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Connetion probabilities and RSW-type boundsfor the FK Ising modelHugo Duminil-Copin, Clément Hongler, Pierre NolinAbstratWe prove Russo-Seymour-Welsh-type uniform bounds on rossing prob-abilities for the FK Ising model at ritiality, independent of the boundaryonditions. Our proof relies mainly on Smirnov's fermioni observable forthe FK Ising model, whih allows us to get preise estimates on bound-ary onnetion probabilities. It remains purely disrete, in partiular wedo not make use of any ontinuum limit, and it an be used to derivediretly several noteworthy results � some new and some not � amongwhih the fat that there is no spontaneous magnetization at ritiality,tightness properties for the interfaes, and the existene of several ritialexponents, in partiular the half-plane one-arm exponent.1 IntrodutionIt is fair to say that the two-dimensional Ising model has a very partiularhistorial importane in statistial mehanis. This model of ferromagnetismhas been the �rst natural model where the existene of a phase transition,a property ommon to many statistial mehanis models, has been proved,in Peierls' 1936 work [28℄. In a series of seminal papers (partiularly [27℄),Onsager omputed several marosopi quantities assoiated with this model.Sine then, the Ising model has attrated a lot of attention, and it has probablybeen one of the most studied models, giving birth to an extensive literature,both mathematial and physial.A few deades later, in 1969, Fortuin and Kasteleyn introdued a dependentperolation model, for whih the probability of a on�guration is weighted by thenumber of lusters (onneted omponents) that it ontains. This perolationrepresentation turned out to be extremely powerful to study the Ising model,and by now it has beome known as the random-luster model, or the Fortuin-Kasteleyn perolation � FK perolation for short. Reall that on a �nite graph
G, the FK perolation proess with parameters p, q is obtained by assigning toeah on�guration ω a probability proportional to

po(ω)(1 − p)c(ω)qk(ω),where o(ω), c(ω), and k(ω) denote respetively the number of open edges, losededges, and onneted omponents in ω. The de�nition of the model also involves1
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the use of boundary onditions, enoding onnetions taking plae outside G.The boundary onditions an be seen as a set of additionnal edges between siteson the outer boundary, and they will play a entral role in this artile. Thepreise setup that we onsider in this paper is presented in Setion 2.For the spei� value q = 2, the FK perolation provides a geometri rep-resentation of the Ising model via the Edwards-Sokal oupling [10℄. For thisreason, we restrit ourselves here to this value q = 2, and we all this modelthe FK Ising model. We also stik to the square lattie Z
2 � or subgraphsof it � though our arguments ould possibly be arried out in the more gen-eral ontext of isoradial graphs, as in [9℄. Note that our results are stated forthe FK representation, but that the Edwards-Sokal oupling then allows oneto translate them into results for the Ising model itself. For instane, 2-pointonnetion probabilities for the FK Ising model orrespond via this oupling to2-spin orrelation funtions for the Ising model.For the value q = 2 and Z

2 as an underlying graph, the model features aphase transition � in the in�nite-volume limit � at the ritial and self-dualpoint pc = psd =
√

2
1+

√
2
: for p < pc, there is a.s. no in�nite open luster, whilefor p > pc, there is a.s. a unique one. These two regimes, known as sub-ritialand super-ritial, have totally di�erent marosopi behaviors. Between themlies a very interesting and rih regime, the ritial regime, orresponding to thevalue p = pc. Its behavior is intimately related to the behavior of the modelthrough its phase transition, as indiated in partiular by the saling theory.In this paper, we prove lower and upper bounds for rossing probabilitiesin retangles of bounded aspet ratio. These bounds are uniform in the size ofthe retangles and in the boundary onditions, and they are analogues for theFK Ising model to the elebrated Russo-Seymour-Welsh bounds for perolation[30, 31℄. Formally, we onsider retangles R on the square lattie, J0, nK× J0, mKfor n, m > 0, and translations of it � here and in the following, J·, ·K denotes theinteger interval between the two (real) end-points, i.e. the interval [·, ·] ∩ Z

2.We denote by Cv(R) the event that there exists a vertial rossing in R, a pathfrom the bottom side J0, nK × {0} to the top side J0, nK × {m} whih onsistsonly of open edges. Our main result is the following:Theorem 1 (RSW-type rossing bounds). Let 0 < β1 < β2. There exist twoonstants 0 < c− ≤ c+ < 1 (depending only on β1 and β2) suh that for anyretangle R with side lengths n and m ∈ Jβ1n, β2nK ( i.e. with aspet ratiobounded away from 0 and ∞ by β1 and β2), one has
c− ≤ P

ξ
psd,2,R(Cv(R)) ≤ c+for any boundary onditions ξ, where P

ξ
psd,2,R denotes the FK measure on Rwith parameters (p, q) = (psd, 2) and boundary onditions ξ.These bounds are in some sense a �rst glimpse of sale invariane. It waswidely believed in the physis literature that the FK Ising model at ritiality,i.e. for p = pc, should possess a strong property of onformal invariane in thesaling limit [29, 4, 5℄. A preise mathematial meaning was reently established2



by Smirnov in a groundbreaking paper [33℄. One of the main tools there is theso-alled preholomorphi fermioni observable, a omplex observable that allowsone to make appear harmoniity on the disrete level. This property an thenbe used to take ontinuum limits and desribe the saling limits so-obtained.Our proof mostly relies on Smirnov's observable. More preisely, it is basedon preise estimates on onnetion probabilities for boundary verties, that allowus to use a seond-moment method on the number of pairs of onneted sites.For that, we use Smirnov's observable to reveal some harmoniity on the disretelevel, whih enables us to express marosopi quantities suh as onnetionprobabilities in terms of disrete harmoni measures. Note in addition thatother reent works [2, 3℄ also suggest that this omplex observable is a relevantway to look at FK perolation, both for q = 2 and for other values of q. Wewould like to stress that our argument is intended to be self-ontained and that itstays ompletely in a disrete setting, using essentially elementary ombinatorialtools: in partiular, we do not make use of any ontinuum limits [34℄.Crossing bounds turned out to be instrumental to study the perolationmodel at and near its phase transition � for instane to derive the saling re-lations [19℄, that link the main marosopi observables, suh as the densityof the in�nite luster and the harateristi length. These bounds are alsouseful to study variations of perolation, in partiular for models exhibiting aself-organized ritial behavior. We thus expet Theorem 1 to be of partiularinterest to study the FK Ising model at and near ritiality.This theorem allows us to derive easily several noteworthy results. Amongthe onsequenes that we state, let us mention the elebrated fat that there isno magnetization at ritiality for the Ising model, �rst established by Onsagerin [27℄, tightness results for the interfaes oming from the Aizenman-Burhardtehnology, and the value 1/2 of the one-arm half-plane exponent � that de-sribes the asymptoti probability of large-distane onnetions starting froma boundary point, and also the deay of boundary magnetization in the Isingmodel. It should also be instrumental to prove the existene of ritial expo-nents, in partiular of the arm exponents.Theorem 1 appears to be a very useful tool, enabling to transfer propertiesof the saling limit objets bak to the disrete models. Connetions betweendisrete models and their ontinuum ounterparts usually involve deorrelationof di�erent sales, and thus use spatial independene between regions whihare far enough from eah other. In the random luster model, one usuallyaddresses the lak of spatial independene by suessive onditionings, usingrepeatedly the spatial (or domain) Markov property of FK perolation, by whihwhat happens outside a given domain an be enoded by appropriate boundaryonditions. For this reason, proving bounds that are uniform in the boundaryonditions seems to be very important.We would also like to mention that other proofs of Russo-Seymour-Welsh-type bounds have already been proposed. In [9℄, Chelkak and Smirnov give adiret and elegant argument to expliitly ompute the rossing probabilities inthe saling limit, but their argument only applies for some spei� boundary3



