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Abstract
Recent experiments in twisted bilayer transition-metal dichalcogenides have revealed a variety of
strongly correlated phenomena. To theoretically explore their origin, we combine here ab initio
calculations with correlated model approaches to describe and study many-body effects in twisted
bilayer WSe2 under pressure. We find that the interlayer distance is a key factor for the electronic
structure, as it tunes the relative energetic positions between the K and the Γ valleys of the valence
band maximum of the untwisted bilayer. As a result, applying uniaxial pressure to a twisted bilayer
induces a charge-transfer from the K valley to the flat bands in the Γ valley. Upon Wannierizing
moiré bands from both valleys, we establish the relevant tight-binding model parameters and
calculate the effective interaction strengths using the constrained random phase approximation.
With this, we approximate the interacting pressure-doping phase diagram of WSe2 moiré bilayers
using self-consistent mean field theory. Our results establish twisted bilayer WSe2 as a platform
that allows the direct pressure-tuning of different correlated phases, ranging fromMott insulators,
charge-valley-transfer insulators to Kondo lattice-like systems.

1. Introduction

Moiré semiconductor heterostructures have proven
to be an ideal platform for creating and manipu-
lating nontrivial, correlated electron phases [1]. The
observed phenomena range from Mott criticality [2,
3], to Wigner–Mott crystals [4–6], exciton condensa-
tion [7] and the quantum anomalous Hall effect [8].
Themain constituents in these experiments aremoiré
bilayers of transition-metal dichalcogenides (TMDs),
which come in two forms: heterobilayers, where the
two layers are different materials, such as WSe2/WS2;
and homobilayers, where the two layers are the same,
such as twisted bilayer WSe2.

Whereas twisted bilayer WSe2 was one of the
first materials to reveal correlated insulator phys-
ics in transport experiments [9], the correct low-
energy description of the relevant flat bands remains
a subject of debate. The two main candidates are a

Kane–Mele topological insulator model [10, 11] or
a triangular Hubbard model [12–15], both derived
from states at the K point in the Brillouin zone.
The difference between these two flat band models is
rooted in the precise symmetries of the moiré poten-
tial, which is difficult to estimate from first principles
as scanning tunneling microscopy results seem in
contradiction with the prevailing density functional
theory (DFT) predictions [16]. At the same time,
photoemission spectroscopy [17, 18] was not able to
resolve the moiré potential and flat bands at the K
point, but did observe large moiré gaps and disper-
sionless bands emerging around theΓ point. Ideally, if
one could access the flat bands at theΓ point, it would
be possible to realize much stronger electron correla-
tions [19, 20].

In thismanuscript, we showhow to correctly align
predictions fromDFTwith the experimental observa-
tions on twisted bilayer WSe2. Furthermore, we show

© 2024 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2053-1583/ad7c5f
https://crossmark.crossref.org/dialog/?doi=10.1088/2053-1583/ad7c5f&domain=pdf&date_stamp=2024-10-14
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-0657-4382
https://orcid.org/0000-0003-0499-6944
https://orcid.org/0000-0002-6199-2176
https://orcid.org/0000-0003-3980-5319
https://orcid.org/0000-0001-6053-8150
mailto:louk.rademaker@unige.ch
https://doi.org/10.1088/2053-1583/ad7c5f


2D Mater. 12 (2025) 015003 M Brzezińska et al

that uniaxial pressure can be used to tune the relat-
ive energy (and thus occupation) of Γ and K valley
states. This, in turn, allows for a plethora of correl-
ated phases: antiferromagnetic insulators and valley-
charge-transfer insulators, and their doped counter-
parts including a Kondo lattice regime. This renders
bilayer WSe2 under uniaxial pressure an ideal plat-
form to study correlated metallic states.

In section 2, we use DFT to calculate properties of
six differently stacked untwisted bilayer WSe2. These
results are used in section 3 to derive the effective
flat band physics for both parallel and antiparallel
twisted bilayer WSe2. Using estimates for the relev-
ant Coulomb interaction matrix elements based on
a Wannierization of the flat bands, we derive a full
many-body model and discuss its interacting phase
diagram in section 4, revealing distinct correlated and
charge-transfer insulators.

