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Abstract

The aim of this paper is to describe the implementation and to provide a tutorial for
the R package ssmrob, which is developed for robust estimation and inference in sample
selection and endogenous treatment models. The sample selectivity issue occurs in prac-
tice in various fields, when a non-random sample of a population is observed, i.e., when
observations are present according to some selection rule. It is well known that the classi-
cal estimators introduced by Heckman (1979) are very sensitive to small deviations from
the distributional assumptions (typically the normality assumption on the error terms).
Zhelonkin, Genton, and Ronchetti (2016) investigated the robustness properties of these
estimators and proposed robust alternatives to the estimator and the corresponding test.
We briefly discuss the robust approach and demonstrate its performance in practice by
providing several empirical examples. The package can be used both to produce a com-
plete robust statistical analysis of these models which complements the classical one and
as a set of useful tools for exploratory data analysis. Specifically, robust estimators and
standard errors of the coefficients of both the selection and the regression equations are
provided together with a robust test of selectivity. The package therefore provides addi-
tional useful information to practitioners in different fields of applications by enhancing
their statistical analysis of these models.

Keywords: endogenous treatment model, R, robust estimation, robust inference, sample selec-
tion models, two-step estimator.

1. Introduction

The present paper has three purposes. First, we introduce the R package ssmrob (Zhelonkin,
Genton, and Ronchetti 2021) for the robust analysis of data with sample selection; second,
we discuss some practical aspects about the use of robust methods in general and in sample
selection models in particular; third, we propose a robust estimator for the endogenous treat-
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2 ssmrob: Robust Analysis of Sample Selection Models in R

ment model. As advocated by several authors (see e.g., Athey and Imbens 2017), in order to
increase transparency and credibility of research, it is reasonable to complement the reported
results by a supplementary analysis. Several measures have been proposed, see Andrews,
Gentzkow, and Shapiro (2017) and Athey and Imbens (2015). We believe, that reporting
the results of a robust analysis should become a normal practice, if one uses parametric es-
timators. This will not only safeguard the statistical analysis from misleading implications
possibly due to deviations from the assumptions on the model, but also enrich the analysis
by offering additional useful information on the structure of the data.
The paper can be read in different ways. Those readers already familiar with robust statistics
and interested in applying directly the new robust analysis can check the models covered here
in Section 2 and then go directly to the implementation and the use of the package in Section 5
and 6, respectively. Those who would like to have a short introduction to the basic concepts
of robust statistics and a general discussion on its role in this setup, including its relationship
to parametric and semi-parametric methods, can read Section 2 and 3. Section 4 contains the
description of the robust estimators and tests, which is useful to understand their structure
and the options in the functions presented in Section 5 and 6. A user willing to use only the
default options of the package can skip this section. Finally, the practical use of the package
is discussed in Section 5 and Section 6, where two empirical applications are discussed in
details by comparing the classical statistical analysis with its full robust counterpart.

2. Sample selection models and main functions
We consider three models, but for simplicity of exposition we will focus on the standard
Heckman (1979) framework.

Heckman’s model (Tobit-2 model)

y1i = I(x>1iβ1 + e1i > 0), (1)

y2i =
{
x>2iβ2 + e2i, if y1i = 1,
NA, if y1i = 0, (2)

where xji is a vector of explanatory variables, βj is a pj × 1 vector of parameters, j = 1, 2, eji
are the error terms which follow a bivariate normal distribution with variances σ2

1 = 1, σ2
2, and

correlation ρ, and I is the indicator function. The variance parameter σ2
1 is set to be equal to

1 to ensure identifiability. Here (1) is the selection equation, defining the observability rule,
and (2) is the equation of interest or outcome equation. Notice that sometimes instead of
NA (not available) zeros are used, although this notational practice can be misleading. The
system (1)–(2) is also known as Tobit-2 model according to Amemiya (1984) classification.
In the analysis of the dataset in Section 6.2 we use this model, where y1i in the selection
equation defines whether or not the i’th individual enters into the labor force and y2i in the
outcome equation represents its log-wage. x1i and x2i are vectors of covariates which include
age, education status, experience, and squared experience.

Switching regressions model (Tobit-5 model)
It is a natural extension of Heckman’s model. In this case instead of NA in (2) we have a
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second regime. The selection equation (1) remains the same. The outcome equation can be
written as follows:

y2i =
{
x>21iβ21 + e21i, if y1i = 1,
x>22iβ22 + e22i, if y1i = 0,

where x2ji are the vectors of explanatory variables, β2j are qj vectors of parameters, j = 1, 2,
the error terms e21i and e22i together with e1i follow a multivariate normal distribution e1i

e21i
e22i

 ∼ N

 0

0
0

 ;

 1 σ12 σ13
σ12 σ2

2 σ23
σ13 σ23 σ2

3


 . (3)

Endogenous treatment model (ETM)

It has the same selection equation (1), but the outcome equation becomes

y2i = x>2iβ2 + αy1i + e2i, (4)

where the dependent variable y1 appears as an explanatory variable. The error terms follow
a bivariate normal distribution with the same covariance structure as in the Tobit-2 model.
Because of non-zero correlation between the errors, y1 becomes endogenous. The parameter
α is the average treatment effect. In this case y1 is a treatment variable, for instance the
decision to enroll in a job training program.
These three models are the central tools for the analysis of data with non-random sampling
and play an important role in policy evaluation and treatment effect estimation in observa-
tional studies.
Package ssmrob (Zhelonkin et al. 2021) is available from the Comprehensive R Archive Net-
work (CRAN) at https://CRAN.R-project.org/package=ssmrob. The main functions in
the package are ssmrob() and etregrob(). The function etregrob() is the estimator of
ETM, which returns an object of class ‘etregrob’. Function ssmrob() works as a wrapper.
In the current version (version 1.0) there are two options: the Heckman’s selection model
(Tobit-2) and the switching regressions model with probit selection mechanism (Tobit-5). If
the Tobit-2 model is chosen, then heckitrob() is called; if the Tobit-5 model is chosen then
heckit5rob() is called. The function ssmrob() returns the object of class ‘heckitrob’ or
‘heckit5rob’ for Tobit-2 or Tobit-5, respectively.

3. Estimation
In this section we briefly review different estimation approaches (for a thorough review, see
e.g., Vella 1998) and discuss situations where each method is preferable from the robust
statistics perspective. We focus on the Tobit-2 model, but the general arguments hold for
two other models as well.

3.1. Parametric estimation

Without any doubt, the parametric approach is currently the most popular approach for the
estimation of sample selection models in practice. It is straightforward to write the likelihood
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4 ssmrob: Robust Analysis of Sample Selection Models in R

function which now can be relatively easily maximized, although it was quite computation-
ally difficult in the seventies, when the model was introduced. Heckman (1979) proposed
an appealing two-step estimator, which became standard because of its simplicity and easy
interpretation. Consider the conditional expectation of y2i given x2i and the selection rule

E(y2i | x2i, y1i = 1) = x>2iβ2 + E(e2i | e1i > −x>1iβ1). (5)

The expectation on the right hand side of (5) is in general not equal to zero, which leads to
the following regression

y2i = x>2iβ2 + λ(x>i1β1)βλ + νi, (6)
where βλ = ρσ2, λ(x>i1β1) = φ(x>i1β1)/Φ(x>i1β1) is the conditional expectation on the right
hand side of (5) called the inverse Mills ratio (IMR), νi is the zero expectation error term
and φ(·) and Φ(·) denote the density and cumulative distribution function of the standard
normal distribution, respectively. Heckman suggested to estimate β1 by probit maximum
likelihood estimator (MLE) and to use ordinary least squares (OLS) in regression (6), where
λ(·) is correcting for the selection bias. A similar two-step estimation structure can be used
for switching regressions and ETM. The first step is probit MLE, the second step is OLS with
corresponding conditional expectation as a selection bias correction.
Nowadays both Heckman’s two-step estimator and the full information maximum likelihood
estimator (FIML) are standard methods implemented in many software packages including
SAS (SAS Institute Inc. 2014), using proc qlim, Stata (StataCorp 2017), using heckman
and etregress, and R (R Core Team 2021) using package sampleSelection by Toomet and
Henningsen (2008).
However, in spite of their simplicity and appealing interpretation, both estimators are very
sensitive to the normality assumption on the error terms. The two-step estimator is considered
to be slightly more robust than FIML (Cameron and Trivedi 2009, p. 544). In spite of the
fact that the distributional assumptions for both estimators are the same, in the situation
when there are measurement errors in the outcome equation, the two-step estimator remains
consistent, while FIML is not (Stapleton and Young 1984). Another interesting case is when
there are outliers only in the outcome equation. Then, in the two-step estimator at least the
selection equation will be estimated correctly and the second step can become biased, while
using FIML, parameters in both equations can become biased. In general, as we show below,
both estimators can be arbitrarily biased, even when the assumed model F is approximately
correct, say e.g., 99% of observations come from F and 1% from some arbitrary distribution G.
A natural way to mitigate the sensitivity problem is to use a more flexible parametric family
of distributions. For instance, Lee (1983) and Marchenko and Genton (2012) proposed to use
the t distribution, which allows longer tails and their adjustment using the degrees of freedom,
Smith (2003) proposed to use a copula-based approach, and Ogundimu and Hutton (2016)
proposed skew-normal selection model. Although, these approaches add more flexibility to the
standard normal model, they do not provide full protection against possible deviations from
the central model, i.e., when the true data generating distribution lies in a full neighborhood
of the assumed parametric model; see Section 3.2.