onditions (alternatively wired and free on the four sides). In [7℄, Camia andNewman also propose to obtain RSW as a orollary of a reently announedresult: the onvergene of the full olletion of interfaes for the Ising model [9℄to the onformal loop ensemble CLE(3). The interpretation of CLE(3) in termsof the Brownian loop soup [37℄ is also used. However, to the author's knowledge,the proofs of these two results are quite involved, and moreover, the reasoningproposed only applies for boundary onditions �in the bulk�, that orrespondto the in�nite-volume limit. In these two ases, uniformity with respet to theboundary onditions is not addressed, and there does not seem to be an easyargument to avoid this di�ulty. While weaker forms might be su�ient forsome appliations, it seems however that this stronger form is needed in manyimportant ases, and that it onsiderably shortens several existing arguments.The paper is organized as follows. In Setion 2, we �rst remind the readerof the basi features of the FK perolation, as well as properties of Smirnov'sfermioni observable. In Setion 3, we ompare the observable to harmonimeasures, and we establish some estimates on these harmoni measures. Theseestimates are instrumental in the proof of Theorem 1, whih we perform inSetion 4. Finally, Setion 5 is devoted to presenting the onsequenes that wementioned.2 FK perolation bakground2.1 Basi features of the modelIn order to remain as self-ontained as possible, we reall some basi featuresof the random-luster models. Some of these properties, like the Fortuin-Kasteleyn-Ginibre (FKG) inequality, are ommon to many statistial mehanismodels. The reader an onsult the referene book [13℄ for more details, andproofs of the results stated.De�nition of random-luster measuresThe random-luster (or FK perolation) measure an be de�ned on any �nitegraph, but here we only onsider �nite subgraphsG of the square lattie (Z2, E2).We denote by ∂G the boundary of suh a subgraphG, that is, the verties havingless than four adjaent edges � notie that this de�nition is non standard. Aon�guration ω is a random subgraph given by the verties of G, together withsome subset of edges between them. An edge of G is alled open if it belongs to
ω, and losed otherwise. Two sites x and y are said to be onneted if there isan open path � a path omposed of open edges only � onneting them, whihis denoted by x  y. Similarly, two sets of verties X and Y are said to beonneted if there exist two sites x ∈ X and y ∈ Y suh that x  y, and weuse the notation X  Y . We also abbreviate {x} Y as x Y . Sites an begrouped into (maximal) onneted omponents, usually alled lusters.4



Contrary to usual independent perolation, the edges in the FK perolationmodel are dependent of eah other, a fat whih makes the notion of boundaryonditions important. Formally, a set ξ of boundary onditions is a set of�abstrat� edges, eah onneting two boundary verties, that enodes how theseverties are onneted outside G. We denote by ω ∪ ξ the graph obtained byadding the new edges in ξ to the on�guration ω.We are now in a position to de�ne the FK perolation measure itself, forany parameters p ∈ [0, 1] and q ≥ 1. Denoting by o(ω) (resp. c(ω)) the numberof open (resp. losed) edges of ω, and by k(ω, ξ) the number of onnetedomponents in ω∪ξ, the FK perolation proess on G with parameters p, q andboundary onditions ξ is obtained by taking
P

ξ
p,q,G({ω}) =

po(ω)(1 − p)c(ω)qk(ω,ξ)

Zξ
p,q,G

(2.1)as a probability for any on�guration ω on G, where Zξ
p,q,G is an appropriatenormalizing onstant, alled the partition funtion.Among all the possible boundary onditions, two of them play a partiularrole. On the one hand, the free boundary onditions orrespond to the ase whenthere are no extra edges onneting boundary verties, we denote by P

0
p,q,G theorresponding measure. On the other hand, the wired boundary onditionsorrespond to the ase when all the boundary verties are pair-wise onneted,and the orresponding measure is denoted by P

1
p,q,G.Domain Markov propertyThe di�erent edges of an FK perolation model being highly dependent, whathappens in a given domain depends on the on�guration outside the domain.However, the FK perolation model possesses a very onvenient property knownas the Domain Markov property, whih usually makes it possible to obtain somespatial independene. This property is really instrumental in all our proofs.Consider a graph G, with E its set of verties. For a subset F ⊆ E, onsiderthe graph G′ having F as a set of verties, and the edges of G onneting sitesof F as a set of edges. Then for any boundary onditions φ, P

φ
p,q,G onditionedto math some on�guration ω outside G is equal to P

ξ
p,q,G′ , where ξ is the set ofonnetions inherited from ω. In other words, one an enode, using appropriateboundary onditions ξ, the in�uene of the on�guration outside G.Strong positive assoiation and in�nite-volume measuresThe random-luster model with parameters p ∈ [0, 1] and q ≥ 1 on a �nite graph

G has the strong positive assoiation property. More preisely, it satis�es theso-alled Holley riterion, a fat whih has two important onsequenes. A �rstonsequene is the well-known FKG inequality
P

ξ
p,q,G(A ∩ B) ≥ P

ξ
p,q,G(A) P

ξ
p,q,G(B) (2.2)5



for any pair of inreasing events A, B (inreasing events are de�ned in theusual way [13℄) and any boundary onditions ξ. This orrelation inequality isfundamental to study FK perolation, for instane to ombine several inreasingevents suh as the existene of rossings in various retangles.A seond property implied by the strong positive assoiation is the followingmonotoniity between boundary onditions, whih is partiularly useful whenombined with the Domain Markov property. For any boundary onditions
φ ≤ ξ (all the onnetions present in φ belong to ξ as well), we have

P
φ
p,q,G(A) ≤ P

ξ
p,q,G(A) (2.3)for any inreasing event A that depends only on G. We say that P

φ
p,q,G isstohastially dominated by P

ξ
p,q,G (denoted by P

φ
p,q,G ≤st P

ξ
p,q,G).In partiular, this property diretly implies that the free and wired bound-ary onditions are extremal in the sense of stohasti ordering: for any set ofboundary onditions ξ, one has

P
0
p,q,G ≤st P

ξ
p,q,G ≤st P

1
p,q,G. (2.4)An in�nite-volume measure an be onstruted as the inreasing limit of FKperolation measures on the nested sequene of graphs (J−n, nK2)n≥1 with freeboundary onditions. For any �xed q ≥ 1, lassial arguments then show thatthere must exist a ritial point pc = pc(q) suh that for any p < pc, there isalmost surely no in�nite luster of sites, while for p > pc, there is almost surelyone (see [13℄ for example).Planar dualityIn two dimensions, an FK measure on a subgraph G of Z

2 with free boundaryonditions an be assoiated with a dual measure in a natural way, as we explainnow. The dual graph G∗ is obtained by putting a vertex at the enter of eahfae of Z
2 having an edge in G. The edges are onneting any two adjaentverties for whih the orresponding faes are separated by an edge of G. TheFK perolation model P

0
p,q,G is then dual to the measure P

1
p∗,q,G∗ , where p∗satis�es

pp∗

(1 − p)(1 − p∗)
= q. (2.5)One then expets the ritial point pc(q) to be the self-dual point psd(q) forwhih p = p∗, whose value an easily be derived:

psd(q) =

√
q

1 +
√

q
. (2.6)FK perolation with parameter q = 2: FK Ising modelFor the value q = 2 of the parameter, the FK perolation model is related tothe Ising model. More preisely, if starting from an FK perolation sample, one6



assigns uniformly at random a spin +1 or −1 to eah luster as a whole (sitesin the same luster get the same spin), independently, we get simply a sampleof the Ising model. This oupling is alled the Edwards-Sokal oupling [10℄.In this ase, the FK perolation model is now well-understood. The value
pc = psd is implied by the omputation by Kaufman and Onsager [18℄ of thepartition funtion of the Ising model, and an alternative proof has been proposedreently by Be�ara, Duminil-Copin and Smirnov [2℄. Moreover, in [33℄, Smirnovproved onformal invariane of this model at the self-dual point psd.In the following, we restrit ourselves to the FK perolation model with pa-rameters q = 2 and p = psd(2) =

√
2/(1+

√
2) (so that we forget the dependeneon p and q), whih is also known as the ritial FK Ising model � we often allit the FK Ising model for short.2.2 Smirnov's fermioni observableIn this part, we reall disrete analytiity and disrete harmoniity results forthe FK Ising model, established by Smirnov in [33℄. These results are ruialin our proofs sine they will allow us to ompare onnetion probabilities toharmoni measures. Reall that from now, q = 2 and p = psd(2).FK Ising model in Dobrushin domainsLet D be a �nite subgraph of the primal lattie Z

