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ABSTRACT:

Basic emotional functions seem well-preserved in older adults. However, their reactivity to
and recovery from socially negative events remain poorly characterized. To address this, we
designed a novel "task-rest" paradigm in which 182 participants from two independent
experiments underwent functional magnetic resonance imaging while exposed to socio-
emotional videos. Experiment 1 (N=55) validated the task in young and older participants and
unveiled age-dependent effects on brain activity and connectivity that predominated in resting
periods after (rather than during) negative social scenes and related to empathy. Crucially,
emotional elicitation potentiated subsequent resting-state connectivity between default mode
network (DMN) and amygdala exclusively in older adults. Experiment 2 replicated these
results in a large older adult cohort (N=127) and additionally showed that emotion-driven
changes in posterior DMN-amygdala connectivity were associated with anxiety, rumination,
and negative thoughts. These findings uncover the neural dynamics of empathy-related
functions in older adults and help better understand how poor social stress recovery may

impact neurodegenerative diseases.

Keywords:

Aging, Anxiety, Rumination, Default Mode Network, Functional connectivity, Amygdala,

Insula, Posterior cingulate cortex, fMRI.
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INTRODUCTION

Aging is a multifaceted process associated with many changes in bodily and mental health.
While there is a general decline in physical performances and cognitive abilities in aging !,
emotional functions appear to be maintained or even enhanced in older adults relative to
younger adults 2. Indeed, the elderly tend to regulate their emotional states well, a crucial
capacity for affective well-being and healthy aging 3. Unlike younger adults, they often
prioritize social and emotional interactions over other goals © and show a "positivity bias" in
emotion perception 7. In contrast, maladaptive emotional reactivity and impaired emotion
regulation are related to affective psychopathologies such as anxiety, depression, worry, and
rumination throughout the lifespan 3, including in aging '°. There is also growing evidence

11-14
b

that maladaptive affective styles may represent a significant risk factor for dementia one

15, However, the neural

of the primary mental health burdens in the elderly population
substrates underpinning proficient socio-affective processing and emotional resilience in the

elderly remain unresolved and still scarcely investigated.

An important marker of maladaptive affective style is "emotional inertia", which
denotes the degree to which emotions carry over from one moment to the next ', Emotional
inertia may reflect unsuccessful recovery mechanisms following the offset of affective events

17,18

and low resilience to stress, associated with higher risks of depression and higher trait

anxiety and rumination tendencies '°. Most studies of emotional inertia employed behavioral

16,20

measures based on experience sampling methods , €.g., requiring participants to report

their affective state at different time points and measuring autocorrelations between

162122 More recently, a few neuroimaging studies

successive time-points or events
investigated emotional inertia at the brain level using “task-rest” paradigms 2-2°. In these
studies, brain activity is probed not only during active stimulus processing tasks, but also in
spontaneous post-task resting periods during which the brain returns to homeostatic balance
3031 For example, positive or negative emotions evoked by images or videos were found to
induce carryover effects on brain activity and/or connectivity during subsequent resting-state
in default mode and affective networks 2#?%, These carryover effects have been observed at
different time scales ranging from a few seconds 3 to several minutes 27, following different
task instructions ranging from passive viewing through to active regulation of emotions 2,

and across different conditions of emotional valence and intensity 23-2°,
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At the neural level, most brain imaging studies found carryover effects of emotions on

the functional dynamics of the default mode network (DMN) either in the form of increased

26,32 d 24,25

or decrease activity patterns in regions comprising the medial prefrontal cortex
(MPFC), posterior cingulate cortex (PCC), precuneus, and inferior parietal cortex. These
regions of the DMN are usually active when individuals are free to let their mind wander in
undisturbed conditions 3. Similar effects have also been observed in the insula and

35-37 For

amygdala 2*; two regions critically involved in emotional and social processing
instance, a slow recovery of amygdala activity (i.e., longer return to baseline level) after
negative images was reported in individuals with higher neuroticism 3. Slower recovery of
amygdala activity after emotional videos was furthermore associated with higher anxiety
traits and ruminations !°. Subcortical limbic regions such as the amygdala and striatum also
display sustained changes in their functional connectivity with cortical areas in medial PFC
and PCC during rest after negative emotions 2* and reward 2. These findings converge with
studies showing that disturbances in functional connectivity of the amygdala with medial
parts of the DMN at rest are associated with anxiety (e.g., decreased connectivity with MPFC
39) and mood disorders (e.g., increased connectivity with PCC °). Taken together, these data
suggest that long-lasting carryover effects of emotions on activity and connectivity of limbic

networks may provide an important neural marker of emotional regulation style and affective

resilience.

However, all previous neuroimaging studies of emotional carryover focused on young
healthy participants. It remains unknown whether emotional inertia also occurs in older
adults, how it is modified given the well-known “positivity bias” observed in this population
23 and how age impacts the functional dynamics of DMN in affective contexts. Indeed, it has
been reported that, unlike young adults, older people fail to deactivate the DMN during

externally directed cognitive tasks #!

and show increased DMN connectivity with cognitive-
related prefrontal regions *?. Yet, little is known about how aging affects DMN interaction
with emotion-related regions, either during or after emotional tasks, and how it relates to other

cognitive or socio-affective abilities.

In addition, previous work did not assess whether emotional inertia is modulated by
individual differences in empathy, which may strongly influence how people react to negative
socio-affective stimuli presented in neuroimaging studies ', and thus how they recover

from induced emotions ?7. Because social competencies and affective empathy are relatively
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preserved in the elderly 4, socially significant emotional events offer an optimal window to
probe emotional reactivity and recovery in this population. Moreover, there is only scarce
research on empathy in older people #*%7. Whereas cognitive empathy may decline in older
compared to younger people, affective empathy and altruistic behaviors towards others
remain intact or even improve **7*°, However, brain responses to seeing others’ pain are
reduced in anterior insula (AI) and cingulate cortex (ACC) 4, two regions implicated in pain
processing, negative affect, and salience detection %>, In contrast, empathy-related responses
may increase in superior temporal sulcus (STS) and temporo-parietal junction (TPJ) %6, brain
regions frequently associated with Theory of Mind and perspective taking !. Yet, despite the

importance of social interactions and emotional resilience for healthy aging 25

, neural
substrates underlying the recovery from negative events, as well as their link with empathic

skills, personality and psycho-affective traits, have not been investigated during aging.