3.2. Robust estimation

The robust approach offers a reasonable compromise between the fully parametric approach
explained in Section 3.1 and the semiparametric approach discussed in Section 3.3. We still
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assume the classical normal model F as the central model, but we believe that the true
data generating distribution lies in a neighborhood of it, i.e., Fε = (1 − ε)F + εG, where G
is some unknown arbitrary distribution and ε is (typically) small. We then derive (robust)
estimators that are consistent for the central model F and remain stable when the true
data generating distribution is Fε lying in a neighborhood of F , i.e., their bias will always
be bounded no matter the distribution Fε. Notice that the classical estimators (FIML and
Heckman’s two-step) are also consistent for the central model, but can have an infinite bias
when the underlying distribution of the data lies in a small neighborhood of the central model.
The robust estimators identify the same parameters as the classical parametric estimators and
therefore retain the interpretation as in the classical case. The price to pay for robustness
is some loss of efficiency at the central model. In the default tuning that is implemented
in the package, this is approximately 20%. One might argue that the two-step estimator is
inefficient itself, however even with minor contamination (1%), the robust estimator becomes
more efficient than the classical one. We demonstrate this issue in the examples in Section 6.
Details about the robust approach are provided in Section 4 and a complete discussion can
be found in Zhelonkin et al. (2016).

3.3. Semi- and nonparametric estimation

If the parametric assumptions are not satisfied even approximately or if we are completely
uncertain about the data generating distribution, the natural alternative is to use semi- and
nonparametric estimators. The goal of robust methods is to estimate the parameters of the
central model F in order to retain their interpretation in spite of the fact that the data
were generated by some Fε. In a fully nonparametric setup the goal would be to estimate
characteristics of the distribution Fε, such as its expectation instead of the expectation of the
central model F .
The literature on semi- and nonparametric estimation on models with sample selectivity is
large, see Ahn and Powell (1993), Newey (2009) and Chapter 8 in the book by Pagan and
Ullah (1999). Here we only briefly discuss the estimators which preserve the linearity in
the parameters and relax the distributional assumptions. For the treatment of nonlinear
predictors we refer to the paper by Wojtyś, Marra, and Radice (2016) and their package
SemiParSampleSel, see also Das, Newey, and Vella (2003) and references therein.
Similarly to parametric estimation there are one-step FIML-like estimators and semiparamet-
ric two-step estimators. An example of one-step estimator is a method proposed by Gallant
and Nychka (1987). The method is based on Hermite series approximation of the true den-
sity. The authors provide the consistency result, but not the (asymptotic) distribution theory.
Another strategy is to use a two-step approach. Newey (2009) proposed first to estimate the
selection equation as a semiparametric single index model (Klein and Spady 1993) and then
to use a series expansion to correct for sample selection in the second step with OLS. How-
ever, there is a possible identification problem. The single index model does not identify
β1: the intercept is not identified and other components of β1 are identified only up to a
proportionality factor. For the identification of parameters in the outcome equation we need
to assume exclusion restrictions, i.e., there must be a variable in x1 that is not included in
x2. If x1 = x2 then the identification of the model depends entirely on the functional form
and the distributional assumptions (Manski 1989). In practice it is often difficult to find such
a variable, and as mentioned by (Vella 1998, p. 135) some economic models require the same
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explanatory variables to appear in both equations. Moreover, the intercept in β2 is incorpo-
rated in the series expansion and needs a separate estimation. Heckman (1990) and Andrews
and Schafgans (1998) proposed methods to estimate the intercept, which require the so-called
identification at infinity.
If the practitioner switches to semi- nonparametric methods, then the exclusion restriction
must be imposed, and not all the structural parameters can be identified. This creates a
delicate trade-off between the parametric assumptions and the nonparametric identification
assumptions. What is more restrictive in practice is a complicated question, which is beyond
the scope of this paper. It must also be mentioned that the exclusion restriction is also
desirable (but formally not compulsory) for the fully parametric setup since the inverse Mills
ratio is quasi-linear on a wide range of its support. The FIML estimator also suffers from this
problem; see Leung and Yu (2000) for a thorough discussion.
Most empirical work is based on the parametric approach and there are several reasons for
that. The simplest one is that nonparametric methods are technically demanding. Heckman
and Vytlacil (2007) mentioned the issues of the sensitivity of semiparametric estimators to
the choices of smoothing parameters, trimming parameters and bandwidths. Another reason
is that the parametric framework allows to estimate the structural parameters corresponding
to the economic model and to evaluate the entire model and not only to estimate some
parameters.

3.4. Quantile regression approach

Quantile regression (QR) (Koenker 2005) is often considered a robust alternative to OLS
in linear regression. In the original paper by Koenker and Bassett (1978) the robustness
issue was one of the central points for the introduction of QR together with the advantage
(compared to standard OLS) of providing the estimation of all the quantiles (and not just
the expectation) of the conditional distribution of the response variable given the covariates.
In the sample selection literature several QR methods have been proposed (Buchinsky 1998;
Huber and Melly 2015; Arellano and Bonhomme 2017). The main focus of these papers is
the the estimation of quantile effects, but the robustness properties of the estimators are not
discussed. Although the QR approach is a powerful tool for statistical modeling, its robustness
is not automatically guaranteed, at least by the currently available methods. Indeed there
are situations, where the QR estimator can break down in the presence of even a very small
deviation from the assumed model. We will get back to this point with more details at the
end of Section 4.1.

4. A general robust approach
In this section we describe a general way to obtain robust estimators and tests for models
with sample selectivity.

4.1. Robust estimation

The robustness issues with Heckman’s two-stage estimator can be naturally described by
studying the behavior of the estimator when the true error generating distribution is not
the central normal model F but some perturbation Fε = (1 − ε)F + εG, where G is an
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unknown arbitrary distribution, and ε is the contamination proportion. Our estimator in this
framework will be consistent for the model F , but slightly biased for Fε, any distribution in
a ε-neighborhood of F . Notice that the classical estimator can have an infinite bias at a Fε,
see below.
The robust approach controls the worst possible bias that can occur when the data generating
distribution belongs to that neighborhood. It turns out that the worst possible bias over all
G can be linearly approximated by

ε · sup
z
||IF (z;T, F )||,

where IF (z;T, F ) is the so-called influence function (IF), a derivative of the estimator viewed
as functional of the underlying distribution; see Hampel (1974) and Hampel, Ronchetti,
Rousseeuw, and Stahel (1986). If the estimator has an unbounded influence function, the
corresponding worst bias in the ε-neighborhood of F will be infinite.
To check the IF of Heckman’s estimator, remember that β1 is estimated in the first stage by
MLE in a probit model, whereas β2 is estimated by OLS in regression (6), with λ(·) correcting
for the selection bias.
The population versions of the estimating equations defining the two-stage estimator are given
by: ∫

Ψ1{(x1, y1);S(F )}dF = 0, (7)∫
Ψ2[(x2, y2);λ{(x1, y1);S(F )}, T (F )]dF = 0, (8)

where
Ψ1{(x1, y1);S(F )} = {y1 − Φ(x>1 β1)} φ(x>1 β1)

Φ(x>1 β1){1− Φ(x>1 β1)}
x1, (9)

Ψ2[(x2, y2);λ{(x1, y1);S(F )}, T (F )] = (y2 − x>2 β2 − λβλ)
(
x2
λ

)
y1, (10)

are the score functions of the first and second stage estimators, respectively, S(F ) and T (F )
are the population counterparts of the estimators of the parameters β1 and β2 respectively,
and λ{(x1, y1);S(F )} denotes the dependence of λ on S(F ), while T (F ) depends directly on
F and indirectly on F through S(F ).
The two-stage estimator is the solution of the empirical counterpart of the above system of
estimating equations. In particular, (7) with (9) corresponds to the estimating equation of
the MLE in a probit model, whereas (8) with (10) is the estimation equation for OLS in the
regression model (6).
It can be shown that the IF of T is proportional to the score functions Ψ1 and Ψ2, i.e., it is
linear in {y1 − Φ(x>1 β1)}, (y2 − x>2 β2 − λβλ), x1, x2, λ. Therefore it is unbounded and this
causes the non-robustness problems of the estimator; see Proposition 1 in Zhelonkin et al.
(2016).
It is then clear that in order to robustify the classical Heckman’s two-stage estimator, we
need to bound the two score functions, which amounts to perform a robust probit estimation
in the first stage and a robust regression in the second stage. To do that, a thresholding
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of the linear functions mentioned above is necessary and this is achieved by “huberizing”
(i.e., applying the Huber function (12) to) the errors {y1 −Φ(x>1 β1)} and (y2 − x>2 β2 − λβλ),
and by downweighting x1 and x2. This operation defines new scores functions, so-called of
Mallows type. For the first stage, following Cantoni and Ronchetti (2001), we define:

ΨR
1 {z1;S(F )} = ψc1(r) 1

V 1/2(µ)
ω1(x1)µ′ − α(β1), (11)

where z1 = (x1, y1), r = y1−µ
V 1/2(µ) are the Pearson residuals, ψc1(·) is the Huber function defined

by

ψc1(r) =
{
r, |r| ≤ c1,
c1 sign(r), |r| > c1,

(12)

α(β1) = 1
n

∑n
i=1E{ψc1(ri) 1

V 1/2(µi)
}ω1(x1i)µ

′
i, µi = Φ(x>1iβ1), µ′

i = ∂
∂β1

µi, V (µi) = Φ(x>1iβ1){1−
Φ(x>1iβ1)}, ω1(·) is a weight based on the inverse of the robust Mahalanobis distance computed
by means of high breakdown robust estimators of location and scatter of the x1i. Several op-
tions are implemented in the package; see the argument heckitrob.control() in Section 5.
The constant α(β1) ensures that the new modified estimating equation remains unbiased,
i.e., E[ΨR

1 {z1;S(F )}] = 0.
The modification of the classical score function entails an efficiency loss at the normal model.
This can be viewed as an insurance premium, which provides protection against possible
deviations from the model and their consequences on the bias of the estimator. Then, the
tuning constant c1 can be chosen to ensure a given level of asymptotic efficiency at the normal
model. A typical value is 1.345.
For the second stage, we have a Mallows type robust score function:

ΨR
2 (z2;λ, T ) = ψc2{(y2 − x>2 β2 − λβλ)/σ}ω(x2, λ)y1, (13)

where c2 = 1.345, z2 = (x2, y2), the weight function ω(·, ·) is based on the robust Mahalanobis
distance d(x2, λ), e.g.,

ω(x2, λ) =
{

1 if d(x2, λ) < cm,
cm

d(x2,λ) if d(x2, λ) ≥ cm, (14)

with cm the 95% quantile of the χ2-distribution. In the situation, when the exclusion re-
striction is not available an additional modification of weights is used in order to reduce the
loss of efficiency. We split the covariate space in two subspaces, then calculate the weights
separately, and finally combine them. Details are given in Zhelonkin et al. (2016), p. 814.
Notice that the original QR estimator (Koenker and Bassett 1978) has a bounded IF with
respect to the dependent variable, but its IF is unbounded in the space of explanatory vari-
ables. In a sample selection setting there is also the first estimation stage. If one uses probit
MLE, then the final QR won’t be robust in any case. If the robust probit is used, then the
introduction of robustness weights in the covariates space is required, and to the best of our
knowledge, this is still an open question. Buchinsky (1998) and Huber and Melly (2015) used
the semiparametric single index model in the first step and the original QR in the second
step. This leads to identification issues discussed in Section 3.3, and this procedure is in
general not robust to outliers in the covariates space. Moreover, it is less efficient than our
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robust estimator (Zhelonkin et al. 2016). To summarize, the QR approach is a very useful
tool for modeling quantile effects. However, one should be careful about using it as a robust
alternative, since a fully robust QR estimator in sample selection model is not available yet.

4.2. Robust inference

The robust two-stage estimator defined by (7)–(8), where the score functions are given by
(11)–(13) is an M -estimator and its asymptotic variance is readily available (see Zhelonkin
et al. (2016), p. 814, Formula (19)), which can be consistently estimated by means of the
heteroscedasticity-consistent variance estimator; see Eicker (1967), Huber (1967) and White
(1980). This allows us to construct a t test to test sample selection bias, i.e., H0 : βλ = 0
vs HA : βλ 6= 0, based on the robust estimator of βλ and the corresponding estimator of its
standard error.

4.3. Robust ETM

The two-step estimator of ETM consists of a probit MLE for the selection equation (1) and
OLS for the following regression

y2i = x>2iβ2 + αy1i + βλλ
C + ν̃i, (15)

where ν̃i is a zero mean error term, λC is the inverse Mills ratio for the complete sample,
defined by

λC{z1;S(F )} = y1

{
φ(x>1 β1)
Φ(x>1 β1)

}
+ (1− y1)

{
−φ(x>1 β1)

1− Φ(x>1 β1)

}
.

The second option is to represent (15) in the form of switching regressions and estimate the
average treatment effect α as a difference between the intercepts of two states. Both estimators
have unbounded IF’s and are not robust. The IF of the former is derived in Appendix A.
The IF of the switching regressions estimator is discussed in the supplementary material of
Zhelonkin et al. (2016).
The structure of the IF is similar to that of the Tobit-2 estimator. Hence, we apply the
same principles as in Section 4.1 for the construction of the robust estimator for ETM. The
first step is a robust probit with the score function (11). The second step is a Mallows type
M-estimator with score function as in (13)

ΨR
2 (z2;λC , T ) = ψc2{(y2 − x>2 β2 − αy1 − λCβλ)/σ}ω(x2, λ

C),

where ψc2(·) is the Huber function defined by (12), and ω(·, ·) is the weight function defined by
(14). The combination of these score functions bounds the IF, making the estimator (locally)
robust. A simulation study illustrating the performance of the robust estimator as well as
the classical two-step and FIML estimators is presented in Appendix B.

5. Implementation and description of the functions
The package is written completely in R. It imports the packages sampleSelection (Toomet
and Henningsen 2008), robustbase (Todorov and Filzmoser 2009; Maechler et al. 2021), and
MASS (Venables and Ripley 2002). The package mvtnorm (Genz et al. 2020) is used for
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the examples based on simulated data, which requires the simulation of the errors from a
multivariate normal distribution. All these packages are available from the Comprehensive R
Archive Network at http://CRAN.R-project.org/.
We give a description of the functions implemented in the package and discuss some aspects
of the implementation.

ssmrob(outcome, selection, data, control = heckitrob.control())

This function is a wrapper which, depending on the type of arguments in selection and
outcome, chooses the model and calls the corresponding estimator. The argument outcome
is a simple formula for the case of Tobit-2, or a list of two formulas for the case of switching
regressions. The argument selection is a formula for the selection equation. The argument
control defines the accuracy and the robustness tuning parameters.

heckitrob.control(acc = 1e-04, test.acc = "coef", maxit = 50,
weights.x1 = c("none", "hat", "robCov", "covMcd"),
weights.x2 = c("none", "hat", "robCov", "covMcd"),
tcc = 1.345, t.c = 1.345)

This function provides the tuning parameters for the robust two-stage estimator. The pa-
rameters acc and test.acc control for the accuracy of estimation. The maximum number
of iterations is defined by maxit. The leverage weights for the first stage (ω1(x1) in (11))
and for the second stage (ω(x2, λ) in (13)) are defined by weights.x1 and weights.x2, re-
spectively. If "none" is chosen, which is the default option, then the weights are equal to 1.
If "hat" is chosen, then weights on the design of the form

√
1− hii are used, where hii are

the diagonal elements of the hat matrix. If "robCov" is chosen, then weights based on the
robust Mahalanobis distance of the design matrix are used, where the covariance matrix is
estimated by the rob.cov() method from package MASS (Venables and Ripley 2002) using
the minimum volume ellipsoid estimator (Rousseeuw 1985). Similarly, if "covMcd" is chosen,
the covariance is estimated by the minimum covariance determinant estimator (Rousseeuw
and Van Driessen 1999). The arguments tcc and t.c are the tuning constants c1 and c2 for
the Huber-functions of the first (11) and second (13) stage estimators, respectively.

heckitrob(outcome, selection, data, control = heckitrob.control())

This function presents the robust two-stage estimator of the Tobit-2 model. The arguments
outcome and selection must be formulas. Note that, if tcc and t.c (tuning constants
c1 and c2) are large and the leverage weights are ones, then the estimator converges to the
classical Heckman’s two-stage estimator.

heckit5rob(outcome1, outcome2, selection, data,
control = heckitrob.control())

Similarly to the previous function, but heckit5rob() estimates the switching regressions
model. The set of the tuning parameters for the second step estimator is used for both states.

