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Conne
tion probabilities and RSW-type boundsfor the FK Ising modelHugo Duminil-Copin, Clément Hongler, Pierre NolinAbstra
tWe prove Russo-Seymour-Welsh-type uniform bounds on 
rossing prob-abilities for the FK Ising model at 
riti
ality, independent of the boundary
onditions. Our proof relies mainly on Smirnov's fermioni
 observable forthe FK Ising model, whi
h allows us to get pre
ise estimates on bound-ary 
onne
tion probabilities. It remains purely dis
rete, in parti
ular wedo not make use of any 
ontinuum limit, and it 
an be used to derivedire
tly several noteworthy results � some new and some not � amongwhi
h the fa
t that there is no spontaneous magnetization at 
riti
ality,tightness properties for the interfa
es, and the existen
e of several 
riti
alexponents, in parti
ular the half-plane one-arm exponent.1 Introdu
tionIt is fair to say that the two-dimensional Ising model has a very parti
ularhistori
al importan
e in statisti
al me
hani
s. This model of ferromagnetismhas been the �rst natural model where the existen
e of a phase transition,a property 
ommon to many statisti
al me
hani
s models, has been proved,in Peierls' 1936 work [28℄. In a series of seminal papers (parti
ularly [27℄),Onsager 
omputed several ma
ros
opi
 quantities asso
iated with this model.Sin
e then, the Ising model has attra
ted a lot of attention, and it has probablybeen one of the most studied models, giving birth to an extensive literature,both mathemati
al and physi
al.A few de
ades later, in 1969, Fortuin and Kasteleyn introdu
ed a dependentper
olation model, for whi
h the probability of a 
on�guration is weighted by thenumber of 
lusters (
onne
ted 
omponents) that it 
ontains. This per
olationrepresentation turned out to be extremely powerful to study the Ising model,and by now it has be
ome known as the random-
luster model, or the Fortuin-Kasteleyn per
olation � FK per
olation for short. Re
all that on a �nite graph
G, the FK per
olation pro
ess with parameters p, q is obtained by assigning toea
h 
on�guration ω a probability proportional to

po(ω)(1 − p)c(ω)qk(ω),where o(ω), c(ω), and k(ω) denote respe
tively the number of open edges, 
losededges, and 
onne
ted 
omponents in ω. The de�nition of the model also involves1
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the use of boundary 
onditions, en
oding 
onne
tions taking pla
e outside G.The boundary 
onditions 
an be seen as a set of additionnal edges between siteson the outer boundary, and they will play a 
entral role in this arti
le. Thepre
ise setup that we 
onsider in this paper is presented in Se
tion 2.For the spe
i�
 value q = 2, the FK per
olation provides a geometri
 rep-resentation of the Ising model via the Edwards-Sokal 
oupling [10℄. For thisreason, we restri
t ourselves here to this value q = 2, and we 
all this modelthe FK Ising model. We also sti
k to the square latti
e Z
2 � or subgraphsof it � though our arguments 
ould possibly be 
arried out in the more gen-eral 
ontext of isoradial graphs, as in [9℄. Note that our results are stated forthe FK representation, but that the Edwards-Sokal 
oupling then allows oneto translate them into results for the Ising model itself. For instan
e, 2-point
onne
tion probabilities for the FK Ising model 
orrespond via this 
oupling to2-spin 
orrelation fun
tions for the Ising model.For the value q = 2 and Z

2 as an underlying graph, the model features aphase transition � in the in�nite-volume limit � at the 
riti
al and self-dualpoint pc = psd =
√

2
1+

√
2
: for p < pc, there is a.s. no in�nite open 
luster, whilefor p > pc, there is a.s. a unique one. These two regimes, known as sub-
riti
aland super-
riti
al, have totally di�erent ma
ros
opi
 behaviors. Between themlies a very interesting and ri
h regime, the 
riti
al regime, 
orresponding to thevalue p = pc. Its behavior is intimately related to the behavior of the modelthrough its phase transition, as indi
ated in parti
ular by the s
aling theory.In this paper, we prove lower and upper bounds for 
rossing probabilitiesin re
tangles of bounded aspe
t ratio. These bounds are uniform in the size ofthe re
tangles and in the boundary 
onditions, and they are analogues for theFK Ising model to the 
elebrated Russo-Seymour-Welsh bounds for per
olation[30, 31℄. Formally, we 
onsider re
tangles R on the square latti
e, J0, nK× J0, mKfor n, m > 0, and translations of it � here and in the following, J·, ·K denotes theinteger interval between the two (real) end-points, i.e. the interval [·, ·] ∩ Z

2.We denote by Cv(R) the event that there exists a verti
al 
rossing in R, a pathfrom the bottom side J0, nK × {0} to the top side J0, nK × {m} whi
h 
onsistsonly of open edges. Our main result is the following:Theorem 1 (RSW-type 
rossing bounds). Let 0 < β1 < β2. There exist two
onstants 0 < c− ≤ c+ < 1 (depending only on β1 and β2) su
h that for anyre
tangle R with side lengths n and m ∈ Jβ1n, β2nK ( i.e. with aspe
t ratiobounded away from 0 and ∞ by β1 and β2), one has
c− ≤ P

ξ
psd,2,R(Cv(R)) ≤ c+for any boundary 
onditions ξ, where P

ξ
psd,2,R denotes the FK measure on Rwith parameters (p, q) = (psd, 2) and boundary 
onditions ξ.These bounds are in some sense a �rst glimpse of s
ale invarian
e. It waswidely believed in the physi
s literature that the FK Ising model at 
riti
ality,i.e. for p = pc, should possess a strong property of 
onformal invarian
e in thes
aling limit [29, 4, 5℄. A pre
ise mathemati
al meaning was re
ently established2



by Smirnov in a groundbreaking paper [33℄. One of the main tools there is theso-
alled preholomorphi
 fermioni
 observable, a 
omplex observable that allowsone to make appear harmoni
ity on the dis
rete level. This property 
an thenbe used to take 
ontinuum limits and des
ribe the s
aling limits so-obtained.Our proof mostly relies on Smirnov's observable. More pre
isely, it is basedon pre
ise estimates on 
onne
tion probabilities for boundary verti
es, that allowus to use a se
ond-moment method on the number of pairs of 
onne
ted sites.For that, we use Smirnov's observable to reveal some harmoni
ity on the dis
retelevel, whi
h enables us to express ma
ros
opi
 quantities su
h as 
onne
tionprobabilities in terms of dis
rete harmoni
 measures. Note in addition thatother re
ent works [2, 3℄ also suggest that this 
omplex observable is a relevantway to look at FK per
olation, both for q = 2 and for other values of q. Wewould like to stress that our argument is intended to be self-
ontained and that itstays 
ompletely in a dis
rete setting, using essentially elementary 
ombinatorialtools: in parti
ular, we do not make use of any 
ontinuum limits [34℄.Crossing bounds turned out to be instrumental to study the per
olationmodel at and near its phase transition � for instan
e to derive the s
aling re-lations [19℄, that link the main ma
ros
opi
 observables, su
h as the densityof the in�nite 
luster and the 
hara
teristi
 length. These bounds are alsouseful to study variations of per
olation, in parti
ular for models exhibiting aself-organized 
riti
al behavior. We thus expe
t Theorem 1 to be of parti
ularinterest to study the FK Ising model at and near 
riti
ality.This theorem allows us to derive easily several noteworthy results. Amongthe 
onsequen
es that we state, let us mention the 
elebrated fa
t that there isno magnetization at 
riti
ality for the Ising model, �rst established by Onsagerin [27℄, tightness results for the interfa
es 
oming from the Aizenman-Bur
hardte
hnology, and the value 1/2 of the one-arm half-plane exponent � that de-s
ribes the asymptoti
 probability of large-distan
e 
onne
tions starting froma boundary point, and also the de
ay of boundary magnetization in the Isingmodel. It should also be instrumental to prove the existen
e of 
riti
al expo-nents, in parti
ular of the arm exponents.Theorem 1 appears to be a very useful tool, enabling to transfer propertiesof the s
aling limit obje
ts ba
k to the dis
rete models. Conne
tions betweendis
rete models and their 
ontinuum 
ounterparts usually involve de
orrelationof di�erent s
ales, and thus use spatial independen
e between regions whi
hare far enough from ea
h other. In the random 
luster model, one usuallyaddresses the la
k of spatial independen
e by su

essive 
onditionings, usingrepeatedly the spatial (or domain) Markov property of FK per
olation, by whi
hwhat happens outside a given domain 
an be en
oded by appropriate boundary
onditions. For this reason, proving bounds that are uniform in the boundary
onditions seems to be very important.We would also like to mention that other proofs of Russo-Seymour-Welsh-type bounds have already been proposed. In [9℄, Chelkak and Smirnov give adire
t and elegant argument to expli
itly 
ompute the 
rossing probabilities inthe s
aling limit, but their argument only applies for some spe
i�
 boundary3