To address these issues, we designed a novel "task-rest" paradigm combining two
lines of research: short (10-18s) empathy inducing videos from the Socio-affective Video
Task (SoVT) >° were shown interspersed with rest periods of 90 seconds (similar to Eryilmaz
and colleagues 2*) while participants underwent functional magnetic resonance imaging
(fMRI) of brain activity. The SoVT videos consisted of short silent scenes depicting suffering
people (high emotion videos) or people in everyday life situations (low emotion videos). By
adding short resting-state periods after blocks of videos of each kind, the SoVT-Rest allowed
us to evaluate how the aging brain reacts both during and after exposure to emotionally
challenging social information. Indeed, defining valid markers of adaptive emotion recovery
abilities in a naturalistic paradigm, without making high cognitive demands required by more

¢ would be valuable to better understand affective

voluntary/explicit regulation strategies >
resilience mechanisms and better predict affective risk factors associated with pathological

aging and dementia 4,

Here, we use the new SoVT-Rest paradigm across two independent experiments to
probe for emotion-related carryover effects in large samples of healthy older and young
participants. First, we test for differences in the neural substrates of emotional recovery
between old and young (Experiment 1), allowing us to validate our paradigm, verify relevant
neural effects and assess the effect of age. Next (Experiment 2), we replicate this experiment
in a large sample of elderly participants (n=127) in whom we specifically asked whether

emotional inertia in brain networks is modulated by empathy and individual traits relevant for
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healthy aging, including rumination and anxiety. We hypothesized that exposure to others’
suffering (relative to neutral social situations) should (1) engage brain regions implicated in
emotional saliency and empathy (i.e., insula, aMCC), but with lower responses in older than
young adults +*; (2) induce subsequent carryover in functional connectivity at rest between
emotion-related regions and the DMN, with differential age-dependent patterns; and (3)
unveil neural substrates of emotional inertia that may reflect individual variability in anxiety,
ruminative thinking, and negative emotions, and thus point to functional biomarkers of
affective risk factors for pathological aging ''"'4. In addition, (4) we should observe a
“positivity effect” as often reported in older adults 7 and elucidate its relationship to empathy

processes during aging.

MATERIAL AND METHODS

Participants

For Experiment 1, a total of 58 healthy participants including 30 younger adults (aged
between 19 and 30 years), and 28 older adults (aged between 65 and 78 years) with corrected-
to-normal vision, no history of neurological, psychiatric disorder, or alexithymia took part.
Thirty participants were expected to participate in each group; however, new research
guidelines during the COVID-19 pandemic prevented us from continuing with scanning.
Recruitment was performed through social media and advertisement in various locations
within the University of Geneva. Three participants were excluded due to a priori exclusion
criteria including artifacts in brain images and/or extreme head motion during scanning. The
final sample for Experiment 1 included 29 young participants (M age= 24, 14 females) and 26
older participants (M age = 68.7, 13 females), resulting in a total of N=55 participants (See
Table 1 for detailed participants’ characteristics). All participants provided written informed
consent. This study was approved by the local Swiss ethics committee (commission cantonale

d’éthique de la recherche CCRE, Geneva) under the project number 2018-01980.

For Experiment 2, a total of 135 healthy older adults participated, with corrected-to-normal
vision and no history of neurological or psychiatric disorders, aged between 65 and 83 years.
This session was part of the baseline visit of the Age-Well randomized clinical trial within the
Medit-Ageing Project 7, conducted in Caen (France). Detailed inclusion criteria of the Age-

Well randomized clinical trial are provided in Supplementary Table 1. Participants were
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recruited via advertising in media outlets, social media, and flyers distributed in relevant local
events and locations. A total of 8 participants were excluded from the final data analysis due
to a priori exclusion criteria: abnormal brain morphology (n = 3), extreme head motion (n =
3), and presence of artifacts in brain images (n = 2). The final sample for this study included
127 participants (M age = 68.8 years, SD = 3.63, 79 females. See Table 1 for other
characteristics). All participants provided written informed consent prior to participation. The
Age-Well randomized clinical trial was approved by the ethics committee (Comité de
Protection des Personnes Nord-Ouest III, Caen, France; trial registration number: EudraCT:

2016-002441-36; IDRCB: 2016-A01767-44; ClinicalTrials.gov Identifier: NCT02977819).

Questionnaires

In order to account for inter-individual differences in psycho-emotional profile, all
participants from both experiments answered several questionnaires assessing psycho-
affective traits and cognitive functions, including empathy (Interpersonal Reactivity Index,
IRI %), depression (Geriatric Depression Score, GDS >° for older adults and Beck Depression
Inventory, BDI®® for younger adults), anxiety (STAI-trait Anxiety Index, STAI ¢!), emotion
regulation capacities (Emotion Regulation Questionnaire, ERQ 92), and rumination levels
(Rumination Response Scale, RRS ). A summary of these questionnaires is provided in
Table 1 and Fig. 3. All scores were in the normative range. For a full list of tasks and

measures in the Age-Well trial (Experiment 2), please refer to Poisnel and colleagues °’.
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TABLE 1. Participant characteristics