etregrob(outcome, selection, data, control = heckitrob.control())

http://CRAN.R-project.org/
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This function presents the two-step estimator for ETM, described in Section 4.3. It uses the
same control function as the Tobit-2 and Tobit-5 models.
The computation of the asymptotic variance matrices is performed by the functions
heck2steprobVcov(), heck5twosteprobVcov() and etreg2steprobVcov() for the Tobit-2,
Tobit-5 and ETM models, respectively. They are used inside of the corresponding estima-
tor functions. The output can be obtained by using the vcov() method on the object of
‘heckitrob’, ‘heckit5rob’ or ‘etregrob’ classes.
The package provides the generic functions. The function print() prints the estimation
results. The function summary() calculates and prints the summary of the estimation with
standard errors, t values and p values, and returns an object of class ‘summary.heckitrob’ or
‘summary.heckit5rob’, ‘summary.etregrob’ for Tobit-2, Tobit-5, and ETM respectively. The
function coef() extracts the estimated coefficients, the function vcov() returns a list of two or
three variance-covariance matrices, one for the selection equation and one or two (depending
on the model) for the outcome equation. The functions fitted() and residuals() return
one vector or a list that contains two vectors of fitted values or residuals, also depending
on the model (one vector for Tobit-2 and ETM, two vectors for Tobit-5). The function
model.matrix() has an argument part with "outcome" as a default value, which produces a
design matrix of the outcome equation for Tobit-2 and ETM and a list with two matrices for
Tobit-5. If part = "selection" then a design matrix for the selection equation is returned.
Finally, the function nobs() returns the number of observations.

6. Using the ssmrob package
In this section we provide illustrative examples. First we treat a simulated example for sample
selection model (1)–(2). It illustrates the behavior of the classical and robust estimators when
the data generating process (DGP) is known. Second, we examine two empirical applications.
Both have already been analyzed in the literature and are well known. In the example about
wage offers there is no robustness problem, and the results of the estimation by classical
and robust procedures are close. In the second example (ambulatory expenditures), on the
contrary, the distributional assumptions are violated and the robust estimator is different
from the classical estimator. The behavior of robust and classical estimators for Tobit-5 and
endogenous treatment models is similar and their discussion can be found in Appendix.
To start, we load the package ssmrob.

R> library("ssmrob")

6.1. Tobit-2 model

We simulate the data from model (1)–(2):

R> library("mvtnorm")
R> N <- 5000
R> beta1 <- c(0, 1.0, 1.0, 0.75)
R> beta2 <- c(0, 1.5, 1.0, 0.5)
R> set.seed(2)
R> x1 <- rmvnorm(N, mean = c(0, -1, 1), sigma = diag(c(1, 0.5, 1)))
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R> x2 <- x1
R> x2[, 3] <- rnorm(N, 1, 1)
R> covmtrx <- matrix(c(1, 0.7, 0.7, 1), 2, 2)
R> eps <- rmvnorm(N, mean = rep(0, 2), sigma = covmtrx)
R> y1 <- ifelse(cbind(1, x1) %*% beta1 + eps[, 1] > 0, 1, 0)
R> y2 <- ifelse(y1 == 1, cbind(1, x2) %*% beta2 + eps[, 2], NA)

We set the sample size equal to 5000. The explanatory variables (x1 and x2) are generated
from a multivariate normal distribution. We choose them overlapping, such that the first
two variables match and the third one differs. This provides the exclusion restriction. The
errors are generated from a bivariate normal distribution with correlation equal to 0.7, which
leads to βλ = 0.7. Finally, using the explanatory variables and the errors we compute the
response variables (y1 and y2). This simulation design is taken from Zhelonkin et al. (2016).
It is a compromise between the complexity of real applications and simplicity of illustrative
examples. The dataset generated from the explained procedure is not contaminated, and from
the two outputs below we can see that the classical two-step estimates (sampleSelection) and
the robust estimates are close to the true parameters and to each other. The standard errors of
the robust estimator are slightly larger than that of the classical. The results by the classical
estimator are:

R> library("sampleSelection")
R> summary(selection(y1 ~ x1, y2 ~ x2, method = "2step"))

--------------------------------------------
Tobit 2 model (sample selection model)
2-step Heckman / heckit estimation
5000 observations (2740 censored and 2260 observed)
11 free parameters (df = 4990)
Probit selection equation:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.02135 0.04496 0.475 0.635
x11 1.01536 0.03053 33.262 <2e-16 ***
x12 1.04424 0.03873 26.965 <2e-16 ***
x13 0.78171 0.02723 28.708 <2e-16 ***
Outcome equation:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.03607 0.04363 0.827 0.408
x21 1.47018 0.02945 49.921 <2e-16 ***
x22 0.96962 0.03677 26.371 <2e-16 ***
x23 0.47070 0.01882 25.015 <2e-16 ***
Multiple R-Squared:0.6466, Adjusted R-Squared:0.646

Error terms:
Estimate Std. Error t value Pr(>|t|)

invMillsRatio 0.67460 0.05718 11.8 <2e-16 ***
sigma 0.99812 NA NA NA
rho 0.67587 NA NA NA
---
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Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
--------------------------------------------

The robust estimation gives the following output:

R> rob.ctrl <- heckitrob.control(weights.x1 = "hat", weights.x2 = "covMcd")
R> summary(ssmrob(y1 ~ x1, y2 ~ x2, control = rob.ctrl))

Call:
ssmrob(selection = y1 ~ x1, outcome = y2 ~ x2, control = rob.ctrl)

Heckman selection model / robust 2-step M-estimation
5000 observations: 2740 censored and 2260 observed
Probit selection equation:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.003156 0.04735 0.06664 9.47e-01
x11 1.004134 0.03360 29.88000 3.15e-196 ***
x12 1.032265 0.04198 24.59000 1.66e-133 ***
x13 0.782265 0.02989 26.17000 5.51e-151 ***
Outcome equation:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0362 0.04619 0.7837 4.33e-01
x21 1.4775 0.03076 48.0300 0.00e+00 ***
x22 0.9780 0.03947 24.7800 1.63e-135 ***
x23 0.4677 0.02007 23.3100 3.63e-120 ***
IMR1 0.6815 0.05532 12.3200 7.10e-35 ***
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

sigma 1.000731

The default values of the robustness weights weights.x1 and weights.x2 are "none", which
means that ω1(x1) in (11) and ω(x2, λ) in (13) are equal to 1. If one expects outliers in the
explanatory variables, then the weights need to be introduced, as we did above by setting
weights.x1 = "hat" and weights.x2 = "covMcd". This choice is based on our personal
experience and good performance in simulations (see the study in Zhelonkin et al. 2016),
although one can use minimum volume ellipsoid based weights as well (option "robCov").
In order to study the robustness of the estimator we introduce a contamination. With prob-
ability 0.01 we generate outliers from the degenerate distribution putting mass one at the
point x1 = (−2,−2,−1), x2 = (−2,−2,−1), (y1, y2) = (1, 0). It generates leverage outliers,
which also emerge in the outcome equation since y1 = 1. This contamination corresponds
to the situation when some observations are extremely unlikely to be observed, but somehow
appear in the sample.

R> uni <- runif(N, 0, 1)
R> for(i in 1:N)
+ if(uni[i] < 0.01)
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+ {
+ x1[i,] <- c(-2, -2, -1)
+ x2[i,] <- c(-2, -2, -1)
+ y1[i] <- 1
+ y2[i] <- 0
+ }

The results of the robust estimation are as follows:

R> summary(ssmrob(y1 ~ x1, y2 ~ x2, control = rob.ctrl))

Call:
ssmrob(selection = y1 ~ x1, outcome = y2 ~ x2, control = rob.ctrl)

Heckman selection model / robust 2-step M-estimation
5000 observations: 2710 censored and 2290 observed
Probit selection equation:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.002461 0.04769 0.05161 9.59e-01
x11 1.004201 0.03377 29.74000 2.54e-194 ***
x12 1.031806 0.04227 24.41000 1.26e-131 ***
x13 0.780878 0.03001 26.02000 2.65e-149 ***
Outcome equation:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.01202 0.04813 -0.2497 8.03e-01
x21 1.49916 0.03215 46.6300 0.00e+00 ***
x22 0.99972 0.04086 24.4600 3.53e-132 ***
x23 0.45297 0.02024 22.3800 6.71e-111 ***
IMR1 0.82872 0.06244 13.2700 3.38e-40 ***
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

sigma 1.061732

The robust estimator is stable and does not deviate a lot from the true values of the parame-
ters. For comparison we present the output of the classical estimator from the sampleSelection
package.