2 suh that ∂eD is a self-avoiding polygon� where ∂eD is the set of edges between boundary sites. Hene,
Int(D), the onneted omponent of R

2\∂eD ontaining the graph, is a boundedand simply onneted domain. Consider two sites a and b of the boundary of
D. They determine two ars of ∂eD, (ab) and (ba), obtained by following ∂eDin the ounterlokwise diretion from a to b, and onversely.We onsider a random luster measure with free boundary onditions on
(ab), and wired boundary onditions on (ba). These boundary onditions arealled the Dobrushin boundary onditions on (D, a, b), (ab) is alled the freear and (ba) the wired ar. We denote by PD,a,b the assoiated random lustermeasure with parameters q = 2 and p = psd(2). This measure has a very nierepresentation on the so-alled medial graph of D, whih we de�ne now.Medial lattie and loop representation for the FK Ising modelWe �rst de�ne the medial lattie assoiated with the square lattie Z

2. In orderto do that, onsider together Z
2 with its dual (Z2)∗, and delare blak the sitesof the primal lattie Z

2, and white the sites of the dual lattie (Z2)∗. We thenintrodue the graph obtained by replaing every site by a olored diamond, ason Figure 1. We obtain in this way a rotated opy of the square lattie (saledby a fator 1/
√

2), denoted by (Z2)⋄. The sites of the primal (resp. dual) lattieare thus assoiated with the blak (resp. white) faes: we use extensively in theproof this orrespondene between sites of the primal and of the dual latties,7



D

ea

eb

a

b

Figure 1: A domain D with Dobrushin boundary onditions: the verties ofthe primal graph are blak, the verties of the dual graph D∗ are white, andbetween them lies the medial lattie D⋄.and faes of the medial lattie. For instane, we say that two blak diamondsare onneted if the orresponding sites of the primal lattie are onneted.We onstrut the medial graph D⋄ of (D, a, b) by onsidering the diamondsinterseting Int(D), together with the white diamonds touhing the free ar
(ba) (see Figure 1). These white diamonds form the free ar of D⋄, the blakdiamonds orresponding to sites of the wired ar of D form the wired ar of
D⋄. The orners of diamonds not belonging to the two ars of D⋄ de�ne theverties of D⋄. The edges are the edges of (Z2)⋄ between two verties. Weadopt the following onvenient onvention: the two edges ea and eb of (Z2)⋄(resp. adjaent to a and b) that �separate� the free and the wired ars of D⋄ areonsidered as edges of D⋄.Remark 2. The two de�nitions of ars (for D and D⋄) are quite similar. Nev-ertheless, the free ar of D is omposed of sites of Z

2 while the free ar of D⋄is omposed of white diamonds of D⋄. Moreover, verties of D⋄ possess twoadjaent edges if they are �on the boundary� (exept next to a and b), and fourotherwise.For any FK perolation on�guration in D, the interfaes between the primallusters and the dual lusters (if we follow the edges of the medial lattie) forma family of loops, together with one path from ea to eb, alled the explorationpath, as shown on Figure 2. A simple rearrangement of (2.1) shows that theprobability of suh a on�guration is proportional to (
√

2)#loops � taking into8



D

ea

eb

Figure 2: An FK perolation on�guration in the Dobrushin domain (D, a, b),together with the orresponding interfaes on the medial lattie: the loops ingrey, and the exploration path γ from ea to eb in blak.aount the fat that q = 2 and p = psd(2).In addition to this, we put an orientation on the medial graph: we orient theedges of eah blak fae in suh a way that the arrows are in ounter-lokwiseorder. It naturally gives an orientation to the loops, so that we are now workingwith a model of oriented urves on the medial lattie.Remark 3. If we onsider a Dobrushin domain (D, a, b), the slit domain reatedby �removing� the T �rst steps of the exploration path is again a Dobrushindomain. More preisely, onsider the new ar l omposed of ∂eD, together withthe sites of D adjaent to the exploration path. We an de�ne a new domainby removing all the sites of D whih are not in the same onneted omponentof D \ l as b: we obtain a new Dobrushin domain (D \ γ[0, T ], γ(T ), b), where,with a slight abuse of notation, γ(T ) is used to denote the site of the primallattie adjaent to the medial edge γ(T ). The exploration path γ is the interfaebetween the primal open luster onneted to the wired ar and the dual openluster onneted to the free ar, so that, onditionally on γ, the law of the FKIsing model in the new domain is exatly PD\γ[0,T ],γ(T ),b. This observation willbe instrumental in our proof.Fermioni observable and loal relationsLet (D, a, b) be a Dobrushin domain and γ the exploration path from ea to eb.The winding WΓ(z, z′) of a urve Γ between two edges z and z′ of the medial9



v

e3e4

e1 e2

Figure 3: The disrete relation at a vertex v.lattie is the total rotation (in radians) that the urve makes from the enter ofthe edge z to the enter of the edge z′. The fermioni observable F an now bede�ned by the formula [33℄
F (e) = ED,a,b[e

− 1
2
·iWγ(ea,e)

Ie∈γ ], (2.7)for any edge e of the medial lattie D⋄. The onstant σ = 1/2 appearing infront of the winding is alled the spin (see [33℄).The quantity F (e) is a omplexi�ed version of the probability that e belongsto the exploration path (note that it is de�ned on the medial graph D⋄). Theomplex weight makes the link between F and probabilisti properties less ex-pliit. Nevertheless, as we will see, the winding term an be ontrolled lose tothe boundary. The observable F also satis�es the following loal relation, fromwhih Propositions 5 and 6 follow.Lemma 4 ([33℄). For any vertex v of the medial lattie D⋄ with four adjaentedges in D⋄, the relation
F (e1) + F (e3) = F (e2) + F (e4) (2.8)is satis�ed, where e1, e2, e3 and e4 are the four edges at v indexed in lokwiseorder, as on Figure 3.We refer to [33℄ or [2℄ for the proof of this result. The key ingredient isa bijetion between on�gurations that ontribute to the values of F at theverties around v. Note that for other values of q, one an still de�ne thefermioni observable in a way similar to Eq.(2.7): for an appropriate value

σ = σ(q) of the spin, the previous relation Eq.(2.8) still holds (see [33℄, [2℄, or[3℄).Complex argument of the fermioni observable F and de�nition of HDue to the spei� value of the spin σ = 1/2, orresponding to the value q = 2,the omplex argument modulo π of the fermioni observable F follows from itsde�nition Eq.(2.7). For instane, if the edge e points in the same diretion asthe starting edge ea, then the winding is a multiple of 2π, so that the term10



e−
i
2

Wγ(ea,z) is equal to ±1, and F (e) is purely real. The same reasoning an beapplied to any edge to show that it belongs to the line eiπ/4
R, e−iπ/4

R or iRdepending on its diretion. Contrary to Lemma 4, this property is very spei�to the FK Ising model.For a vertex v with four adjaent edges, keeping the same notations as inthe previous subsetion, F (e1) and F (e3) are always orthogonal (for the salarprodut between omplex numbers (a, b) 7→ ℜe(ab̄)), as well as F (e2) and F (e4),so that Eq.(2.8) an be rewritten as
|F (e1)|2 + |F (e3)|2 = |F (e2)|2 + |F (e4)|2 . (2.9)Consider now a vertex v with two adjaent edges of D⋄, and denote by e5the �entering� edge, and e6 the �exiting� edge. Suh a vertex must be on theboundary of the domain, and e5 belongs to γ if and only if e6 belongs to γ� indeed, by onstrution, the urve entering through e5 must leave through

e6. Moreover, the windings of the urve Wγ(ea, e5) and Wγ(ea, e6) are onstantsine γ annot wind around these edges. From these two fats, we dedue:
|F (e5)|2 =