Experiment 1 Experiment 2
P value for
Mean (SD) between-group Mean (SD)
N=55 differences *
YA Group OA Group OA Group
(n=29) (n=26) N=127
Demographics
Sex 14 Females 13 Females 79 Females
Age 24.5(2.67) 68.7 (3.89) 68.8(3.65)
Education (n. of years) 18.4(1.72) 16.1 (3.4) 0.002 1321 (3.1)
Psycho-affective traits and
Cognitive functions
STAI Trait 39.8 (8.31) 36(7.31) 0.08 34.57(7.12)
Rumination Response Scale®  Total 43.5 (10) 36.5(9.01) 0.008 35.67 (8.55)
Reflection 11.3 (3.67) 8.77 (3.52) 0.01 8.93 (3.23)
Brooding 8.97 (2.64) 8.69 (2.41) 0.69 8.06 (2.28)
}Efifxpers"“"“ Reactivity Distress 12 (4.3) 9.62 (5.12) 0.07 10.18 (5.27)
Empathic Concern 22.1(3.14) 20.8 (4.24) 0.19 19.76 (4.18)
Perspective Taking 21.3(3.71) 17.3 (3.42) <0.001 17.50 (3.56)
Fantasy 19.1(4.05) 15.8 (4.08) 0.004 14.35 (4.75)
Emotion regulation abilities Reappraisal 30.5(7.11) 29.2 (3.95) 0.4 29.61 (5.79)
Suppression 12.6 (5.48) 14.8 (4.34) 0.09 16.54 (5.19)
Beck Depression Inventory Global 5.34(3.73)
Geriatric Depression Scale Global 1.92(2.3) 1.32(1.78)

Abbreviations: YA, younger adults; OA, older adults; N, number of total participants in each experiment; n, number of participants in each
subgroup; SD, Standard deviation. “Between-group differences were assessed using t-tests, statistical significance was set to P <.05.° Values
computed on n=126 participants (data missing for one participant).

Socio-affective Video Task-Rest (SoVT-Rest)

The emotion-elicitation task used in both experiments was adapted from the previously
validated Socio-affective Video Task (SoVT) >>%. The SoVT aims to assess social emotions
(e.g., empathy) in response to short silent videos (10-18s). During this task, participants watch
12 High Emotion (HE) and 12 Low Emotion (LE) video clips grouped in blocks of three (see
instructions in supplementary Table 2). HE videos depict people suffering (e.g., due to
injuries or natural disasters), while LE videos depict people during everyday activities (e.g.,
walking or talking). In this study, each block was followed by a resting state period of 90
seconds (see instructions in Fig. 1 and supplementary Table 2) in order to assess the carryover
effects of emotion elicitation on subsequent resting-state brain activity (similar to Eryilmaz
and colleagues ?%). This combination of both paradigms (task and rest) was specifically
designed to test for emotional inertia and its relation to empathy. The combined task (SoVT-

Rest) is illustrated in Fig. 1.
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Overall, three sets (V1, V2, and V3) of 24 videos each were created and randomized
across participants. In Experiment 1, the video sets V1, V2, and V3 were seen by n = 21, 18,
and 16 participants, respectively. In Experiment 2, these were seen by n = 42, 40, and 45
participants, respectively. During the SoVT-Rest, these videos were presented in two separate
runs, with each run followed by a thought probe to assess current mental content during the
last rest period (after LE videos in one run and after HE videos in the other run). The order in
which runs were presented was randomized so that half of the participants started the
experiment with a HE block and the other half with an LE block. The total duration of the
SoVT-Rest fMRI paradigm was approximately 21 minutes, consisting of 9.5 min for each run
plus 1 minute on average for each thought probe.

After the fMRI session, participants watched all video clips again on a computer
outside the scanner and provided ratings on their subjective experience of empathy (“To what
degree did you feel the emotions of the characters?”) as well as their subjective positive affect
(“Indicate the intensity of your positive emotions”) and negative affect state (“Indicate the
intensity of your negative emotions”) (translated from French), for each of the 24 videos.
Each scale offered 21 possible responses ranging from 0 (“Not at all”) to 10 (“Extremely”)
with increments of 0.5. The order of questions was always the same: empathy, positive affect,
and negative affect. We chose to obtain ratings after fMRI not only to minimize the time older
adults spent in the scanner, but also to avoid potential cognitive effects during scanning that
may confound neural activity during emotional perception and spontaneous rest recovery
periods®3-%¢, The total time for post-scanning ratings was, on average, 10 minutes. Onset times
and response times for both neuroimaging and behavioral tasks were collected via the Cogent
toolbox (developed by Cogent 2000 and Cogent Graphics) implemented in Matlab 2012
(Mathworks Inc., Natick, MA, USA).
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Figure 1. Experimental design: (a) SoVT-Rest paradigm: 12 High Emetion (HE) and 12 Low Emotion (LE)
videos were presented grouped in blocks of three. HE videos depict suffering people (e.g., due to injuries or
natural disasters), while LE videos depict people during everyday activities (e.g., walking or talking). Each block
of three videos is followed by a resting state period of 90 seconds. (b) Each run ends with a thought probe in
which participants verbally express what they had been thinking and/or feeling during the last rest period (via a
microphone), once following a LE block and once following a HE block. The order of the runs was randomized
between participants.

Behavioral data analysis.

We performed a repeated measure multivariate analysis of variance (MANOVA, with Pillai's
trace statistics) with the within-subject factor “video type” (HE and LE), the between-subject
factor “video set” (V1, V2, V3), and three dependent variables: ratings of empathy, positive
affect, and negative affect. This was followed up by pairwise ¢-tests. We also computed
Spearman’s rank correlations between these different scores. Additionally, we performed
correlation analyses between ratings of empathy, positive affect, and negative affect of videos
and age (as a continuous variable), using non-parametric Spearman’s rank correlations
because some of these variables were not normally distributed. All statistical analyses are

reported with a significance level of P < 0.05, and when necessary, P values are corrected for

10
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multiple comparisons using the False Discovery Rate (FDR) method ¢’. The statistical
analyses were performed with R studio (version 3.6.1) and the corresponding graphs were

created with ggplot2 (version 3.2.1).