R> summary(selection(y1 ~ x1, y2 ~ x2, method = "2step"))

--------------------------------------------
Tobit 2 model (sample selection model)
2-step Heckman / heckit estimation
5000 observations (2710 censored and 2290 observed)
11 free parameters (df = 4990)
Probit selection equation:

Estimate Std. Error t value Pr(>|t|)



Journal of Statistical Software 15

(Intercept) 0.08551 0.04077 2.097 0.036 *
x11 0.62956 0.02192 28.715 <2e-16 ***
x12 0.64723 0.03037 21.315 <2e-16 ***
x13 0.45687 0.02064 22.132 <2e-16 ***
Outcome equation:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.47503 0.06504 -7.304 3.24e-13 ***
x21 1.60039 0.04026 39.754 < 2e-16 ***
x22 1.11239 0.04911 22.649 < 2e-16 ***
x23 0.42948 0.01891 22.706 < 2e-16 ***
Multiple R-Squared:0.6316, Adjusted R-Squared:0.631

Error terms:
Estimate Std. Error t value Pr(>|t|)

invMillsRatio 1.75790 0.07602 23.12 <2e-16 ***
sigma 1.53525 NA NA NA
rho 1.14503 NA NA NA
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
--------------------------------------------

The parameter estimates are clearly biased. It is important to notice that both estimation
stages are affected and the biases are clearly larger than those from the robust estimator.
In practice this divergence between estimators should indicate a problem with the data.
Moreover, the estimator of the inverse Mills ratio increases to 1.76, while with the robust
estimator it is 0.83, which is much closer to the true value of 0.7. Note that rho is not a
sample correlation. It is not bounded between -1 and 1 and can easily exceed these limits, see
Greene (1981) for details. This effect can also occur due to contamination, as we see that rho
is 1.145. Hence, one should treat this quantity with caution, while using two-step estimator.
When the exclusion restriction is not available, the influence of the contamination is stronger.
The biases are larger as well as the loss of efficiency. One can verify this by repeating the
analysis above erasing the line > x2[, 3] <- rnorm(N, 1, 1) in the data generation step.
From this we can conclude that the contamination and the absence of exclusion restriction
make the classical estimator particularly unstable.
We can also obtain the classical estimates using the ssmrob() function by using large val-
ues, e.g., 1000, of the tuning parameters tcc and t.c, and by setting the leverage weights
weights.x1 and weights.x2 to "none".

6.2. Wage offer data

The first dataset is an example from Wooldridge (2002). We consider the Example 17.6
(p. 565) about the wage offer for married women, with potential selectivity bias into the
labor force. A Heckman model is used, as presented in Section 2. The dataset consists of
753 observations, with 325 (43.2%) truncated observations. The selection equation defining
the labor force participation includes the following variables as age, education status (educ),
non-wife income (nwifeinc), experience (exper), squared experience (expersq), number of
children less than 6 years old (kidslt6), and number of children older than 6 years (kidsge6).
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In the equation of interest the log-wage offer depends on education, experience, and squared
experience. We apply the classical estimator and we obtain the following output:

R> data("MROZ.RAW", package = "ssmrob")
R> selectEq <- inlf ~ nwifeinc + educ + exper + expersq + age + kidslt6 +
+ kidsge6
R> outcomeEq <- lwage ~ educ + exper + expersq
R> summary(selection(selectEq, outcomeEq, data = MROZ.RAW, method = "2step"))

--------------------------------------------
Tobit 2 model (sample selection model)
2-step Heckman / heckit estimation
753 observations (325 censored and 428 observed)
15 free parameters (df = 739)
Probit selection equation:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.270077 0.508593 0.531 0.59556
nwifeinc -0.012024 0.004840 -2.484 0.01320 *
educ 0.130905 0.025254 5.183 2.81e-07 ***
exper 0.123348 0.018716 6.590 8.34e-11 ***
expersq -0.001887 0.000600 -3.145 0.00173 **
age -0.052853 0.008477 -6.235 7.61e-10 ***
kidslt6 -0.868328 0.118522 -7.326 6.21e-13 ***
kidsge6 0.036005 0.043477 0.828 0.40786
Outcome equation:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.5781032 0.3050062 -1.895 0.05843 .
educ 0.1090655 0.0155230 7.026 4.83e-12 ***
exper 0.0438873 0.0162611 2.699 0.00712 **
expersq -0.0008591 0.0004389 -1.957 0.05068 .
Multiple R-Squared:0.1569, Adjusted R-Squared:0.149
Error terms:

Estimate Std. Error t value Pr(>|t|)
invMillsRatio 0.03226 0.13362 0.241 0.809
sigma 0.66363 NA NA NA
rho 0.04861 NA NA NA
--------------------------------------------

Using the robust estimator we obtain results similar to those obtained using the classical
estimator.

R> summary(ssmrob(selectEq, outcomeEq, data = MROZ.RAW))

Call:
ssmrob(selection = selectEq, outcome = outcomeEq, data = MROZ.RAW)

Heckman selection model / robust 2-step M-estimation
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753 observations: 325 censored and 428 observed
Probit selection equation:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.185086 0.5215843 0.3549 7.23e-01
nwifeinc -0.013812 0.0051413 -2.6870 7.22e-03 **
educ 0.131747 0.0263492 5.0000 5.73e-07 ***
exper 0.123029 0.0192493 6.3910 1.64e-10 ***
expersq -0.001906 0.0006134 -3.1070 1.89e-03 **
age -0.050790 0.0087215 -5.8240 5.76e-09 ***
kidslt6 -0.840733 0.1223745 -6.8700 6.41e-12 ***
kidsge6 0.039740 0.0453318 0.8766 3.81e-01
Outcome equation:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.4720491 0.2595474 -1.8190 6.90e-02 .
educ 0.1114265 0.0132375 8.4170 3.85e-17 ***
exper 0.0366974 0.0134698 2.7240 6.44e-03 **
expersq -0.0007016 0.0003697 -1.8980 5.77e-02 .
IMR1 -0.0495793 0.1338460 -0.3704 7.11e-01
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

sigma 0.6655772

The parameter estimates obtained by classical and robust estimators are very close. The
standard deviations are also close, and the test statistics are similar. The significance of the
parameters remains the same. Finally, we can conclude that there is no evidence of violation
of distributional assumptions and that the classical estimator provides reliable results. The
test for sample selection bias is non-significant for both estimators. In absence of selection
bias the data can be estimated by OLS (see Wooldridge 2002, Table 17.1).

6.3. Ambulatory expenditures data

The second example is an example considered in the book by Cameron and Trivedi (2009),
p. 544–547. The data on ambulatory expenditures comes from the 2001 Medical Expenditure
Panel Survey. The sample size is 3328 observations, with 526 (15.8%) zero expenditures.
The set of explanatory variables contains age, gender (female), education status (educ),
ethnicity (blhisp), number of chronic diseases (totchr), insurance status (ins) and income,
where income is used only in selection equation as an exclusion restriction variable. Other
variables enter both the selection equation and the outcome equation. First we carry out the
analysis without exclusion restriction. We apply the classical estimator and we obtain the
following output:

R> data("MEPS2001", package = "ssmrob")
R> MEPS2001 <- MEPS2001 * 1
R> selectEq <- dambexp ~ age + female + educ + blhisp + totchr + ins
R> outcomeEq <- lnambx ~ age + female + educ + blhisp + totchr + ins
R> summary(selection(selectEq, outcomeEq, data = MEPS2001, method = "2step"))
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--------------------------------------------
Tobit 2 model (sample selection model)
2-step Heckman / heckit estimation
3328 observations (526 censored and 2802 observed)
17 free parameters (df = 3312)
Probit selection equation:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.71771 0.19247 -3.729 0.000195 ***
age 0.09732 0.02702 3.602 0.000320 ***
female 0.64421 0.06015 10.710 < 2e-16 ***
educ 0.07017 0.01134 6.186 6.94e-10 ***
blhisp -0.37449 0.06175 -6.064 1.48e-09 ***
totchr 0.79352 0.07112 11.158 < 2e-16 ***
ins 0.18124 0.06259 2.896 0.003809 **
Outcome equation:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.30257 0.29414 18.028 < 2e-16 ***
age 0.20212 0.02430 8.319 < 2e-16 ***
female 0.28916 0.07369 3.924 8.89e-05 ***
educ 0.01199 0.01168 1.026 0.305
blhisp -0.18106 0.06585 -2.749 0.006 **
totchr 0.49833 0.04947 10.073 < 2e-16 ***
ins -0.04740 0.05315 -0.892 0.373
Multiple R-Squared:0.1926, Adjusted R-Squared:0.1906

Error terms:
Estimate Std. Error t value Pr(>|t|)

invMillsRatio -0.4802 0.2907 -1.652 0.0986 .
sigma 1.2932 NA NA NA
rho -0.3713 NA NA NA
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
--------------------------------------------

Using the robust two-stage estimator we obtain:

R> meps.ctrl <- heckitrob.control(tcc = 3.2)
R> summary(ssmrob(selectEq, outcomeEq, data = MEPS2001, control = meps.ctrl))

Call:
ssmrob(selection = selectEq, outcome = outcomeEq, data = MEPS2001,
control = meps.ctrl)

