerical domain used in the simulations inspired from
(b) the natural case of the 2010 Eyjafjallajökull eruption. Data from Manzella et al. [2015].

For this case study, we use a polydisperse particle size distribution, and we

solve simultaneous advection-diffusion-settling equations (cf equation 2.7 Chapter

2) for each class. Indeed, in order to reproduce the settling dynamics of a volcanic

cloud and the associated deposit as accurately as possible, it is necessary to utilise

the total grain size distribution (TGSD) as an input. We initialise 12 particle size

classes, where the volume fraction of each is represented as a single scalar fields,

from -2 to 9 Phi (Phi = − log2(D/D0) (D being the particle diameter in mm)

and D0 a reference diameter equal to 1 mm) in order to represent the TGSD (cf.

Figure 3A.1a). Thus, each particle volume fraction field is initiated uniformly within

the upper layer with the value Φi = f (Φ + ξ), where f is the fraction of material

contained within size class i, ξ a small perturbation in order to trigger the instability
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and Φ is the total volume fraction. Throughout the simulation, this volume fraction

for each size fraction is maintained at the inlet, representing particle supply from

the plume. The model is then iterated in time to allow a steady flow to establish

before starting post-processing analysis. Given the significant uncertainty related

to the total particle volume fraction Φtot in the volcanic cloud, especially around

the zone where SDGIs are triggered, we performed several simulations using four

different values, Φtot = [4× 10−6; 1× 10−5; 2× 10−5; 3× 10−5]) in order to constrain

the critical value that trigger SDGIs. Note that the first value is the one suggested

by Manzella et al. [2015] in order to be consistent with the collapsing PBL theory

[Carazzo and Jellinek, 2012].

3.3 Results

3.3.1 Particle-free gravity currents

The set of particle-free simulations allows us to validate the numerical model by

reproducing the lateral spreading of the current. A qualitative comparison with

the lock release experimental results shows that the numerical model accurately

reproduces the behaviour of gravity currents generated in the laboratory. Indeed,

Figure 3.3.1 shows snapshots of both experiments and numerical simulations at

different times for the same reduced gravity. Despite some slight differences in the

spreading velocity, the simulations show similar shapes of the current and, in both

cases, billows appear at the base of the cloud from the beginning of the lateral

motion. Also, we observe that upstream of the current head, some current fluid is

left behind and takes the form of a tail.

For a more quantitative validation, the current front velocity was measured and

compared with the experimental results and with the aforementioned analytical

formulation (equation 3.3). To calculate the simulated current velocity, we consider

the front position of each current as a function of time (Figure 3.3.2a). The current

velocity is approximately constant along the domain, suggesting that the current

remains in the slumping phase throughout [Huppert and Simpson, 1980; Simpson,

1997]. We, therefore, perform the current front velocity measurement from the
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Figure 3.3.1: Qualitative comparison between flume experiments (left) [Jarvis et al., in
prep] and analogue numerical simulations using the top free-slip boundary condition (right)
at different times. g′=0.057 m s−2

positions y = yi = 1 m and y = yf = 2 m. Figure 3.3.3a shows the measured

current front velocity as a function of g′ for both no-slip and free-slip upper boundary

conditions. The error bars are given by the standard deviation of the set of front

velocities computed between different time steps. We observe a good agreement

between the experimental results and the numerical simulations using the free-slip

top boundary. There is also a very good agreement with Benjamin’s analytical

model using a value of 1/2 for the Froude number. In addition, we show that the

current front velocity using free-slip boundary conditions is greater than the value

obtained using no-slip conditions, suggesting a lower value of FrH . As shown on

Figure 3.3.3b and considering the equation 3.2, the best fit of the Froude number for

the no-slip results seems to be FrH = 0.42. This agrees with the results of Härtel

et al. [2000] who used numerical simulations to show that Frfree−slip
H > Frno−slip

H

(i.e., U free−slip > Uno−slip).

Another interesting aspect is related to the evolution of gravity current depth as

it provides indications about the energy balance during the spreading. As mentioned

before, we observe that some fluid is left behind and also that the current occupies

less than half of the flume depth. These facts suggest that energy is not conserved.

Figure 3.3.4 shows an example of a particle free gravity current with g′ = 0.004511

m s−2. We observe that, despite some perturbations to the current interface at
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(a) (b)

Figure 3.3.2: Current front absolute position as a function of time for (a) the particle-free
simulations and (b) the particle-bearing simulations.

(a) (b)

Figure 3.3.3: (a) Particle-free gravity current front velocity as a function of the reduced
gravity for the experiments and the numerical simulations (no-slip and free-slip). The
black dashed line refers to equation 3.3. (b) Associated Froude number. The black dashed
line and the red dotted line denote FrH = 1/2 and FrH = 0.42, respectively.

the start of the spreading, the current occupies less than half of the flume depth.

Moreover, the current depth seems to stabilise at the maximum energy loss level,

i.e., when the current depth is h = 0.347H as shown in Figure 3.3.5.

3.3.2 Particle-bearing gravity currents

The second set of simulations now involves particle-bearing currents and the associ-

ated settling process. In Figures 3.3.2b and 3.3.6a we observe that the presence of

particles does not seem to affect the current front spreading velocity as the results

still fit Benjamin’s analytical model (using FrH = 1/2). However, when computing
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Figure 3.3.4: Snapshots of simulations without particles for g′ = 0.004511m.s−2 at
different times. The solid blue line corresponds to h = 0.5H while the solid green line is
for h = 0.347H.

Figure 3.3.5: Evolution of the maximum current thickness hmax as a function of its
associated position while the current front is located between y = 1 m and y = 3 m. The
solid blue line corresponds to h = 0.5H while the solid green line is for h = 0.347H.

the Froude number as shown in Figure 3.3.6b, we clearly observe that although the

results agree with the energy-conserving value of 1/2, as g′ decreases towards zero

the Froude number appears to rapidly increase, as does the calculated uncertainty

on the Froude number.

Additionally, we quantify the evolution of the current thickness in order to char-

acterise the contribution of settling to the current shape evolution. Figure 3.3.7
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(a) (b)

Figure 3.3.6: (a) Current front velocity (with particles) as a function of the reduced
gravity for the numerical simulations (using free-slip upper boundary). (b) Associated
Froude number. The dashed line denotes FrH = 1/2.

shows snapshots of simulations for different g′ at time steps corresponding to when

the current front has propagated approximately 2 m. The pictures on the left-hand

side represent the particle volume fraction of the current while the right hand side

shows the fluid density. First, we observe that for small values of reduced gravity,

the settling process is important to the point that most of particles have settled be-

fore the current fully develops. Then, as g′ increases, the current has enough inertia

to overcome the sedimentation of particles. We also observe an effect of the presence

of settling particles on the current shape. Indeed, we can see that for higher values

of g′, the current shape seems to be similar to that observed in the particle-free sim-

ulations. However, there is a difference around the current tail which stays below

the 0.5H line. Moreover, there is a situation when the settling process is comparable

with the lateral spreading (i.e. for smaller g′). We can quantify this by computing

the ratio between the different characteristic velocities U/Vs with Vs the Stokes ve-

locity of particles. Figure 3.3.8 shows this ratio as a function of g′ and we observe

that this ratio decreases monotonically with g′. However, for the smallest values of

g′ it appears that the ratio remains low suggesting that the lateral spreading is still

the dominant process. Given the strong sedimentation observed in our simulations,

this result implies that the Stokes velocity is not a relevant characteristic parameter

and that particles settle faster by collective sedimentation. Additionally, we clearly
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observe that the current head becomes thinner as we decrease the value of g′. The

same behaviour is seen in the fluid density field, suggesting the particles seems to

enhance the removal of fluid from the current and ultimately confirms the current

head thinning.
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Figure 3.3.8: Ratio of theoretical characteristic velocities Vs/U (Vs the Stokes velocity
of particles, and U the current front velocity) as a function of the reduced gravity g′.

Whilst the mechanisms causing the current thinning are different between the

particle-free and the particle-bearing currents, we also quantify the evolution of the

current thickness during its lateral spreading. As shown in Figure 3.3.9, the current

thickness seems to decrease almost linearly along the measurement window (1 - 2 m),

allowing calculation of an average thinning rate. Figure 3.3.10 shows the thinning

rate (averaged over 10 and 20 cm upstream of the current front) as a function of

the reduced gravity. First, we observe that the thinning rate increases strongly as

g′ decreases towards zero. Second, as g′ increases beyond approximately 0.02 m s−2,

the current thinning rate appears to converge to a fixed value which corresponds to

approximately the individual particle settling velocity. All those results suggest the

presence of two different regimes where the sedimentation process seems to influence

strongly the current geometry (i.e. for small values of g′) and where the effect is

moderate.

We also look for evidence of the effect of SDGIs on sedimentation through quan-

tification of the particle accumulation rate at the bottom of the domain. It has been

previously noted in the static case that collective settling through fingers causes an

increasing accumulation rate (compared to a constant value for individual settling).

Figure 3.3.11 shows the accumulation rate computed at the bottom of the domain
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Figure 3.3.9: Current thickness h10 measured 10cm upstream from the front, along the
measurement window.

Figure 3.3.10: Average thinning rate as a function of g′. The red dashed line is the
particle Stokes velocity.

between the positions x = 0.29 m and x = 3.29 m. Because the domain located

between x = 0 m and x = 0.29 m is affected by the initial deposition of particles

(by individual settling) before the current spreading, we do not take it in account.
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First, we observe that increasing the value of g′ delays the onset of particles reach-

ing the floor by sedimentation. Second, the trend is similar to the static case as

we note an increasing phase which is terminated by a constant phase. However,

here the increasing phase may not be easily related to collective settling. Indeed,

the accumulation rate for the static configuration was computed using vertical flux

through a fixed surface which is no longer the case for the spreading configuration.

Finally, for greater values of g′, the current appears to have enough inertia to avoid

any sedimentation during the spreading phase. It is the case for the curves related

to g′ = 0.02888 m.s−2 and g′ = 0.03859 m.s−2 where all the sedimentation occurs

after the spreading phase i.e. after the current has reached the end of the domain.

Figure 3.3.11: Accumulation rate computed at the bottom boundary of the domain for
different values of g′.

Finally, we also analyse the spatial distribution of the deposit. Figure 3.3.12

shows the accumulation rate computed at the bottom of the domain at the moment

when the current head is around the position y = 2 m. First, we observe that

the area of the deposit increases as g′ decreases. Second, the accumulation rates

are heterogeneously distributed, contrary to what would be expected in the case of

individual settling.
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Figure 3.3.12: Accumulation rate at the domain bottom for different values of g′. The
situation corresponds to the one showed on Figure 3.3.7

3.3.3 The 2010 eruption of Eyjafjallajökull

A qualitative overview of the different simulations performed shows that Φtot is a

critical and sensitive parameter. Using the value suggested by Manzella et al. [2015]

(Φtot = 4 × 10−6), we observed that no fingers were triggered within the domain

as shown in Figure 3.3.13a. However, increasing the initial total volume fraction

causes the formation of fingers at the base of the cloud. Indeed, we highlighted

in the previous chapter that increasing the initial volume fraction enhances the

development of instabilities at the density interface. So, we verify this aspect here

as fingers are finally triggered with a greater value of Φtot. Figures 3.3.13b, 3.3.13c

and 3.3.13d show simulation snapshots for Φtot = 1 × 10−5, Φtot = 2 × 10−5 and

Φtot = 3 × 10−5, respectively. We clearly observe that fingers start forming at

the density interface. Interestingly, we note that for Φtot = 1 × 10−5, fingers are

forming but reach the ground quite far from the inlet (i.e., beyond 20 km). On the

contrary, for Φtot = 3 × 10−5, the cloud seems to destabilise around 6km from the

inlet before completely collapsing around 10 km. Fingers on Figure 3.3.13c start

forming around 6km and reach the ground in a range of [10-12] km from the inlet.