onditions (alternatively wired and free on the four sides). In [7℄, Camia andNewman also propose to obtain RSW as a 
orollary of a re
ently announ
edresult: the 
onvergen
e of the full 
olle
tion of interfa
es for the Ising model [9℄to the 
onformal loop ensemble CLE(3). The interpretation of CLE(3) in termsof the Brownian loop soup [37℄ is also used. However, to the author's knowledge,the proofs of these two results are quite involved, and moreover, the reasoningproposed only applies for boundary 
onditions �in the bulk�, that 
orrespondto the in�nite-volume limit. In these two 
ases, uniformity with respe
t to theboundary 
onditions is not addressed, and there does not seem to be an easyargument to avoid this di�
ulty. While weaker forms might be su�
ient forsome appli
ations, it seems however that this stronger form is needed in manyimportant 
ases, and that it 
onsiderably shortens several existing arguments.The paper is organized as follows. In Se
tion 2, we �rst remind the readerof the basi
 features of the FK per
olation, as well as properties of Smirnov'sfermioni
 observable. In Se
tion 3, we 
ompare the observable to harmoni
measures, and we establish some estimates on these harmoni
 measures. Theseestimates are instrumental in the proof of Theorem 1, whi
h we perform inSe
tion 4. Finally, Se
tion 5 is devoted to presenting the 
onsequen
es that wementioned.2 FK per
olation ba
kground2.1 Basi
 features of the modelIn order to remain as self-
ontained as possible, we re
all some basi
 featuresof the random-
luster models. Some of these properties, like the Fortuin-Kasteleyn-Ginibre (FKG) inequality, are 
ommon to many statisti
al me
hani
smodels. The reader 
an 
onsult the referen
e book [13℄ for more details, andproofs of the results stated.De�nition of random-
luster measuresThe random-
luster (or FK per
olation) measure 
an be de�ned on any �nitegraph, but here we only 
onsider �nite subgraphsG of the square latti
e (Z2, E2).We denote by ∂G the boundary of su
h a subgraphG, that is, the verti
es havingless than four adja
ent edges � noti
e that this de�nition is non standard. A
on�guration ω is a random subgraph given by the verti
es of G, together withsome subset of edges between them. An edge of G is 
alled open if it belongs to
ω, and 
losed otherwise. Two sites x and y are said to be 
onne
ted if there isan open path � a path 
omposed of open edges only � 
onne
ting them, whi
his denoted by x  y. Similarly, two sets of verti
es X and Y are said to be
onne
ted if there exist two sites x ∈ X and y ∈ Y su
h that x  y, and weuse the notation X  Y . We also abbreviate {x} Y as x Y . Sites 
an begrouped into (maximal) 
onne
ted 
omponents, usually 
alled 
lusters.4



Contrary to usual independent per
olation, the edges in the FK per
olationmodel are dependent of ea
h other, a fa
t whi
h makes the notion of boundary
onditions important. Formally, a set ξ of boundary 
onditions is a set of�abstra
t� edges, ea
h 
onne
ting two boundary verti
es, that en
odes how theseverti
es are 
onne
ted outside G. We denote by ω ∪ ξ the graph obtained byadding the new edges in ξ to the 
on�guration ω.We are now in a position to de�ne the FK per
olation measure itself, forany parameters p ∈ [0, 1] and q ≥ 1. Denoting by o(ω) (resp. c(ω)) the numberof open (resp. 
losed) edges of ω, and by k(ω, ξ) the number of 
onne
ted
omponents in ω∪ξ, the FK per
olation pro
ess on G with parameters p, q andboundary 
onditions ξ is obtained by taking
P

ξ
p,q,G({ω}) =

po(ω)(1 − p)c(ω)qk(ω,ξ)

Zξ
p,q,G

(2.1)as a probability for any 
on�guration ω on G, where Zξ
p,q,G is an appropriatenormalizing 
onstant, 
alled the partition fun
tion.Among all the possible boundary 
onditions, two of them play a parti
ularrole. On the one hand, the free boundary 
onditions 
orrespond to the 
ase whenthere are no extra edges 
onne
ting boundary verti
es, we denote by P

0
p,q,G the
orresponding measure. On the other hand, the wired boundary 
onditions
orrespond to the 
ase when all the boundary verti
es are pair-wise 
onne
ted,and the 
orresponding measure is denoted by P

1
p,q,G.Domain Markov propertyThe di�erent edges of an FK per
olation model being highly dependent, whathappens in a given domain depends on the 
on�guration outside the domain.However, the FK per
olation model possesses a very 
onvenient property knownas the Domain Markov property, whi
h usually makes it possible to obtain somespatial independen
e. This property is really instrumental in all our proofs.Consider a graph G, with E its set of verti
es. For a subset F ⊆ E, 
onsiderthe graph G′ having F as a set of verti
es, and the edges of G 
onne
ting sitesof F as a set of edges. Then for any boundary 
onditions φ, P

φ
p,q,G 
onditionedto mat
h some 
on�guration ω outside G is equal to P

ξ
p,q,G′ , where ξ is the set of
onne
tions inherited from ω. In other words, one 
an en
ode, using appropriateboundary 
onditions ξ, the in�uen
e of the 
on�guration outside G.Strong positive asso
iation and in�nite-volume measuresThe random-
luster model with parameters p ∈ [0, 1] and q ≥ 1 on a �nite graph

G has the strong positive asso
iation property. More pre
isely, it satis�es theso-
alled Holley 
riterion, a fa
t whi
h has two important 
onsequen
es. A �rst
onsequen
e is the well-known FKG inequality
P

ξ
p,q,G(A ∩ B) ≥ P

ξ
p,q,G(A) P

ξ
p,q,G(B) (2.2)5



for any pair of in
reasing events A, B (in
reasing events are de�ned in theusual way [13℄) and any boundary 
onditions ξ. This 
orrelation inequality isfundamental to study FK per
olation, for instan
e to 
ombine several in
reasingevents su
h as the existen
e of 
rossings in various re
tangles.A se
ond property implied by the strong positive asso
iation is the followingmonotoni
ity between boundary 
onditions, whi
h is parti
ularly useful when
ombined with the Domain Markov property. For any boundary 
onditions
φ ≤ ξ (all the 
onne
tions present in φ belong to ξ as well), we have

P
φ
p,q,G(A) ≤ P

ξ
p,q,G(A) (2.3)for any in
reasing event A that depends only on G. We say that P

φ
p,q,G issto
hasti
ally dominated by P

ξ
p,q,G (denoted by P

φ
p,q,G ≤st P

ξ
p,q,G).In parti
ular, this property dire
tly implies that the free and wired bound-ary 
onditions are extremal in the sense of sto
hasti
 ordering: for any set ofboundary 
onditions ξ, one has

P
0
p,q,G ≤st P

ξ
p,q,G ≤st P

1
p,q,G. (2.4)An in�nite-volume measure 
an be 
onstru
ted as the in
reasing limit of FKper
olation measures on the nested sequen
e of graphs (J−n, nK2)n≥1 with freeboundary 
onditions. For any �xed q ≥ 1, 
lassi
al arguments then show thatthere must exist a 
riti
al point pc = pc(q) su
h that for any p < pc, there isalmost surely no in�nite 
luster of sites, while for p > pc, there is almost surelyone (see [13℄ for example).Planar dualityIn two dimensions, an FK measure on a subgraph G of Z

2 with free boundary
onditions 
an be asso
iated with a dual measure in a natural way, as we explainnow. The dual graph G∗ is obtained by putting a vertex at the 
enter of ea
hfa
e of Z
2 having an edge in G. The edges are 
onne
ting any two adja
entverti
es for whi
h the 
orresponding fa
es are separated by an edge of G. TheFK per
olation model P

0
p,q,G is then dual to the measure P

1
p∗,q,G∗ , where p∗satis�es

pp∗

(1 − p)(1 − p∗)
= q. (2.5)One then expe
ts the 
riti
al point pc(q) to be the self-dual point psd(q) forwhi
h p = p∗, whose value 
an easily be derived:

psd(q) =

√
q

1 +
√

q
. (2.6)FK per
olation with parameter q = 2: FK Ising modelFor the value q = 2 of the parameter, the FK per
olation model is related tothe Ising model. More pre
isely, if starting from an FK per
olation sample, one6



assigns uniformly at random a spin +1 or −1 to ea
h 
luster as a whole (sitesin the same 
luster get the same spin), independently, we get simply a sampleof the Ising model. This 
oupling is 
alled the Edwards-Sokal 
oupling [10℄.In this 
ase, the FK per
olation model is now well-understood. The value
pc = psd is implied by the 
omputation by Kaufman and Onsager [18℄ of thepartition fun
tion of the Ising model, and an alternative proof has been proposedre
ently by Be�ara, Duminil-Copin and Smirnov [2℄. Moreover, in [33℄, Smirnovproved 
onformal invarian
e of this model at the self-dual point psd.In the following, we restri
t ourselves to the FK per
olation model with pa-rameters q = 2 and p = psd(2) =