Acquisition and preprocessing of MRI data.

Experiment 1

Magnetic Resonance Imaging (MRI) scans were acquired at the Brain and Behavior
Laboratory of the University of Geneva, using a 3T whole-body MRI scanner (Trio TIM,
Siemens, Germany) with the 32-channel head coil. A high-resolution T1-weighted anatomical
volume was first acquired using a magnetization-prepared rapid acquisition gradient echo
(MPRAGE) sequence (repetition time = 1900 ms; echo time = 2.27 ms; flip angle = 9°; slice
thickness = 1 mm; field of view = 256x256 mm?; in plane resolution = 1x1 mm?). Blood
oxygen level-dependent (BOLD) images were acquired with a susceptibility weighted EPI
sequence (TR/TE =2000/30 ms, flip angle = 85°, voxel size (3 x 3 mm), 35 slices, 3 mm slice
thickness, 20% slice gap, direction of acquisition = descending). Quality control and
preprocessing were conducted using Statistical Parametric Mapping software (SPM12;
Wellcome Trust Centre for Neuroimaging, London, United Kingdom) on Matlab 2017
(Mathworks Inc., Natick, MA, USA). Prior to preprocessing, we manually centered all images
to the AC-PC axis, aligned the functional and anatomical MRI images, and then realigned all
images to the SPM anatomical template. Preprocessing included the following steps: 1) EPI
data were realigned to the first volume and spatially smoothed with an 8-mm FWHM
Gaussian kernel. 2) Preprocessed fMRI data were denoised for secondary head motion and
CSF-related artifacts using automatic noise selection as implemented in ICA-AROMA, a
method for distinguishing noise-related components based on ICA decomposition ©8,
Additionally, components with high spatial overlap with white matter regions were also
removed by means of a linear regression using the fsl regfilt function of FSL (FMRIB's
Software Library, www.fmrib.ox.ac.uk/fsl). 3) Denoised EPI data were coregistered to the
anatomical T1 volume. 4) The anatomical T1 volume was segmented and the extracted
parameters were used to 5) normalize all EPIs volumes into the Montreal Neurological

Institute (MNI) space. This procedure was performed using FSL and SPM12.

11
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Experiment 2

Magnetic Resonance Imaging (MRI) scans were acquired at the GIP Cyceron (Caen, France)
using a Philips Achieva (Eindhoven, The Netherlands) 3T scanner with a 32-channel head
coil. Participants were provided with earplugs to protect hearing, and their heads were
stabilized with foam pads to minimize head motion. A high-resolution T1-weighted
anatomical volume was first acquired using a 3D fast field echo sequence (3D-TI1-FFE
sagittal; repetition time = 7.1 ms; echo time = 3.3 ms; flip angle = 6°; 180 slices with no gap;
slice thickness = 1 mm,; field of view = 256x256 mm?; in plane resolution = 1x1 mm?). Blood
oxygen level-dependent (BOLD) images were acquired during the SoVT-Rest task with a
T2*-weighted asymmetric spin-echo echo-planar sequence (each run ~10.5 min; TR = 2000
ms, TE = 30 ms, flip angle = 85°, FOV = 240 x 240 mm?, matrix size = 80 x 68 x 33, voxel
size = 3 x 3x 3 mm’, slice gap = 0.6 mm) in the axial plane parallel to the anterior-posterior
commissure. During each functional run, about 310 contiguous axial images were acquired
and the first two images were discarded because of saturation effects. Additionally, in order to
improve the preprocessing and enhance the quality of the BOLD images ¢, T2 and T2*
structural volumes were collected. Each functional and anatomical image was visually
inspected to discard susceptibility artifacts and anatomical abnormalities.

Quality control and preprocessing were conducted using Statistical Parametric
Mapping software (SPM12; Wellcome Trust Centre for Neuroimaging, London, United
Kingdom) on Matlab 2017 (Mathworks Inc., Natick, MA, USA). Prior to the preprocessing,
we manually centered the images to the AC-PC axis, realigned the functional and anatomical
MRI images and then realigned all images to the last version of the SPM anatomical template.
The preprocessing procedure was done with SPM 12 and followed a methodology designed to
reduce geometric distortion effects induced by the magnetic field, described by Villain and
colleagues %. This procedure included the following steps: 1) realignment of the EPI volumes
to the first volume and creation of the mean EPI volume, 2) coregistration of the mean EPI
volume and anatomical T1, T2, and T2* volumes, 3) warping of the mean EPI volume to
match the anatomical T2* volume, and application of the deformation parameters to all the
EPI volumes, 4) segmentation of the anatomical T1 volume, 5) normalization of all the EPIs,
T1 and T2* volumes into the Montreal Neurological Institute (MNI) space using the
parameters obtained during the T1 segmentation, 6) 8 mm FWHM smoothing of the EPI

volumes.

12
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For each individual, frame-wise displacement (FD) 7 was calculated. FD values
greater than 0.5 mm were flagged to be temporally censored or “scrubbed” during the first-
level analysis (see description below). The average of FD volumes censored was M = 6.8 (SD
= 8.3, Min = 1, Max = 38) for both runs for a total of n=65 participants. Three participants
were excluded from further analysis because >10% of volumes a FD > 0.5 mm within one

run.