As a comparison, according to the observations of Manzella et al. [2015] on the

4th of May, fingers started to form around 1.4 km from the vent before reaching

the ground approximately at 10 km from the vent. Another interesting observation

is that coarse particles (with size ≥ 250 µm) fallout closer to the inlet than fine

particles. This can be seen by following the lines corresponding to the trajectory

of a coarse fraction, for example, between the inlet and the ground at y = 2.5 km.
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Obviously, this fallout has an impact on the total tephra volume fraction in the

cloud. Indeed, we measured the local volume fraction within the destabilising cloud

layer, which can be associated with the PBL, in the blue boxes highlighted in Figure

3.3.13. As expected, this local total volume fraction is smaller than that at the inlet.
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More quantitatively, we also investigate the ground deposit at specific downwind

locations in order to determine the local size distribution of deposited particles. We

calculate the particle size fraction Xi (in wt%) using the relation

Xi = 100× ϕi∑
i ϕi

, (3.8)

where ϕi is the volume fraction of each size class. Figure 3.3.14 presents the particle

size distribution inside the ground deposit computed from simulations with different

values of Φtot and we compare with the results found on the field [Manzella et al.,

2015]. The collection durations for the different samples are 10 min for the sample

EJ14, 96 min for the sample EJ15 and 50 min for the sample EJ17. In our simula-

tions, the collection duration is fixed at 130 min. Globally, the Φ value associated

with the distribution mode increases with the distance from the vent for all the

cases as illustrated in appendix 3.B. However, in Figure 3.3.14a, the field sample

at 10 km reveals a bimodal distribution. This aspect has been explained by the

presence of processes that enhance the premature sedimentation of fine ash such as

aggregation and SDGIs. The simulation using Φtot = 4× 10−6 does not present any

bimodal distribution, which is consistent with the fact that no fingers were formed

in this simulation. However, the size distribution for Φtot = 2×10−5 is in reasonable

agreement with the field observations, especially at 10 km where the distribution is

also bimodal with equivalent modes. Finally, the bimodality at 10 km disappears

for Φtot = 3× 10−5.
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(a)

(b)

(c)

(d)

Figure 3.3.14: Size distribution in the deposit at 2 km (red), 10 km (blue) and 20 km
(green) from (a) the field observations, (b) the simulations using Φtot = 4 × 10−6, (c)
Φtot = 2× 10−5 and (d) Φtot = 3× 10−5.

3.4 Discussion

3.4.1 Gravitational spreading

Using the model presented in the previous chapter, we have simulated the spreading

of laboratory scale, buoyant gravity currents, propagating at a free surface. Our re-
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sults allow us to validate the capabilities of the 3D hybrid model to produce lateral

spreading of currents by buoyancy effects. The simulations have successfully repro-

duced both theoretically-predicted [Benjamin, 1968] and experimentally-measured

current velocities and Froude numbers. However, we noticed some slight differences

between the current spreading velocity measured in both the experiments and the

simulations (cf. Figure 3.3.1). As the current spreading velocity in the simula-

tions has been validated with theoretical predictions, the experiments/simulations

discrepancy might come from uncertainties surrounding the start time of the experi-

ments (i.e., the manual removal of the gate separating the two layers). Furthermore,

we show that the equilibrium current depth is given by h = 0.347H. This is equal to

the current depth theoretically predicted by a maximally-dissipating current [Shin

et al., 2004] and thus, confirms the fact that the flow is not energy-conserving. Ad-

ditionally in our simulations, as the maximum energy loss is associated with the

maximum current speed, the current front speed remains at this maximum value,

which is coherent with the constant value observed along the domain. This suggest

finally that our configuration restricts the current spreading to the slumping phase

[Huppert and Simpson, 1980; Simpson, 1997].

We have also gone beyond these validatory simulations by modelling buoyant

gravity currents which carry a sedimenting particulate phase. These results have

shown that there are some significant differences caused by the addition of particles

to the behaviour of the current. Indeed, we showed that the presence of particles

tends to increase the Froude number for small values of g′ and, as illustrated by

Figure 3.3.7, the sedimentation process becomes stronger as g′ decreases. In fact, the

apparent value of g′ is calculated using the initial particle volume fraction. However,

there is some delay between the lock-release time and the moment when the current

becomes fully developed. For smaller values of g′ this time is relatively long. Thus,

during this time, there is some initial sedimentation of particles which causes the

decrease of the volume fraction and thus, the current bulk density which ultimately

increases the reduced gravity. Therefore, the effective g′ of particle-bearing current

with initially-small values of g′ becomes greater than the initial value, leading to a

higher Froude number.
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Furthermore, our simulations have also shown that particles deposit on the

ground as fast as g′ decreases. However, the ratio of the characteristic velocities

Vs/U (Figure 3.3.8) shows that Vs remains an order of magnitude lower than the

spreading velocity. Since we observe considerable sedimentation in the simulations,

this suggests that the particles’ Stokes velocity is not relevant. Indeed, for smaller

g′, individual settling does not seem to be the preferred sedimentation mode, but

rather collective settling. Therefore, if we consider, for example, the finger vertical

velocity Vf proposed by Carazzo and Jellinek [2012] (cf. equation 2.1 in chapter

2) as a characteristic velocity, we note that both settling and spreading processes

become comparable (Figure 3.4.1). Finally, this ratio decreases as soon as we in-

crease g′, implying that the lateral spreading is the dominant process. In fact, no

collective settling was observed at the base of the current during spreading for high

values of g′. This interesting observation suggests that the presence of shear and

thus the associated inertial effects, tend to inhibit the development of instabilities at

the density interface. Olson et al. [2011] and Shumlak and Roderick [1998] observed

in their numerical investigations that the presence of shear between two moving, and

also gravitationally unstable, layers, tends to stabilise the RTI process. Our results

suggest that the same effect occurs in the case of settling-driven instabilities.

Additionally, the strong sedimentation during spreading affects the current ge-

ometry. Indeed, whilst the current thickness variation in the particle-free case is

controlled by internal dissipative effects, the behaviour is significantly different in

the case of particle-bearing currents. We observed in our simulations that the sedi-

mentation of particles causes the thinning of the current head. According to Figure

3.3.10, we can identify two regimes separated by a critical value for the reduced

gravity g′c which seems to be around 0.02 m.s−2. For g′ > g′c, the thinning rate con-

verges to the rate of individual particle settling whilst, for g′ < g′c, the thinning rate

strongly increases (i.e., with values much higher than the individual settling rate)

as g′ decreases, which suggests collective settling is taking place and enhancing the

sedimentation of particles. Also, we note that the settling particles entrain some

carrier fluid (cf Figure 3.3.7) which also causes the thinning of the current as seen

in the fluid density field. Even though a volcanic cloud would deform because of
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Figure 3.4.1: Ratio of theoretical characteristic velocities Vf/U (Vf being the finger
vertical velocity calculated using the relation proposed by Carazzo and Jellinek [2012] and
U the current front velocity) as a function of the reduced gravity g′

atmospheric diffusion or density stratification, these results suggest that measuring

the volcanic cloud thickness variation could provide an indirect means of providing

information on the ash sedimentation regime (i.e., individual or collective). Finally,

similarities in the ground signature of SDGIs in sedimenting gravity currents have

been found with the static case. In both cases, the computed accumulation rates

at the bottom of the domain show an increasing phase. However, unlike in the

static case, this phase in the spreading configuration cannot be easily attributable

to collective settling. Nonetheless, the heterogeneous nature of the accumulation,

as shown on Figure 3.3.12, remains a useful indicator for the presence of collective

settling. Indeed in the case of individual settling, we should expect accumulating

particles on a surface to grow at the same speed as the current front spreading,

with no transverse variation. However, we clearly see in Figure 3.3.12 that the basal

accumulation rate contains clear transverse heterogeneities.
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3.4.2 Case study of the 2010 eruption of Eyjafjallajökull

Conditions for SDGIs

We selected the eruption of Eyjafjallajökull as a case study as this well-studied

eruption allowed us to gather multiple data sources derived from field observations

in order to set up a numerical configuration similar to the volcanic cloud. Our results

have shown that the total volume fraction is a critical and sensitive parameter that

controls the triggering of ash fingers. Our simulations suggest that Φtot is 5 times

greater than the value proposed in the previous work of Manzella et al. [2015].

However, the value of Φtot includes the contributions of coarse particles that are

too big to be entrained within fingers (i.e. they individually settled close to the

vent). The volume fraction proposed by Manzella et al. [2015] is coherent with the

theory of the PBL destabilisation [Carazzo and Jellinek, 2012] and is only valid for

the fine portion of volcanic ash likely to be entrained within fingers. Indeed, in the

static configuration, we also confirmed this theory as we start with a stable situation

(upper layer lighter than the lower layer) which becomes unstable because of the

PBL formation by settling. Instabilities then occur at the base of the PBL when

the ratio between the buoyancy forces and the viscous forces reaches a critical value.

Previous studies all show that, in the absence of shear, the value of Φtot = 4× 10−6

would trigger fingers with the same mechanism of PBL destabilisation as shown in

appendix 3.C. In order to accurately characterise the conditions required to trigger

SDGIs, we have to consider the fraction of fine ash that can be entrained within

fingers i.e. not the initial Φtot but the local volume fraction within the destabilising

layer in the cloud. Figure 3.3.13c actually shows that, for the case where the initial

Φtot = 2 × 10−5, the local concentration in the destabilising layer (which can be

considered as a PBL) is about Φloc = 1 × 10−5. This local value is estimated

once coarse particles have settled on the ground. Then, the remaining particles are

related with the resulting instabilities and can be defined as sufficiently fine to be

entrained through fingers. Furthermore, the calculated value is more than two times

greater than the suggested value of 4× 10−6. There are several explanations for this

discrepancy. The value of 4 × 10−6 was obtained considering a single fine particle

size while the value measured in our simulations takes in account a range of particle
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size classes (i.e. for particle sizes ≤ 125 µm). Additionally, the presence of shear

(induced by the wind) certainly introduces new dynamics as now the buoyancy forces

have to overcome not only the viscous forces but also the inertial forces which come

into play. Finally, an interesting remark is the confirmation that the size threshold

to trigger fingers is directly related to the particle volume fraction, as it is shown by

the equation 2.56 derived in Chapter 2.

Ground signature of SDGIs

We observed a bimodal distribution in the ground deposit for Φtot = 2 × 10−5 (i.e.