√
2/(1+

√
2) (so that we forget the dependen
eon p and q), whi
h is also known as the 
riti
al FK Ising model � we often 
allit the FK Ising model for short.2.2 Smirnov's fermioni
 observableIn this part, we re
all dis
rete analyti
ity and dis
rete harmoni
ity results forthe FK Ising model, established by Smirnov in [33℄. These results are 
ru
ialin our proofs sin
e they will allow us to 
ompare 
onne
tion probabilities toharmoni
 measures. Re
all that from now, q = 2 and p = psd(2).FK Ising model in Dobrushin domainsLet D be a �nite subgraph of the primal latti
e Z

2 su
h that ∂eD is a self-avoiding polygon� where ∂eD is the set of edges between boundary sites. Hen
e,
Int(D), the 
onne
ted 
omponent of R

2\∂eD 
ontaining the graph, is a boundedand simply 
onne
ted domain. Consider two sites a and b of the boundary of
D. They determine two ar
s of ∂eD, (ab) and (ba), obtained by following ∂eDin the 
ounter
lo
kwise dire
tion from a to b, and 
onversely.We 
onsider a random 
luster measure with free boundary 
onditions on
(ab), and wired boundary 
onditions on (ba). These boundary 
onditions are
alled the Dobrushin boundary 
onditions on (D, a, b), (ab) is 
alled the freear
 and (ba) the wired ar
. We denote by PD,a,b the asso
iated random 
lustermeasure with parameters q = 2 and p = psd(2). This measure has a very ni
erepresentation on the so-
alled medial graph of D, whi
h we de�ne now.Medial latti
e and loop representation for the FK Ising modelWe �rst de�ne the medial latti
e asso
iated with the square latti
e Z

2. In orderto do that, 
onsider together Z
2 with its dual (Z2)∗, and de
lare bla
k the sitesof the primal latti
e Z

2, and white the sites of the dual latti
e (Z2)∗. We thenintrodu
e the graph obtained by repla
ing every site by a 
olored diamond, ason Figure 1. We obtain in this way a rotated 
opy of the square latti
e (s
aledby a fa
tor 1/
√

2), denoted by (Z2)⋄. The sites of the primal (resp. dual) latti
eare thus asso
iated with the bla
k (resp. white) fa
es: we use extensively in theproof this 
orresponden
e between sites of the primal and of the dual latti
es,7



D

ea

eb

a

b

Figure 1: A domain D with Dobrushin boundary 
onditions: the verti
es ofthe primal graph are bla
k, the verti
es of the dual graph D∗ are white, andbetween them lies the medial latti
e D⋄.and fa
es of the medial latti
e. For instan
e, we say that two bla
k diamondsare 
onne
ted if the 
orresponding sites of the primal latti
e are 
onne
ted.We 
onstru
t the medial graph D⋄ of (D, a, b) by 
onsidering the diamondsinterse
ting Int(D), together with the white diamonds tou
hing the free ar

(ba) (see Figure 1). These white diamonds form the free ar
 of D⋄, the bla
kdiamonds 
orresponding to sites of the wired ar
 of D form the wired ar
 of
D⋄. The 
orners of diamonds not belonging to the two ar
s of D⋄ de�ne theverti
es of D⋄. The edges are the edges of (Z2)⋄ between two verti
es. Weadopt the following 
onvenient 
onvention: the two edges ea and eb of (Z2)⋄(resp. adja
ent to a and b) that �separate� the free and the wired ar
s of D⋄ are
onsidered as edges of D⋄.Remark 2. The two de�nitions of ar
s (for D and D⋄) are quite similar. Nev-ertheless, the free ar
 of D is 
omposed of sites of Z

2 while the free ar
 of D⋄is 
omposed of white diamonds of D⋄. Moreover, verti
es of D⋄ possess twoadja
ent edges if they are �on the boundary� (ex
ept next to a and b), and fourotherwise.For any FK per
olation 
on�guration in D, the interfa
es between the primal
lusters and the dual 
lusters (if we follow the edges of the medial latti
e) forma family of loops, together with one path from ea to eb, 
alled the explorationpath, as shown on Figure 2. A simple rearrangement of (2.1) shows that theprobability of su
h a 
on�guration is proportional to (
√

2)#loops � taking into8



D

ea

eb

Figure 2: An FK per
olation 
on�guration in the Dobrushin domain (D, a, b),together with the 
orresponding interfa
es on the medial latti
e: the loops ingrey, and the exploration path γ from ea to eb in bla
k.a

ount the fa
t that q = 2 and p = psd(2).In addition to this, we put an orientation on the medial graph: we orient theedges of ea
h bla
k fa
e in su
h a way that the arrows are in 
ounter-
lo
kwiseorder. It naturally gives an orientation to the loops, so that we are now workingwith a model of oriented 
urves on the medial latti
e.Remark 3. If we 
onsider a Dobrushin domain (D, a, b), the slit domain 
reatedby �removing� the T �rst steps of the exploration path is again a Dobrushindomain. More pre
isely, 
onsider the new ar
 l 
omposed of ∂eD, together withthe sites of D adja
ent to the exploration path. We 
an de�ne a new domainby removing all the sites of D whi
h are not in the same 
onne
ted 
omponentof D \ l as b: we obtain a new Dobrushin domain (D \ γ[0, T ], γ(T ), b), where,with a slight abuse of notation, γ(T ) is used to denote the site of the primallatti
e adja
ent to the medial edge γ(T ). The exploration path γ is the interfa
ebetween the primal open 
luster 
onne
ted to the wired ar
 and the dual open
luster 
onne
ted to the free ar
, so that, 
onditionally on γ, the law of the FKIsing model in the new domain is exa
tly PD\γ[0,T ],γ(T ),b. This observation willbe instrumental in our proof.Fermioni
 observable and lo
al relationsLet (D, a, b) be a Dobrushin domain and γ the exploration path from ea to eb.The winding WΓ(z, z′) of a 
urve Γ between two edges z and z′ of the medial9



v

e3e4

e1 e2

Figure 3: The dis
rete relation at a vertex v.latti
e is the total rotation (in radians) that the 
urve makes from the 
enter ofthe edge z to the 
enter of the edge z′. The fermioni
 observable F 
an now bede�ned by the formula [33℄
F (e) = ED,a,b[e

− 1
2
·iWγ(ea,e)

Ie∈γ ], (2.7)for any edge e of the medial latti
e D⋄. The 
onstant σ = 1/2 appearing infront of the winding is 
alled the spin (see [33℄).The quantity F (e) is a 
omplexi�ed version of the probability that e belongsto the exploration path (note that it is de�ned on the medial graph D⋄). The
omplex weight makes the link between F and probabilisti
 properties less ex-pli
it. Nevertheless, as we will see, the winding term 
an be 
ontrolled 
lose tothe boundary. The observable F also satis�es the following lo
al relation, fromwhi
h Propositions 5 and 6 follow.Lemma 4 ([33℄). For any vertex v of the medial latti
e D⋄ with four adja
entedges in D⋄, the relation
F (e1) + F (e3) = F (e2) + F (e4) (2.8)is satis�ed, where e1, e2, e3 and e4 are the four edges at v indexed in 
lo
kwiseorder, as on Figure 3.We refer to [33℄ or [2℄ for the proof of this result. The key ingredient isa bije
tion between 
on�gurations that 
ontribute to the values of F at theverti
es around v. Note that for other values of q, one 
an still de�ne thefermioni
 observable in a way similar to Eq.(2.7): for an appropriate value

σ = σ(q) of the spin, the previous relation Eq.(2.8) still holds (see [33℄, [2℄, or[3℄).Complex argument of the fermioni
 observable F and de�nition of HDue to the spe
i�
 value of the spin σ = 1/2, 
orresponding to the value q = 2,the 
omplex argument modulo π of the fermioni
 observable F follows from itsde�nition Eq.(2.7). For instan
e, if the edge e points in the same dire
tion asthe starting edge ea, then the winding is a multiple of 2π, so that the term10



e−
i
2

Wγ(ea,z) is equal to ±1, and F (e) is purely real. The same reasoning 
an beapplied to any edge to show that it belongs to the line eiπ/4
R, e−iπ/4

R or iRdepending on its dire
tion. Contrary to Lemma 4, this property is very spe
i�
to the FK Ising model.For a vertex v with four adja
ent edges, keeping the same notations as inthe previous subse
tion, F (e1) and F (e3) are always orthogonal (for the s
alarprodu
t between 
omplex numbers (a, b) 7→ ℜe(ab̄)), as well as F (e2) and F (e4),so that Eq.(2.8) 
an be rewritten as
|F (e1)|2 + |F (e3)|2 = |F (e2)|2 + |F (e4)|2 . (2.9)Consider now a vertex v with two adja
ent edges of D⋄, and denote by e5the �entering� edge, and e6 the �exiting� edge. Su
h a vertex must be on theboundary of the domain, and e5 belongs to γ if and only if e6 belongs to γ� indeed, by 
onstru
tion, the 
urve entering through e5 must leave through

e6. Moreover, the windings of the 
urve Wγ(ea, e5) and Wγ(ea, e6) are 
onstantsin
e γ 
annot wind around these edges. From these two fa
ts, we dedu
e:
|F (e5)|2 =