General linear model analysis with SPM
For both experiments, the MRI SoVT-Rest data was analyzed using General Linear Models in
SPM12 (implemented in Matlab 2017). This comprised standard first-level analyses at the
subject level, followed by random effect (2nd-level) analyses to assess the effects of interest
at the group level. For the Ist-level analysis, a design matrix consisting of two separate
sessions was constructed for each participant. Experimental event regressors in each session
included the fixation cross (10 sec), instructions (8 sec in Experiment 1, 4 sec in Experiment
2), the three videos (~15 sec each) modeled separately, and the rest periods following each
block (90 sec). Each rest period was divided into three equal parts (30 sec time bins) in order
to model different time intervals during which brain activity may gradually change after the
end of the HE and LE video blocks (similar to Eryilmaz and colleagues 24).

The different regressors were then convolved with a hemodynamic response function
(HRF) according to a block design for univariate regression analysis. The six realignment
parameters were added to the matrices in order to account for motion confounds, and low-
frequency drifts were removed via a high-pass filter (cutoff frequency at 1/ 256 Hz). The
final 1st-level matrix consisted of 2 sessions of 21 regressors each (1 fixation cross + 1
instruction for videos + 1 instructions for rest + 3 HE videos + 3 post HE rest + 3 LE videos +
3 post LE rest + 6 motion parameters). Additionally, we addressed the influence of remaining
motion on BOLD data by performing data censoring as described by Power and colleagues 7°.
Specifically, during the estimation of beta coefficients for each regressor of interest, volumes
with FD >0.5 mm were flagged in the design matrices and ignored during the estimation of
the 1% -levels.

For the 2nd-level analyses, we used flexible factorial designs where the estimated
parameters from 1st-level contrasts of interest were entered separately for each subject. The
second-level design matrix was generated with SPM12 and included 12 regressors of interest

(3 HE videos + 3 Post HE rest + 3 LE videos + 3 Post LE rest). This step allowed us to
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investigate the effect of each experimental condition on brain activity, including the main
condition effects (video and rest), the specific emotional effects (HE and LE) during either the
video or the subsequent rest periods as well as the age effect on the different conditions
(young vs. old, Experiment 1).

In both experiments, we conducted #-tests contrasts to compare the conditions of
interest (videos vs. rest periods and vice versa) and the specific emotional effects (videos: HE
vs. LE; rest: HE vs. LE). In Experiment 1, we additionally tested for age differences in these
effects (OA vs. YA (videos: HE vs. LE); OA vs. YA (rest: HE vs. LE)). In Experiment 1,
results are reported at P uncorrected < 0.001, k > 20 which has been shown to be acceptable
and reliable for fMRI experiments assessing cognitive and affective processes with unprecise
onsets 7!, and clusters surviving whole-brain family-wise error correction at P < 0.05 at the
cluster level (FWEc) are indicated in figures and tables (see supplementary Table 3a). In
Experiment 2, all comparisons are reported with a whole-brain FWE correction at P < 0.05, at

the voxel level (see supplementary Table 3b).

Functional connectivity analysis during rest periods, definition of Regions of
Interest (ROI), and the data analysis pipeline
For both experiments, we conducted functional connectivity analyses between the most
important brain regions of interest (ROIs) associated with the empathy network and with the
default mode network (DMN). In addition, we also included the bilateral amygdalae among
regions used for this analysis because previous studies assessing carryover effects in the brain
have related sustained amygdala activity to anxiety traits !° and emotional reactivity *. For
nodes of the DMN, we chose the posterior cingulate cortex (PCC) and the anterior medial
prefrontal cortex (aMPFC), following Andrews-Hanna and colleagues 7. Based on the results
of a meta-analysis by Fan and colleagues *°, the bilateral anterior insula (AI) and anterior
medial cingulate cortex (aMCC) were used as ROIs in the empathy network. Time series were
extracted from 6 mm-radius spheres around the peak of each of these ROIs. The amygdala
was defined anatomically using the current SPM anatomical template provided by
Neuromorphometrics, Inc (http://Neuromorphometrics.com/).

Functional connectivity analyses were performed using Matlab 2017 and R studio
(version 3.6.1). For each participant, time courses of activity (from each voxel of the brain)
were high-pass filtered at 256 Hz, detrended and standardized (Z-score) before extracting

specific time courses from the defined ROIs. In addition, white matter (WM), cerebrospinal
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fluid (CSF) signals, and realignment parameters were included as nuisance regressors in
Experiment 2. For each participant, time series from the instructions and videos periods were
removed, and the remaining time series corresponding to the rest periods were concatenated.

This procedure was previously proposed by Fair and colleagues 73

and proved to be
qualitatively and quantitatively very similar to continuous resting-state data. Additionally, to
correct extreme head motion without affecting the autocorrelation of the time series, image
volumes flagged with FD > 0.5mm were removed and replaced by interpolation (every
flagged volume X was replaced by the estimated mean of the X-1 and X+1 volumes). The
final concatenated time series resulted in 184 frames (~386 s) of resting-state data for each
subject.

We then correlated the time-courses between the different ROIs using Pearson

correlations 74

, and the resulting coefficients were Fisher's 7 to z transformed in order to
improve normality in the data. Individual Z-score maps (correlation matrices) were created for
each participant (see Fig. 2a,b,c). To test for significant differences between the two
correlation matrices (post HE rest and post LE rest), we used a non-parametric permutation
test 7°. For each pair of nodes, the permutation test compared the true correlation difference
(e.g., HE - LE) to a null distribution built by randomly flipping the sign of the correlation
coefficients and computing the difference many times (n=5000) (see Fig. 2d). More precisely,
for each pair of nodes (e.g., HE - LE for ROI 1 and ROI 3), a vector of values of n=number of
participants was obtained and a one-sample #-test was computed to obtain the real ¢ value (¢
real). Then, the signs of the elements in the vector were randomly flipped (n=5000) and the
model was fitted repeatedly once for every flipping. For each fit, a new realization of the ¢
statistic was computed so that an empirical distribution of ¢ under the null hypothesis was
constructed (7 permuted). From this null distribution, a P value was computed by assessing the
probability of the ¢ rea to be higher than 95% of the values on the empirical ¢ permuted
distribution 7°. Finally, the obtained P values were converted into an equivalent Z-score and
significant changes (marked by asterisk in matrices) were retained for Z > 1.64 (equivalent to
P < 0.05, one-tailed given observed increases without decreases in GLM analysis,