Heckman selection model / robust 2-step M-estimation
3328 observations: 526 censored and 2802 observed
Probit selection equation:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.74914 0.19507 -3.840 1.23e-04 ***
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age 0.10541 0.02770 3.806 1.41e-04 ***
female 0.68741 0.06226 11.040 2.41e-28 ***
educ 0.07012 0.01147 6.116 9.62e-10 ***
blhisp -0.39775 0.06265 -6.349 2.17e-10 ***
totchr 0.83284 0.08028 10.370 3.24e-25 ***
ins 0.18256 0.06371 2.865 4.17e-03 **
Outcome equation:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.40154 0.27673 19.520 7.53e-85 ***
age 0.20062 0.02451 8.186 2.70e-16 ***
female 0.25501 0.06993 3.647 2.66e-04 ***
educ 0.01325 0.01162 1.141 2.54e-01
blhisp -0.15508 0.06507 -2.383 1.72e-02 *
totchr 0.48116 0.03823 12.590 2.52e-36 ***
ins -0.06707 0.05159 -1.300 1.94e-01
IMR1 -0.67676 0.25928 -2.610 9.05e-03 **
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

sigma 1.317891

In this case we see that the robust estimates are considerably different from the classical
estimator. The classical estimator returns the inverse Mills ratio coefficient of −0.48 with
p value of 0.099, which is significant only at 10% level. Cameron and Trivedi (2009) raised
concern about robustness issues in this case (p. 544), and that the conclusion of no selection
bias was doubtful. The robust estimator returns βλ = −0.68 with p value of 0.009, which is
significant at 1% level. If we do not reject the hypothesis of no selection bias then the OLS
should be preferred. Note that if one uses FIML estimator then the likelihood ratio test has
p value of 0.36, which clearly indicates that there is no selection bias. The robust estimator
is more reliable and should be preferred in such situations.
We repeat the analysis, but now include the income variable as an exclusion restriction.

R> selectEq <- dambexp ~ age + female + educ + blhisp + totchr + ins + income
R> summary(selection(selectEq, outcomeEq, data = MEPS2001, method = "2step"))

--------------------------------------------
Tobit 2 model (sample selection model)
2-step Heckman / heckit estimation
3328 observations (526 censored and 2802 observed)
18 free parameters (df = 3311)
Probit selection equation:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.668647 0.194125 -3.444 0.000579 ***
age 0.086815 0.027456 3.162 0.001581 **
female 0.663505 0.060965 10.883 < 2e-16 ***
educ 0.061884 0.012039 5.140 2.90e-07 ***
blhisp -0.365784 0.061909 -5.908 3.81e-09 ***
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totchr 0.795750 0.071217 11.174 < 2e-16 ***
ins 0.169107 0.062930 2.687 0.007240 **
income 0.002677 0.001310 2.043 0.041131 *
Outcome equation:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.28893 0.28852 18.331 < 2e-16 ***
age 0.20247 0.02422 8.359 < 2e-16 ***
female 0.29213 0.07258 4.025 5.82e-05 ***
educ 0.01239 0.01157 1.071 0.28427
blhisp -0.18287 0.06534 -2.798 0.00516 **
totchr 0.50063 0.04855 10.311 < 2e-16 ***
ins -0.04651 0.05297 -0.878 0.38002
Multiple R-Squared:0.1926, Adjusted R-Squared:0.1906

Error terms:
Estimate Std. Error t value Pr(>|t|)

invMillsRatio -0.4637 0.2826 -1.641 0.101
sigma 1.2914 NA NA NA
rho -0.3591 NA NA NA
--------------------------------------------

R> summary(ssmrob(selectEq, outcomeEq, data = MEPS2001, control = meps.ctrl))

Call:
ssmrob(selection = selectEq, outcome = outcomeEq, data = MEPS2001,
control = meps.ctrl)

Heckman selection model / robust 2-step M-estimation
3328 observations: 526 censored and 2802 observed
Probit selection equation:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.700434 0.196403 -3.566 3.62e-04 ***
age 0.094589 0.028149 3.360 7.79e-04 ***
female 0.703608 0.062981 11.170 5.61e-29 ***
educ 0.062308 0.012119 5.141 2.73e-07 ***
blhisp -0.388618 0.062800 -6.188 6.09e-10 ***
totchr 0.834053 0.080226 10.400 2.58e-25 ***
ins 0.172551 0.064032 2.695 7.04e-03 **
income 0.002535 0.001344 1.886 5.93e-02 .
Outcome equation:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.40933 0.27291 19.820 1.96e-87 ***
age 0.20029 0.02447 8.185 2.73e-16 ***
female 0.25214 0.06995 3.605 3.13e-04 ***
educ 0.01319 0.01158 1.139 2.55e-01
blhisp -0.15342 0.06514 -2.355 1.85e-02 *
totchr 0.47956 0.03805 12.600 2.04e-36 ***
ins -0.06826 0.05174 -1.319 1.87e-01
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IMR1 -0.68995 0.25544 -2.701 6.91e-03 **
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

sigma 1.319788

In the case with exclusion restriction we obtain the same pattern as without exclusion restric-
tion. The classical estimator underestimates the IMR coefficient and leads to non-significant
test of sample selection (at 10% level).

7. Conclusion
The package ssmrob extends a data analyst toolbox by providing the instruments for a ro-
bust analysis of specific models with sample selectivity. Robust methods allow to deal with
deviations from the assumed model. Given the well-documented sensitivity of the paramet-
ric estimators the practitioners using them ideally should also verify that the classical and
robust estimators do not diverge considerably. If it happens, then the robust estimators are
(typically) more reliable. In any case it should be a signal for a thorough examination of the
data in order to prevent misleading conclusions.
The package contains estimators for three very popular models. However the list of models
with sample selectivity is larger (see Maddala 1983, for a list of examples). The discussed
two-step robust estimation framework provides the necessary background for construction
of robust alternatives for other models. Moreover, the estimators discussed in this paper
are used as the first steps for evaluation of various treatment effects (Heckman, Tobias, and
Vytlacil 2003). The robustness of the treatment effect estimators is investigated by Naghi,
Váradi, and Zhelonkin (2021), and the implementation of the robust alternatives is planned
for future extensions of the package.
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A. Endogenous treatment model: IF of the two-step estimator
We derive the IF of the classical two-step estimator (probit MLE/OLS) of the endogenous
treatment model. The first estimation step is the probit MLE. Let S be its estimating
functional. Then, its IF is given by

IF (z;S, F ) =
[∫

φ(x>1 β1)2x1x
>
1

Φ(x>1 β1){1− Φ(x>1 β1)}
dF

]−1

{y1 − Φ(x>1 β1)} φ(x>1 β1)
Φ(x>1 β1){1− Φ(x>1 β1)}

x1.

The inverse Mills ratio for the complete sample is defined by

λC{z1;S(F )} = y1

{
φ(x>1 β1)
Φ(x>1 β1)

}
+ (1− y1)

{
−φ(x>1 β1)

1− Φ(x>1 β1)

}
.

The OLS score function is

Ψ2[z2;λC{z1;S(F )}, T (F )] = (y2 − x>2 β2 − αy1 − βλλC)

 x2
y1
λC

 .
Using the result for the two-step M-estimators (Zhelonkin, Genton, and Ronchetti 2012) we
get the IF of the second step

IF (z;T, F ) =

∫


x2x
>
2 x2y1 x2λ

C

x>2 y1 y2
1 y1λ

C

x>2 λ
C y1λ

C (λC)2

 dF

−1 (y2 − x>2 β2 − αy1 − βλλC)

 x2
y1
λC


∫  x2βλ

y1βλ
λCβλ

 (λC)′dF · IF (z;S, F )

 ,
where

(λC)′ = y1

{
−φ(x>1 β1)Φ(x>1 β1)x>1 β1 − φ(x>1 β1)2

Φ(x>1 β1)2 x>1

}

+ (1− y1)
[
{1− Φ(x>1 β1)}φ(x>1 β1)x>1 β1 − φ(x>1 β1)2

{1− Φ(x>1 β1)}2
x>1

]
.