∣

∣

∣
e−

i
2

Wγ(ea,e5)PD,a,b(e5 ∈ γ)
∣

∣

∣

2

= PD,a,b(e5 ∈ γ)2 = |F (e6)|2. (2.10)From Eqs.(2.9) and (2.10), one 
an easily prove the following proposition.Proposition 5 ([33℄). There exists a unique fun
tion H de�ned on the fa
esof D⋄ by the relation
H(B) − H(W ) = |F (e)|2 , (2.11)for any two neighboring fa
es B and W , respe
tively bla
k and white, separatedby the edge e, and by �xing the value 1 on the bla
k fa
e 
orresponding to a.Moreover, H is then automati
ally equal to 1 on the bla
k diamonds of the wiredar
, and equal to 0 on the white diamonds of the free ar
.This fun
tion H is a dis
rete analogue of the antiderivative of F 2, as ex-plained in Remark 3.7 of [33℄.Approximate Diri
hlet problem for HLet us denote by H• and H◦ the restri
tions of H respe
tively to the bla
kfa
es and to the white fa
es. For a bla
k site of D not on the boundary, we 
an
onsider the usual dis
rete Lapla
ian (on the graph D) at this site: it is theaverage on the four nearest bla
k neighbors, minus the value at the site itself.A similar de�nition holds for white sites of the graph D∗.The result below, proved in [33℄, is a key step to prove 
onvergen
e of theobservable as one s
ales the domain � but we will not dis
uss this question here.Its proof relies on an elementary yet quite lengthy 
omputation.Proposition 6 ([33℄). The fun
tion H• (resp. H◦) is subharmoni
 (resp. su-perharmoni
) inside the domain for the dis
rete Lapla
ian.11



Sin
e we know that H is equal to 1 (resp. 0) on the bla
k diamonds of thewired ar
 (resp. the white diamonds of the free ar
), the previous proposition
an be seen as an approximate Diri
hlet problem for the fun
tion H . In the nextse
tion, we make this statement rigorous by 
omparing H to harmoni
 fun
tions
orresponding to the same boundary problems (on the set of bla
k fa
es, or onthe set of white ones).3 Comparison to harmoni
 measuresIn this se
tion, we obtain a 
omparison result for the boundary values of thefermioni
 observable F introdu
ed in the previous se
tion in terms of dis
reteharmoni
 measures. It will be used to obtain all the quantitative estimates onthe observable that we need for the proof of Theorem 1.3.1 Comparison prin
ipleAs in the previous se
tion, let (D, a, b) be a dis
rete Dobrushin domain, withfree boundary 
onditions on the 
ounter
lo
kwise ar
 from a to b and wiredboundary 
onditions on the 
ounter
lo
kwise ar
 from b to a.For our estimates, we �rst extend the medial graph of our dis
rete domainby adding two extra layers of fa
es: one layer of white diamonds adja
ent to thebla
k diamonds of the sites of the wired ar
, and one layer of bla
k diamondsadja
ent to the white diamonds of the free ar
. We denote by D̄⋄ this extendeddomain.Remark 7. Note that one fa
es a small te
hni
ality when adding a new layer ofdiamonds: some of these additional diamonds 
an overlap diamonds that werealready here. For instan
e, if the domain has a slit, the free and the wired ar
are adja
ent along this slit, and the extra layer on the wired ar
 (resp. free ar
)overlaps the free ar
 (resp. wired ar
). As we will see, H• is equal to 1 on thewired ar
, and to 0 on the additional layer along the free ar
. One should thusremember in the following that the added diamonds are 
onsidered as di�erentfrom the original ones � it will always be 
lear from the 
ontext whi
h diamondswe are 
onsidering.For any given bla
k fa
e B, let us de�ne (

XB
•t

)

t≥0
to be the 
ontinuous-timerandom walk on the bla
k fa
es of D̄⋄ starting at B, that jumps with rate 1on adja
ent bla
k fa
es, ex
ept for the bla
k fa
es on the extra layer of bla
kdiamonds adja
ent to the free ar
 onto whi
h it jumps with rate ρ := (

√
2+1)/2.Similarly, we denote by (

XW
◦t

)

t≥0
the 
ontinuous-time random walk on the whitefa
es of D̄⋄ starting at a white fa
e W that jumps with rate 1 on adja
ent whitefa
es, ex
ept for adja
ent white fa
es on the extra layer of white diamondsadja
ent to the wired ar
 onto whi
h it jumps with the same rate ρ = (

√
2+1)/2as previously.For a bla
k fa
e B, we denote by HM•(B) the probability that the randomwalk XB

•t hits the wired ar
 from b to a before hitting the extra layer adja
ent12
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Figure 4: We extend D⋄ by adding two extra layers of medial fa
es, and extendthe fun
tions H• and H◦ there. Here is represented the extension along the freear
.to the free ar
. Similarly, for W a white fa
e, we denote by HM◦(W ) theprobability that the random walk XW
◦t hits the additional layer adja
ent to thewired ar
 before hitting the free ar
. Note that there is no extra di�
ultyin de�ning these quantities for in�nite dis
rete domains as well. We have thefollowing result:Proposition 8 (uniform 
omparability). Let (D, a, b) be a dis
rete Dobrushindomain. For any medial edge e adja
ent to a boundary edge of the free ar
, ifwe denote by B = B(e) the bla
k fa
e that it borders and by W = W (e) any
losest white fa
e that is not on the free ar
, we have

√

HM◦(W ) ≤ |F (e)| ≤
√

HM•(B). (3.1)Proof. By 
onstru
tion of the fun
tion H , we have |F (e)|2 = H(B) and H(W ) =
|F (e)|2 − |F (e′)|2 ≤ |F (e)|2, where e′ is the medial edge between B and W : itis therefore su�
ient to show that H(B) ≤ HM•(B) and H(W ) ≥ HM◦(W ).We only prove that H(B) ≤ HM•(B), sin
e the other 
ase 
an be handled inthe same way.For this, we use a variation of a tri
k introdu
ed in [9℄ and extend the fun
tion
H to the extra layer of bla
k diamonds � added as explained above � by setting Hto be equal to 0 there. It is then su�
ient to show that the restri
tion H• of H tothe bla
k diamonds of D̄⋄ is subharmoni
 for the Lapla
ian that is the generatorof the random walk X•, sin
e it has the same boundary values as HM•. Insidethe domain, this is given by Proposition 6, sin
e there the Lapla
ian is theusual dis
rete Lapla
ian (asso
iated with it is just a simple random walk). Theonly thing to 
he
k is when a fa
e involved in the 
omputation of the Lapla
ianbelongs to one of the extra layers. For the sake of simpli
ity, we study the 
asewhen only one fa
e belongs to these extra layers.Denote by BW , BN , BE and BS the bla
k fa
es adja
ent to B, and assumethat BS is on the extra layer (see Figure 4). The dis
rete Lapla
ian of X• at13



fa
e B is denoted by ∆•. We 
laim that
∆•H•(B) =

2 +
√

2

6 + 5
√

2
[H•(BW )+H•(BN )+H•(BE)]+

2
√

2

6 + 5
√

2
H•(BS)−H•(B) ≥ 0.(3.2)For that, let us denote by e1, e2, e3, e4 the four medial edges at the bottomvertex v between B and BS , in 
lo
kwise order, with e1 and e2 along B, and e3and e4 along BS (see Figure 4) � note that e3 and e4 are not edges of D⋄, butof (Z2)⋄.We extend F to e3 and e4 by requiring F (e3) and F (e1) to be orthogonal,as well as F (e4) and F (e2), and F (e1) + F (e3) = F (e2) + F (e4) to hold true.This de�nes these two values uniquely: indeed, as noted before, we know that

F (e2) = e−iπ/4F (e1) on the boundary (sin
e Wγ(ea, e1) and Wγ(ea, e2) are �xed,with Wγ(ea, e2) = Wγ(ea, e1) + π/2, and the 
urve 
annot go through one ofthese edges without going through the other one), whi
h implies, after a small
al
ulation, that
|F (e3)|2 =

∣

∣

∣

(

tan
π

8

)

eiπ/4F (e2)
∣

∣

∣

2

=
2 −

√
2

2 +
√

2
|F (e2)|2 =

2 −
√

2

2 +
√

2
H•(B).If we denote by H̃• the fun
tion de�ned by H̃• = H• on B, BW , BN and BE ,and by

H̃•(BS) = |F (e3)|2 =
2 −

√
2

2 +
√

2
H•(B), (3.3)then H̃• satis�es the same relation Eq.(2.11) (de�nition of H) for e3 and e4,as inside the domain. Sin
e the fermioni
 observable F veri�es the same lo-
al equations, the 
omputation performed in the Appendix C of [33℄ is valid,Proposition 6 applies at B, and we dedu
e

∆H̃•(B) =
1

4
[H̃•(BW ) + H̃•(BN ) + H̃•(BE) + H̃•(BS)] − H̃•(B) ≥ 0. (3.4)Using the de�nition of H̃•, this inequality 
an be rewritten as

1

4
[H•(BW ) + H•(BN ) + H•(BE)] − 6 + 5

√
2

4(2 +
√

2)
H•(B) ≥ 0. (3.5)Now using that H•(BS) = 0, we get the 
laim, Eq.(3.2).3.2 Estimates on harmoni
 measuresIn the previous subse
tion, we gave a 
omparison prin
iple between the values of