uncorrected).
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amygdalaec (Amy) were defined anatomically using the SPM anatomical template. (b) For every participant,
time-series from the video and instruction periods were removed, and the remaining time series corresponding to
the rest periods were concatenated ™. The final concatenated time series of the four rest blocks for each type of
video (high emotion, HE or low emotion, LE) resulted in 184 frames (~360 s) of resting-state data for each
subject. (¢) We then correlated the time-courses between the different ROIs using Pearson's  correlation, and the
resulting coefficients were Fisher's r to z transformed to improve normality in the data. Individual Z-score maps
(correlation matrices) were created for each participant. (d) Finally, significant differences between the two
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Thought probes

For each participant in Experiment 2, two thought probes were recorded after the last rest
period of each run and subsequently analyzed to test for differences in spontaneous mind
wandering after emotional videos. Participants freely described their thoughts, and these
narratives were digitally recorded and transcribed for analyses by two independent raters (see
suppementary Table 4). For each probe (post HE rest and post LE rest), the two raters
attributed the presence (Present) or the absence (Absent) of specific thought contents
according to a diverse set of pre-defined categories (Supplementary Table 4). These
categories were selected according to a priori relevant affective or cognitive dimensions, and
included the following: negative and positive emotions, directed attention to oneself and to
others, emotion regulation (voluntary control of emotions), negative and positive social
emotions, rumination, and temporality (present or past/future). Categories with low
variability (i.e., the same thought content reported by more than 85% of participants) were not
included in further analyses since this prevented reliable regression analysis (for details, see
supplementary Table 4). The final dimensions included negative and positive emotions,
directed attention to oneself and to others, and positive social emotions. This final analysis of
thought probes comprised data from 109 participants for rest periods after HE videos and 110
participants for the rest periods after LE videos. This was due to 1) missing thought probes for
9 participants and ii) exclusion of reports that did not refer directly to thoughts or feelings in
the rest period (but rather to factual details in the videos) for both runs (n = 5), following LE
rest (n = 3) or following HE rest (n = 4). Interrater agreement on the final dimensions ranged
from 0.28 to 0.66 (Cohen’s kappa index; supplementary Table 4 for details). The statistical
analyses were performed with R studio (version 3.6.1) and the corresponding graphs were

created with ggplot2 (version 3.2.1).
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RESULTS

Participants characteristics

Participants’ characteristics, including demographical data, psycho-affective traits, cognitive
abilities, socio-emotional questionnaires, as well as corresponding age differences, are
provided in Table 1 and Fig. 3. Older vs. younger participants (Experiment 1) did not differ in
trait anxiety, affective empathy, and emotion regulation scores. However, older adults
reported lower scores of cognitive empathy as measured by the perspective-taking subscale
(ts3 = 4.2, P < 0.001, d = 1.13, two-tailed) and the fantasy scales of the IRI (#523 = 3,
P =0.004, d = 0.81, two-tailed). Older adults also had lower scores in reflective rumination
(ts27 = 2.62, P = 0.01, d = 0.7, two-tailed). The two independent older adults samples
(Experiment 1 and Experiment 2) did not differ in any of the scores (all < 1.6, all P > 0.09).
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Figure 3. Participants' characteristics in terms of psycho-affective traits and socio-emotional competencies for
both Experiment 1 (n=29 younger and n=26 older adults) and Experiment 2 (N=127 older adults). Age-related
differences (Experiment 1) were tested with #-tests and significant results are marked with *. Grey diamonds=
younger adults, white dots= older adults. IRI: Interpersonal Reactivity Index, GDS: Geriatric Depression Score
(for older adults only), BDI: Beck’s Depression Inventory(for younger adults only), STAIL: STAl-trait Anxiety
Index, RRS: Rumination Response Scale, ERQ: Emotion Regulation Questionnaire.
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Behavioral responses of the SoVT-Rest task

Reliability of the three parallel video sets

To check whether the three video sets elicited similar emotional responses, we performed
repeated measures multivariate analysis of variance (MANOVA, with Pillai's trace statistics)
with the within-subject factor “video type” (HE vs LE), the between-subject factor “video set”
(V1, V2, V3), and three dependent variables: empathy, positive affect, and negative affect
ratings. As expected, and replicating results from Klimecki and colleagues *, these analyses
revealed no significant differences between the three video sets for any of the self-reported
ratings for Experiment 1 (Pillai’s trace = 0.07, F(6,102) = 0.7, P = 0.6) nor for Experiment 2
(Pillai’s trace = 0.07, F(6,246) = 1.41, P = 0.2 ) (see supplementary Fig. 1).

Impact of high compared to low emotion videos and aging effects on affective and
empathy ratings

In Experiment 1, we compared the effects of HE and LE videos using pairwise #-tests for each
of the three affective ratings (empathy, positive, and negative affect). These findings were
fully replicated in Experiment 2. As predicted, participants reported higher levels of empathy
(Exp 1: ts4 = 14.35, P < 0.001, d = 1.67, two-tailed ; Exp 2: t126 = 14.5, P < 0.001, d = 1.31,
two-tailed), higher negative affect (Exp 1: ts4 =23.35, P < 0.001, d = 3.77, two-tailed; Exp 2:
ti26 =26.9, P < 0.001, d = 2.89, two-tailed), and lower positive affect (Exp 1: ts4 = -16.85, P
< 0.001, d = -2.31, two-tailed; Exp 2: t126 = -18.9, P < 0.001, d = -2.31, two-tailed), when
presented with HE as compared to LE videos (see Fig. 4a). Importantly, the reported
differences between HE > LE conditions on these ratings were not affected by sex in any of
the experiments (see supplementary Fig. 6). These data validate a successful elicitation of

socio-emotional responses with the SoVT-Rest.