B. Endogenous treatment model: Simulation study
We illustrate the performance of the proposed estimator in a simulation study. For the data
generating process we use a modification of the setup used in Section 6.1. We generate
y1i = I(x>1i(1, 1, 0.75)> + e1i > 0), where x1i ∼ N{(0,−1, 1)>; diag(1, 0.25, 1)}. The outcome
equation is y2i = x>2i(1.5, 1, 0.5)> + 1.25y1i + e2i, where the x’s are the same x2 = x1 if the
exclusion restriction is not available, and if it is available, then the last explanatory variable
of x2 is generated independently of x1 from the same distribution. The errors e1 and e2 follow
a zero mean bivariate normal distribution with σ1 = σ2 = 1 and ρ = −0.7. The sample size
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With exclusion restriction
Not contaminated y1 = 0 y1 = 1

Estimator Bias MSE Bias MSE Bias MSE
FIML 0.000 0.013 −0.890 0.822 −0.999 1.025
Classical two-step 0.001 0.023 −1.022 1.137 −1.321 1.894
Robust two-step 0.025 0.028 0.004 0.027 −0.022 0.027

Without exclusion restriction
Not contaminated y1 = 0 y1 = 1

Estimator Bias MSE Bias MSE Bias MSE
FIML −0.012 0.024 −1.436 2.253 −2.164 8.357
Classical two-step −0.022 0.088 −3.720 15.125 −5.111 28.763
Robust two-step 0.022 0.116 −0.038 0.115 −0.110 0.120

Table 1: Bias and mean-squared error (MSE) of the FIML, classical 2-step and robust 2-step
estimators of treatment effect parameter α at the model and under two types of contamination,
when x is contaminated and corresponding y1 = 0 (columns 4 and 5) and y1 = 1 (columns 6
and 7).

is 1000 and we repeat the experiment 500 times. For other sample sizes (500 or 5000) the
results are similar.

We estimate the model without contamination and with two types of contamination. In the
first scenario we have outliers in the control group, i.e., x1 is contaminated when y1 = 0. To
generate the outliers, we replace the original observations with probability 0.01 by a point
mass at (y1, y2) = (0, 1) and x1 = x2 = (2, 0, 3). In this case the observation is unlikely to
be in the control group but appears there. In the second scenario we have outliers in the
treatment group, i.e., y1 = 1. The mechanism of contamination is the same, but the point
mass is at (y1, y2) = (1, 0) and x1 = x2 = (−2,−2,−1). In this case the observation should
be in the control group but appears in the treatment group.

We compare the classical two-step estimator, full information maximum likelihood (FIML)
and our robust two-step estimator. In Table 1 and Figure 1 we report the estimation’s results
of the treatment effect parameter α. All three estimators perform well at the model. The
biases are close to zero, FIML is the most efficient and the robust two-step estimator is a bit
less efficient than the classical two-step estimator. When the contamination is added, both
FIML and classical two-step break down. They are outperformed by the robust estimator
in terms of bias and efficiency. Notice that the biases are negative, which in the context of
treatment effects can lead to a non-significant effect when it is present. The robust estimator
allows some bias (it is clearly visible when the exclusion restriction is not available), but it is
small relatively to the classical estimators. In Table 2 (with exclusion restriction) and Table 3
(without exclusion restriction) we report the estimation’s results of the other parameters.
Similarly, all estimators perform well without contamination. FIML is the most efficient,
then the classical two-step, then the robust two-step, as expected from the theory. Under
contamination both FIML and the classical two-step are biased with inflated variances, while
the robust estimator remains stable.
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Figure 1: Boxplots of the estimated average treatment effect (ATE), parameter α in (4).
Left panels correspond to the case with exclusion restriction, right panels correspond to the
case without exclusion restriction.
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Not contaminated y1 = 0 y1 = 1
Parameter Bias MSE Bias MSE Bias MSE
FIML
β20 −0.001 0.012 0.470 0.233 0.609 0.384
β21 0.000 0.002 0.130 0.018 0.137 0.020
β22 −0.001 0.005 0.045 0.007 0.035 0.007
β23 0.001 0.001 −0.072 0.006 −0.082 0.008
Classical two-step
β20 −0.002 0.017 0.545 0.326 0.803 0.697
β21 0.000 0.002 0.157 0.028 0.204 0.046
β22 −0.001 0.005 0.068 0.010 0.092 0.014
β23 0.001 0.001 −0.068 0.006 −0.074 0.006
βλ 0.001 0.009 0.928 0.918 1.175 1.469
Robust two-step
β20 −0.014 0.020 −0.003 0.019 0.013 0.019
β21 −0.002 0.002 0.002 0.003 0.006 0.003
β22 −0.002 0.006 0.001 0.006 0.004 0.006
β23 0.002 0.001 0.001 0.001 −0.000 0.001
βλ −0.004 0.012 0.018 0.012 0.043 0.014

Table 2: Bias and mean-squared error (MSE) of the FIML, classical two-step and robust
two-step estimators of endogenous treatment model parameters at the model and under two
types of contamination, when x is contaminated and the corresponding y1 = 0 (columns 4
and 5) and y1 = 1 (columns 6 and 7). The exclusion restriction is available.

C. Tobit-5 model: Example
Similarly to the Tobit-2 model, we generate the data using the same algorithm.

R> set.seed(2)
R> N <- 5000
R> beta1 <- c(0, 1.0, 1.0, 0.75)
R> beta21 <- c(0, 1.5, 1.0, 0.5)
R> beta22 <- c(1, -1.5, 1.0, 0.5)
R> covm <- diag(3)
R> covm[lower.tri(covm)] <- c(0.75, 0.5, 0.25)
R> covm[upper.tri(covm)] <- covm[lower.tri(covm)]
R> eps <- rmvnorm(N, rep(0, 3), covm)
R> x1 <- rmvnorm(N, mean = c(0, -1, 1), sigma = diag(c(1, 0.5, 1)))
R> x21 <- x1
R> x22 <- x1
R> x21[, 3] <- rnorm(N, 1, 1)
R> x22[, 3] <- rnorm(N, 1, 1)
R> y1 <- ifelse(cbind(1, x1) %*% beta1 + eps[, 1] > 0, 1, 0)
R> y2 <- ifelse(y1 > 0.5, cbind(1, x21) %*% beta21 + eps[, 2],
+ cbind(1, x22) %*% beta22 + eps[, 3])

The DGP is similar to the Tobit-2 case, but with minor modifications. We generate two
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Not contaminated y1 = 0 y1 = 1
Parameter Bias MSE Bias MSE Bias MSE
FIML
β20 0.007 0.012 0.569 0.367 1.025 1.963
β21 0.000 0.003 0.236 0.064 0.363 0.262
β22 0.003 0.005 0.138 0.029 0.228 0.141
β23 0.003 0.002 0.153 0.028 0.235 0.114
Classical two-step
β20 0.012 0.029 1.607 2.803 2.438 6.530
β21 0.003 0.006 0.706 0.538 0.969 1.013
β22 0.006 0.010 0.539 0.315 0.734 0.581
β23 0.005 0.004 0.488 0.258 0.667 0.480
βλ 0.013 0.029 2.493 6.742 3.370 12.408
Robust two-step
β20 −0.010 0.036 0.018 0.035 0.054 0.036
β21 −0.003 0.008 0.010 0.008 0.025 0.008
β22 −0.001 0.011 0.012 0.011 0.027 0.012
β23 0.001 0.005 0.010 0.005 0.021 0.005
βλ −0.002 0.042 0.043 0.043 0.094 0.048

Table 3: Bias and mean-squared error (MSE) of the FIML, classical two-step and robust
two-step estimators of endogenous treatment model parameters at the model and under two
types of contamination, when x is contaminated and the corresponding y1 = 0 (columns 4
and 5) and y1 = 1 (columns 6 and 7). The exclusion restriction is not available.

explanatory variables for the outcome equation, namely x21 and x22 for the first and second
regimes respectively. The error terms follow a multivariate normal distribution (3). The
response variable (y2) in the outcome equation has two regimes, depending on the selection
variable y1. Without contamination we have the following output:

R> summary(ssmrob(y1 ~ x1, list(y2 ~ x21, y2 ~ x22), control = rob.ctrl))

Call:
ssmrob(selection = y1 ~ x1, outcome = list(y2 ~ x21, y2 ~ x22),
control = rob.ctrl)

Switching regression model / robust 2-step M-estimation
5000 observations: 2266 in regime 1 and 2734 in regime 2
Probit selection equation:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.01606 0.04685 0.3429 7.32e-01
x11 0.92441 0.03130 29.5300 1.12e-191 ***
x12 0.97669 0.03993 24.4600 3.98e-132 ***
x13 0.75138 0.02952 25.4600 6.04e-143 ***
Outcome equation, regime 1:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.007297 0.04452 -0.1639 8.70e-01



30 ssmrob: Robust Analysis of Sample Selection Models in R

x211 1.534097 0.02866 53.5200 0.00e+00 ***
x212 0.992513 0.03807 26.0700 8.14e-150 ***
x213 0.477753 0.01863 25.6500 4.78e-145 ***
IMR1 0.771236 0.06026 12.8000 1.67e-37 ***
Outcome equation, regime 2:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.9769 0.07628 12.810 1.50e-37 ***
x221 -1.5003 0.02948 -50.890 0.00e+00 ***
x222 0.9823 0.03473 28.290 5.19e-176 ***
x223 0.4798 0.01922 24.960 1.72e-137 ***
IMR2 0.4798 0.06602 7.268 3.66e-13 ***
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

sigma: 0.9988461 in regime 1 and 0.9970672 in regime 2

The estimates are close to the true values of the parameters. Next, we introduce the contam-
ination. With probability 0.01 we introduce the leverage outliers in the selection equations,
such that they appear in the equation of interest in the second regime.