∣

∣

∣
e−

i
2

Wγ(ea,e5)PD,a,b(e5 ∈ γ)
∣

∣

∣

2

= PD,a,b(e5 ∈ γ)2 = |F (e6)|2. (2.10)From Eqs.(2.9) and (2.10), one an easily prove the following proposition.Proposition 5 ([33℄). There exists a unique funtion H de�ned on the faesof D⋄ by the relation
H(B) − H(W ) = |F (e)|2 , (2.11)for any two neighboring faes B and W , respetively blak and white, separatedby the edge e, and by �xing the value 1 on the blak fae orresponding to a.Moreover, H is then automatially equal to 1 on the blak diamonds of the wiredar, and equal to 0 on the white diamonds of the free ar.This funtion H is a disrete analogue of the antiderivative of F 2, as ex-plained in Remark 3.7 of [33℄.Approximate Dirihlet problem for HLet us denote by H• and H◦ the restritions of H respetively to the blakfaes and to the white faes. For a blak site of D not on the boundary, we anonsider the usual disrete Laplaian (on the graph D) at this site: it is theaverage on the four nearest blak neighbors, minus the value at the site itself.A similar de�nition holds for white sites of the graph D∗.The result below, proved in [33℄, is a key step to prove onvergene of theobservable as one sales the domain � but we will not disuss this question here.Its proof relies on an elementary yet quite lengthy omputation.Proposition 6 ([33℄). The funtion H• (resp. H◦) is subharmoni (resp. su-perharmoni) inside the domain for the disrete Laplaian.11



Sine we know that H is equal to 1 (resp. 0) on the blak diamonds of thewired ar (resp. the white diamonds of the free ar), the previous propositionan be seen as an approximate Dirihlet problem for the funtion H . In the nextsetion, we make this statement rigorous by omparing H to harmoni funtionsorresponding to the same boundary problems (on the set of blak faes, or onthe set of white ones).3 Comparison to harmoni measuresIn this setion, we obtain a omparison result for the boundary values of thefermioni observable F introdued in the previous setion in terms of disreteharmoni measures. It will be used to obtain all the quantitative estimates onthe observable that we need for the proof of Theorem 1.3.1 Comparison prinipleAs in the previous setion, let (D, a, b) be a disrete Dobrushin domain, withfree boundary onditions on the ounterlokwise ar from a to b and wiredboundary onditions on the ounterlokwise ar from b to a.For our estimates, we �rst extend the medial graph of our disrete domainby adding two extra layers of faes: one layer of white diamonds adjaent to theblak diamonds of the sites of the wired ar, and one layer of blak diamondsadjaent to the white diamonds of the free ar. We denote by D̄⋄ this extendeddomain.Remark 7. Note that one faes a small tehniality when adding a new layer ofdiamonds: some of these additional diamonds an overlap diamonds that werealready here. For instane, if the domain has a slit, the free and the wired arare adjaent along this slit, and the extra layer on the wired ar (resp. free ar)overlaps the free ar (resp. wired ar). As we will see, H• is equal to 1 on thewired ar, and to 0 on the additional layer along the free ar. One should thusremember in the following that the added diamonds are onsidered as di�erentfrom the original ones � it will always be lear from the ontext whih diamondswe are onsidering.For any given blak fae B, let us de�ne (

XB
•t

)

t≥0
to be the ontinuous-timerandom walk on the blak faes of D̄⋄ starting at B, that jumps with rate 1on adjaent blak faes, exept for the blak faes on the extra layer of blakdiamonds adjaent to the free ar onto whih it jumps with rate ρ := (

√
2+1)/2.Similarly, we denote by (

XW
◦t

)

t≥0
the ontinuous-time random walk on the whitefaes of D̄⋄ starting at a white fae W that jumps with rate 1 on adjaent whitefaes, exept for adjaent white faes on the extra layer of white diamondsadjaent to the wired ar onto whih it jumps with the same rate ρ = (

√
2+1)/2as previously.For a blak fae B, we denote by HM•(B) the probability that the randomwalk XB

•t hits the wired ar from b to a before hitting the extra layer adjaent12
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Figure 4: We extend D⋄ by adding two extra layers of medial faes, and extendthe funtions H• and H◦ there. Here is represented the extension along the freear.to the free ar. Similarly, for W a white fae, we denote by HM◦(W ) theprobability that the random walk XW
◦t hits the additional layer adjaent to thewired ar before hitting the free ar. Note that there is no extra di�ultyin de�ning these quantities for in�nite disrete domains as well. We have thefollowing result:Proposition 8 (uniform omparability). Let (D, a, b) be a disrete Dobrushindomain. For any medial edge e adjaent to a boundary edge of the free ar, ifwe denote by B = B(e) the blak fae that it borders and by W = W (e) anylosest white fae that is not on the free ar, we have

√

HM◦(W ) ≤ |F (e)| ≤
√

HM•(B). (3.1)Proof. By onstrution of the funtion H , we have |F (e)|2 = H(B) and H(W ) =
|F (e)|2 − |F (e′)|2 ≤ |F (e)|2, where e′ is the medial edge between B and W : itis therefore su�ient to show that H(B) ≤ HM•(B) and H(W ) ≥ HM◦(W ).We only prove that H(B) ≤ HM•(B), sine the other ase an be handled inthe same way.For this, we use a variation of a trik introdued in [9℄ and extend the funtion
H to the extra layer of blak diamonds � added as explained above � by setting Hto be equal to 0 there. It is then su�ient to show that the restrition H• of H tothe blak diamonds of D̄⋄ is subharmoni for the Laplaian that is the generatorof the random walk X•, sine it has the same boundary values as HM•. Insidethe domain, this is given by Proposition 6, sine there the Laplaian is theusual disrete Laplaian (assoiated with it is just a simple random walk). Theonly thing to hek is when a fae involved in the omputation of the Laplaianbelongs to one of the extra layers. For the sake of simpliity, we study the asewhen only one fae belongs to these extra layers.Denote by BW , BN , BE and BS the blak faes adjaent to B, and assumethat BS is on the extra layer (see Figure 4). The disrete Laplaian of X• at13



fae B is denoted by ∆•. We laim that
∆•H•(B) =

2 +
√

2

6 + 5
√

2
[H•(BW )+H•(BN )+H•(BE)]+

2
√

2

6 + 5
√

2
H•(BS)−H•(B) ≥ 0.(3.2)For that, let us denote by e1, e2, e3, e4 the four medial edges at the bottomvertex v between B and BS , in lokwise order, with e1 and e2 along B, and e3and e4 along BS (see Figure 4) � note that e3 and e4 are not edges of D⋄, butof (Z2)⋄.We extend F to e3 and e4 by requiring F (e3) and F (e1) to be orthogonal,as well as F (e4) and F (e2), and F (e1) + F (e3) = F (e2) + F (e4) to hold true.This de�nes these two values uniquely: indeed, as noted before, we know that

F (e2) = e−iπ/4F (e1) on the boundary (sine Wγ(ea, e1) and Wγ(ea, e2) are �xed,with Wγ(ea, e2) = Wγ(ea, e1) + π/2, and the urve annot go through one ofthese edges without going through the other one), whih implies, after a smallalulation, that
|F (e3)|2 =

∣

∣

∣

(

tan
π

8

)

eiπ/4F (e2)
∣

∣

∣

2

=
2 −

√
2

2 +
√

2
|F (e2)|2 =

2 −
√

2

2 +
√

2
H•(B).If we denote by H̃• the funtion de�ned by H̃• = H• on B, BW , BN and BE ,and by

H̃•(BS) = |F (e3)|2 =
2 −

√
2

2 +
√

2
H•(B), (3.3)then H̃• satis�es the same relation Eq.(2.11) (de�nition of H) for e3 and e4,as inside the domain. Sine the fermioni observable F veri�es the same lo-al equations, the omputation performed in the Appendix C of [33℄ is valid,Proposition 6 applies at B, and we dedue

∆H̃•(B) =
1

4
[H̃•(BW ) + H̃•(BN ) + H̃•(BE) + H̃•(BS)] − H̃•(B) ≥ 0. (3.4)Using the de�nition of H̃•, this inequality an be rewritten as

1

4
[H•(BW ) + H•(BN ) + H•(BE)] − 6 + 5

√
2

4(2 +
√

2)
H•(B) ≥ 0. (3.5)Now using that H•(BS) = 0, we get the laim, Eq.(3.2).3.2 Estimates on harmoni measuresIn the previous subsetion, we gave a omparison priniple between the values of