Φloc = 1× 10−5. This bimodality suggests the presence of mechanisms that enhance

the premature deposition of fine ash such as aggregation and SDGIs. The very in-

teresting outcome from our simulations is that the SDGI process alone is able to

produce this specific ground signature. Indeed, no aggregation process takes place

in our simulations. However, despite good agreement with the field observations,

the numerical results still suffer some caveats. For example, we observed in the

results presented Figure 3.3.14 that the distributions are narrower than the field

measurements. Several reasons might explain this aspect. First, atmospheric diffu-

sion, which is not described in our model, produces poly-dispersed ground deposits.

Second, in our simulations, the inlet fluid velocity profile as well as the Φtot profile are

kept constant. On the contrary, both wind and volcanic activity vary through time.

Third, aggregation in the natural cloud, as suggested by field evidence [Bonadonna

et al., 2011] can have further effects on the deposit grain size distribution. Fourth,

the TGSD in the model needs to be discretised and, in this study, consists of 12

size classes. Using a finer discretisation could lead to smoother deposit size distri-

butions. Additional caveats have to be taken in account for this study. Here, we

modelled a portion of the cloud which might restrict some geometrical effects of the

cloud on the particle transport (such as the x-direction or also the deformation of

the cloud due to the intrinsic turbulence). Furthermore, the use of our continuum

model to simulate the transport of coarse ash does not consider the drag effects on

these particles, as has already been discussed in the previous chapter. These aspects

can be taken into account in further developments of the model.
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3.4.3 Comparison between gravitational spreading and wind

advection

The GCs simulations have highlighted that for a fixed particle volume fraction, the

reduced gravity g′ is a critical parameter to trigger SDGIs. In terms of forces,

this means that as g′ increases the current spreads faster until a point where the

inertial forces dampen the growth of SDGIs. However, the Eyjafjallajökull case

study showed that the particle volume fraction is also a critical parameter to trigger

fingers in the presence of fixed wind. Then, the particle volume fraction and the

horizontal motion (which is caused by gravitational spreading in one case and wind

advection in the other case), need to be combined in order to trigger the SDGIs.

Furthermore, whilst the cloud thinning may be a useful parameter to estimate the

sedimentation from the cloud, it is difficult to measure. Indeed, some very fine

fraction of ash might remain in the cloud (i.e. not entrained within fingers) which

would hide any geometry variation due to settling (at least in the visible range).

There is also a fundamental difference between the two cases. In the case of

gravitational spreading, the current spreads at a given velocity which is higher than

the ambient velocity. In the case of wind advection, the cloud has enough inertia to

spread at a lower velocity than the ambient (i.e. lower than the wind speed). In the

presence of KHIs, this plays an important role for the direction of rotation of the

generated billows and ultimately the resulting fingers.

3.5 Conclusions

In this chapter, we have applied the 3D numerical model developed in the previous

chapter to sheared environments. We have simulated both laboratory-scale gravity

current experiments and the cloud associated with the 2010 eruption of Eyjafjal-

lajökull. Our laboratory-scale simulations have provided further validation of the

model as well as presented insights into the fundamental physics of the interaction

between shear and SDGIs including:

• in the absence of particles the geometry of the spreading cloud is controlled

by the loss of energy due to internal processes.
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• the addition of particles to the current also affects the cloud geometry, de-

pending on the value of the reduced gravity g′. Indeed, we find two regimes:

a regime at low g′ where the cloud thins at a high rate because of collective

settling and a regime for greater values of g′ where the cloud thins at a much

slower rate due to individual settling.

• the accumulation rate (AR) behaves similarly to the static case, but not nec-

essarily due to collective settling. However, the heterogeneous deposit in the

presence of collective settling remains an indicative ground signature.

Our key insights from the simulations of the Eyjafjallajökull ash cloud include:

• fingers are triggered for a local particle volume fraction of Φloc = 1 × 10−5 in

the PBL (for particle sizes ≤ 125 µm). This value is more than twice the value

proposed in the literature (i.e. Φ = 4 × 10−6) [Manzella et al., 2015]. This

aspect highlights the fact that, in the presence of wind, the inertial forces may

play an important role.

• SDGIs can produce bimodal size distributions in the deposit even in the ab-

sence of aggregation.

Finally, the caveats associated with our numerical modelling confirm the ne-

cessity to develop a more complete volcanic plume-cloud model taking in account

further physical processes, for example, the turbulence advected into the cloud from

the plume. Our results also demonstrate that further investigation is needed on the

relation between SDGIs and aggregation. This aspect will be treated in the next

chapter.
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Appendix

3.A Input parameters for the 2010 eruption Eyjaf-

jallajökull

(a) (b)

Figure 3A.1: (a) TGSD obtained by Bonadonna et al. [2011] for the 4-8 of May and
2-1000 km from the vent. (b) Associated pumice density for each size class.

Parameter Value

Wind velocity (m.s−1) 11
Cloud spreading velocity (m.s−1) 8

Air density (kg.m−3) 1.3
Air kinematic viscosity (m2.s−1) 1.4× 10−5

Table 3A.1: List of input parameters taken from [Manzella et al., 2015]
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3.B Particle grain-size within the ground deposit
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Figure 3B.1: Size distribution in the deposit from 1 to 20 km in the simulations using
Φtot = 4× 10−6.
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Figure 3B.2: Size distribution in the deposit from 1 to 20 km in the simulations using
Φtot = 1× 10−5.
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Figure 3B.3: Size distribution in the deposit from 1 to 20 km in the simulations using
Φtot = 2× 10−5.
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Figure 3B.4: Size distribution in the deposit from 1 to 20 km in the simulations using
Φtot = 3× 10−5.
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3.C Simulation of SDGIs in air for a static configu-

ration

Here we show some simulation results in air for a static configuration. The con-

figuration is strongly similar to the one presented in the first chapter (i.e. two

superposed layers). The numerical domain is a box of dimension 75× 303× 385 m.

The initial fluid density is 1.225 kg/m3 in the upper layer and 1.235 kg/m3 in the

lower layer. The particle size is 40 µm and the particle density is 2519.24 kg/m3.

We clearly observe on Figure 3C.1 that fingers are triggered for an initial particle

volume fraction of 4× 10−6.

Figure 3C.1: Simulation snapshot using an initial volume fraction of 4× 10−6.
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Numerical investigations of the interaction

between particle aggregation and

settling-driven gravitational instabilities

4.1 Introduction

Particle aggregation is a phenomenon that occurs at various scales and in numerous

fields such as astrophysics [Wurm and Blum, 2000; Brisset et al., 2013; Bracco et al.,

1999], medical sciences [Rahim et al., 2020; Piederriere et al., 2004] or chemistry

[Kepkay, 1994; Nakouzi et al., 2018]. In volcanology, ash aggregation is a reversible

or irreversible process which has also the potential to increase the vertical terminal

velocity of fine particles by clustering them into bigger structures [Lane et al., 1993;

Brown et al., 2012]. Consequently, given the numerous underlying implications, the

dynamics associated with particle aggregation have been widely investigated in or-

der to improve our understanding [Gilbert and Lane, 1994; James et al., 2002, 2003;

Durant et al., 2009; Rose and Durant, 2011; Brown et al., 2012; Van Eaton et al.,

2012; Van Eaton and Wilson, 2013; Burns et al., 2017; Vogel et al., 2019; Rossi

et al., 2021]. Evidences of airborne volcanic ash aggregation have been observed in

the field during several explosive eruptions such as the 1980 eruption at Mount Saint

Helens (US) [Sorem, 1982; Hobbs et al., 1981], the 2010 eruption of Eyjafjallajökull

(Iceland) [Bonadonna et al., 2011; Taddeucci et al., 2011] and eruptions of Saku-

rajima volcano (Japan) [Bagheri et al., 2016; Gabellini et al., 2020; Vecino et al.,
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2022; Gilbert et al., 1991]. Moreover, the most recent events have provided op-

portunities to use sophisticated measurement techniques (e.g. high-speed cameras,

sticky papers, etc.) to study the characteristics of aggregates before their breakup

when they reach the ground [Vecino et al., 2022; Pollastri et al., 2021; Gabellini

et al., 2020; Bagheri et al., 2016; Taddeucci et al., 2011]. In parallel, some labora-

tory investigations have been performed in order to constrain the different processes

that may come into play during aggregation. Indeed, ash aggregation has been

associated with the action of several processes such as electrostatic forces [Gilbert

et al., 1991; Schumacher, 1994; James et al., 2002, 2003] as well as humidity [Telling

and Dufek, 2012; Van Eaton et al., 2012]. The different insights provided by these

field and laboratory investigations have certainly improved the models describing

aggregation.

4.1.1 Modelling ash aggregation

Modelling ash aggregation is a key challenge for the improvement of Volcanic Ash

Transport and Dispersal Models (VATDMs) [Folch, 2012]. Several models have been

developed in order to describe the aggregation process, i.e., how the initial grain-

size distribution is modified as a result of the aggregation of individual particles

into larger clusters. Some models are based on observations [Biass et al., 2014;

Bonadonna and Phillips, 2003; Bonadonna et al., 2002; Mastin et al., 2013; Cornell

et al., 1983] while others are built from theoretical studies [Costa et al., 2010; Textor

et al., 2006; Veitch and Woods, 2001]. Despite previous theoretical and experimen-

tal works [Lu et al., 1998; Pumir and Wilkinson, 2016, and references therein], the

description of particle aggregation, especially the particle collisional interaction in a

highly turbulent environment, remains partly unconstrained. Some numerical inves-

tigations have focused on the hydrodynamic properties of fractal aggregates [Nguyen,

2007] and on the link between turbulence and the aggregation process [Wang et al.,

2019; Pesmazoglou et al., 2017]. Wang et al. [2019] used a multi-phase model in-

volving the Lattice Boltzmann Method (LBM) to solve for the fluid phase motion,

coupled with suspended spherical and mono-sized particles. An isotropic turbulence

is applied to the fluid in order to enhance the collision of particles and investigate
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the role of the particle volume fraction. However, it has been found that the pres-

ence of particles tends to affect the fluid turbulent kinetic energy differently at large

and small scales. Since each particle collision is treated individually, this kind of

microscopic model can rapidly become critically computationally-expensive with an

increasing number of particles. Indeed, the high particle concentration within a

volcanic cloud (typically in the range [107; 1011] particles/m3 [Rossi, 2018]) clearly

demonstrates the need for other approaches. A macroscopic approach involving

stochastic modelling for aggregation [Pesmazoglou et al., 2016] is used in Pesma-

zoglou et al. [2017] in order to study the coagulation of particles in turbulent jets.