2. Ab-initio results

Monolayer WSe2 has a honeycomb structure with
the metal W on one sublattice and two Se on the
other sublattice site, vertically displaced in oppos-
ite directions with respect to the plane of W atoms.
Untwisted bilayer WSe2 (bWSe2) can therefore be
realized in six different high-symmetry stackings,
which are visualized in figure 1(a). Of those, the
2HAP is energetically the most stable, followed by
the MXP and XMP (which are sometimes called 3R
stackings) [21]. We performed first-principles calcu-
lations using QUANTUM ESPRESSO [22–24] to com-
pute the electronic properties of these differently
stacked bWSe2, and how their properties change
under applied pressure [25].

Figure 1(b) shows an illustrative band structure
of bWSe2. Typically, the valence band maximum is
located at K, where the orbital content is predomin-
antly dxy ± idx2−y2 on the W atoms [26]. The bands
have a large spin-orbit splittingλSOC originating from
the orbital angular momentum at K and K′, and a
small interlayer hybridization wK. Additionally, there
exists a local valence band maximum at Γ. Here, the
orbital content is predominantly dz2 , the bands are
spin-degenerate but layer-hybridized with interlayer
hoppingwΓ. The energy difference between theΓ and
K valley is characterized by the valley offset ∆ΓK. In
photoemission spectroscopy, ∆ΓK is observed to be
about −90meV, meaning the K valley is higher in
energy [18].

We found that the electronic parameters (all ener-
gies and splittings at K and Γ, with the exception
of the spin–orbit coupling [27]) are extremely sens-
itive to one specific structural parameter: the inter-
layer distance d, defined as the separation between W
planes along the z-axis. Other structural parameters,
such as the precise locations of the Se atoms and the
lattice constant, are subleading [25]. Unfortunately,
layered materials such as bWSe2 cannot be correctly

described by only (semi)-local functionals, because
they donot capture the long-range nature of the inter-
layer Coulomb and van derWaals (vdW) interactions.
An accurate estimation of the interlayer distance d
from first principles is thus challenging, as it requires
either to consider vdW-compliant functional exten-
sions [28] or to resort to more sophisticated—but
computationally expensive—approaches such as the
Random Phase Approximation (RPA) [29] or Many-
Body dispersion [30] methods.

In the specific case of bWSe2, we find that determ-
ining an accurate value for d is particularly demand-
ing, with an enormous range in predicted interlayer
distances, ranging from d= 6.462Å to d= 7.800Å,
obtained by relaxing the atomic positions of the XMP

stacking for different pseudopotentials, functionals
and vdW corrections (see [25], section IB for details).
This, in turn, leads to a range of valley offsets from
∆ΓK =−89.4meV to −475.3meV. The tendency,
however, is clear: when the interlayer distance is small,
the energy of the Γ valley is higher. Physically, this
effect stems from the fact that the interlayer hybrid-
ization wΓ of the dz2 orbitals is increased when the
interlayer distance is decreased. In contrast, the inter-
layer hoppings involving dxy/dx2−y2 orbitals are less
affected by the change in interlayer distance (and
completely vanish in antiparallel stackings due to spin
symmetry). Similarly, we studied how the electronic
structure is affected by encapsulating or capping the
WSe2 bilayers. Again we found that the interlayer dis-
tance d is the most significant determinant for ∆ΓK,
regardless of the environment (see [25], section IC for
details).

Although the qualitative tendency under a change
of interlayer distance is clear, it does not allow for
a quantitative accuracy on energy scales less than
roughly 10meV. For example, a tiny shift in atomic
positions of merely 0.01 Å leads to several meV
changes in the band energies. Therefore, when we
derive moiré flat bands in the next section, we can-
not provide exact estimates for the moiré potential.
Rather, we describe the tendencies and infer from
experiments (such as ARPES [18] or STM[16])which
are the correct DFT predictions. For definiteness, to
incorporate vdW corrections in DFT calculations,
we employ the rVV10 functional [31, 32], known
to reproduce the correct RPA trends for the bind-
ing energy of layered materials [33], and that in the
specific case of bWSe2 provides lattice parameters
and interlayer distances [25] in good agreement with
reported RPA results [21].