H near the boundary, and the harmoni measures assoiated with two (almostsimple) random walks, on the two latties omposed of the blak faes and ofthe white faes respetively. In this subsetion, we give estimates for these twoharmoni measures in di�erent domains needed for the proof of Theorem 1. Westart by giving a lower bound whih is useful in the proof of the 1-point estimate.14
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2βn
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βn/2Figure 5: Estimate of Lemma 9: the dashed line orresponds to the free ar.Lemma 9. For β > 0 and n ≥ 0, let Rβ
n be the graph

Rβ
n = J−βn, βnK × J0, 2nK.Then there exists c1(β) > 0 suh that for any n ≥ 1,
HM◦(Wx) ≥ c1(β)

n2
(3.6)in the Dobrushin domain (Rβ

n, u, u) (see Figure 5), for all x = (x1, 0) and u =
(u1, 2n) suh that |x1|, |u1| ≤ βn/2 ( i.e. far enough from the orners), Wx beingany of the two white faes that are both adjaent to x and not on the free ar.Proof. This proposition follows from standard results on simple random walks(the loal entral limit theorem and gambler's ruin type estimates). For thesake of oniseness, we do not provide a detailed proof.In the remaining of the setion, we onsider only Dobrushin domains (D, a, b)that ontain the origin on the free ar, and are subsets of the medial lattie H⋄,where H = {(x1, x2) ∈ Z

2, x2 ≥ 0} denotes the upper half plane � in this ase, wesay that D is a Dobrushin H-domain. For the following estimates on harmonimeasures, the Dobrushin domains that we onsider an also be in�nite. We areinterested in the harmoni measure of the wired ar seen from a given point:without loss of generality, we an assume that this point is just the origin. Let
B0 be the orresponding blak diamond of the medial lattie, and W0 be anadjaent white diamond whih is not on the free ar.We �rst prove a lower bound on the harmoni measure. For that, we intro-due, for k ∈ Z and n ≥ 0, the segments

ln(k) = {k} × J0, nK (= {(k, j) : 0 ≤ j ≤ n}).Lemma 10. There exists a onstant c2 > 0 suh that for any Dobrushin H-domain (D, a, b), we have
HM◦(W0) ≥

c2

k
, (3.7)provided that, in D, the segment lk(−k) disonnets from the origin the inter-setion of the free ar with the upper half-plane (see Figure 6).15



0 0

a

b

b

a

Z Z

lk(−k)lk(−k)Figure 6: The two domains involved in the proof of Lemma 10.Proof. We know that lk(−k) disonnets the origin from the part of the free arthat lies in the upper half-plane, let us thus onsider the onneted omponent of
D\lk(−k) that ontains the origin. In this new domain D0, if we put free bound-ary onditions along lk(−k), the harmoni measure of the wired ar is smallerthan the harmoni measure of the wired ar in the original domain D. On theother hand, the harmoni measure of the wired ar in D0 is larger than the har-moni measure of the wired ar in the slit domain (H\lk(−k), (−k, k),∞), whihhas respetively wired and free boundary onditions to the left and to the rightof (−k, k) (see Figure 6). Estimating this harmoni measure is straightforward,using the same arguments as before.We now derive upper bounds on the harmoni funtions. We will needtwo estimates of di�erent types. The �rst one takes into aount the distanebetween the origin and the wired ar, while the seond one requires the existeneof a segment ln(k) disonneting the wired ar from the origin (still inside thedomain).Lemma 11. There exist onstants c3, c4 > 0 suh that for any Dobrushin H-domain (D, a, b),(i) if d1(0) denotes the distane between the origin and the wired ar,

HM•(B0) ≤ c3
1

d1(0)
, (3.8)(ii) and if the segment ln(k) disonnets the wired ar from the origin inside

D,
HM•(B0) ≤ c4

n

|k|2 . (3.9)Proof. Let us �rst onsider item (i). For d = d1(0), de�ne the Dobrushin domain
(B̃d, (−d, 0), (d, 0)) where B̃d is the set of sites in H at a graph distane at most
d from the origin (see Figure 7). The harmoni measure of the wired ar in
(D, a, b) is smaller than the harmoni measure of the wired ar in this newdomain B̃d, and, as before, this harmoni measure is easy to estimate.Let us now turn to item (ii). Sine ln(k) disonnets the wired ar fromthe origin, the harmoni measure of the wired ar is smaller than the harmonimeasure of ln(k) inside D, and this harmoni measure is smaller than it is in16
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ln(k)Figure 7: The two di�erent upper bounds (i) and (ii) of Lemma 11.the domain H \ ln(k) with wired boundary onditions on the left side of ln(k) �right side if k < 0 (see Figure 7). One again, the estimates are easy to performin this domain.4 Proof of Theorem 1We now prove our main result, Theorem 1. The main step is to prove theuniform lower bound for retangles of bounded aspet ratio with free boundaryonditions. We then use monotoniity to ompare boundary onditions andobtain the desired result. In the ase of free boundary onditions, the proofrelies on a seond moment estimate on the number N of pairs of verties (x, u),on the top and bottom sides of the retangle respetively, that are onnetedby an open path.The organization of this setion follows the seond-moment estimate strat-egy. In Proposition 13, we �rst prove a lower bound on the probability for onesite on the bottom side of a retangle to be onneted to a site on the top side.This estimate gives a lower bound on the expetation of N . Then, Proposition14 provides an upper bound on the probability that two points on the bottomside of a retangle are onneted to the top side. This proposition is the oreof the proof, and it provides the right bound for the seond moment of N . Itallows us to onlude the setion by using the seond moment estimate method,thus proving Theorem 1.In this setion, we use two main tools: the Domain Markov property, andprobability estimates for onnetions between the wired ar and sites on thefree ar. We �rst explain how the previous estimates on harmoni measures anbe used to derive estimates on onnetion probabilities: the following lemma isinstrumental in our proof. 17



Lemma 12. Let (D, a, b) be a Dobrushin domain. For any site x on the freear of D, we have
√

HM◦(Wx) ≤ PD,a,b(x wired ar) ≤ √

HM•(Bx), (4.1)where Bx is the blak fae orresponding to x, and Wx is any losest white faethat is not on the free ar.Proof. Sine x is on the free boundary of D, there exists a white diamond onthe free ar of D⋄ whih is adjaent to Bx: we denote by e the edge betweenthese diamonds. As noted before, sine the edge e is along the free ar, thewinding Wγ(ea, e) of the exploration path γ at e is onstant, and depends onlyon the diretion of e. This implies that
PD,a,b(e ∈ γ) = |F (e)|.In addition, e belongs to γ if and only if x is onneted to the wired ar, whihimplies that |F (e)| is exatly equal to PD,a,b(x wired ar). Proposition 8 thusimplies the laim.With this lemma at our disposal, we an prove the di�erent estimates.Throughout the proof, we use the notation ci(β) for onstants that dependneither on n nor on sites x, y or on boundary onditions. When they do notdepend on β, we denote them by ci (it is the ase for the upper bounds). Reallthe de�nition of Rβ

n:
Rβ

n = J−βn, βnK × J0, 2nK. (4.2)Let ∂+Rβ
n (resp. ∂−Rβ

n) be the top side J−βn, βnK × {2n} (resp. bottom side
J−βn, βnK×{0}) of the retangle Rβ

n. We begin with a lower bound on onne-tion probabilities.Proposition 13 (onnetion probability for one point on the bottom side). Let
β > 0, there exists a onstant c(β) > 0 suh that for any n ≥ 1,