The main results showed that the residence time of particles is a key parameter to

form aggregates, as well as the need for an accurate formulation of the different ag-

gregation kernels affected by the turbulence. Indeed, many macroscopic approaches

for aggregation result from the Population Balance Equation (PBE) [Kumar and

Ramkrishna, 1996; Kumar et al., 2006; Pesmazoglou et al., 2016; Rossi, 2018]. The

PBE is often referred to as the coalescent coagulation [Mitchell and Frenklach, 2003]

theoretically formulated by Smoluchowski [1917]. This theory is summarised by the

so-called Smoluchowski Coagulation Equation (SCE) which describes the evolution

of the particle number density n (m, t) (which is a function of the particle mass m

and the time t) and has been applied to various fields involving liquid aerosols [Koch

and Friedlander, 1990; Beeckmans, 1965] as well as solid particle aggregates [Zidar

et al., 2018; Higuchi et al., 1963]. Considering two particles respectively of masses

m and m′, the SCE is obtained using the conservation equation and we have

dn (m, t)

dt
=

1

2

∫ m

0

K (m−m′,m′)n (m−m′, t) dm′

−
∫ ∞

0

K (m,m′)n (m, t)n (m′, t) dm′,

(4.1)

where K (m,m′) is an operator called the coalescence kernel which represents the

probability of a collision creating a particle of mass m +m′. The kernel K (m,m′)

is an operator which includes all the governing physical processes describing the

interaction between particles. The discrete equivalent of equation 4.1 (i.e., for a

discretised particle size spectrum) is given by the equation describing the evolution
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of nk, the number density of particles with size class k, obtained by collision of

particles of size classes i and j

dnk

dt
=

1

2

∑
i+j=k

K (mi,mj)ninj − nk

∞∑
i=1

K (mi,mk)ni. (4.2)

The factor of 1/2 in front of the first term (i.e., the rate of formation of particles

of size k) is important as it corrects the fact that collision are accounted for twice

within the summation. An analytical solution can be derived for an ideal case which

involves constant coagulation kernels and an initial monodisperse distribution of

particles of the same mass [Friedlander, 2000]. For instance, this situation may be

associated with the isothermal brownian coagulation for particles of size ≤ 1 µm

and ultimately the coagulation kernel remains constant. Then, assuming the total

number of particles Ntot =
∑∞

i=1 ni, the solution of equation 4.2 for the isothermal

brownian coagulation case is given by [Friedlander, 2000]

Ntot (t) =
Ntot (0)

1 + (KNtot (0) t/2)
. (4.3)

Several discretisation strategies have been used in order to improve the accuracy

of models based on the SCE, especially the discretisation of the particle size distri-

bution [Kumar and Ramkrishna, 1996; Kumar et al., 2006]. Indeed, an unequally-

discretised particle size distribution allows the exploration of a wide range of sizes

but leads to a fundamental problem of the mass conservation to deal with. The so-

called fixed pivot technique [Kumar and Ramkrishna, 1996] allows the development

of a numerical scheme for aggregation with a relatively coarse discretisation of the

particle size range, conserving the mass and the moments of the distribution.

The discrete method described above, coupled with the work of Costa et al.

[2010], represents a simplified framework to model the aggregation of volcanic ash,

taking in account different aspects (differential sedimentation, turbulent shear, etc...).

Usually, the aggregation kernels are a function of the sticking efficiency between par-

ticles and the collision rates due to Brownian motion, turbulence caused by inertial

effects, differential sedimentation or turbulent and laminar shear. Then, the modi-

fication of the TGSD caused by ash aggregation is generally simulated using a sim-
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plified framework by including source and sink terms within Eulerian [Folch et al.,

2020; Textor et al., 2006] and Lagrangian [Jones et al., 2007; Beckett et al., 2022]

dispersal models for volcanic ash. Interestingly, alternative methods are also used

in numerical plume models such as PLUME-MoM [de’Michieli Vitturi and Pardini,

2021] where the SCE is solved using a hybrid method combining both the discrete

method and the method of moments [Marchisio et al., 2003; Nguyen et al., 2016].

The method of moments (especially the Quadrature Method of Moments (QMOM))

is a very efficient CFD scheme to simulate polydisperse systems. The strategy is

based on the tracking of some lower-order moments of the particle size distribution

(i.e., we solve the transport equation for each moment). Furthermore, the similarity

of the method of moments with the theory behind the LBM has allowed the devel-

opment of aggregation schemes by integrating source terms in collision models such

as the Bhatnagar-Gross-Krook (BGK) model [Majumder et al., 2012]. We make

the choice of the simplified framework given by the discrete method. Its simplicity

allows us to easily implement it within our hybrid 3D LB-Finite difference model.

4.1.2 Objectives and structure of the chapter

The first objective of this chapter is the implementation of particle aggregation

within the 3D numerical model described in Lemus et al. [2021] (Chapter 2), with

the ultimate goal of studying the interaction between aggregation and SDGIs. Af-

ter a description of the governing equation used to simulate aggregation, we explain

how we integrate the different source/sink terms into the particle transport equation

using the simplified framework provided by the discrete SCE. Then, the model is

validated through comparisons with analytical solutions obtained for simple cases.

Once the model is validated, we propose to explore the sedimentation of particles

when both aggregation and SDGIs occur. As both processes enhance the prema-

ture deposition of fine ash, the goal here is to study if aggregation has a significant

effect on the collective settling induced by SDGIs and/or the opposite. Those in-

vestigations are particularly focused on the ground deposit signature in order to

characterise quantitatively the possible impact on tephra deposits.
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4.2 Methods

4.2.1 Governing equations

In order to include the aggregation process within our continuum phase model, we

consider the polydisperse formulation, i.e., we discretise the particle size distribu-

tion with several classes and solve the advection-diffusion-settling equation for each

particle size class. Thus, the buoyant force term in the fluid momentum equation

becomes

F⃗ =

[(
ρp − ρ0
ρ0

)
ϕtot +

(
ρ

ρ0
− 1

)
(1− ϕtot)

]
g⃗ (4.4)

where ρp is the particle density, ρ0 the ambient density, g⃗ the gravitational acceler-

ation and ϕtot the total particle volume fraction given by

ϕtot =
Nc∑
i=1

ϕi. (4.5)

ϕi being the volume fraction of the ith size class.

The continuous particle size spectrum is discretised into Nc classes and the ith

class is described by the quantities (ϕi,mi, Dpi), the particle volume fraction, mass

and diameter respectively. Then the integration of the aggregation process is made

possible by the inclusion of source/sink terms in the transport equation. The evo-

lution of the number of particles per unit volume Ni (belonging to the ith size class)

is described by the fixed-pivot equation [Kumar et al., 2006; Rossi, 2018]

dNi

dt
= Bi −Di, (4.6)

where Bi and Di are respectively the birth and death terms (units: m−3.s−1). Know-

ing that the particle volume fraction is given by ϕi = NiVpi, with the volume of a

single particle (assuming spherical particles) Vpi = πD3
pi/6, equation 4.6 becomes

dϕi

dt
=
πD3

pi

6
[Bi −Di] , (4.7)

Finally, combining the general advection-diffusion-settling law describing the

transport of particles (equation 2.6) with the source terms given above, we can
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write a complete relation including aggregation:

∂ϕi

∂t
+ (u⃗f − Vsie⃗z) .∇⃗ϕi = Dci∇2ϕi +

πD3
pi

6
[Bi −Di] . (4.8)

The birth and death terms depend on different kernels describing the particle

sticking efficiency and the collision rate. In order to ensure mass conservation, these

kernels are weighted by coefficients that are functions of the particle masses. Then,

the birth and death terms for a specific size class i capture the interaction with other

classes and are given by:

Bi =

j≥k∑
mi≤(mk+mj)<mi+1

(
1− 1

2
δkj

)(
mi+1 −m

mi+1 −mi

)
KkjNkNj

+

j≥k∑
mi−1≤(mk+mj)<mi

(
1− 1

2
δkj

)(
m−mi−1

mi −mi−1

)
KkjNkNj

(4.9)

Di =
Nc∑
j=1

KijNiNj (4.10)

with δkj the Kronecker delta which takes the value 1 when i = j and 0 otherwise.

Also, note that here, m = mk +mj. The birth term Bi in equation 4.9 represents

the portion of mass added to the size class i due to aggregration of smaller particles.

Similarly, the death term Di (equation 4.10) corresponds to the removal of mass

from size class i due to agggregation forming larger particles. Kij is the aggregation

kernel which describes the interaction between particles in the ith and jth classes.

Kij can be written as the combination of two operators as Kij = αij.βij, where αij is

related to the sticking efficiency and βij to the collision rate between particles. Note

that αij is a dimensionless parameter while βij has the units of [m3.s−1]. Splitting

the kernel like this allows us to consider several properties of the flow individually.

Here we will focus on some specific collision rates commonly found in volcanology

[Costa et al., 2010] such as those due to the turbulent shear βTS
ij and the differential

settling βDS
ij . Thus, in that case, the total collision rate is given by βij = βTS

ij + βDS
ij
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and these collision rates are given by the following relations

βTS
ij =

( πϵ

15ν

) 1
2
(Dpi +Dpj)

3 , (4.11)

where ϵ is the fluid dissipation rate of turbulent kinetic energy and ν the fluid

kinematic viscosity, and

βDS
ij =

π

4
(Dpi +Dpj)

2 |Vsi − Vsj|. (4.12)

The sticking efficiency is a complex quantity which depends on several parameters

inherent in each collision, such as the presence of any liquid layer around particles,

the electric charge or even chemical interactions [Pollastri et al., 2021]. Here we

assume an average sticking efficiency defined for each particle size class and given

by the relation (cf. the original work on wet aggregation in Costa et al. [2010])

αij =
c1

(Stij/Stcr)
q + 1

, (4.13)

where Stij is a Stokes number given by

Stij =
8ρp|V si − V sj|

9µf

(
DpiDpj

Dpi +Dpj

)
, (4.14)

with µf the fluid dynamic viscosity. This formulation depends on parameters em-

pirically fitted (i.e., q, Stcr and c1) with experiments and controls the interactions

between particles. According to fittings with experimental data, Costa et al. [2010]

proposed that c1 = 1, Stcr = 1.3 and q = 0.8. However, it is interesting to estimate

the sensitivity of the sticking efficiency to these parameters, in particular q. This

exponent controls the sticking efficiency and, as q increases, the efficiency to form

aggregates of larger sizes decays to zero (see Figure 4.2.1)

4.2.2 Numerical implementation

The different source/sink terms mentioned above are implemented in the finite dif-

ference scheme used to solve for the particle transport. We observe in equation

4.11 that the information about the turbulence in the fluid is given by ϵ. This
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Figure 4.2.1: Effect of the q parameter on the sticking efficiency for collisions between
differently sized particles. (From [Rossi, 2018])

rate expresses how the Turbulent Kinetic Energy (TKE) is dissipated by viscous

forces and can be considered as a sink term in the transport equation of the TKE.

In order to compute ϵ in our 3D hybrid model, we use the capability of Palabos

to perform Large Eddy Simulations (LES) thanks to the Smagorinsky model [Latt

et al., 2020]. This sub-grid model assumes the Reynolds number is high enough that

small scales eddies are the only cause of energy dissipation and, thus, we can mimic

this dissipation with an equivalent eddy viscosity given by the relation [Katopodes,

2019]

νt = (Csδx)
2
√
S̄ijS̄ij, (4.15)

where Cs is the so-called Smagorinsky constant, which usually varies from 0.1 and

0.2 [Davidson, 2015], and is fixed at 0.12 in our simulations. S̄ is the strain rate

tensor. One way to integrate this subgrid viscosity in the LBM-BGK model is to

correct the shear viscosity contribution in the relaxation time formulation which

becomes:

τ ∗ =
δt

2
+
ν + νt
c2s

. (4.16)

Ultimately, ϵ is function of the eddy viscosity and the strain rate tensor, which

gives us

ϵ = 2νtS̄2
ij = (Csδx)

2 S̄3. (4.17)

Finally, we observe here that in order to calculate the TKE dissipation rate we only
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need to compute the strain rate tensor. In Palabos, we can easily estimate the shear

stress tensor which is function of the off-equilibrium populations. Then, we can

simply deduce the strain rate which is simply proportional.