H near the boundary, and the harmoni
 measures asso
iated with two (almostsimple) random walks, on the two latti
es 
omposed of the bla
k fa
es and ofthe white fa
es respe
tively. In this subse
tion, we give estimates for these twoharmoni
 measures in di�erent domains needed for the proof of Theorem 1. Westart by giving a lower bound whi
h is useful in the proof of the 1-point estimate.14
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2βn

2n

βn/2Figure 5: Estimate of Lemma 9: the dashed line 
orresponds to the free ar
.Lemma 9. For β > 0 and n ≥ 0, let Rβ
n be the graph

Rβ
n = J−βn, βnK × J0, 2nK.Then there exists c1(β) > 0 su
h that for any n ≥ 1,
HM◦(Wx) ≥ c1(β)

n2
(3.6)in the Dobrushin domain (Rβ

n, u, u) (see Figure 5), for all x = (x1, 0) and u =
(u1, 2n) su
h that |x1|, |u1| ≤ βn/2 ( i.e. far enough from the 
orners), Wx beingany of the two white fa
es that are both adja
ent to x and not on the free ar
.Proof. This proposition follows from standard results on simple random walks(the lo
al 
entral limit theorem and gambler's ruin type estimates). For thesake of 
on
iseness, we do not provide a detailed proof.In the remaining of the se
tion, we 
onsider only Dobrushin domains (D, a, b)that 
ontain the origin on the free ar
, and are subsets of the medial latti
e H⋄,where H = {(x1, x2) ∈ Z

2, x2 ≥ 0} denotes the upper half plane � in this 
ase, wesay that D is a Dobrushin H-domain. For the following estimates on harmoni
measures, the Dobrushin domains that we 
onsider 
an also be in�nite. We areinterested in the harmoni
 measure of the wired ar
 seen from a given point:without loss of generality, we 
an assume that this point is just the origin. Let
B0 be the 
orresponding bla
k diamond of the medial latti
e, and W0 be anadja
ent white diamond whi
h is not on the free ar
.We �rst prove a lower bound on the harmoni
 measure. For that, we intro-du
e, for k ∈ Z and n ≥ 0, the segments

ln(k) = {k} × J0, nK (= {(k, j) : 0 ≤ j ≤ n}).Lemma 10. There exists a 
onstant c2 > 0 su
h that for any Dobrushin H-domain (D, a, b), we have
HM◦(W0) ≥

c2

k
, (3.7)provided that, in D, the segment lk(−k) dis
onne
ts from the origin the inter-se
tion of the free ar
 with the upper half-plane (see Figure 6).15
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lk(−k)lk(−k)Figure 6: The two domains involved in the proof of Lemma 10.Proof. We know that lk(−k) dis
onne
ts the origin from the part of the free ar
that lies in the upper half-plane, let us thus 
onsider the 
onne
ted 
omponent of
D\lk(−k) that 
ontains the origin. In this new domain D0, if we put free bound-ary 
onditions along lk(−k), the harmoni
 measure of the wired ar
 is smallerthan the harmoni
 measure of the wired ar
 in the original domain D. On theother hand, the harmoni
 measure of the wired ar
 in D0 is larger than the har-moni
 measure of the wired ar
 in the slit domain (H\lk(−k), (−k, k),∞), whi
hhas respe
tively wired and free boundary 
onditions to the left and to the rightof (−k, k) (see Figure 6). Estimating this harmoni
 measure is straightforward,using the same arguments as before.We now derive upper bounds on the harmoni
 fun
tions. We will needtwo estimates of di�erent types. The �rst one takes into a

ount the distan
ebetween the origin and the wired ar
, while the se
ond one requires the existen
eof a segment ln(k) dis
onne
ting the wired ar
 from the origin (still inside thedomain).Lemma 11. There exist 
onstants c3, c4 > 0 su
h that for any Dobrushin H-domain (D, a, b),(i) if d1(0) denotes the distan
e between the origin and the wired ar
,

HM•(B0) ≤ c3
1

d1(0)
, (3.8)(ii) and if the segment ln(k) dis
onne
ts the wired ar
 from the origin inside

D,
HM•(B0) ≤ c4

n

|k|2 . (3.9)Proof. Let us �rst 
onsider item (i). For d = d1(0), de�ne the Dobrushin domain
(B̃d, (−d, 0), (d, 0)) where B̃d is the set of sites in H at a graph distan
e at most
d from the origin (see Figure 7). The harmoni
 measure of the wired ar
 in
(D, a, b) is smaller than the harmoni
 measure of the wired ar
 in this newdomain B̃d, and, as before, this harmoni
 measure is easy to estimate.Let us now turn to item (ii). Sin
e ln(k) dis
onne
ts the wired ar
 fromthe origin, the harmoni
 measure of the wired ar
 is smaller than the harmoni
measure of ln(k) inside D, and this harmoni
 measure is smaller than it is in16
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ln(k)Figure 7: The two di�erent upper bounds (i) and (ii) of Lemma 11.the domain H \ ln(k) with wired boundary 
onditions on the left side of ln(k) �right side if k < 0 (see Figure 7). On
e again, the estimates are easy to performin this domain.4 Proof of Theorem 1We now prove our main result, Theorem 1. The main step is to prove theuniform lower bound for re
tangles of bounded aspe
t ratio with free boundary
onditions. We then use monotoni
ity to 
ompare boundary 
onditions andobtain the desired result. In the 
ase of free boundary 
onditions, the proofrelies on a se
ond moment estimate on the number N of pairs of verti
es (x, u),on the top and bottom sides of the re
tangle respe
tively, that are 
onne
tedby an open path.The organization of this se
tion follows the se
ond-moment estimate strat-egy. In Proposition 13, we �rst prove a lower bound on the probability for onesite on the bottom side of a re
tangle to be 
onne
ted to a site on the top side.This estimate gives a lower bound on the expe
tation of N . Then, Proposition14 provides an upper bound on the probability that two points on the bottomside of a re
tangle are 
onne
ted to the top side. This proposition is the 
oreof the proof, and it provides the right bound for the se
ond moment of N . Itallows us to 
on
lude the se
tion by using the se
ond moment estimate method,thus proving Theorem 1.In this se
tion, we use two main tools: the Domain Markov property, andprobability estimates for 
onne
tions between the wired ar
 and sites on thefree ar
. We �rst explain how the previous estimates on harmoni
 measures 
anbe used to derive estimates on 
onne
tion probabilities: the following lemma isinstrumental in our proof. 17



Lemma 12. Let (D, a, b) be a Dobrushin domain. For any site x on the freear
 of D, we have
√

HM◦(Wx) ≤ PD,a,b(x wired ar
) ≤ √

HM•(Bx), (4.1)where Bx is the bla
k fa
e 
orresponding to x, and Wx is any 
losest white fa
ethat is not on the free ar
.Proof. Sin
e x is on the free boundary of D, there exists a white diamond onthe free ar
 of D⋄ whi
h is adja
ent to Bx: we denote by e the edge betweenthese diamonds. As noted before, sin
e the edge e is along the free ar
, thewinding Wγ(ea, e) of the exploration path γ at e is 
onstant, and depends onlyon the dire
tion of e. This implies that
PD,a,b(e ∈ γ) = |F (e)|.In addition, e belongs to γ if and only if x is 
onne
ted to the wired ar
, whi
himplies that |F (e)| is exa
tly equal to PD,a,b(x wired ar
). Proposition 8 thusimplies the 
laim.With this lemma at our disposal, we 
an prove the di�erent estimates.Throughout the proof, we use the notation ci(β) for 
onstants that dependneither on n nor on sites x, y or on boundary 
onditions. When they do notdepend on β, we denote them by ci (it is the 
ase for the upper bounds). Re
allthe de�nition of Rβ

n:
Rβ

n = J−βn, βnK × J0, 2nK. (4.2)Let ∂+Rβ
n (resp. ∂−Rβ

n) be the top side J−βn, βnK × {2n} (resp. bottom side
J−βn, βnK×{0}) of the re
tangle Rβ

n. We begin with a lower bound on 
onne
-tion probabilities.Proposition 13 (
onne
tion probability for one point on the bottom side). Let
β > 0, there exists a 
onstant c(β) > 0 su
h that for any n ≥ 1,