P
0
Rβ

n
(x u) ≥ c(β)

n
(4.3)for all x = (x1, 0) ∈ ∂−Rβ

n, u = (u1, 2n) ∈ ∂+Rβ
n, satisfying |x1|, |u1| ≤ βn/2.Proof. The probability that x and u are onneted in the retangle with freeboundary onditions an be written as the probability that x is onneted tothe wired ar in (Rβ

n, u, u) (where the wired ar onsists of a single vertex).The previous lemma, together with the estimate of Lemma 9, onludes theproof.We now study the probability that two boundary points on the bottom edgeof Rβ
n are onneted to the top edge. 18
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γ(T ) = z + (−r, r)
∂Bk

zFigure 8: The Dobrushin domain (Rβ
n, cn, dn), together with the explorationpath up to time T .Proposition 14 (onnetion probability for two points on the bottom side).There exists a onstant c > 0 (uniform in β, n) suh that for any retangle Rβ

nand any two points x, y on the bottom side ∂−Rβ
n,

PRβ
n,an,bn

(x, y  wired ar) ≤ c
√

|x − y|n
, (4.4)where an and bn denote respetively the top-left and top-right orners of theretangle Rβ

n.The proof is based on the following lemma, whih is a strong form of theso-alled half-plane one-arm probability estimate (see Setion 5.4 for a furtherdisussion of this result). For x on the bottom side of Rβ
n and k ≥ 1, we denoteby Bk(x) the box entered at x with diameter k for the graph distane. We annow state the lemma needed:Lemma 15. There exists a onstant c5 > 0 (uniform in n, β and the hoie of

x) suh that for all k ≥ 0,
PRβ

n,an,bn
(Bk(x) wired ar) ≤ c5

√

k

n
. (4.5)Proof. Consider n, k, β > 0, and the box Rβ

n with one point x ∈ ∂−Rβ
n. Eq.(4.5)beomes trivial if k ≥ n, so we an assume that k ≤ n. For any hoie of

β′ ≥ β, the monotoniity between boundary onditions Eq.(2.4) implies thatthe probability that Bk(x) is onneted to the wired ar ∂+Rβ
n in (Rβ

n, an, bn)is smaller than the probability that Bk(x) is onneted to the wired ar inthe Dobrushin domain (Rβ′

n , cn, dn), where cn and dn are the bottom-left andbottom-right orners of Rβ′

n . From now on, we replae β by β + 1, and we workin the new domain (Rβ
n, cn, dn). Notie that Bk is then inluded in Rβ

n and thatthe right-most site of Bk is at a distane at least n from the wired ar.We denote by T the hitting time � for the exploration path naturally para-metrized by the number of steps � of the subset of the medial lattie omposedof the edges adjaent to Bk(x); we set T = ∞ if the exploration path neverreahes this set, so that x is onneted to Bk if and only if T < ∞.19



Let z be the right-most site of the box Bk(x). Consider now the event
{z  wired ar}. By onditioning on the urve up to time T (and on the event
{Bk(x) wired ar}), we obtain

P
R

β
n,cn,dn

(z  wired ar) = E
R

β
n,cn,dn

ˆ

IT<∞P
R

β
n,cn,dn

(z  wired ar | γ[0, T ])
˜

= E
R

β
n,cn,dn

ˆ

IT<∞P
R

β
n\γ[0,T ],γ(T ),dn

(z  wired ar)˜

,where in the seond inequality, we have used the Domain Markov property, andalso the fat that it is su�ient for z to be onneted to the wired ar in thenew domain (sine it is then automatially onneted to the wired ar of theoriginal domain).On the one hand, sine z is at a distane at least n from the wired ar(thanks to the new hoie of β), we an ombine Proposition 8 and Lemma 12with item (i) of Lemma 11 to obtain
PRβ

n,cn,dn
(z  wired ar) ≤ c5√

n
. (4.6)On the other hand, if γ(T ) an be written as γ(T ) = z+(−r, r), with 0 ≤ r ≤ k,then the ar z+lr(−r) disonnets the free ar from z in the domain Rβ

n\γ[0, T ],while if γ(T ) = z+(−r, 2k−r), with k+1 ≤ r ≤ 2k, then the ar z+ lr(−r) stilldisonnets the free ar from z. Using one again Proposition 8 and Lemma 12,this time with Lemma 10, we obtain that a.s.
PRβ

n\γ(−∞,T ),γ(T ),dn
(z  wired ar) ≥ c4√

r
≥ c4√

2k
. (4.7)This estimate being uniform in the realization of γ[0, T ], we obtain

c4√
2k

PRβ
n,cn,dn

(T < ∞) ≤ PRβ
n,cn,dn

(z  wired ar) ≤ c5√
n

, (4.8)whih implies the desired laim Eq.(4.5).Proof of Proposition 14. Let us take two sites x and y on ∂−Rβ
n. As in theprevious proof, the larger the β, the larger the orresponding probability, wean thus assume that β has been hosen in suh a way that there are no boundarye�ets. In order to prove the estimate, we express the event onsidered in termsof the exploration path γ. If x and y are onneted to the wired ar, γ must gothrough two boundary edges whih are adjaent to x and y, that we denote by

ex and ey. Notie that ex has to be disovered by γ before ey is.We now de�ne Tx to be the hitting time of ex, and Tk to be the hitting timeof the set of edges adjaent to the ball B2k(y), for k ≤ k0 = ⌊log2 |x− y|⌋. If theexploration path does not ross this ball before hitting ex, we set Tk = ∞. Withthese de�nitions, the probability that ex and ey are both on γ an be expressed
20
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Figure 9: This piture presents the di�erent steps in the proof of Proposition14: we �rst (1) ondition on γ[0, Tx] and use the uniform estimate (i) of Lemma11, then (2) ondition on γ[0, Tk+1] and use the estimate (ii) of Lemma 11, inorder to (3) onlude with Lemma 15.as
PRβ

n,an,bn
(x, y  wired ar) = PRβ

n,an,bn
(ex, ey ∈ γ) (4.9)

=

k0
∑

k=0

PRβ
n,an,bn

(ey ∈ γ, Tx < ∞, Tk+1 < Tk = ∞) (4.10)
=

k0
∑

k=0

ERβ
n,an,bn

[

ITk+1<Tk=∞ITx<∞PRβ
n,an,bn

(ey ∈ γ |γ[0, Tx] )
]

, (4.11)where the seond equality is obtained by onditioning on the exploration pathup to time Tx. Reall that ey belongs to γ if and only if y is onneted tothe wired ar. Moreover, y is at a distane at least 2k from the wired ar in
Rβ

n \ γ[0, Tx] (sine Tk = ∞). Hene, the Domain Markov property and item (i)of Lemma 11 give that a.s.
PRβ

n,an,bn
(ey ∈ γ |γ[0, Tx] ) = PRβ

n\γ[0,Tx],x,bn
(y  wired ar) ≤ c3√

2k
. (4.12)By plugging this uniform estimate into (4.11), and removing the ondition on

Tk = ∞, we obtain
P

R
β
n,an,bn

(ex, ey ∈ γ) ≤
k0

X

k=0

c3√
2k

E
R

β
n,an,bn

ˆ

ITk+1<∞P
R

β
n,an,bn

(Tx < ∞|γ[0, Tk+1] )
˜

,where we onditioned on the path up to time Tk+1. Now, ex belongs to γ if andonly if x is onneted to the wired ar, and in addition, the vertial segment21



onneting γ(Tk+1) to Z, of length at most 2k+1, disonnets the wired ar from
x in the domain Rβ

n \ γ[0, Tk+1]. Applying the Domain Markov property anditem (ii) of Lemma 11, we dedue that a.s.
P

R
β
n,an,bn

(ex ∈ γ |γ[0, Tk+1] ) = P
R

β
n\γ[0,Tk+1 ],γ(Tk+1),bn

(x wired ar) ≤ c4

√
2k+1

|x − y| .Making use of this uniform bound, we obtain
PRβ

n,an,bn
(x, y  wired ar) ≤ c3c4

k0
∑

k=0

√
2k+1

√
2k|x − y|

PRβ
n,an,bn

(Tk+1 < ∞)