4.3 Results

4.3.1 Model validation

We first validate the numerical implementation of aggregation process within the

3D numerical model. For all validation simulations, we start with a monodisperse

particle distribution and observe the evolution of the total particle number per unit

volume. Indeed, as soon as aggregates form, we expect a decrease in the total number

of particles per unit volume which is, assuming spherical particles, estimated using

Ntot =
Nc∑
i=1

Ni =
Nc∑
i=1

6ϕi

πD3
pi

. (4.18)

Through the validation process, we apply constant aggregation kernels in order

to compare with the analytical formulation derived for the isothermal Brownian

coagulation (equation 4.3). Additionally, no feedback force (i.e., buoyant force on the

fluid by the particle phase) is assumed in order to focus only on the particle phase.

The arbitrary domain is a column of air with dimensions (in km) 0.075 × 0.030 ×

0.385. The domain is discretised in cells of size δx = 0.002 km (when the resolution

is 500 nodes/km) and δx = 0.004 km (when then resolution is 250 nodes/km).

The upper part of the domain (with a thickness of 0.135 km) is uniformly filled

with particles in order to have an initial particle volume fraction ϕtot = 2 × 10−6.

First, we set the particle settling velocity to zero and we study the evolution of

the total particle number density at a single node in the numerical mesh. Figure

4.3.1 shows the temporal evolution of the particle density number, normalised by

its initial value, for four different values of the coagulation kernel. As expected, we

clearly observe that the rate of decrease in the particle number (which commences

instantaneously) increases as the kernel amplitude increases. Moreover, we also

notice an extremely good agreement between our simulations and the analytical
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prediction. This suggests that our numerical model is accurately able to produce

aggregates at the rate predicted by theory.

Figure 4.3.1: Temporal evolution of the normalised particle number density for different
coagulation kernel values. The squares are the simulation results while the solid line is the
analytical prediction given by equation 4.3.

Next, we add further complexity by allowing a non-zero settling velocity for the

particle phases in order to characterise the effect of settling. The coagulation kernel

is fixed at 10−9 m3/min and we assign the same settling velocity Vs (in that case

Vs = 0.0075 m/s) to each particle size class regardless of their size. Figure 4.3.2a

shows the simulation results for two different grid resolutions, namely, 250 and 500

nodes/km (recall that the grid spacing is the reciprocal of the resolution). For a grid

resolution of 125 nodes/km, the agreement with the theoretical formulation is still

very good even though a slight discrepancy is apparent. This difference is due to the

numerical diffusion introduced by the advection by settling. However, we observe

that the discrepancy vanishes at higher resolution (500 nodes/km), which is coherent

with the fact that the numerical diffusion is a function of the grid spacing. As the

results are very good using a grid resolution of 500 nodes/km, we keep this value

and now apply the correct settling associated with each size class. Then, Figure

4.3.2b shows a very good agreement between the results of this simulation and the

analytical solution despite the fact that the size classes are advected at different

settling velocities.
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(a) (b)

Figure 4.3.2: Temporal evolution of the normalised particle density number using (a) a
fixed settling velocity for all size classes and different grid resolutions and (b) the phys-
ical settling velocity associated with each particle size. The grid resolution used is 500
nodes/km. The black solid lines are the analytical prediction.

4.3.2 Interaction between particle aggregation and settling-

driven gravitational instabilities

The goal of this section is to explore the sedimentation of particles when both ag-

gregation and SDGIs occur. The numerical domain consists of a static configuration

similar to the one used in the first chapter [Lemus et al., 2021]. It is a large box of

air with dimensions (in km) 0.075 × 0.303 × 0.385 involving two layers: a particle

laden upper layer of thickness 0.135 km placed above a denser lower layer of thick-

ness 0.250 km. We used no slip boundary conditions for the fluid LB solver and

no-flux boundary conditions for the finite difference schemes solving for the trans-

port of particles and density-altering quantities. We performed two different sets

of simulations involving two different synthetic initial particle size distributions as

shown in Figures 4.3.4a and 4.3.6a. We made the choice of implementing two spe-

cific collision rates involving the particle sedimentation (βDS) and the turbulence

(βTS). Our simulations start with a quiescent configuration, so initially without

turbulence (i.e. only βDS is non-zero as the dissipation rate is zero), but as soon as

SDGIs form, turbulence is created as shown in Figure 4.3.3. Indeed, Figures 4.3.3a

and 4.3.3c show snapshots of the particle volume fraction respectively at 6.5 s and
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(a) (b)

(c) (d)

Figure 4.3.3: (a), (c) Snapshots of a simulation respectively at 6.5 and 12 min. The shown
quantity is the total particle volume fraction. (b), (d) Maps of the associated dissipation
rate of turbulent kinetic energy ϵ. For those simulations, no aggregation is considered yet
in order to focus only on the turbulence generated by SDGIs.

12 s for simulations without aggregation (actually slices in the (y, z) plane of the

3D domain) and Figures 4.3.3b and 4.3.3d show the associated dissipation rate. We

effectively observe that the dissipation rate is zero in the upper layer while it is of

the order of 10−4 m2.s−3 in the lower layer. This is expected as initially the upper

layer is quiescent and the turbulence is created once the convection induced by the
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fingers’ propagation starts.

Simulations with a coarse grainsize distribution as input

In the first set of simulations, almost all sizes in the particle size distribution are

initially present with different weights (Figure 4.3.4a). In that case, the coarse par-

ticles initially present settle individually such that it would be possible to highlight

how the creation of more coarse particles would affect the individual settling pro-

cess. For a reference case, we simulated the sedimentation of particles without any

aggregation. Then, we included the aggregation varying the sticking efficiency, i.e.,

using two different values of q in equation 4.13. Figures 4.3.4b and 4.3.4c shows the

grainsize distribution in the whole domain after 10 minutes for q = 1.6 and q = 0.8,

respectively. We observe that aggregation seems to be more efficient for the smallest

value of q. In all simulations, SDGIs are observed so the effect of the addition of

aggregation is investigated through parameters such as the mass deposited on the

ground and the associated accumulation rate (AR). Figure 4.3.5a shows the total

particle mass deposited on the ground for the three performed simulations. First, we

see that for q = 0.8, the aggregation process reduces the initial time that particles

take to reach the bottom of the domain. Secondly, we observe a small change in the

curve slope after around 16 minutes which suggests a change in the sedimentation

process. This change is even more pronounced when we compute the instantaneous

AR as seen in Figure 4.3.5b. For all cases, we observed a constant AR in a time

interval [T1;T2], suggesting individual settling, where T1 is the time when the first

particles reach the floor (obviously by individual settling) while we observe that T2

is the time when the first fingers reach on the ground. Interestingly, after T2 the

AR does not remain constant but increases in time, revealing the presence of SDGIs

as described in Lemus et al. [2021]. Furthermore, the effect of aggregation is clear,

with non-zero values of q leading to greater ARs throughout.

Simulations with a fine grainsize distribution as input

The second set of simulations involves a wider synthetic distribution of particle sizes

and the simulations are initialised with a fine size distribution (Figure 4.3.6a). This
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(a) (b) (c)

Figure 4.3.4: TGSD for the first set of simulations. (a) is the initial distribution which
initially contains almost all size bins, (b) the distribution after 10 min using q = 1.6 and
(c) q = 0.8.

(a) (b)

Figure 4.3.5: (a) Total mass of particle deposited at the bottom of the numerical domain
as a function of time. (b) The associated instantaneous accumulation rate.

TGSD has been chosen arbitrarily in order to avoid the individual settling of coarse

particle initially present. When the aggregation process is enabled, it is obviously

more efficient for q = 0.8 than for q = 1.6, as there are more coarse particles after 10

minutes (see Figures 4.3.6b and 4.3.6c). We then follow the same strategy as before

by interrogating the deposited mass and the AR. Here, we observed the presence

of fingers but almost no individual settling. Figure 4.3.7a confirms the premature

deposition enhanced by the aggregation as the deposited mass for q = 0.8 starts

increasing before the other situations. Additionally, the mass seems to accumulate

at a greater rate as soon as there is aggregation. This is indeed observable on the

AR plotted on Figure 4.3.7b. For all cases, the AR increases as expected in the

presence of SDGIs. However, the slope is clearly steeper for q = 0.8 suggesting

that the creation of coarser particles by aggregation further enhance the rate of
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sedimentation. An interesting observation is also that, around 25 min, the AR for

the case q = 0.8 becomes constant, implying that the sedimentation regime switches

from collective to individual settling (i.e. end of convection).

(a) (b) (c)

Figure 4.3.6: Particle size distribution for the second set of simulations. (a) is the initial
distribution which contains relatively fine fractions, (b) the distribution after 10 min using
q = 1.6 and (c) q = 0.8.

(a) (b)

Figure 4.3.7: (a) Total mass of particle deposited at the bottom of the numerical domain.
(b) The associated instantaneous accumulation rate.

4.4 Discussion

4.4.1 Caveats

The integration of this coagulation scheme within Palabos allowed us to perform

simulations on fine grids (δx = 0.002 km over a domain extent of 0.385 km). Then,
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for the biggest domain used and thanks to the capability of Palabos to perform cal-

culations on massively parallel computers, we could simulate 20 minutes of physical

time in ≈ 8 hours on 288 cores. However, our implementation could be significantly

improved in order to reduce the calculation time by changing the way we solve si-

multaneously the transport of each size class. Indeed, for each size class, we set up a

scalar field in order to solve the transport equation. This surely requires an certain

amount of memory and of communication. Thus, everything might be gathered in

a single tensor field of dimension equal to the number of size classes in order to

improve the communication and the memory management.

The discrete formulation of the aggregation scheme within our numerical model

has been successfully validated by comparison with an analytical solution of the

Smoluchowski equation. Whilst this ensures some numerical stability, there are some

caveats to consider. Indeed, the discrete method implemented for the aggregation

involves a finite number of bins representing samples of the continuous particle

size spectrum. Obviously, the greater the number of bins, the more accurate the

evolution of the TGSD will be. However, for evident reasons related with numerical

costs, the number of bins needs to be limited. In our case, we solve simultaneously

the advection-diffusion-settling (with aggregation) equation for each particle size

class which definitely increases the calculation time. Then, the discretisation of the

size spectrum has to be accurate to cover a relevant range of sizes and the use of a

logarithmic sampling is well suited [Rossi, 2018].

Regarding the model itself, it is critical to define accurately the sticking efficiency

which depends on several parameters. We used the formulation given in equation

4.13 [Costa et al., 2010] in order to define an average value for each size pair. How-

ever, this formulation depends on empirical parameters (i.e. c1, q and Stcr) which

have been scaled using experimental fittings [Costa et al., 2010; Gilbert and Lane,

1994]. Whilst sensitivity analyses have been performed in order to constrain those

parameters [Rossi, 2018; Beckett et al., 2022], the sticking efficiency during volcanic

ash collisions remains difficult to characterise. A resulting interesting question is:

is there a difference between the sticking efficiency in clouds and in fingers? A way

to investigate this aspect is to study specific parameters which affect the sticking
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efficiency in both the cloud and fingers (humidity, electrification...).