Since the interlayer distance d is the dominant
parameter, the most straightforward way to tune
the electronic structure is through the application
of uniaxial pressure. To estimate the interlayer dis-
tance as a function of pressure, we fixed various W-
W distances in the six high-symmetry bilayer stack-
ings, and relaxed the in-plane lattice constant and
other atomic positions. The pressure is extracted
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Figure 1. (a) Top view of the six possible stacking of untwisted bilayer WSe2. Red corresponds to the W atoms, green to the Se
atoms; bright colors are the top layer, faded colors the bottom layer. The three parallel (P) stackings are obtained by starting with
the XX stacking and performing a lateral shift of one layer; the three antiparallel (AP) stackings are obtained from the parallel
ones by rotating one layer by 180 degrees. Side-views, and a discussion of the stacking naming convention, are given in the
supplementary information [25]. (b) The electronic structure of untwisted bilayer WSe2 is characterized by the valence band
maxima at Γ and K. Here we show an illustrative band structure for the XXP stacking, indicating the valley offset∆ΓK, the
interlayer splittings wΓ/K and the spin–orbit coupling λSOC. (c) The interlayer distance d, defined as the W-W distance along the
z-direction, is the dominant physical parameter that determines the electronic structure and can be tuned by applying uniaxial
pressure. Here we show the interlayer distance as a function of applied pressure. (d) A decrease in interlayer distance leads to an
increase in interlayer hopping w at the Γ-point between W dz2 orbitals. (e) Finally, the application of pressure strongly influences
the valley offset∆ΓK. Even though the precise value is hard to predict, here we show the tendency that for different stackings, the
∆ΓK increases with increasing pressure and thus with decreasing interlayer distance d.

from ab initio calculations using the derivatives of
the energy. The resulting distance-pressure curve is
shown in figure 1(c), and is consistent with the
Murnaghan relationP= A(e−B(1−d/d0) − 1)withA,B
being stacking-dependent parameters [34, 35].

As the interlayer distance decreases with applied
pressure, the interlayer hopping between dz2 orbit-
als increases, as shown in figure 1(d). This, in turn,
causes the valence bandmaximum to shift from the K
point to theΓ point, see figure 1(e). Depending on the
stacking, the valley transition point happens between
P= 0.5–3GPa.

3. Electronic structure in moiré bilayers

Now that we have analyzed the electronic structure
of untwisted bWSe2, we will discuss twisted bWSe2.
This structure exists in two inequivalent forms: so-
called parallel or antiparallel stacking, as shown in
figures 2(a) and (b). The size of the moiré unit
cell depends on the twist angle θ, given in the con-
tinuum limit by aM = aWSe2/ sinθ. To make a con-
nection between the twisted moiré structures and
the untwisted results from previous section, we per-
form a set of structural relaxations of twisted bilayers
using LAMMPS [25, 36]. We look at the angle range
θ ∼ 3–6◦ where effects related to lattice reconstruc-
tion (such as domain wall network formation) can
be neglected [37–39], and which is relevant for the
reported transportmeasurements [9]. Specifically, we
consider parallel and antiparallel supercells at angles
θ = 3.2,4.4,5.1,6.0 degrees. We quantify the inter-
layer spacings and bond lengths as a function of the

position in the moiré unit cell. Locally, there exists
high-symmetry stackings, as shown in figures 2(a)
and (b). Interestingly, we found that there is no sig-
nificant dependence of the in-plane bond lengths a
and interlayer distance d on the twist angle θ. Even
though the interlayer distance can vary up to 0.3 Å
throughout one moiré unit cell, it follows the pre-
dicted interlayer distances from the untwisted bilay-
ers: the regions with the largest d correspond to the
local XX stacking orders. These results are consistent
with [40], further details are presented in the supple-
mentary information [25].

Consequently, we can use the ab initio results of
the untwisted bilayers of section 2 to predict the elec-
tronic structure of twisted bilayers. We follow [10,
41]: the monolayer states at Γ and K are approxim-
ated by a parabolic dispersion, and the effect of the
twist is captured by the moiré potential ∆(r), which
is calculated as follows. Starting with untwisted XXP

or MMAP stacking, the other high-symmetry stacks
are obtained by performing s= 0,1,2 shifts of the
top layer along the vector r0 = (a1 + a2)/3, where
a1 = a(1,0) and a2 = a(1/2,

√
3/2). This provides

us the sequence of high-symmetry stackings XXP →
MXP → XMP (or MMAP → XXAP → 2HAP). In a
twisted bilayer, the local stacking configuration var-
ies smoothly throughout the moiré unit cell, follow-
ing the same sequence of stackings. Therefore, the
holes in the moiré valence band experience a periodic
potential∆(r), consistent with the varying energy of
the valence band maxima of the untwisted high sym-
metry stacking. We expand the moiré potential in
lowest order of the Fourier expansion over the nearest