Additionnaly, Experiment 1 allowed us to determine age-dependent differences in affective
and empathy ratings in the SoVT-Rest task. First, independent ANOVAs showed significant
main effects of age on empathy (£(1,53) = 10.8, P = 0.002) and positive affect (F(1,53) = 24,
P <0.001), but not on negative affect (F(1,53) = 1.01, P = 0.3). Follow-up two-sample ¢-tests
revealed that in contrast to younger adults, older adults reported higher levels of empathy only

for LE videos #s51.5 = 4.45, P < 0.001, d = 1.19, two-tailed) as well as higher positive emotions
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for both HE videos (365 = 4.63, P < 0.001, d = 1.29, two-tailed) and LE videos (#s0.1 = 3.68,
P < 0.001, d = 0.98, two-tailed). Interestingly, the two independent older samples
(Experiment 1 and Experiment 2) did not differ in any of the scores (all # < 1.8, all other P >
0.07) (see Fig. 4a) except for even higher ratings of empathy for LE videos in the elderly from
Experiment 2 than those from Experiment 1 (36 =2.20, P = 0.03, d = 0.47, two-tailed).

We further tested whether age effects on affective ratings were observed within each age
group independently (young and older participants). Spearman correlations were computed
between age (as a continuous variable) and empathy, positive affect, and negative affect for
each age group (collapsing both older adults samples from Experiments 1 and 2). This
analysis revealed that during HE videos, age correlated negatively with negative affect (rho =
-0.2, Prpr = 0.03) and positively with positive affect (rho = 0.25, Prpr = 0.006) in older
individuals, but not in younger adults. In addition, age correlated positively with empathy for

LE videos in the young (7ho = 0.44, Prpr = 0.03), but not older adults (Fig. 4b).

These analyses were repeated excluding n=8 older adults that reported “moderated” levels of
depression according to a threshold of GDS >5 76, Results did not change (see supplementary

Table 5). We, therefore, decided not to exclude them from the main analyses.

Correlation between empathy and affective valence during the SoVT-Rest

To test how empathy was associated with positive and negative affect during HE and LE
videos, we computed Spearman correlations between these rating scales. For both younger
and older adults, empathy increased with higher negative affect during HE videos (YOUNG :
rho = 0.86, Prpr < 0.001; OLD: rho = 0.63, Prpr < 0.001) and with higher positive affect
during LE videos (YOUNG: rho = 0.75, Pror < 0.001; OLD: rho = 0.65, Prpr < 0.001).
Interestingly, during HE videos, empathy correlated negatively with positive affect for older
(rho = -0.35, Prpr < 0.001) but not younger adults (4o = 0.27, Prpr = 0.18); whereas during
LE videos, empathy correlated positively with negative affect for the younger (rho = 0.63,
Prpr < 0.001) but not the older (rho = 0.13, Prpr= 0.14) (Fig. 4c).
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Figure 4. (a) Self-reported scores of empathy, positive affect, and negative affect for the high emotion (HE) and
low emotion (LE) videos across experiments. Significant differences between age groups or video type are
marked by *** representing P < 0.001 (b) Scatter plots illustrating Spearman correlations between age and
scores of empathy, positive affect, and negative affect. (¢) Scatter plots illustrating Spearman correlations
between scores of empathy and affective ratings. Correlations for (b) and (c) were computed together; therefore,
P values are reported corrected for multiple comparisons using the false discovery rate (FDR) method.
Significant P values are marked in bold. Dots represent averaged values for each participant per condition;
Dots/solid line: older adults, diamonds/dashed line: younger adults; negp: = 55, nep2 = 127; Red: HE videos,
Grey: LE videos.

Neural responses of the SoVT-Rest task

Main effects of videos and rest periods (manipulation check)

We first verified that video and rest periods induced differential brain activity by testing for
the main effects of task conditions. As expected, comparing videos versus rest periods
(Videos > Rest, voxel-wise P < 0.05 FWE-corrected) revealed greater activity in widespread
networks, including stronger increases in visual cortices. Conversely, comparing rest versus
video watching periods (Rest > Videos, voxel-wise P < 0.05 FWE-corrected) revealed greater
activity in several regions typically associated with the default mode network, such as the
PCC/Precuneus, ACC/MPFC, and bilateral IPL. These results were similar in Experiments 1
and 2 (see supplementary Fig. 2).

Brain regions activated when faced with others’ suffering and age-related
differences

In Experiment 1, we determined the effect of the emotional content of videos (high, HE vs.
low, LE) in each age group, as well as age-related differences. In both groups, the contrast of
HE > LE conditions (voxel-wise P < 0.05 FWEc-corrected; and P < 0.001 uncorrected, k=20)
demonstrated consistent increases in temporo-parietal junction (L. TPJ), right inferior frontal
gyrus (r.IFG), as well as temporal and occipital cortices (see Fig. 5a and supplementary Table
3a). Older adults showed larger activations in PCC and dMPFC, whereas younger adults
showed additional increases in Al and PAG (see Fig 5a). A direct between-group comparison
(2x2 ANOVA) revealed that the older adults more strongly engaged cortical regions in
bilateral angular gyrus (TPJ/IPL) and dLPFC. Inversely, the young more strongly engaged
subcortical areas in ventral striatum and PAG, as well as sensory areas in parietal and

occipito-temporal cortices (Fig 5b).
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Experiment 2 replicated the results found in older adults from Experiment 1, surviving a more
stringent statistical threshold due to the larger sample size. Indeed, HE > LE videos (voxel-
wise P < 0.05 FWE-corrected) induced greater activity in fronto-parietal and midline regions
including left TPJ, dMPFC, and PCC, together with significant increases in bilateral anterior
insula (AI), anterior cingulate cortex (ACC), anterior mid-cingulate cortex (aMCC), and

ventral striatum (VS) (see Fig. 5c, and supplementary Table 3b).