Additionally, there is no denying that the same interrogation is relevant regard-

ing the collision rates. In the model, the collision rate is given by the operator β

and describes specific dynamics such as the effect of sedimentation and turbulence.

Indeed, we used two kernels describing the aforementioned processes i.e. the dif-

ferential sedimentation βDS and the turbulent shear βTS in our simulations. Of

course, other kernels exist in order to include different processes in volcanology, but

we neglected them in our study. There are for instance the Brownian motion βBM

which is negligible given the particle sizes involved or else the laminar shear βLS, not

relevant in our configuration as there is no shear. There is also the turbulent-inertial

kernel βTI which is a function of the velocity provided by the fluid on each particle

size inside eddies. However, one important assumption of our single-phase model is

that particles have no inertia, thus this kernel is also neglected.

βDS is a function of the terminal velocities of particles which are the Stokes

velocities in our simulations, given the fact that we start with a quiescent config-

uration. However, as soon as SDGIs appear, the induced turbulence and mixing

by eddies on the edges of fingers for instance, make particles move at a different

velocity than their respective Stokes velocities. This suggests a need for a more

accurate formulation of the terminal velocities inside fingers. The effect of turbu-

lence on the formation of aggregates is described by βTS which is a function of the

dissipation rate of turbulent kinetic energy ϵ. In our simulations, we showed that

ϵ is in the order of 10−4 m2.s−3 in the presence of fingers. This value is several

orders of magnitude lower than the plausible range [0.1 - 100] m2.s−3 suggested by

Rossi [2018] for a volcanic cloud. In order to investigate if the turbulence within

fingers enhances aggregation, there is need to evaluate if the value of ϵ in fingers is

higher than in the cloud. However, our configuration, which starts with a quiescent

ambient, is not representative of the atmospheric turbulence and thus, the gradient

of ϵ is not relevant to compare with nature. This highlights the need for a more

complete model which simulates accurately the turbulence.
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4.4.2 Combination of aggregation with settling-driven gravi-

tational instabilities

We performed two different sets of simulations involving different synthetic initial

size distributions chosen arbitrary in order to study different sedimentation processes

in the presence of aggregation. We showed that aggregation affects both individual

and collective settling, contributing to different ground signatures, i.e. the AR and

the bimodal grainsize distribution. Indeed, the simulations already initially involving

a fraction of coarse particles showed that even the individual settling is enhanced

because the constant AR is higher than the case without aggregation. As the AR

for individual settling is proportional to the particle settling velocity [Lemus et al.,

2021], this is coherent as the settling velocity increases with the size of aggregates. In

addition, besides the enhanced AR as a signature, there is also the bimodal grainsize

distribution if we assume that aggregates break on the ground, revealing the fine

particle fractions. With the simulations starting with a fine particle fraction, we

were able to characterise the effect of aggregation on SDGIs. Indeed, Lemus et al.

[2021] showed that in the absence of shear, there is a characteristic ground signature

of SDGIs which is a temporally increasing AR. The present study has shown that

aggregation has the potential to enhance this signature, which is coherent given the

fact that the sedimentation rate increases with the particle size [Lemus et al., 2021].

Regarding the effect of SDGIs on the aggregation process, we showed that the

turbulence inside fingers ensures some conditions to produce aggregates. Whilst the

need for more studies in order to compare those turbulent conditions with the ones

inside the cloud, fingers are good channels to keep aggregation processes active until

the final deposition of aggregates on the ground. Indeed, let’s imagine that when

aggregation occurs in the cloud, aggregates leave the cloud and settle in their final

form and size on the ground. Interestingly, in the presence of SDGIs, aggregates

that leave the cloud and sediment within fingers are able to continue their growth

until the final deposition on the ground.

Finally, we can imagine extreme situations where aggregation may dampen the

formation of SDGIs. Indeed, the formation of aggregates with different settling

velocities may get the cloud interface more diffuse, causing the buoyancy gradient



144 Chapter 4

inefficient to trigger instabilities. Therefore, this can be investigated using a finer

discretisation of the particle size spectrum (i.e. a greater number of bins). Another

situation is when aggregation is enough efficient to build particles of size beyond the

size limit where no fingers are formed [Lemus et al., 2021].

4.5 Conclusions

Both particle aggregation and settling-driven gravitational instabilities have the po-

tential to enhance the premature sedimentation of volcanic fine ash. However, the

interaction between these two processes has never been investigated. This work has

shown a successful integration of the aggregation process within the 3D LBM model

described in Lemus et al. [2021] (Chapter 2). The use of the simplified framework

provided by the discrete method in order to solve the Smoluchowski equation have

shown very good agreement with an analytical solution for a simple problem. Then,

the updated model has been used to investigate on how the presence of aggregation

affects the collective settling by SDGIs. Interesting outcomes include:

• First, we observed that aggregation affects all sedimentation modes (i.e. in-

dividual and SDGIs) by increasing the AR. In the case of individual settling

(constant AR), the production of aggregates increase the settling velocity and

ultimately the AR. For SDGIs, the characteristic ground signature (higher AR

than individual settling) is enhanced by aggregation.

• Second, there is also an effect of SDGIs on aggregation as the turbulence

generated within fingers contribute to the creation of aggregates. This aspect

is interesting as fingers can be seen as a tunnel between the cloud and the

ground, within which aggregation continues to occurs.

• Third, we implemented the aggregation scheme in a numerical framework

which allows to perform calculation on massively parallel computers. Whilst

our code remains numerically stable, some other technical improvements could

be done in order to reduce the numerical cost (i.e. number of cores, simulation

time, memory...)
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Finally, further investigations are still needed in order to constrain crucial param-

eters between the cloud and fingers, such as the sticking efficiency, the turbulence

etc...This highlight once again the need for a more complete model taking in account

the turbulence inside a volcanic cloud.
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Chapter 5

Two-phase model using the Lattice

Boltzmann Method for the simulation of

particle suspensions

5.1 Introduction

The single-phase model described in the second chapter [Lemus et al., 2021] has been

used to investigate the dynamics of settling-driven gravitational instabilities (SDGIs)

at various scales. The main assumptions underlying the use of a single-phase (or

continuum) approach is that particles are small enough and in sufficiently large

number that they remain fully coupled with the fluid, also implying that particles

have no inertia [Chou and Shao, 2016; Yamamoto et al., 2015; Harada et al., 2013].

Whilst grid-based numerical methods, such as our single-phase model, suffer some

intrinsic numerical diffusion [Ferziger and Peric, 2002], we managed to reduce this

limitation by implementing a specific finite difference scheme. Indeed, the Weighted

Essentially Non-Oscillatory (WENO) finite-difference scheme implemented ensures

a low-diffusive [Liu et al., 1994; Jiang and Shu, 1996] and non-dispersive method

despite the high-order accuracy (see [Godunov, 1954, 1959] for details on dispersion

of high order schemes). Additionally, the ease of implementation offered by a finite

difference scheme allows easy coupling with Lattice Boltzmann methods (LBM) on

uniform grids [Lemus et al., 2021].

Various Euler, continuum-phase methods [Ferziger and Peric, 2002; Chou and
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Shao, 2016; Jacobs et al., 2013; Burns and Meiburg, 2014; Yu et al., 2014; Liu et al.,

1994; Jiang and Shu, 1996] can be applied in order to simulate multi-phase systems

by solving the transport equation for each phase. However, numerical diffusion,

even reduced, may remain a critical problem when tracking the interface between

immiscible phases [Mansour et al., 2021; Zhao et al., 2011; Zhang et al., 2006, 2014].

Among the so-called interface-tracking methods used to handle such problems [Chen

and Hagen, 2011, and references therein], one efficient technique is the particle-

based method. This method can be seen as a hybrid between Lagrangian and

Eulerian solvers. The domain is still discretised with a grid with the advantages of

the Lagrangian tracking of passive tracers that follow a specific phase in order to

precisely define the interface. Given the fact that point particles are used in large

number, we drastically decrease the diffusion usually introduced by fully grid-based

methods because the interface between the particle suspension and the underlying

denser layer is directly related to the presence of particles or not in one cell. Also,

any grid-based method can be improved with passive tracers as has been the case

with the Lattice Boltzmann Method (LBM) [Lätt et al., 2013]. Finally, whilst grid-

based methods provide an efficient means of solving multi-phase flows at relatively

low numerical cost, particle-based methods allow improved accuracy but at increased

numerical cost, since the position of a large number of Lagrangian particles need to

be tracked, even though their velocities are given by the fluid [Santos et al., 2012].

However, for some types of multi-phase problems, especially involving solid phases,

the motion of each individual particle has to be solved explicitly because, due to their

inertia, they are no longer fully coupled with the fluid. Then, the numerical cost

becomes even greater than the aforementioned particle-based methods because of

the need for solving the equation of motion for each particle as well as the feedback

on the fluid [Chou and Shao, 2016; Yamamoto et al., 2015; Harada et al., 2013].

Thus, this allows the inclusion of some fundamental aspects, such as drag effects.

Of course, in the same way that there is a limit separating the use of a single-phase

model (particles fully coupled with the fluid) and the use of a two-phase model

(with inertial point particles) [Harada et al., 2013; Yamamoto et al., 2015; Maxey

and Riley, 1983], there is also a limit in the use of point particles. Indeed, increasing
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the size of particles increases the effect of each particle on the flow, reducing the

accuracy of Lagrangian methods and, thus, leading to the use of immersed bodies

[Ferry and Balachandar, 2001].

This chapter describes a two-phase model developed to complement the single-

phase model presented in the first chapter [Lemus et al., 2021]. The main motivation

of a two-phase model is the capability to simulate flows when the single-phase as-

sumptions are no longer valid i.e., when the particle inertia is not negligible anymore.

Given the high numerical cost underlying the simulation of a large number of in-

dividual particles, this model is intended to be used in order to study problems at

small spatial and temporal scales, such as the entrainment induced by SDGIs for

instance [Chou and Shao, 2016]. Also, in converse to the single-phase model, par-

ticles can now have inertia, which enables the study of the coupling with the fluid

within fingers. However, since we use point particles, the model needs to be used in

conditions when the implicit Lagrangian formulation is still valid, i.e., when the fluid

flow is not affected by boundary effects at the fluid-particle interface (Basset force)

and when the added mass effect is negligible [Ferry and Balachandar, 2001]. In the

rest of this chapter, we first present the governing equations of the model. Secondly,

we describe the numerical approach taken in order to solve the equations. Finally,

we present a qualitative comparison to results obtained with the single-phase model

in a reduced domain.