3
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Figure 2. (a) The parallel moiré structure, obtained from untwisted XXP stacking and applying a small twist angle, consists of a
hexagonal structure with locally XXP, XMP and MXP stacking. Note that the XMP and MXP regions are symmetry-related. (b)
The antiparallel moiré structure consists of a hexagonal structure with locally MMAP, 2HAP and XXAP stacking. There is no
symmetry relation between the different regions of the moiré unit cell. (c)–(e). By tracing the local valence band maxima at Γ or
K at the different stackings in the moiré unit cell, we can extract the moiré potential following equations (1) and (2). Here we
show the dependence of the moiré potential amplitude at Γ (c) and K (d) and the moiré potential phase (e) on applied uniaxial
pressure. Note that the moiré potential at Γ is an order of magnitude larger than at K. (f) and (g). The electronic band structure of
parallel moiré structures at zero uniaxial pressure, throughout the mini-Brillouin zone, for a twist angle θ = 3◦. The band
structure at K (f) is barely affected by the moiré potential and does not lead to the opening up of significant moiré gaps. On the
other hand, there appear isolated moiré flat bands at Γ (g) with honeycomb symmetry, consistent with ARPES observations [18].
(h) and (i). The electronic band structure of antiparallel moiré structures at zero uniaxial pressure, throughout the mini-Brillouin
zone, for a twist angle θ = 3◦. Similar to the case of parallel moiré structures, the band structure at K (h) shows no signs of moiré
gaps. The isolated subset of moiré flat bands at Γ (i) has a triangular lattice symmetry. (j) The bandwidth of moiré flat bands at
the top of the Γ and K valley in parallel and antiparallel moiré structures. Most notably are the Γ-states in the antiparallel system,
which attain vanishingly small bandwidth under pressure.

moiré reciprocal lattice vectors gj, |gj|= 2π/a,

∆(r) =
6∑

j=1

Vj exp
(
igj · r

)
. (1)

As ∆(r) is a real threefold-symmetric function, the
values of Vj are constrained, V1 = V3 = V5,V2 =
V4 = V6,V1 = V∗

4 ≡ Veiψ , where V is the real amp-
litude and ψ is the phase. The values of V and ψ are
found by solving the relation

E(Γ,K),s = V0 + 6Vcos

(
ψ + s · 2π

3

)
, (2)

for V0,V,ψ, where E(Γ,K),s is the valence band energy
at Γ or K given the shift s. We calculated the values
(amplitude and phase ψ) of the moiré potential for
both stackings (parallel/antiparallel) and in both val-
leys (Γ/K) as a function of uniaxial pressure, for a
fixed twist angle value θ = 3◦.

The calculated moiré potentials shown in
figures 2(c)–(e) provide two main results. Firstly,
the amplitude of the moiré potential V is an order of
magnitude larger at Γ than at K. Secondly, pressure
increases the potential amplitude V. Let us now dis-
cuss the details of the moiré electronic structure, for
both parallel and antiparallel structures.

In parallel structures, the XMP and MXP are
symmetry-related through a 2π/3 rotation followed
by a layer-flip. Consequently, the moiré potential

phase is either ψ= 0 or π. The corresponding moiré
flat bands at Γ (using the method of [19, 20]) there-
fore display a honeycomb symmetry, see figure 2(g).
There is a clear gap between the moiré flat bands and
the other bands at Γ. By contrast, the moiré potential
in the K-valley is very small, leading to the absence
of a moiré gap opening, see figure 2(f) (at K, we fol-
low the model of [10]). In real space, the honeycomb
structure atΓ is clearly visible in figure 3(b), with loc-
alized states at the XMP/MXP points of themoiré unit
cell. By contrast, the states in the K valley are centered
around XXP, see figure 3(d). Note that this is consist-
ent with experimental STM measurements [16]. The
small value of the moiré potential and the real-space
structure of K valley states we found is consistent with
the theoretical work of [12].

A similar pronounced difference between K and
Γ valley states is present in antiparallel twisted bilay-
ers. Due to the lack of symmetry between the dif-
ferent local stackings, now there is no constraint on
the moiré potential phase. As a result, both Γ and
K valley states form a triangular lattice in real space,
as shown in figures 3(a) and (c). Because the moiré
potential is an order of magnitude larger in the Γ
valley, only there we find a well-separated moiré flat
band that is spin-degenerate. However, note that due
to the absence of interlayer hopping for K valley
states in the antiparallel bilayer, the resulting moiré
bands are layer degenerate with a spin-layer-valley
coupling.