R> uni <- runif(N, 0, 1)
R> for(i in 1:N)
+ if(uni[i] < 0.01)
+ {
+ x1[i,] <- c(-2, -2, -1)
+ x21[i,] <- c(-2, -2, -1)
+ y1[i] <- 1
+ y2[i] <- 0
+ }

We estimate the contaminated sample and obtain the following output:

R> summary(ssmrob(y1 ~ x1, list(y2 ~ x21, y2 ~ x22), control = rob.ctrl))

Call:
ssmrob(selection = y1 ~ x1, outcome = list(y2 ~ x21, y2 ~ x22),
control = rob.ctrl)

Switching regression model / robust 2-step M-estimation
5000 observations: 2283 in regime 1 and 2717 in regime 2
Probit selection equation:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.01993 0.04695 0.4245 6.71e-01
x11 0.92290 0.03137 29.4200 3.52e-190 ***
x12 0.97700 0.04002 24.4100 1.22e-131 ***
x13 0.74967 0.02956 25.3600 6.24e-142 ***
Outcome equation, regime 1:
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Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.04405 0.04576 -0.9626 3.36e-01
x211 1.55147 0.02933 52.8900 0.00e+00 ***
x212 1.01207 0.03908 25.9000 6.78e-148 ***
x213 0.47300 0.01882 25.1300 2.33e-139 ***
IMR1 0.86789 0.06432 13.4900 1.69e-41 ***
Outcome equation, regime 2:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.9769 0.07686 12.710 5.26e-37 ***
x221 -1.4968 0.02971 -50.390 0.00e+00 ***
x222 0.9816 0.03499 28.050 3.76e-173 ***
x223 0.4795 0.01931 24.830 3.97e-136 ***
IMR2 0.4827 0.06632 7.279 3.36e-13 ***
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

sigma: 1.045347 in regime 1 and 0.9984809 in regime 2

The estimator is stable. Of course, it is affected by the contamination, but the bias is
controlled and can be slightly reduced. The estimator of the first regime remains the same.
To compare, below we give the output of the classical estimator obtained by our package.

R> clas.ctrl <- heckitrob.control(tcc = 1000, t.c = 1000)
R> summary(ssmrob(y1 ~ x1, list(y2 ~ x21, y2 ~ x22), control = clas.ctrl))

Call:
ssmrob(selection = y1 ~ x1, outcome = list(y2 ~ x21, y2 ~ x22),
control = clas.ctrl)

Switching regression model / robust 2-step M-estimation
5000 observations: 2283 in regime 1 and 2717 in regime 2
Probit selection equation:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.06967 0.04152 1.678 9.34e-02 .
x11 0.71948 0.02429 29.620 7.42e-193 ***
x12 0.74956 0.03219 23.290 5.91e-120 ***
x13 0.54595 0.02326 23.470 7.42e-122 ***
Outcome equation, regime 1:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.2977 0.05622 -5.295 1.19e-07 ***
x211 1.6346 0.03379 48.380 0.00e+00 ***
x212 1.1074 0.04308 25.710 9.58e-146 ***
x213 0.4561 0.01855 24.590 1.66e-133 ***
IMR1 1.4404 0.07788 18.500 2.25e-76 ***
Outcome equation, regime 2:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.0791 0.08887 12.140 6.24e-34 ***
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x221 -1.4876 0.03128 -47.560 0.00e+00 ***
x222 1.0042 0.03648 27.530 7.53e-167 ***
x223 0.4841 0.01866 25.940 2.54e-148 ***
IMR2 0.5934 0.08127 7.302 2.84e-13 ***
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

sigma: 1.320736 in regime 1 and 1.008994 in regime 2

The estimators of both regimes are seriously affected by the contamination.

D. Endogenous treatment model: Example
We generate the data using the data generating process from Appendix B. We only increased
the sample size to 5000. The true value of the treatment effect is α = 1.25

R> set.seed(2)
R> N <- 5000
R> beta1 <- c(0, 1.0, 1.0, 0.75)
R> beta2 <- c(0, 1.5, 1.0, 0.5)
R> alpha <- 1.25
R> x1 <- rmvnorm(N, mean = c(0, -1, 1), sigma = diag(c(1, 0.5, 1)))
R> x2 <- x1
R> x2[, 3] <- rnorm(N, 1, 1)
R> covmtrx <- matrix(c(1, -0.7, -0.7, 1), 2, 2)
R> eps <- rmvnorm(N, mean = rep(0, 2), sigma = covmtrx)
R> y1 <- ifelse(cbind(1, x1) %*% beta1 + eps[, 1] > 0, 1, 0)
R> y2 <- cbind(1, x2) %*% beta2 + alpha * y1 + eps[,2]

First we estimate the model without contamination:

R> summary(etregrob(y1 ~ x1, y2 ~ x2, control = rob.ctrl))

Call:
etregrob(selection = y1 ~ x1, outcome = y2 ~ x2, control = rob.ctrl)

Endogenous treatment model / Robust 2-step M-estimation
5000 observations
Probit selection equation:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.008046 0.04797 -0.1677 8.67e-01
x11 1.034998 0.03467 29.8500 7.68e-196 ***
x12 1.088900 0.04342 25.0800 8.11e-139 ***
x13 0.798620 0.03056 26.1300 1.46e-150 ***
Outcome equation:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.01441 0.05930 0.243 8.08e-01
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x21 1.49460 0.02313 64.630 0.00e+00 ***
x22 1.00690 0.02893 34.800 2.31e-265 ***
x23 0.49567 0.01545 32.080 7.57e-226 ***
YS 1.26905 0.07573 16.760 4.96e-63 ***
CIMR -0.73426 0.05500 -13.350 1.17e-40 ***
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

sigma 1.010713

The estimated treatment effect α̂ is 1.269, the estimated parameter for the control function
(CIMR - complete inverse Mills ratio) is −0.734 with a true value equal to −0.7. Now we add
the contamination:

R> uni <- runif(N,0,1)
R> for(i in 1:N)
+ if(uni[i] < 0.01)
+ {
+ x1[i,] <- c(-2, -2, -1)
+ x2[i,] <- c(-2, -2, -1)
+ y1[i] <- 1
+ y2[i] <- 0
+ }

The output of the robust estimator is as follows:

R> summary(etregrob(y1 ~ x1, y2 ~ x2, control = rob.ctrl))

Call:
etregrob(selection = y1 ~ x1, outcome = y2 ~ x2, control = rob.ctrl)

Endogenous treatment model / Robust 2-step M-estimation
5000 observations
Probit selection equation:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.0110 0.04819 -0.2283 8.19e-01
x11 1.0351 0.03485 29.7100 6.61e-194 ***
x12 1.0938 0.04367 25.0400 2.06e-138 ***
x13 0.7999 0.03072 26.0400 1.77e-149 ***
Outcome equation:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.03458 0.05924 0.5838 5.59e-01
x21 1.50006 0.02302 65.1600 0.00e+00 ***
x22 1.01150 0.02895 34.9500 1.51e-267 ***
x23 0.49390 0.01550 31.8700 6.13e-223 ***
YS 1.24208 0.07576 16.3900 2.09e-60 ***
CIMR -0.70329 0.05507 -12.7700 2.42e-37 ***
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---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

sigma 1.206593

The output of the robust estimator is very close to the one without contamination. The
output of the classical estimator (obtained by etregrob() with increased tuning constants):

R> summary(etregrob(y1 ~ x1, y2 ~ x2, control = clas.ctrl))

Call:
etregrob(selection = y1 ~ x1, outcome = y2 ~ x2, control = clas.ctrl)

Endogenous treatment model / Robust 2-step M-estimation
5000 observations
Probit selection equation:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.05371 0.04091 1.313 1.89e-01
x11 0.71322 0.02431 29.330 3.72e-189 ***
x12 0.75762 0.03237 23.410 3.72e-121 ***
x13 0.53371 0.02259 23.620 2.36e-123 ***
Outcome equation:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.7807 0.10387 7.5160 5.63e-14 ***
x21 1.6564 0.02764 59.9200 0.00e+00 ***
x22 1.1891 0.03279 36.2600 5.87e-288 ***
x23 0.4386 0.01492 29.4000 5.08e-190 ***
YS 0.1460 0.14961 0.9756 3.29e-01
CIMR 0.2960 0.12164 2.4340 1.49e-02 *
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

sigma 1.041848

The effect of contamination is clearly pronounced. The treatment effect parameter (0.146) is
biased towards zero and is not significant. The other parameters in both equations are also
biased.
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