P
0
Rβ

n
(x u) ≥ c(β)

n
(4.3)for all x = (x1, 0) ∈ ∂−Rβ

n, u = (u1, 2n) ∈ ∂+Rβ
n, satisfying |x1|, |u1| ≤ βn/2.Proof. The probability that x and u are 
onne
ted in the re
tangle with freeboundary 
onditions 
an be written as the probability that x is 
onne
ted tothe wired ar
 in (Rβ

n, u, u) (where the wired ar
 
onsists of a single vertex).The previous lemma, together with the estimate of Lemma 9, 
on
ludes theproof.We now study the probability that two boundary points on the bottom edgeof Rβ
n are 
onne
ted to the top edge. 18
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γ(T ) = z + (−r, r)
∂Bk

zFigure 8: The Dobrushin domain (Rβ
n, cn, dn), together with the explorationpath up to time T .Proposition 14 (
onne
tion probability for two points on the bottom side).There exists a 
onstant c > 0 (uniform in β, n) su
h that for any re
tangle Rβ

nand any two points x, y on the bottom side ∂−Rβ
n,

PRβ
n,an,bn

(x, y  wired ar
) ≤ c
√

|x − y|n
, (4.4)where an and bn denote respe
tively the top-left and top-right 
orners of there
tangle Rβ

n.The proof is based on the following lemma, whi
h is a strong form of theso-
alled half-plane one-arm probability estimate (see Se
tion 5.4 for a furtherdis
ussion of this result). For x on the bottom side of Rβ
n and k ≥ 1, we denoteby Bk(x) the box 
entered at x with diameter k for the graph distan
e. We 
annow state the lemma needed:Lemma 15. There exists a 
onstant c5 > 0 (uniform in n, β and the 
hoi
e of

x) su
h that for all k ≥ 0,
PRβ

n,an,bn
(Bk(x) wired ar
) ≤ c5

√

k

n
. (4.5)Proof. Consider n, k, β > 0, and the box Rβ

n with one point x ∈ ∂−Rβ
n. Eq.(4.5)be
omes trivial if k ≥ n, so we 
an assume that k ≤ n. For any 
hoi
e of

β′ ≥ β, the monotoni
ity between boundary 
onditions Eq.(2.4) implies thatthe probability that Bk(x) is 
onne
ted to the wired ar
 ∂+Rβ
n in (Rβ

n, an, bn)is smaller than the probability that Bk(x) is 
onne
ted to the wired ar
 inthe Dobrushin domain (Rβ′

n , cn, dn), where cn and dn are the bottom-left andbottom-right 
orners of Rβ′

n . From now on, we repla
e β by β + 1, and we workin the new domain (Rβ
n, cn, dn). Noti
e that Bk is then in
luded in Rβ

n and thatthe right-most site of Bk is at a distan
e at least n from the wired ar
.We denote by T the hitting time � for the exploration path naturally para-metrized by the number of steps � of the subset of the medial latti
e 
omposedof the edges adja
ent to Bk(x); we set T = ∞ if the exploration path neverrea
hes this set, so that x is 
onne
ted to Bk if and only if T < ∞.19



Let z be the right-most site of the box Bk(x). Consider now the event
{z  wired ar
}. By 
onditioning on the 
urve up to time T (and on the event
{Bk(x) wired ar
}), we obtain

P
R

β
n,cn,dn

(z  wired ar
) = E
R

β
n,cn,dn

ˆ

IT<∞P
R

β
n,cn,dn

(z  wired ar
 | γ[0, T ])
˜

= E
R

β
n,cn,dn

ˆ

IT<∞P
R

β
n\γ[0,T ],γ(T ),dn

(z  wired ar
)˜

,where in the se
ond inequality, we have used the Domain Markov property, andalso the fa
t that it is su�
ient for z to be 
onne
ted to the wired ar
 in thenew domain (sin
e it is then automati
ally 
onne
ted to the wired ar
 of theoriginal domain).On the one hand, sin
e z is at a distan
e at least n from the wired ar
(thanks to the new 
hoi
e of β), we 
an 
ombine Proposition 8 and Lemma 12with item (i) of Lemma 11 to obtain
PRβ

n,cn,dn
(z  wired ar
) ≤ c5√

n
. (4.6)On the other hand, if γ(T ) 
an be written as γ(T ) = z+(−r, r), with 0 ≤ r ≤ k,then the ar
 z+lr(−r) dis
onne
ts the free ar
 from z in the domain Rβ

n\γ[0, T ],while if γ(T ) = z+(−r, 2k−r), with k+1 ≤ r ≤ 2k, then the ar
 z+ lr(−r) stilldis
onne
ts the free ar
 from z. Using on
e again Proposition 8 and Lemma 12,this time with Lemma 10, we obtain that a.s.
PRβ

n\γ(−∞,T ),γ(T ),dn
(z  wired ar
) ≥ c4√

r
≥ c4√

2k
. (4.7)This estimate being uniform in the realization of γ[0, T ], we obtain

c4√
2k

PRβ
n,cn,dn

(T < ∞) ≤ PRβ
n,cn,dn

(z  wired ar
) ≤ c5√
n

, (4.8)whi
h implies the desired 
laim Eq.(4.5).Proof of Proposition 14. Let us take two sites x and y on ∂−Rβ
n. As in theprevious proof, the larger the β, the larger the 
orresponding probability, we
an thus assume that β has been 
hosen in su
h a way that there are no boundarye�e
ts. In order to prove the estimate, we express the event 
onsidered in termsof the exploration path γ. If x and y are 
onne
ted to the wired ar
, γ must gothrough two boundary edges whi
h are adja
ent to x and y, that we denote by

ex and ey. Noti
e that ex has to be dis
overed by γ before ey is.We now de�ne Tx to be the hitting time of ex, and Tk to be the hitting timeof the set of edges adja
ent to the ball B2k(y), for k ≤ k0 = ⌊log2 |x− y|⌋. If theexploration path does not 
ross this ball before hitting ex, we set Tk = ∞. Withthese de�nitions, the probability that ex and ey are both on γ 
an be expressed
20



Z

Rβ
n

2βn

2n

Z

Rβ
n

2βn

cn

Z

Rβ
n

2βn

2n

Z

Rβ
n

2βn

2n

x y
x

y

x yx y

∂B2k

∂B2k+1

∂B2k+1

∂B2k

γ

Tx

γ(Tk+1)

2n

an

an an

anbn bn

bnbn

(1)

(2)

(3)

Figure 9: This pi
ture presents the di�erent steps in the proof of Proposition14: we �rst (1) 
ondition on γ[0, Tx] and use the uniform estimate (i) of Lemma11, then (2) 
ondition on γ[0, Tk+1] and use the estimate (ii) of Lemma 11, inorder to (3) 
on
lude with Lemma 15.as
PRβ

n,an,bn
(x, y  wired ar
) = PRβ

n,an,bn
(ex, ey ∈ γ) (4.9)

=

k0
∑

k=0

PRβ
n,an,bn

(ey ∈ γ, Tx < ∞, Tk+1 < Tk = ∞) (4.10)
=

k0
∑

k=0

ERβ
n,an,bn

[

ITk+1<Tk=∞ITx<∞PRβ
n,an,bn

(ey ∈ γ |γ[0, Tx] )
]

, (4.11)where the se
ond equality is obtained by 
onditioning on the exploration pathup to time Tx. Re
all that ey belongs to γ if and only if y is 
onne
ted tothe wired ar
. Moreover, y is at a distan
e at least 2k from the wired ar
 in
Rβ

n \ γ[0, Tx] (sin
e Tk = ∞). Hen
e, the Domain Markov property and item (i)of Lemma 11 give that a.s.
PRβ

n,an,bn
(ey ∈ γ |γ[0, Tx] ) = PRβ

n\γ[0,Tx],x,bn
(y  wired ar
) ≤ c3√

2k
. (4.12)By plugging this uniform estimate into (4.11), and removing the 
ondition on

Tk = ∞, we obtain
P

R
β
n,an,bn

(ex, ey ∈ γ) ≤
k0

X

k=0

c3√
2k

E
R

β
n,an,bn

ˆ

ITk+1<∞P
R

β
n,an,bn

(Tx < ∞|γ[0, Tk+1] )
˜

,where we 
onditioned on the path up to time Tk+1. Now, ex belongs to γ if andonly if x is 
onne
ted to the wired ar
, and in addition, the verti
al segment21




onne
ting γ(Tk+1) to Z, of length at most 2k+1, dis
onne
ts the wired ar
 from
x in the domain Rβ

n \ γ[0, Tk+1]. Applying the Domain Markov property anditem (ii) of Lemma 11, we dedu
e that a.s.
P

R
β
n,an,bn

(ex ∈ γ |γ[0, Tk+1] ) = P
R

β
n\γ[0,Tk+1 ],γ(Tk+1),bn

(x wired ar
) ≤ c4

√
2k+1

|x − y| .Making use of this uniform bound, we obtain
PRβ

n,an,bn
(x, y  wired ar
) ≤ c3c4

k0
∑

k=0

√
2k+1

√
2k|x − y|

PRβ
n,an,bn

(Tk+1 < ∞)

≤ 2c3c4c5

|x − y|√n

k0
∑

k=0

√
2k

≤ c
√

n|x − y|
,using also Lemma 15 for the se
ond inequality.We are now in a position to prove our main result.Proof of Theorem 1. Let β > 0 and n > 0, and also Rβ

n de�ned as previously.Step 1: lower bound for free boundary 
onditions. Let Nn be the numberof 
onne
ted pairs (x, u), with x ∈ ∂−Rβ
n, and u ∈ ∂+Rβ

n. The expe
ted valueof this quantity is equal to
E

0
Rβ

n
[Nn] =

∑

u∈∂+Rβ
n

x∈∂−Rβ
n

P
0
Rβ

n
(x u). (4.13)Proposition 13 dire
tly provides the following lower bound on the expe
tationby summing on the (βn)2 pairs of points (x, u) far enough from the 
orners, i.e.satisfying the 
ondition of the proposition:

E
0
Rβ

n
[Nn] ≥ c6(β)n (4.14)for some c6(β) > 0.On the other hand, if x and u (resp. y and v) are pair-wise 
onne
ted, thenthey are also 
onne
ted to the horizontal line Z × {n} whi
h is (verti
ally) atthe middle of Rβ

n. Moreover, the Domain Markov property implies that theprobability � in Rβ
n with free boundary 
onditions � that x and y are 
onne
tedto this line is smaller than the probability of this event in the re
tangle of halfheight with wired boundary 
onditions on the top side. In the following, weassume without loss of generality that n is even and we set m = n/2, so that22



the previous re
tangle is R2β
m , and we de�ne am and bm as before. Using theFKG inequality, and also the symmetry of the latti
e, we get

P
0

R
β
n
(x u, y  v) ≤ P

R
2β
m ,am,bm

(x, y  wired ar
) P
R

2β
m ,am,bm

(ū, v̄  wired ar
),where ū and v̄ are the proje
tions on the real axis of u and v. Summing thebound provided by Proposition 14 on all sites x, y ∈ ∂−Rβ
n and u, v ∈ ∂+Rβ

n, weobtain
E

0
Rβ

n
[N2

n] ≤ c7m
2 ≤ c7n

2 (4.15)for some 
onstant c7 > 0. Now, by the Cau
hy-S
hwarz inequality,
P

0
Rβ

n
(Cv(R

β
n)) = P

0
Rβ

n
(Nn > 0) = E

0
Rβ

n
[(INn>0)

2] ≥
E

0
Rβ

n

[Nn]2

E
0
Rβ

n

[N2
n]

≥ c6(β)2/c7,(4.16)sin
e E
0
Rβ

n

[Nn] = E
0
Rβ

n

[NnINn>0]. We have thus rea
hed the 
laim.Step 2: lower and upper bounds for general boundary 
onditions.Using the ordering between boundary 
onditions Eq.(2.4), the lower bound thatwe have just proved for free boundary 
onditions a
tually implies the lowerbound for any boundary 
onditions ξ.For the upper bound, 
onsider a re
tangle R with dimensions n × m with
m ∈ Jβ1n, β2nK and with boundary 
onditions ξ. Using on
e again Eq.(2.4), itis su�
ient to address the 
ase of wired boundary 
onditions, and in this 
ase,the probability that there exists a dual 
rossing from the left side to the rightside is at least c− = c−(1/β2, 1/β1), sin
e the dual model has free boundary
onditions. We dedu
e, using the self-duality property, that

P
ξ
R(Cv(R)) ≤ 1 − P

1
R(C∗

h(R)) = 1 − P
0
R∗(Ch(R∗)) ≤ 1 − c−, (4.17)where we use the notation C∗

h for the existen
e of a horizontal dual 
rossing,and R∗ is as usual the dual graph of R (note that we have impli
itly used theinvarian
e by π/2-rotations). This 
on
ludes the proof of Theorem 1.5 Consequen
es for the FK Ising and the (spin)Ising models5.1 RSW-type 
rossing bound for the Ising modelTheorem 1 
an also be applied to the Ising model, using the Edwards-Sokal 
ou-pling. However, we have to be a little 
areful sin
e not all boundary 
onditions
an �go through this 
oupling�.Corollary 16. Consider the Ising model with (+) or free boundary 
onditionsin a re
tangle R with dimensions n and m < βn. There exists a 
onstant cβ > 0su
h that
P
free/+
R (C+

v (R)) ≥ cβ ,23



where C+
v denotes the existen
e of a verti
al (+) 
rossing.We 
ould state this result for more general boundary 
onditions, for instan
e

(+) on one ar
 and free on the other ar
. The 
orresponding result for (−)boundary 
onditions is a
tually not expe
ted to hold: one 
an noti
e for examplethat in any given smooth domain, a CLE(3) pro
ess � the obje
t des
ribing thes
aling limit of 
luster interfa
es � a.s. does not tou
h the boundary.5.2 Power-law de
ay of the magnetization at 
riti
alityWe start by stating an easy 
onsequen
e of Theorem 1. We 
onsider the box
Sn = J−n, nK2, its boundary being denoted as usual by ∂Sn. We also introdu
e
Sm,n the annulus Sn \ S̊m of radius m < n 
entered on the origin, and we denoteby C(Sm,n) the event that there exists an open 
ir
uit surrounding Sm in thisannulus.Corollary 17 (
ir
uits in annuli). For every β < 1, there exists a 
onstant
cβ > 0 su
h that for all n and m, with m ≤ βn,

P
0
Sm,n

(C(Sm,n)) ≥ cβ.Proof. This follows from Theorem 1 applied in the four re
tanglesRB = J−n, nK×
J−n,−mK, RL = J−n,−mK × J−n, nK, RT = J−n, nK × Jm, nK and RR =
Jm, nK× J−n, nK. Indeed, if there exists a 
rossing in ea
h of these re
tangles inthe �hard� dire
tion, one 
an 
onstru
t from them a 
ir
uit in Sm,n.Now, 
onsider any of these re
tangles, RB for instan
e. Its aspe
t ratio isbounded by 2/(1 − β), so that Theorem 1 implies that there is a horizontal
rossing with probability at least

P
0
RB

(CH(RB)) ≥ c > 0.Combined with the FKG inequality, this allows us to 
on
lude: the desiredprobability is at least cβ = c4 > 0.Proposition 18 (power-law de
ay for the magnetization). For p = psd, thereexists a unique in�nite-volume measure P. For this measure, there is almostsurely no in�nite open 
luster. Moreover, there exist 
onstants α, c > 0 su
hthat for all n ≥ 0,
P(0 ∂Sn) ≤ c

nα
. (5.1)This result implies in parti
ular that P(0  ∞) = 0, in other words thatthere is no magnetization at p = psd. This result also applies to the Ising model:the magnetization at the origin de
ays at least as a power law.Remark 19. We would like to mention that an alternative proof of the fa
t thatthere is no spontaneous magnetization at 
riti
ality 
an be found in [38, 14℄.Also, we a
tually know from Onsager's work [18℄ that the 
onne
tion probabilityfollows a power law as n → ∞, des
ribed by the one-arm plane exponent α1 =24



1/8. It should be possible to prove the existen
e and the value of this exponentusing 
onformal invarian
e, as well as the arm exponents for a larger numberof arms. More pre
isely, one would need to 
onsider the probability of 
rossingan annulus a 
ertain (�xed) number of times in the s
aling limit, and analyzethe asymptoti
 behavior of this probability as the modulus tends to ∞. Theorem1 then implies the so-
alled quasi-multipli
ativity property, whi
h allows one todedu
e, using 
on
entri
 annuli, the existen
e and the value of the arm exponentsfor the dis
rete model.Proof. We �rst note that it is 
lassi
al that the non-existen
e of in�nite 
lustersimplies uniqueness of the in�nite-volume measure: it is thus su�
ient to proveEquation Eq.(5.1). We 
onsider the annuli An = S2n,2n+1 for n ≥ 1, and C∗(An)the event that there is a dual 
ir
uit in A∗
n. We know from Corollary 17 thatthere exists a 
onstant c > 0 su
h that

P
1
An

(C∗(An)) ≥ c (5.2)for all n ≥ 1. By su

essive 
onditionings, we then obtain
P(0 ∂S2N ) ≤

N−1
∏

n=0

P
1
An

((C∗(An))c) ≤ (1 − c)N , (5.3)and the desired result follows.Remark 20. Note that together with sharp threshold arguments developed byGraham and Grimmett [12℄, these 
rossing estimates also provide a geometri
proof that the 
riti
al point is pc = psd(2) =
√

2/(1 +
√

2) (whi
h then gives the
riti
al temperature of the Ising model, thanks to the Edwards-Sokal 
oupling).5.3 Regularity of interfa
es and tightnessTheorem 1 
an be used to apply the te
hnology developed by Aizenman andBur
hard [1℄, to prove regularity of the 
olle
tion of interfa
es, whi
h impliestightness using a variant of the Arzelà-As
oli theorem.This 
ompa
tness property for the set of interfa
es is important to 
onstru
tthe s
aling limits of dis
rete interfa
es, on
e we have a way to identify their limituniquely (using for instan
e the so-
alled martingale te
hnique, detailed in [32℄).Here, the fermioni
 observable provides a 
onformally invariant martingale, andits 
onvergen
e to a holomorphi
 fun
tion has been proved in [33℄, leading tothe following important theorem:Theorem 21 (Smirnov [34℄). For any Dobrushin domain (D, a, b), with dis
reteapproximations (Dǫ, aǫ, bǫ), the PDǫ,aǫ,bǫ
-law of the exploration path γǫ from aǫto bǫ 
onverges weakly to the law of a 
hordal SLE(16/3) path in D, from a to

b. We brie�y explain how one 
an use the 
rossing bounds to obtain the 
om-pa
tness of the interfa
es. Note that this result has also been proved, in adi�erent way, in [15℄ and in the forth
oming arti
le [16℄.25