4
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Figure 3. (a) Visualization of the Bloch wavefunction in the
Γ valley for antiparallel twisted bilayers, shown as the
absolute value squared summed over both layers of the
wavefunction. Model parameters are θ = 3◦ and P= 0GPa.
The electronic states is localized in the MMAP region of the
moiré unit cell. (b) Same as (a), but for parallel twisted
bilayers. We clearly see the emergence of a honeycomb
lattice on the XMP/MXP positions. (c) Same as (a), but for
the K valley states in an antiparallel twisted bilayer. The
states are not as localized as in the Γ valley, and are centered
around the XXAP position. (d) Same as (c), but for the
parallel twisted bilayers. There is less localization compared
to the Γ valley, and the states are centered at XXAP. (e) and
(f) The nearest-neighbor t and next-nearest-neighbor t′

tight-binding hopping parameters at θ = 3◦ as a function
of pressure, for the triangular lattice models relevant for
antiparallel twisted bilayers and the K valley of parallel
bilayers; as well as for the honeycomb lattice model relevant
for the parallel bilayer Γ valley states.

It is interesting to note that the Γ-valley states
are, for both parallel and antiparallel stackings, spin-
degenerate. On the other hand, due to the spin-valley
locking in monolayer WSe2, the K-valley states are
also degenerate if we take into account both K and K′

valleys.
Our calculation of the electronic structure in

twisted bilayers allows us to compute the effective
tight-binding hopping parameters for upmost moiré
bands from the two valleys and two stackings. The res-
ulting t and t′ as a function of pressure are shown
in figures 3(e) and (f). With the exception of the Γ-
valley states in parallel stacking, the hopping para-
meters t, t ′ decrease with increasing unixial pressure
due to the increasing strength of the moiré poten-
tial. This exception at ΓP is due to the fact that as
the moiré potential increases, the moiré gap at the

mini-Brillouin zone K-points increases faster than
at Γ, and therefore slightly increases the flat band
bandwidth.

Finally, we do not find parameters that put the
moiré flat bands in the topological regime, as was ori-
ginally proposed for twisted bilayer MoTe2 [10]. All
effective band structures discussed here are topologic-
ally trivial.

4. Interacting phase diagram

Up till now we have only discussed band structure
effects through the application of pressure in twis-
ted bilayer WSe2. The most striking feature was that
the ‘flattest’ bands exist in the Γ valley, which can be
brought to the top of the valence band through pres-
sure. The flatness of these bands prompts us to invest-
igate the effect of interactions. The starting point for
this discussion is the Hubbard model of the form

Hvs =
∑
kσ

ϵvskσnkσ +Uvs
∑
i

ni↑ni↓ (3)

where ϵvskσ is the non-interacting dispersion in valley
v= Γ, K with stacking s= P,AP. The sites i run over
the honeycomb lattice sites at XMP/MXP for the par-
allel stacking Γ states, otherwise they form a triangu-
lar lattice. What remains is to find the magnitude of
the moiré-scale onsite repulsion Uvs.

Commonly, the effectiveHubbardUvs relevant for
the moiré flat bands is derived from the continuum
model by constructing a set of continuous Wannier
orbitals wvs

i (r) centered at the tight-binding lattice
sites i, depending on valley v and stacking s. Their
self-interaction is thenUvs

ii′ =
´
d2rd2r ′|wvs

i (r)|2V(r−
r ′)|wvs

i′ (r
′)|2 where V(r) = e2

ϵ

[
r−1 − (r2 +D2)−1/2

]
is a gate-screened Coulomb interaction with distance
to the gate D [41]. However, this neglects all details
about the internal screening channels (which enter
here only effectively via ϵ and D) and the fact that on
the atomic scale the electronic states are not smooth,
but in fact are superpositions of d-orbitals φj,α(r) on
different W atoms labeled by index j. The smooth
function wvs

i (r) therefore represents the weights on
the different atomic d orbitals, so that the actual
Wannier orbital ϕvsi (r) becomes

ϕvsi (r) =
∑

j∈{W},α

wvs
i

(
rj
)
φj,α

(
r− rj

)
(4)

where j sums over all W atoms at positions rj, and α
labels the relevant atomic orbitals,α= dz2 , dx2−y2 ,dxy,
etc. In order to estimate the Hubbard Uvs for the
moiré-scale tight-bindingmodel, we thus need to first
calculate the relevant Uαβ for the atomic-scale d-
orbitals of W atoms.