≤ 2c3c4c5

|x − y|√n

k0
∑

k=0

√
2k

≤ c
√

n|x − y|
,using also Lemma 15 for the seond inequality.We are now in a position to prove our main result.Proof of Theorem 1. Let β > 0 and n > 0, and also Rβ

n de�ned as previously.Step 1: lower bound for free boundary onditions. Let Nn be the numberof onneted pairs (x, u), with x ∈ ∂−Rβ
n, and u ∈ ∂+Rβ

n. The expeted valueof this quantity is equal to
E

0
Rβ

n
[Nn] =

∑

u∈∂+Rβ
n

x∈∂−Rβ
n

P
0
Rβ

n
(x u). (4.13)Proposition 13 diretly provides the following lower bound on the expetationby summing on the (βn)2 pairs of points (x, u) far enough from the orners, i.e.satisfying the ondition of the proposition:

E
0
Rβ

n
[Nn] ≥ c6(β)n (4.14)for some c6(β) > 0.On the other hand, if x and u (resp. y and v) are pair-wise onneted, thenthey are also onneted to the horizontal line Z × {n} whih is (vertially) atthe middle of Rβ

n. Moreover, the Domain Markov property implies that theprobability � in Rβ
n with free boundary onditions � that x and y are onnetedto this line is smaller than the probability of this event in the retangle of halfheight with wired boundary onditions on the top side. In the following, weassume without loss of generality that n is even and we set m = n/2, so that22



the previous retangle is R2β
m , and we de�ne am and bm as before. Using theFKG inequality, and also the symmetry of the lattie, we get

P
0

R
β
n
(x u, y  v) ≤ P

R
2β
m ,am,bm

(x, y  wired ar) P
R

2β
m ,am,bm

(ū, v̄  wired ar),where ū and v̄ are the projetions on the real axis of u and v. Summing thebound provided by Proposition 14 on all sites x, y ∈ ∂−Rβ
n and u, v ∈ ∂+Rβ

n, weobtain
E

0
Rβ

n
[N2

n] ≤ c7m
2 ≤ c7n

2 (4.15)for some onstant c7 > 0. Now, by the Cauhy-Shwarz inequality,
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0
Rβ

n
[(INn>0)
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E
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≥ c6(β)2/c7,(4.16)sine E
0
Rβ

n

[Nn] = E
0
Rβ

n

[NnINn>0]. We have thus reahed the laim.Step 2: lower and upper bounds for general boundary onditions.Using the ordering between boundary onditions Eq.(2.4), the lower bound thatwe have just proved for free boundary onditions atually implies the lowerbound for any boundary onditions ξ.For the upper bound, onsider a retangle R with dimensions n × m with
m ∈ Jβ1n, β2nK and with boundary onditions ξ. Using one again Eq.(2.4), itis su�ient to address the ase of wired boundary onditions, and in this ase,the probability that there exists a dual rossing from the left side to the rightside is at least c− = c−(1/β2, 1/β1), sine the dual model has free boundaryonditions. We dedue, using the self-duality property, that

P
ξ
R(Cv(R)) ≤ 1 − P

1
R(C∗

h(R)) = 1 − P
0
R∗(Ch(R∗)) ≤ 1 − c−, (4.17)where we use the notation C∗

h for the existene of a horizontal dual rossing,and R∗ is as usual the dual graph of R (note that we have impliitly used theinvariane by π/2-rotations). This onludes the proof of Theorem 1.5 Consequenes for the FK Ising and the (spin)Ising models5.1 RSW-type rossing bound for the Ising modelTheorem 1 an also be applied to the Ising model, using the Edwards-Sokal ou-pling. However, we have to be a little areful sine not all boundary onditionsan �go through this oupling�.Corollary 16. Consider the Ising model with (+) or free boundary onditionsin a retangle R with dimensions n and m < βn. There exists a onstant cβ > 0suh that
P
free/+
R (C+

v (R)) ≥ cβ ,23



where C+
v denotes the existene of a vertial (+) rossing.We ould state this result for more general boundary onditions, for instane

(+) on one ar and free on the other ar. The orresponding result for (−)boundary onditions is atually not expeted to hold: one an notie for examplethat in any given smooth domain, a CLE(3) proess � the objet desribing thesaling limit of luster interfaes � a.s. does not touh the boundary.5.2 Power-law deay of the magnetization at ritialityWe start by stating an easy onsequene of Theorem 1. We onsider the box
Sn = J−n, nK2, its boundary being denoted as usual by ∂Sn. We also introdue
Sm,n the annulus Sn \ S̊m of radius m < n entered on the origin, and we denoteby C(Sm,n) the event that there exists an open iruit surrounding Sm in thisannulus.Corollary 17 (iruits in annuli). For every β < 1, there exists a onstant
cβ > 0 suh that for all n and m, with m ≤ βn,

P
0
Sm,n

(C(Sm,n)) ≥ cβ.Proof. This follows from Theorem 1 applied in the four retanglesRB = J−n, nK×
J−n,−mK, RL = J−n,−mK × J−n, nK, RT = J−n, nK × Jm, nK and RR =
Jm, nK× J−n, nK. Indeed, if there exists a rossing in eah of these retangles inthe �hard� diretion, one an onstrut from them a iruit in Sm,n.Now, onsider any of these retangles, RB for instane. Its aspet ratio isbounded by 2/(1 − β), so that Theorem 1 implies that there is a horizontalrossing with probability at least

P
0
RB

(CH(RB)) ≥ c > 0.Combined with the FKG inequality, this allows us to onlude: the desiredprobability is at least cβ = c4 > 0.Proposition 18 (power-law deay for the magnetization). For p = psd, thereexists a unique in�nite-volume measure P. For this measure, there is almostsurely no in�nite open luster. Moreover, there exist onstants α, c > 0 suhthat for all n ≥ 0,
P(0 ∂Sn) ≤ c

nα
. (5.1)This result implies in partiular that P(0  ∞) = 0, in other words thatthere is no magnetization at p = psd. This result also applies to the Ising model:the magnetization at the origin deays at least as a power law.Remark 19. We would like to mention that an alternative proof of the fat thatthere is no spontaneous magnetization at ritiality an be found in [38, 14℄.Also, we atually know from Onsager's work [18℄ that the onnetion probabilityfollows a power law as n → ∞, desribed by the one-arm plane exponent α1 =24



1/8. It should be possible to prove the existene and the value of this exponentusing onformal invariane, as well as the arm exponents for a larger numberof arms. More preisely, one would need to onsider the probability of rossingan annulus a ertain (�xed) number of times in the saling limit, and analyzethe asymptoti behavior of this probability as the modulus tends to ∞. Theorem1 then implies the so-alled quasi-multipliativity property, whih allows one todedue, using onentri annuli, the existene and the value of the arm exponentsfor the disrete model.Proof. We �rst note that it is lassial that the non-existene of in�nite lustersimplies uniqueness of the in�nite-volume measure: it is thus su�ient to proveEquation Eq.(5.1). We onsider the annuli An = S2n,2n+1 for n ≥ 1, and C∗(An)the event that there is a dual iruit in A∗
n. We know from Corollary 17 thatthere exists a onstant c > 0 suh that

P
1
An

(C∗(An)) ≥ c (5.2)for all n ≥ 1. By suessive onditionings, we then obtain
P(0 ∂S2N ) ≤

N−1
∏

n=0

P
1
An

((C∗(An))c) ≤ (1 − c)N , (5.3)and the desired result follows.Remark 20. Note that together with sharp threshold arguments developed byGraham and Grimmett [12℄, these rossing estimates also provide a geometriproof that the ritial point is pc = psd(2) =
√

2/(1 +
√

2) (whih then gives theritial temperature of the Ising model, thanks to the Edwards-Sokal oupling).5.3 Regularity of interfaes and tightnessTheorem 1 an be used to apply the tehnology developed by Aizenman andBurhard [1℄, to prove regularity of the olletion of interfaes, whih impliestightness using a variant of the Arzelà-Asoli theorem.This ompatness property for the set of interfaes is important to onstrutthe saling limits of disrete interfaes, one we have a way to identify their limituniquely (using for instane the so-alled martingale tehnique, detailed in [32℄).Here, the fermioni observable provides a onformally invariant martingale, andits onvergene to a holomorphi funtion has been proved in [33℄, leading tothe following important theorem:Theorem 21 (Smirnov [34℄). For any Dobrushin domain (D, a, b), with disreteapproximations (Dǫ, aǫ, bǫ), the PDǫ,aǫ,bǫ
-law of the exploration path γǫ from aǫto bǫ onverges weakly to the law of a hordal SLE(16/3) path in D, from a to

b. We brie�y explain how one an use the rossing bounds to obtain the om-patness of the interfaes. Note that this result has also been proved, in adi�erent way, in [15℄ and in the forthoming artile [16℄.25