5.2 Methods

5.2.1 Governing equations

The two-phase model explicitly solves the equations of motion for point particles in

a fluid flow. The mathematical formulation associated with the two-phase model

is similar to that used for the single-phase model. In the single-phase model, the

coupling between the fluid and the particle phase is mutual. Indeed, the fluid velocity

is needed in order to define the convective term of the particle phase while the

solution of the transport equation is required for the buoyant force term in the

fluid momentum equation. We recall the Navier-Stokes momentum equation for an
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incompressible fluid

∂u⃗f
∂t

+ (u⃗f .∇⃗)u⃗f = − 1

ρ0
∇⃗pf + ν∇2u⃗f + F⃗ , (5.1)

where u⃗f (x⃗, t) is the fluid velocity, t the time, pf the pressure, ρ0 a reference density

of the carrier fluid, ν the kinematic viscosity, F⃗ the body force term and x⃗ the

position vector. Now considering the two-phase model, the body force term in

a control volume is the feedback force of particles on the fluid which, under the

Boussinesq approximation, is given by [Chou and Shao, 2016]

F⃗ = −ρp
ρ0

Np∑
i=1

ϕp
u⃗f,i − v⃗i

τi
, (5.2)

where ρp is the particle fluid density, Np the number of particles in the control

volume, ϕp the volume fraction of a single particle, u⃗f,i the fluid velocity estimated

at the location of the ith particle, v⃗i and τi respectively the velocity and relaxation

time, respectively, of the ith particle. Note that this force term is the contribution of

each particle within the control volume. We also observe that the particle relaxation

time is needed and there are several ways to define it, depending on the fluid-

particle interaction. Here, we use the Schiller [1933] relaxation time, as is commonly

suggested, also providing an accurate contribution of the drag effects [Chou and

Shao, 2016; Cerminara et al., 2016]

τi =
ρpD

2
p,i

ρ018ν
(
1 + 0.15Re0.687p,i

) , (5.3)

where Dp,i is the particle diameter and Rep,i the particle Reynolds number given by

Rep,i =
|u⃗f,i − v⃗i|Dp,i

ν
. (5.4)

Finally, the remaining quantity is the particle velocity which is the solution to

the equation of motion given by Newton’s second law. Thus, assuming that the

forces acting on a single particle are the gravitational force, the buoyancy force and

the drag force, we have
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ρp
dv⃗i
dt

= ρp
u⃗f,i − v⃗i

τi
+ (ρp − ρ0) g⃗. (5.5)

Note that the drag force derives from Stokes law and because ρp ≫ ρ0 we neglect

other effects such as the added mass, the pressure gradient, the Basset history and

the Saffman terms [Ferry and Balachandar, 2001].

5.2.2 Numerical implementation

The model is implemented within the Palabos framework which provides a built-

in library to simulate particles [Latt et al., 2020]. Thus, our model benefits from

the capability of Palabos to perform calculations on massively parallel computers.

Here, we will describe how particle positions are numerically calculated and how we

estimate the fluid velocity at the particle locations. The fluid motion is classically

simulated using the LBM-BGK model, allowing for an external force as it is described

in the first chapter [Lemus et al., 2021].

In order to calculate the position of a particle at a time t + ∆t (∆t being the

time step), we need to solve its equation of motion. Several methods, such as the

Euler method, Verlet integration or even Runge-Kutta methods [Hairer et al., 1993;

Verlet, 1967], are available in order to numerically solve such ordinary differential

equations (ODEs). Verlet integration is the strategy chosen in Palabos in order

to calculate the particle position because it presents non negligible advantages, as

we go onto explain. The method is based on the combination of the two Taylor

expansions of x⃗(t+∆t) and x⃗(t−∆t). Indeed, by summing those two functions and

rearranging, we obtain a relation which provides the position of the particle in the

next time step

x⃗(t+∆t) = 2x⃗(t)− x⃗(t−∆t) +
d2x(t)

dt2
∆t2 +O(∆t4). (5.6)

We observe that the summation deleted the contribution of the velocity, making

the next particle position a function of it’s previous position, the current position

and it’s acceleration only. This represents a gain in terms of computational time

compared to other methods as there is no need to compute the velocity in order
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to update the position of the particle. Further advantages can be highlighted by

comparing different ODE-solving methods when applied to the simple case of a

harmonic oscillator. This problem is described by the following equation

d2x(t)

dt2
+ kx(t) = 0 (5.7)

where x(t) is the position of the particle and k a positive spring constant. Assuming

the initial conditions x(0) = 1 and x′(0) = 0 (in dimensionless units), a solution

for this equation is x(t) = cos(
√
kt). Figure 5.2.1 shows a comparison between the

solutions given by the classical Euler method, Verlet integration and the 4th order

Runge-Kutta (RK4) method. We clearly see in Figure 5.2.1a that, for a coarse time

discretisation, the Euler method is unstable while the Verlet integration and the

RK4 method accurately reproduce the analytical solution. Reducing the time step

partially stabilises the solution obtained by the Euler method (Figure 5.2.1b) but,

still, small divergence occurs after some time. The accuracy for both the Verlet and

RK4 is conserved whilst the simulation times are:

• 0.00137 s for the Verlet integration

• 0.00135 s for the Euler method

• 0.003484 s for the RK4 method.

Thus, the time taken to apply the RK4 method is more than twice the time required

by the Verlet method. To conlcude, the Verlet integration is more stable than

the Euler method and provides a reduced execution time compared to RK4 for

an equivalent accuracy. This final aspect is crucial in order to reduce the total

computational time when dealing with a large number of particles.

Now that we have a procedure to update the position of each particle, we need

to estimate the fluid velocity at the particular location of that particle. Indeed, this

parameter is needed in order to compute the body force term, the relaxation time

and the drag force. Grid-based models calculate macroscopic or mesoscopic (in the

case of the LBM) quantities at each node of the grid (i.e., the discretised domain).

In our two-phase model, the positions of particles are not confined to the grid nodes
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(a) (b)

Figure 5.2.1: Comparison between solutions for a harmonic oscillator obtained using the
Euler method, Verlet integration and the 4th order Runge-Kutta method for a harmonic
oscillator using time steps of (a) 0.1 and (b) 0.01 (dimensionless units).

and particles can move continuously between the grid nodes (the limit being the

precision of the data type used for the particle position). When a particle is located

between nodes, the fluid velocity is not available as it is calculated only on the

grid nodes. In a 1-dimensional domain we can apply a simple linear interpolation.

However, since our model is 3D, we estimate the velocity at the particle location

using a trilinear interpolation [Bourke, 1999].

5.3 Results

The developed 3D two-phase model has not yet been used for investigations of

settling-driven gravitational instabilities (SDGIs). However, we have performed

some simulations in order make some qualitative comparisons with the single phase

model. We consider the same conditions as those used in Chapter 2 (in water, grid

spacing δx = 0.001 m, particle-laden upper layer, sugar solution in the lower layer

and particle size of 40 µm) except that we use here a domain half the size of that

previously considered (i.e. 0.0375× 0.151× 0.193 in m). Figure 5.3.1 shows a com-

parison between initial results from the single-phase and the two-phase models for

equivalent conditions. Both simulations have been performed on 256 cores, which

allowed us to simulate 20 s of physical time in ≈ 4 hours for the single-phase model

and ≈ 80 hours for the two-phase (≈ 6 million particles simulated).

In order to visualise the two-phase model results in the same way as those from
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(a) (b)

Figure 5.3.1: Snapshots of simulations 15 s after barrier removal for (a) the single-phase
model and (b) the two-phase model. For both cases the initial particle volume fraction is
3.97× 10−4.

the single-phase model, we computed the particle volume fraction in every cell as

ϕ =
NpVp
δx

(5.8)

with Np the number of particles in a cell of size δx and Vp the volume of a single

particle (assumed to be spherical).

We observe that both models produce fingers. However, the SDGIs in the two-

phase model appear to be more resolved and better developed. A fundamental

reason for this is that the numerical diffusion is zero when simulating particles

individually, avoiding the smoothing of the interface and allowing the development

of fine structures.

5.4 Discussion

The two-phase model using the LBM to solve for the continuous phase and discrete

point particles has strong potential for the study of fine structures, such as turbulent

eddies at the edges of fingers, or the effect of drag on particle sedimentation. Whilst

there is some possibility for further optimisation, computational cost remains a crit-

ical factor, limiting application of such methods when dealing with a large number

of particles. Here, we presented an example of a simulation with a dilute config-

uration (equivalent to a particle concentration of 1 g/l). The qualitative results



Chapter 5 155

have shown that there are slight differences between the single-phase and the two-

phase model. Indeed, fingers seem to be better developed in the two-phase case,

suggested they are triggered earlier than the single-phase case. A explanation to

that might be the absence of numerical diffusion in the two-phase model, implying a

less diffuse interface between the particle suspension and the lower layer. However,

another reason might be the neglected forces in the particle-fluid interaction such

as the added mass, the Basset force, the pressure-gradient and the Saffman terms.

In volcanic clouds, the condition ρp ≫ ρ0 is certainly valid to neglect the previously

mentioned effects while it is not the case when considering glass beads in water (i.e.,

in the experiments and the associated simulations). In that case, further simula-

tions including the neglected forces are definitely required to infer if they can remain

neglected in our configuration. Additionally, the computational time may increase

unsustainably just by multiplying the initial concentration by 10, as was done in

Fries et al. [2021] and Lemus et al. [2021] in order to extend the range of particle

concentrations. Ultimately, it is a matter of size ratio (between the size of particle

and the flow characteristic length) and concentration. Current computational capa-

bilities mean that the use of this model for the transport of micron-sized particles

within a full volcanic cloud is impractical as the density number is usually in the

range [107; 1011] particles/m3 [Rossi, 2018]. Additionally, the use of a two-phase

model suffers from several limitations. When the particle concentration and ratio

of particle size and flow characteristic length allow a reasonable number of particle,

the use of this two-phase model is practical and potentially useful. However, it is

necessary to make sure that the flow around each particle is not affected by any drag

effects such that the Lagrangian formulation is still valid [Ferry and Balachandar,

2001].

5.5 Conclusions

We have developed a two-phase model simulating the individual motion of particles

within a particle suspension. This model has been qualitatively compared with

our 3D single-phase model (Chapter 2) and showed that it is possible to trigger
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SDGIs. Interestingly, this model enables the study of fine structures since there is

no numerical diffusion of the particle field. Essentially, we have highlighted:

• The high accuracy of the Verlet integration for calculating particle positions

• The model allows the inclusion of further effects such as the drag, providing

insights into the decoupling of particles with the fluid inside fingers. The

entrainment of ambient fluid at the edges of fingers is also a parameter that

can be investigated.