To this end we performed constrained RPA
(cRPA) calculations [42] to extract the non-local

5
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Coulomb interactions

Ujα,j ′β (R) =

ˆ
d2rd2r ′|φj,α (r) |2U(r− r ′)

|φj′,β (r
′ +R) |2 (5)

for the six untwisted bilayer stackings of WSe2 in
the atomic d orbital basis. This way, we exclude
any screening from the d orbitals, but consistently
take the screening from all other states into account.
In this case, it turns out that the local stacking
details, which change throughout the moiré unit
cell and with the twisting angle, do not affect the
cRPA screened interactions much (see SI [25] for
details), similar to the situation in twisted bilayer
graphene [43]. Using the basis transformation from
equation (4) we can thus derive the effective moiré
Uvs

moiŕe =
∑

j,j ′ Ujα,j ′α|wvs(rj)|2|wvs(rj′)|2, where α is
the relevant d-orbital for the given valley and stack-
ing. The twist angle only enters this expression for
Uvs via the envelope functions wvs

i (r). To this end, we
parametrize the onsite cRPA Uαβ(R) with an image-
charge model of the form:

U(r) =
e

εm

[
1

√
r2 + δ

2

+ 2
∞∑
n=1

1√
r2 + δ2 +(nh)2

(
εm − εenv
εm + εenv

)n
 ,
(6)

where e is the elementary charge, h represents an
effective height of the bilayer, δ is a parameter allow-
ing to fit the atomic local interaction Uii = U(r= 0),
ϵm is the effective dielectric constant of the bilayer,
and ϵenv represents additional screening from the
environment, such as substrates as well as all non-
Wannierized moiré bands. This is similar to the
Keldysh-potential model utilized in [14]. In the sup-
plementary information [25] we show the results of
fitting h, δ, and εm to ab initio cRPA calculations
for different pressures, stackings, and for different d
orbital channels. We find that the fitting paramet-
ers and thus the analytic U(r) model is only mildly
affected by pressure and stacking, such that we pro-
ceedwith using a fixed set of fitting parameters, which
are only different for the Γ and K valley models. All
together, this provides us with a light-weight effect-
ive Hubbardmodel on themoiré scale, with its model
parameters depending on pressure, twist angle, valley
(Γ/K) and type of stacking (parallel/antiparallel). For
the band structures shown in figure 2 at θ = 3◦ twist
angle, the relevant interaction parameters for ϵenv =
30 and P= 0 are UK,P = 51meV, UΓ,P = 170meV,
and UΓ,AP = 132meV.

In order to estimate the effect of the Coulomb
interactions we performed self-consistent Hartree–
Fockmean field theory [25]. As discussed in section 3,

the relevant flat bands in antiparallel stackings as well
as in theK-valley for parallel stackings form a triangu-
lar lattice. When U/t is large in the triangular lattice
Hubbard model at half-filling, the system becomes
a three-sublattice 120◦ antiferromagnet, which can
be qualitatively correctly described by Hartree–Fock
theory [44]. Similarly, the effective honeycomb lat-
tice Hubbard model relevant for the parallel stack-
ing Γ valley exhibits Néel order for large U/t at half-
filling. Note, however, that in terms of doping per unit
cell, half-filling for a triangular lattice corresponds to
ν= 1 whereas half-filling for the honeycomb lattice
occurs at ν= 2. Away from half-filling, ferromagnet-
ism is competing with antiferromagnetism [45].

The resulting phase diagrams for parallel and
antiparallel stacked moiré bilayers at θ = 3◦ degree
twist angle in an effective dielectric environment with
ϵenv = 30 are shown in figure 4. Note that the effective
ϵenv describes both, substrate screening effects as well
as screening from all non-Wannierized moiré bands
to the Coulomb interaction between electrons within
the Wannierized moiré bands. This is why a rather
large value is needed here to approximate experi-
mental results, similar as in [12] and [46].

Both diagrams display a prominent valley charge-
transfer under the application of pressure. At low hole
density (ν < 1 for antiparallel stacking, ν < 2 for par-
allel stacking) there is a first order transition from
states in the K valley to states in the Γ valley.

At half-filling of the Γ valley, we find a pressure-
induced transition into an antiferromagnetic charge-
transfer insulator. Here the flat bands in the Γ val-
ley are split into the mean-field precursors of lower
and upper Hubbard bands. The states of the K val-
ley are now within the gap of the Γ valley states.
This is exactly the situation described in the Zaanen–
Sawatzky–Allen (ZSA) scheme [47], originally inten-
ded for cuprates where the oxygen p-orbitals are in
the gap of the copper d-orbitals’ lower and upper
Hubbard band, which is also referred to as charge-
transfer insulating state. When the pressure is further
increased, the K states move to lower energy and out
of the Γ gap, leading to a regular M–H Ins. of the Γ
states.