As usual, urves are de�ned as ontinuous funtions from [0, 1] into a boundeddomain D � more preisely, as equivalene lasses up to stritly inreasingreparametrization. The urve distane is then just the distane indued bythe norm of uniform onvergene.Let A(x; r, R) be the annulus B(x, R) \ B(x, r). We denote by Ak(x; r, R)the event that there are 2k rossings of the urve from B(x, r) to B(x, R)c.Theorem 22 (Aizenman-Burhard [1℄). Let D be a ompat domain and denoteby Pǫ the law of a random urve γ̃ǫ with short-distane ut-o� ǫ > 0. If for any
k > 0, there exists Ck < ∞ and λk > 0 suh that for all ǫ < r < R and x ∈ D,

Pǫ(Ak(x; r, R)) ≤ Ck

( r

R

)λk

, (5.4)and λk → ∞, then the urves (γ̃ǫ) are preompat for the weak onvergeneassoiated with the urve distane.This theorem an be applied to the family (γǫ) of exploration paths de�nedin Theorem 21, using the following argument. If Ak(x; r, R) holds, then thereare k open paths, alternating with k dual paths, onneting the inner boundaryof the annulus to its outer boundary. Moreover, one an deompose the annulus
A(x; r, R) into roughly log2(R/r) annuli of the form A(x; r, 2r), so that it isatually su�ient to prove that

P(Ak(x; r, 2r)) ≤ ck (5.5)for some onstant c < 1. Sine the paths are alternating, one an dedue thatthere are k open paths, eah one being surrounded by two dual paths. Hene,using suessive onditionings and the Domain Markov property, the probabilityfor eah of them is smaller than the probability that there is a rossing in theannulus, whih is less than some onstant c < 1 by Corollary 17 (note that thisreasoning also holds on the boundary).Hene, Theorem 22 implies that the family (γǫ) is preompat for the weakonvergene.5.4 Half-plane one-arm exponent for the FK Ising modeland boundary magnetization for the Ising modelAs a by-produt of our proofs, in partiular of the estimates of Setion 3, one analso obtain the value of the ritial exponent for the boundary magnetizationin the Ising model, near a free boundary ar (assuming it is smooth), and theorresponding one-arm half-plane exponent for the FK Ising model.Let us �rst onsider the one-point magnetization ED,a,b[σx] for the Isingmodel at ritiality in a disrete domain (D, a, b) with free boundary onditionson the ounterlokwise ar (ab) and (+) boundary onditions on the other ar
(ba). 26



Proposition 23. There exist positive onstants c1 and c2 suh that for anydisrete domain (D, a, b) with a = (−n, 0) and b = (n, 0) (n ≥ 0), ontainingthe retangle Rn = J−n, nK×J0, nK and suh that its boundary ontains the lowerar J−n, nK × {0}, we have
c1n

−1/2 ≤ ED,a,b[σ0] ≤ c2n
−1/2, (5.6)uniformly in n.Proof. The magnetization at the origin an be expressed, in the orrespondingFK representation, as the probability that the origin is onneted to the wiredounterlokwise ar (ba). This probability an now be estimated exatly as inSetion 4: it is equal to the probability that the FK interfae passes through

0 (sine the origin is on the free boundary of D), whih is itself the modulusof the fermioni observable on (D, a, b) evaluated at 0. Now, it su�es to useProposition 8 to ompare this to the two harmoni measures, and then estimatessimilar to the estimates in Lemmas 10 and 11.This result an be equivalently stated for the one-arm half-plane probabilityfor FK perolation:Proposition 24. Consider the retangle Rn = J−n, nK × J0, nK. There existpositive onstants c1 and c2 suh that for any boundary onditions ξ suh thatthe lower ar ∂−Bn is free, one has
c1n

−1/2 ≤ P
ξ
Rn

(0 ∂+Rn) ≤ c2n
−1/2, (5.7)uniformly over all n.Proof. We get the upper bound using monotoniity and the previous propo-sition, sine (+) boundary onditions in the Ising model orrespond to wiredboundary onditions in the orresponding FK representation. For the lowerbound, by Theorem 1 and the FKG inequality, we an enfore the existene ofa rossing in the half-annulus Rn \ Rn/2 that disonnets 0 from ∂Rn \ ∂−Rnto the prie of a onstant independent of ξ. Using monotoniity and FKG, theprobability that 0 is onneted by an open path to this rossing (onditionallyon its existene) is larger than the probability that 0 is onneted to the bound-ary with wired boundary onditions, without onditioning. Hene, the lowerbound of the previous proposition gives the desired result.Remark 25. Note that ontrary to the power laws established using SLE, thereare no potential logarithmi orretions here � as is the ase with the �universal�arm exponents for perolation (orresponding to 2 and 3 arms in the half-plane,and 5 arms in the plane). Furthermore, one an follow the same standardreasoning as for perolation, based on the RSW lower bound, to prove that thetwo- and three-arm half-plane exponents, with alternating �types� (primal ordual), have values 1 and 2 respetively.27



5.5 n-point funtions for the FK Ising and the Ising mod-elsSine the work of Onsager [27℄, it is well-known that for the Ising model atritiality, the magnetization at the middle of a square of side length 2m with
(+) boundary onditions deays like m−1/8. It is then tempting to say that theorrelation of two spins at distane m in the plane (in the in�nite-volume limit,say) deays like m−1/4, and this is indeed what happens. To the knowledge ofthe authors, there is no straightforward generalization of Onsager's work thatallows to derive this without di�ult omputations. However, this result anbe made rigorous very easily with the help of Theorem 1. We give here only aresult for two-point orrelation funtions, but exponents for n-spin orrelations,for instane, an be obtained using exatly the same method.Let us �rst interpret Onsager's result in terms of the FK representation.Lemma 26. Let Bm be the square J−m, mK2 with arbitrary boundary onditions
ξ. Then there exist two onstants c1 and c2 (independent of m and ξ) suh thatwe have

c1m
−1/8 ≤ P

ξ(0 ∂Bm) ≤ c2m
−1/8. (5.8)Proof. Onsager's result gives the result with wired boundary onditions (sineit is derived in terms of the Ising model with (+) boundary onditions), so bymonotoniity it gives the upper bound. Using Theorem 1, we an obtain a lowerbound independent of the boundary onditions by enforing the existene of airuit in the annulus Bm \ Bm/2, and using the FKG inequality. For that, wejust need to lower the onstant, using monotoniity: the onnetion probabilityonditionally on the fat that there is a wired annulus around the origin is largerthan the onnetion probability with (+) boundary onditions on ∂Bm.We an now give the result for two-point orrelation funtions in the in�nite-volume Ising model.Proposition 27. Consider the Ising model on Z

2 at ritial temperature. Thereexist two positive onstants C1 and C2 suh that we have
C1|x − y|−1/4 ≤ E[σxσy] ≤ C2|x − y|−1/4, (5.9)where for any x, y ∈ Z

2, we denote by σx and σy the spins at x and y.Proof. The 2-spin orrelation E[σxσy ] an be expressed, in the orrespondingFK representation, as the probability of the event {x y}. Let now m be theinteger part of |x−y|/4. The upper bound is easy and does not rely on Theorem1: the event that x is onneted to y implies that x is onneted to x + ∂Bmand that y is onneted to y + ∂Bm. Using the Domain Markov property, thesetwo events are independent onditionally on the states on the boundaries of theboxes. Using the previous lemma, we get the upper bound.Let us turn now to the lower bound. We an enfore the existene of aonneted �8� in the disrete domain
[(x + B2m+2) ∪ (y + B2m+2)] \ [(x + Bm) ∪ (y + Bm)]28



that surrounds both x and y and separates them: this osts only a positiveonstant α, independent of m, using Theorem 1 in well-hosen retangles andthe FKG inequality. Using one again the FKG inequality, we get that
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