As usual, 
urves are de�ned as 
ontinuous fun
tions from [0, 1] into a boundeddomain D � more pre
isely, as equivalen
e 
lasses up to stri
tly in
reasingreparametrization. The 
urve distan
e is then just the distan
e indu
ed bythe norm of uniform 
onvergen
e.Let A(x; r, R) be the annulus B(x, R) \ B(x, r). We denote by Ak(x; r, R)the event that there are 2k 
rossings of the 
urve from B(x, r) to B(x, R)c.Theorem 22 (Aizenman-Bur
hard [1℄). Let D be a 
ompa
t domain and denoteby Pǫ the law of a random 
urve γ̃ǫ with short-distan
e 
ut-o� ǫ > 0. If for any
k > 0, there exists Ck < ∞ and λk > 0 su
h that for all ǫ < r < R and x ∈ D,

Pǫ(Ak(x; r, R)) ≤ Ck

( r

R

)λk

, (5.4)and λk → ∞, then the 
urves (γ̃ǫ) are pre
ompa
t for the weak 
onvergen
easso
iated with the 
urve distan
e.This theorem 
an be applied to the family (γǫ) of exploration paths de�nedin Theorem 21, using the following argument. If Ak(x; r, R) holds, then thereare k open paths, alternating with k dual paths, 
onne
ting the inner boundaryof the annulus to its outer boundary. Moreover, one 
an de
ompose the annulus
A(x; r, R) into roughly log2(R/r) annuli of the form A(x; r, 2r), so that it isa
tually su�
ient to prove that

P(Ak(x; r, 2r)) ≤ ck (5.5)for some 
onstant c < 1. Sin
e the paths are alternating, one 
an dedu
e thatthere are k open paths, ea
h one being surrounded by two dual paths. Hen
e,using su

essive 
onditionings and the Domain Markov property, the probabilityfor ea
h of them is smaller than the probability that there is a 
rossing in theannulus, whi
h is less than some 
onstant c < 1 by Corollary 17 (note that thisreasoning also holds on the boundary).Hen
e, Theorem 22 implies that the family (γǫ) is pre
ompa
t for the weak
onvergen
e.5.4 Half-plane one-arm exponent for the FK Ising modeland boundary magnetization for the Ising modelAs a by-produ
t of our proofs, in parti
ular of the estimates of Se
tion 3, one 
analso obtain the value of the 
riti
al exponent for the boundary magnetizationin the Ising model, near a free boundary ar
 (assuming it is smooth), and the
orresponding one-arm half-plane exponent for the FK Ising model.Let us �rst 
onsider the one-point magnetization ED,a,b[σx] for the Isingmodel at 
riti
ality in a dis
rete domain (D, a, b) with free boundary 
onditionson the 
ounter
lo
kwise ar
 (ab) and (+) boundary 
onditions on the other ar

(ba). 26



Proposition 23. There exist positive 
onstants c1 and c2 su
h that for anydis
rete domain (D, a, b) with a = (−n, 0) and b = (n, 0) (n ≥ 0), 
ontainingthe re
tangle Rn = J−n, nK×J0, nK and su
h that its boundary 
ontains the lowerar
 J−n, nK × {0}, we have
c1n

−1/2 ≤ ED,a,b[σ0] ≤ c2n
−1/2, (5.6)uniformly in n.Proof. The magnetization at the origin 
an be expressed, in the 
orrespondingFK representation, as the probability that the origin is 
onne
ted to the wired
ounter
lo
kwise ar
 (ba). This probability 
an now be estimated exa
tly as inSe
tion 4: it is equal to the probability that the FK interfa
e passes through

0 (sin
e the origin is on the free boundary of D), whi
h is itself the modulusof the fermioni
 observable on (D, a, b) evaluated at 0. Now, it su�
es to useProposition 8 to 
ompare this to the two harmoni
 measures, and then estimatessimilar to the estimates in Lemmas 10 and 11.This result 
an be equivalently stated for the one-arm half-plane probabilityfor FK per
olation:Proposition 24. Consider the re
tangle Rn = J−n, nK × J0, nK. There existpositive 
onstants c1 and c2 su
h that for any boundary 
onditions ξ su
h thatthe lower ar
 ∂−Bn is free, one has
c1n

−1/2 ≤ P
ξ
Rn

(0 ∂+Rn) ≤ c2n
−1/2, (5.7)uniformly over all n.Proof. We get the upper bound using monotoni
ity and the previous propo-sition, sin
e (+) boundary 
onditions in the Ising model 
orrespond to wiredboundary 
onditions in the 
orresponding FK representation. For the lowerbound, by Theorem 1 and the FKG inequality, we 
an enfor
e the existen
e ofa 
rossing in the half-annulus Rn \ Rn/2 that dis
onne
ts 0 from ∂Rn \ ∂−Rnto the pri
e of a 
onstant independent of ξ. Using monotoni
ity and FKG, theprobability that 0 is 
onne
ted by an open path to this 
rossing (
onditionallyon its existen
e) is larger than the probability that 0 is 
onne
ted to the bound-ary with wired boundary 
onditions, without 
onditioning. Hen
e, the lowerbound of the previous proposition gives the desired result.Remark 25. Note that 
ontrary to the power laws established using SLE, thereare no potential logarithmi
 
orre
tions here � as is the 
ase with the �universal�arm exponents for per
olation (
orresponding to 2 and 3 arms in the half-plane,and 5 arms in the plane). Furthermore, one 
an follow the same standardreasoning as for per
olation, based on the RSW lower bound, to prove that thetwo- and three-arm half-plane exponents, with alternating �types� (primal ordual), have values 1 and 2 respe
tively.27



5.5 n-point fun
tions for the FK Ising and the Ising mod-elsSin
e the work of Onsager [27℄, it is well-known that for the Ising model at
riti
ality, the magnetization at the middle of a square of side length 2m with
(+) boundary 
onditions de
ays like m−1/8. It is then tempting to say that the
orrelation of two spins at distan
e m in the plane (in the in�nite-volume limit,say) de
ays like m−1/4, and this is indeed what happens. To the knowledge ofthe authors, there is no straightforward generalization of Onsager's work thatallows to derive this without di�
ult 
omputations. However, this result 
anbe made rigorous very easily with the help of Theorem 1. We give here only aresult for two-point 
orrelation fun
tions, but exponents for n-spin 
orrelations,for instan
e, 
an be obtained using exa
tly the same method.Let us �rst interpret Onsager's result in terms of the FK representation.Lemma 26. Let Bm be the square J−m, mK2 with arbitrary boundary 
onditions
ξ. Then there exist two 
onstants c1 and c2 (independent of m and ξ) su
h thatwe have

c1m
−1/8 ≤ P

ξ(0 ∂Bm) ≤ c2m
−1/8. (5.8)Proof. Onsager's result gives the result with wired boundary 
onditions (sin
eit is derived in terms of the Ising model with (+) boundary 
onditions), so bymonotoni
ity it gives the upper bound. Using Theorem 1, we 
an obtain a lowerbound independent of the boundary 
onditions by enfor
ing the existen
e of a
ir
uit in the annulus Bm \ Bm/2, and using the FKG inequality. For that, wejust need to lower the 
onstant, using monotoni
ity: the 
onne
tion probability
onditionally on the fa
t that there is a wired annulus around the origin is largerthan the 
onne
tion probability with (+) boundary 
onditions on ∂Bm.We 
an now give the result for two-point 
orrelation fun
tions in the in�nite-volume Ising model.Proposition 27. Consider the Ising model on Z

2 at 
riti
al temperature. Thereexist two positive 
onstants C1 and C2 su
h that we have
C1|x − y|−1/4 ≤ E[σxσy] ≤ C2|x − y|−1/4, (5.9)where for any x, y ∈ Z

2, we denote by σx and σy the spins at x and y.Proof. The 2-spin 
orrelation E[σxσy ] 
an be expressed, in the 
orrespondingFK representation, as the probability of the event {x y}. Let now m be theinteger part of |x−y|/4. The upper bound is easy and does not rely on Theorem1: the event that x is 
onne
ted to y implies that x is 
onne
ted to x + ∂Bmand that y is 
onne
ted to y + ∂Bm. Using the Domain Markov property, thesetwo events are independent 
onditionally on the states on the boundaries of theboxes. Using the previous lemma, we get the upper bound.Let us turn now to the lower bound. We 
an enfor
e the existen
e of a
onne
ted �8� in the dis
rete domain
[(x + B2m+2) ∪ (y + B2m+2)] \ [(x + Bm) ∪ (y + Bm)]28



that surrounds both x and y and separates them: this 
osts only a positive
onstant α, independent of m, using Theorem 1 in well-
hosen re
tangles andthe FKG inequality. Using on
e again the FKG inequality, we get that
P(x y) ≥ αP(x x + ∂B2m+2) · P(y  y + ∂B2m+2), (5.10)and 
ombined with the previous lemma, this yields the desired result.A
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