Upon doping the charge-transfer insulator state,
the additional charge carriers occupy the K valley. The
resulting situation resembles that of the Kondo lattice
model [48, 49], where weakly correlated conduction
electrons (from the K valley) coexist with correlated
localized electrons (from theΓ valley). In our approx-
imate mean field theory picture, the density of states
as presented in figure 5 clearly shows the coexistence
of localized and conduction electrons. In the case of
the parallel stacking, we also find weak ferromagnetic
order in the K valley.

Note that the Kondo lattice regime occurs in par-
allel stacking at hole densities ν = 2+ δ, whereas in
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Figure 4. (a) Qualitatively, we can already identify various many-body phases that are expected in tbWSe2 under pressure. Here,
we visualize six possible phases by plotting a cartoon density of states versus energy. At zero or low pressure, the charge carriers
will fill up states in the weakly correlated K valley (bottom row), leading to metallic behavior. At half-filling (left column), an
increase in pressure leads to a charge-transfer to the strongly correlated Γ valley. The Γ states will split into a lower and upper
Hubbard band (LHB/UHB), yielding an insulator state. Depending on the position of the remaining K valley states, this is a
charge-transfer (CT) insulator at intermediate pressures, or a Mott–Hubbard insulator at high pressures. Increasing the hole
doping beyond half-filling (right column) now yields either a Kondo lattice model at intermediate pressures, or a doped Mott
insulator at high pressures (b) and (c) The qualitative picture is confirmed by numerical mean field theory calculations. Here we
show the resulting phase diagram for antiparallel (b) and parallel (c) stacking at twist angle θ = 3◦ and dielectric constant
ϵ0 = 30, as a function of hole density ν and pressure P. We confirm that at a critical pressure the electronic charge is fully shifted
from the K to the Γ valley. At half-filling of the Γ valley states (ν= 1 for antiparallel stacking, ν= 2 for parallel stacking),
applying pressure induces a transition from a conducting K state to an antiferromagnetic Γ charge-transfer insulator (C-T Ins.),
followed by a transition to a Mott–Hubbard insulator (M–H Ins.). Increasing the hole density ν in the charge-transfer insulator
leads to a Kondo lattice regime, with localized electrons in the Γ valley and conduction electrons in the K valley.

Figure 5. The density of states in the Kondo lattice regime
of the phase diagrams of figure 4, for antiparallel (a) and
parallel (b) stacking. In both cases the strong correlations of
the Γ states at half-filling lead to the formation of lower and
upper Hubbard bands. Upon doping away from half-filling,
the Fermi level (E= 0) crosses the K valley states that are
lying within the gap of the Γ states. The result is a system
with localized electrons in the Γ valley and conduction
electrons in the K valley.

the antiparallel bilayers it occurs at densities ν =
1+ δ. This difference arises because in the parallel
stacking, the states in theΓ valley realize a honeycomb

lattice, which requires a hole density ν= 2 per
unit cell become Mott insulating. On the other
hand, the Γ valley states in the antiparallel stacking
realize a triangular lattice, requiring ν= 1 for Mott
localization.

The mean field phase diagram consists thus
of a wealth of different correlated phases: at half-
filling both types of ZSA insulators, and away from
half-filling either doped Mott insulator or Kondo
lattice systems. These correlated metallic phases are
ill-understood, and likely show a richer behavior
than can be inferred from naive mean field theory.
However, by identifying where twisted bilayer WSe2
hosts these different correlated conducting phases we
pave theway for further quantitative studies that com-
pare theories and experiments.

5. Outlook

In summary, we have found that the dominant struc-
tural parameter of bilayer WSe2 is the interlayer dis-
tance d, as it affects the relative energy of the Γ and
K valley states. Consequently, in twisted bilayer WSe2
the effective strength of the interaction—which is
much higher in the Γ valley than in the K valley—
can be tuned through uniaxial pressure. The resulting
valley charge-transfer allows for a multitude of inter-
esting correlated phases.

Recently, the idea of using pressure to induce
a valley shift in (twisted) bilayer TMDs has been
addressed in two other theoretical publications [50,
51] and their ab initio results are consistent with our
findings in section 2. However, they do not discuss
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the strength nor the effect of many-body Coulomb
interactions. At the other extreme, a recent work [35]
suggesting a fractional Chern insulator in pressurized
twisted bilayerWSe2 ignores the valley degree of free-
dom. Our results bridge this gap and presents the
whole picture as we have explored the full interplay
between valley charge transfer and correlation effects.