• Given the numerical cost of this discrete model, its use is limited to problems

involving a reasonable number of particles, despite the possible improvement

and optimisation that can be done.
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Conclusions and future perspectives

This thesis presents insights into the dynamics of SDGIs thanks to the development

of a 3D hybrid numerical model. First, the novel combination between a Lattice

Boltzmann method and the low-diffusive WENO scheme has been validated with ex-

perimental and theoretical results. Additionally, further investigations allowed me to

constrain critical parameters such as the Grashof number, but also to extract a char-

acteristic ground signature for SDGIs (Chapter 2). Second, the addition of shear due

to the horizontal motion of fluid showed that the sedimentation of particles affects

the geometry of the cloud. Interestingly, a case study has highlighted that SDGIs

can produce a bimodal signature in the deposit despite the absence of aggregation

(Chapter 3). This has a very important implication for the genreal understanding

of volcanic clouds as SDGIs are now identified to be non negligible processes that

enhance the premature deposition of fine ash. Third, the successful integration of

the Smoluchowski coagulation equation with our 3D numerical model supported the

possibility to investigate the interaction between aggregation and SDGIs. Indeed,

it has been shown that aggregation enhances both individual and collective settling

while the turbulence inside fingers may trigger the formation of aggregates (Chapter

4). It also implies that the interpretations of tephra deposits, especially in the case

of bimodal grainsize distribution, should take in account both the contributions of

aggregation and SDGIs. Finally, a second model has been developed in order to

investigate the small scale dynamics related to fingers propagation. The presented

two-phase model solves the motion equation of individual particles which can be

critical when the number of particles drastically increases (Chapter 5).
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6.1 Application of the 3D single-phase model to a

static configuration

The 3D numerical model has been developed by combining the efficiency of the

Lattice Boltzmann method to model complex flows, with the low diffusive WENO

finite difference scheme. The main assumption underlying the validity of such a

model is that particles remain fully coupled with the fluid, with no inertia and are

in large number. Besides the possibility to perform calculations of massively parallel

computers, the model as been validated in several ways. In the very early stage of

the instability growth (which can be seen as linear), the model has shown very good

agreements with the results provided by linear stability analysis. Moreover, the

transition to the nonlinear regime has also been validated comparing results such

as the vertical finger velocity with experiments. Finally, besides the validation, we

extended the analytical formulations provided by Hoyal et al. [1999] to describe the

evolution of the particle concentration in the lower layer, as well as the accumulation

rate. Through the validation process, the model has confirmed that the value of 103

previously suggested by Hoyal et al. [1999] and coming from the thermal analogy,

is an order of magnitude less than the value measured in both simulations and

experiments (see also [Barnard, 2021]). This suggests that the analogy with the

thermal case is not relevant or that the Grashof number is not suitable to scale the

PBL thickness. So, there is a need to perform further investigations in order to

derive an accurate scaling of the PBL and the numerical model may certainly help

as it accurately simulates SDGIs from the early linear stages to the later non-linear

regime. Admittedly, the critical Grashof number may be a criterion for triggering

the formation of fingers, but there is also an additional condition. Indeed, as soon as

the particle individual settling velocity becomes greater than the instability growth

rate, no SDGIs are susceptible to form. Thus, there is a size threshold for the

formation of fingers, which depends on the density of particles, the viscosity of the

medium and also the bulk density difference between the two fluid layers.

Furthermore, as the sedimentation of particle is strongly affected by SDGIs, ev-

idence of their presence is found in the particle accumulation rate. Indeed, particles
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that settle individually cause a constant accumulation rate while the convection in-

duced by collective settling provides a temporally increasing accumulation rate. In

addition, the associated spatial distribution is heterogeneous given that fingers do

not reach the ground at the same time. These interesting outcomes show that in the

absence of shear, the accumulation rate is an accurate ground signature of SDGIs.

6.2 Effect of shear on the dynamics of settling-driven

gravitational instabilities

In chapter 3, the lateral motion inducing shear at the particle interface has been

studied. The lateral motion is created by both gravitational spreading and the wind

advection. Once again, the model has been validated with theoretical and experi-

mental results regarding the spreading of particle-free gravity currents. The model

is able to reproduce the energy loss caused by internal dissipative effects, affect-

ing the current thickness. Another important fact is that the spreading velocity of

the gravity current is directly related to the reduced gravity g′. This parameter

describes the change in the gravitational acceleration due to buoyancy forces and

increases when the density difference between the current and the ambient also in-

creases. The addition of particles in such free-surface gravity currents, is interesting

in the sense that the current shape is affected by the sedimentation. More precisely,

in the presence of collective settling which enhances the sedimentation, the current

deformation is significant. Naturally, the sedimentation of particles during spread-

ing also entrains fluid, removing material from the current, causing the thinning of

its head. However, this happens when the current spreading is low enough to allow

the sedimentation (i.e. with low g′). Otherwise, a rapid spreading tends to dampen

particle sedimentation because of the current inertia.

Regarding the ground signature of SDGIs, the evolution of the accumulation rate

seems to be similar to the static case, but not necessarily due to collective settling.

However, the heterogeneous deposit in the presence of collective settling remains an

indicative ground signature. Therefore, a more relevant ground signature, especially

in the presence of shear, can be extracted within the grainsize distribution. The
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application to an ash cloud from the 2010 eruption of the Eyjafjallajökull volcano

using input data from field observations [Manzella et al., 2015; Bonadonna et al.,

2011], showed that SDGIs have the potential to produce a bimodal grainsize distri-

bution in the deposit. This result is extremely important as the bimodality in the

deposit grainsize cannot only be attributed to ash aggregation.

6.3 Combination of particle aggregation with settling-

driven gravitational instabilities

Particle aggregation and SDGIs are candidates to explain the premature sedimen-

tation of fine ash from volcanic clouds. They both contribute to the associated

ground signature which is a bimodal grainsize distribution. The chapter 4 combines

the two processes in order to investigate their interaction. The implementation of

the discrete Smoluchowski coagulation equation (SCE) allows to define source/sink

terms for the particle transport equation. Thanks to the application of the fixed-

pivot technique, the source/sink terms provide the mass transfer between particle

size classes due to aggregation, ensuring mass conservation. Some validation steps

using the analytical solution of the SCE for the isothermal brownian coagulation

have been performed and showed that the model is numerically stable. Then, in or-

der to study the interaction between aggregation and SDGIs in a volcanic context,

relevant aggregation kernels have to be used. Among the different kernels considered

in volcanology, some are neglected (such as the brownian motion, the laminar shear

or else the turbulent-inertial) given the assumption underlying our numerical model.

However, the most important kernels associated with the differential sedimentation

and turbulent shear are conserved. An interesting way to highlight to effect of ag-

gregation is to vary the sticking efficiency in order to modulate the rate at which

aggregates are formed. We highlighted that aggregation affects all sedimentation

modes (i.e. individual and collective) by increasing the accumulation rate. In the

case of individual settling for which the accumulation rate is constant, the produc-

tion of aggregates increases the settling velocity and ultimately the accumulation

rate. For collective settling, the characteristic ground signature (i.e. increasing
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accumulation rate) is conserved but also enhanced by aggregation. Moreover, the

turbulence generated within fingers certainly contribute to the creation of aggre-

gates. This aspect is interesting as it shows that aggregation occurs not only inside

the volcanic plume and cloud but also within fingers.

6.4 Development of a two-phase model

A second model has been developed and described in Chapter 5. This two-phase

model solves the fluid motion with the Lattice Boltzmann method while the motion

equation is explicitly solved for each individual particle. Each particle position is

updated using the Verlet integration [Verlet, 1967] which provides an accurate and

fast algorithm. The model allows the inclusion of the particle drag effect which

proves to be useful to investigate how the particle coupling affects the dynamics

of SDGIs. The main outcome is that, given the numerical effort involved in the

simulation of a large number of individual particles, the use of such a model is

limited, despite the actual resources available.

6.5 Future perspectives

Our numerical investigations provide interesting insights into the dynamics of SDGIs

and their interaction with particle aggregation. The developed single-phase and two-

phase models nicely complement the field and experimental studies and expand the

spectrum of analysed physical parameters. However, additional work is needed to

improve our understanding of collective settling.

From a theoretical point of view, the scaling of the PBL thickness is critical as

it defines the characteristic length of the problem [Hoyal et al., 1999; Carazzo and

Jellinek, 2012]. So far, this parameter was expressed as a function of the critical

Grashof number taken from the thermal analogy. Our investigations, strengthened

by previous studies [Yu et al., 2014; Burns and Meiburg, 2014] have revealed that

the instability development depends on the particle settling velocity Vs as well as

on the volume fraction ϕ and that the thermal Grashof number is not accurate to

describe SDGIs. Indeed, in the analytical formulation δPBL = (Grcν
2/g′)

1/3 [Hoyal
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et al., 1999], there is no clear dependence on Vs and ϕ, which suggests the need for

another scaling taking those parameters into account, in order to better describe

the triggering conditions of SDGIs.

Some improvements of the numerical models developed so far are strongly rec-

ommended in relation to both the implemented physics and to the performances.

• Volcanic clouds in the atmosphere are characterised by highly turbulent flows

given the high range of Reynolds numbers [Fries et al., 2021]. The turbulence

plays an important role for instance in the mixing inside the cloud or else

the collision rates between particles. Thus, the parameters controlling the

triggering of SDGIs such as the particle concentration or the particle size

(indirectly by aggregation), are doubtlessly dependent. We constrained the

various parameters controlling the initial conditions for the development of

ash fingers. However, the different single-phase simulations performed for this

thesis did not take into account the turbulence having the potential to influence

those initial conditions. Defining an accurate estimation of the turbulence

profile within a volcanic cloud is not trivial as it depends on the volcanic

plume dynamics and the atmospheric conditions. This aspect suggests the

need for the coupling with existing plume models or the development of a

more complete model of volcanic plume/cloud. The latter would effectively

help to constrain the eruption source parameters (ESP) and the atmospheric

conditions promoting the cloud requirements to trigger SDGIs.

• Concerning the technical improvements for the performances of the 3D single

phase model, a minor aspect can be the increase of the order for the WENO

scheme accuracy (i.e. from 3rd to 5th order). Thus, the mixing resulting

from the fingers propagation should be better resolved. Therefore, a major

improvement would be about the numerical strategy to model polydisperse

size distribution. Indeed, as we solve the transport equation for each size

class, the adopted strategy can be significantly improved in terms of memory

handling and execution time (i.e. the use of a single TensorF ield instead of

several ScalarF ields [Latt et al., 2020]). Finally, for both the single-phase and
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two-phase models, the performance can be strongly improved thanks to the

use of GPUs (Graphical Processing Units) [Latt et al., 2020; Kotsalos et al.,

2021].

A final important aspect that still needs to be developed is the development of a

comprehensive parametrisation of SDGIs to be integrated in ash dispersal models.

While aggregation modifies the total grainsize distribution during the volcanic cloud

dispersal [Rossi et al., 2021; Rossi, 2018; Folch et al., 2020; Beckett et al., 2022],

SDGIs reduces the residence time of fine ash locally through a different mechanism.

However, given the fact that to explicitly model fingers is challenging, there is a

need to introduce a parameter representing the amount of fine ash removed from

the cloud. In a Eulerian model such as FALL3D for instance [Folch et al., 2020],

this parameter can be included as a sink term in the particle transport equation.

In lagrangian models such as NAME [Jones et al., 2007; Beckett et al., 2022], the

fine fraction can be removed from the cloud using "ghost" particles with a terminal

velocity equivalent to the average finger vertical velocity.

A final word concerns the importance of the collaborations between various fields

in order to concentrate efforts on a research topic. The model validation would not

be possible without the experimental investigations while the numerical investiga-

tions suggested to measure specific parameters on the field in order to highlight

SDGIs. Everything starts with the contemplation of a phenomenon such as a vol-

canic eruption, and ends with the motivation to improve dispersal models in order

to preserve an economic system and save lives. This perfectly express the beauty of

science.
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