Note that the valley degree of freedom can also
be tuned using a perpendicular electric field [52, 53].
The states at the Γ valley are more sensitive than K
valley states to an applied electric field, as they cor-
respond to orbitals that are more extended in the z-
direction. However, we find tuning by electric field
to be less feasible for a twisted bilayer, as a perpen-
dicular electric field also couples to the layer degree
of freedom. The interlayer distance can also be tuned
by chemical intercalation, as already shown experi-
mentally [54]. Also in this case, changing the chem-
ical composition might induce further changes to the
electronic structure, and as such we expect pressure
to be the ‘cleanest’ way to induce a valley shift.

Experimentally, applying pressure onmoiré bilay-
ers is shown to be feasible using diamond anvil cells.
This initially started with pressure-studies in twis-
ted bilayer graphene [55] and twisted double bilayer
graphene [56]. Recently, a hydrostatic pressure exper-
iment was performed on twisted bilayer WSe2 [57].
Using exciton photoluminescence [58], they showed
that indeed the energy of the Γ valley was shifted
upwards, which is consistent with our predictions.
A natural next step would be to perform transport
experiments in the spirit of the [9], revealing new
correlated insulator states under pressure. We note
in passing that the relevant pressure to reveal val-
leytronic effects is of the order of a few GPa, depend-
ing on the filling and type of stacking. This is a
one order of magnitude smaller than the pressure
required to close the band-gap of WSe2 [59] (in the
range 28–62GPa) or related TMD systems [60, 61].

Among our predicted phases is a Kondo lattice
regime with localized electrons in the Γ valley and
conduction electrons in the K valley. Similar Kondo
lattice physics, but in terms of the layer degree of free-
dom (instead of the valley suggested in our work),
has been observed in twistedWSe2 homobilayers [62]
and MoTe2/WSe2 heterobilayers [63]. The properties
of the Kondo lattice many-body phase will strongly
depend on the interactions and possible hybridiza-
tion between the localized and conduction states—
as such it would be interesting to quantitatively com-
pare the layer-Kondo lattice to the valley-Kondo lat-
tice regime, and to traditional heavy fermion sys-
tems [49, 64] and the ‘topological’ heavy fermions
proposed for twisted bilayer graphene [65, 66] or tri-
layer graphene [67]. Such a comparison, from a the-
oretical side, would require to go beyond the simple
mean-field theory picture presented here. Strong cor-
relation methods are needed, such as Dynamical
Mean Field Theory [68], which recently has been

used to study TMD moiré bilayers [14, 15] as well as
other flat band materials [65, 66, 69]. In addition, a
more precise modeling of the inter-valley couplings
is required, as well as possible emerging interactions
such as the RKKY coupling between the localized
electrons. Another aspect that pushes beyond our
current model is the appearance of strong longer-
ranged Coulomb interactions in the Γ valley, that
can stabilize fractionalized [70] or generalizedWigner
crystal phases [4, 46]. In any case, such theoretical
explorations should be fueled by new experiments on
twisted bilayer WSe2 under pressure.
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Marta Brzezińska https://orcid.org/0000-0003-
0657-4382
Sergii Grytsiuk https://orcid.org/0000-0003-0499-
6944
Malte Rösner https://orcid.org/0000-0002-6199-
2176
Marco Gibertini https://orcid.org/0000-0003-
3980-5319
Louk Rademaker https://orcid.org/0000-0001-
6053-8150

References

[1] Mak K F and Shan J 2022 Semiconductor moiré materials
Nat. Nanotechnol. 17 686

8

https://orcid.org/0000-0003-0657-4382
https://orcid.org/0000-0003-0657-4382
https://orcid.org/0000-0003-0657-4382
https://orcid.org/0000-0003-0499-6944
https://orcid.org/0000-0003-0499-6944
https://orcid.org/0000-0003-0499-6944
https://orcid.org/0000-0002-6199-2176
https://orcid.org/0000-0002-6199-2176
https://orcid.org/0000-0002-6199-2176
https://orcid.org/0000-0003-3980-5319
https://orcid.org/0000-0003-3980-5319
https://orcid.org/0000-0003-3980-5319
https://orcid.org/0000-0001-6053-8150
https://orcid.org/0000-0001-6053-8150
https://orcid.org/0000-0001-6053-8150
https://doi.org/10.1038/s41565-022-01165-6
https://doi.org/10.1038/s41565-022-01165-6


2D Mater. 12 (2025) 015003 M Brzezińska et al
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