Overall, brain activations found across the two experiments overlap with networks classically

associated with empathy 3%° compassion >-%+77 as well as cognitive and affective theory of
mind °!"78,
a b

VIDEOS : HE > LE (Experiment 1) VIDEOS : HE > LE (Experiment 1)

) g 00 YOUNG>OLD ~ OLD>YOUNG P, <0.001,
) 31 EETIMY 6 31 iETIMy 6 k=20 N=55
R

VS

A

PCCI/Prec

Prwe <0.05
N=127

Figure 5. Brain regions with greater activation during high emotion (HE) videos in contrast to low emotion (LE)
videos across experiments and age groups. (a) Brain maps for younger (n=29) and older (n=26) adults in
Experiment 1. (b) Between age-groups difference in Experiment 1. For display purposes, results are thresholded
at P uncorrected < 0.001, with a minimum cluster size of (k = 20). Clusters surviving correction for multiple
comparisons (P FWE < 0.05 at the cluster level) are surrounded in white dotted circles. (¢) Brain maps for older
adults (N=127) in Experiment 2. Results survived familywise error (FWE) correction at the voxel level (P < 0.05
FWE-corrected). Overall HE > LE videos activated regions previously reported as part of the empathy network
(bilateral anterior insula, Al; anterior middle cingulate cortex, aMCC), and regions comprised in the Theory of
Mind network (PCC: posterior cingulate cortex, 1. TPJ: left temporo-parietal junction, dMPFC: dorsal medial
prefrontal cortex) and the Compassion network (VS: ventral striatum) 777,
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Older adults show carryover effects of socio-emotional videos during subsequent
rest periods

To test for carryover effects of emotional videos on subsequent resting state >* and thus assess
homeostatic emotion regulation abilities ', we compared rest periods after HE videos to rest
periods after LE videos. In Experiment 1, this contrast (post HE > post LE; voxel-wise P <
0.001 uncorrected, k=20) revealed greater brain activations mostly in the older group,
involving the medial prefrontal cortex (MPFC), left anterior insula (1. Al), right inferior frontal
gyrus (r.IFG), several temporo parietal cortices, as well as right hippocampus (r.Hipp) (see
Fig. 6a and supplementary Table 3a). The same contrast in younger adults showed more
limited increases predominating in MCC (see supplementary Table 3a). A direct between-
group comparison (2x2 ANOVA) confirmed that older adults engaged these regions (Al, IFG,
dMPFC) more strongly, with further significant effects in left MTG and left amygdala,
wheras the younger showed higher activity predominating in left hippocampus and precentral

motor regions (see Fig 6b and supplementary Table 3a).

In Experiment 2, similar regions were found, again surviving a more stringent statistical
threshold and replicating our results in older adults from Experiment 1. The contrast post HE
> post LE (voxel-wise P < 0.05 FWE-corrected) highlighted higher resting activity mainly
among midline nodes of the DMN (ACC/dMPFC, and Precuneus/PCC), as well as increases
in the right amygdala (. AMYG) and the ventral part of the right anterior insula (r.Al) (see
Fig. 6¢c and supplementary Table 3b).

The larger sample size in Experiment 2 allowed us to conduct additional analyses to assess
whether these carryover effects at rest directly resulted from higher activity in the same
regions during videos periods. To this aim, we identified voxels that were most reliably
activated for a specific contrast (HE > LE) across the two periods (videos and rest) by
applying an inclusive mask from one contrast (e.g., videos: HE > LE) to the other contrast
(rest: post HE > post LE) with a strict threshold used for both (P < 0.00001). This overlap of
emotional increases (contrasts HE>LE) from both the videos and the rest periods allowed us
to determine common areas of activity, shared across the task conditions (Fig. 6¢). This

analysis revealed a restricted overlap in a few selective regions, mainly dMPFC and PCC,
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where voxels with emotional activation during videos also exhibited emotional carryover
effects at rest after videos, suggesting sustained increases persisting over time (Fig. 6e,f). In
contrast, other regions differentially activated during emotional videos did not display any
carryover effects during the subsequent rest periods (i.e., exclusively responding to HE > LE
conditions during the videos periods), including not only visual cortical areas but also mid
cingulate areas (MCC; Fig. 6d). Interestingly the right amygdala as well as a segment of the
right anterior insula (ventral part) did not show significant differences for the HE > LE
contrast during videos but were robustly activated in the post HE > post LE rest periods (Fig.
6g,h). These dissociations between rest and video-related activity are further illustrated by
plots of brain activity (contrasts estimates) over time across the different task periods (using a
single time bin of ~45 sec during videos and three successive time bins of 30 seconds during
rest to depict the time course of the activation) and the different conditions (HE and LE

videos) (Fig. 6d,e,f,g,h).
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Figure 6. Carryover effects on brain activity at rest subsequent to high emotion (post HE) versus low
emotion (post LE) videos across experiments and age groups. (a) Brain maps for younger adults (n=29, blue
clusters) and older adults (n=26, violet clusters) in Experiment 1. (b) Direct comparisons of brain maps
representing significant age-related differences in Experiment 1. Results are thresholded at P uncorrected <
0.001, with a minimum cluster size of (k = 20). Clusters surviving correction for multiple comparison (P FWE <
0.05 at the cluster level) are surrounded in white dotted circles. (¢) Brain activations for older adults (N=127) in
Experiment 2. Violet cluster show significant increases in rest periods for the contrast post HE > post LE. Green
clusters show the overlap of these activations with emotional effects observed during videos (shown in grey).
Results are thresholded at P < 0.05 corrected for multiple comparisons using family-wise error (FWE) correction
at the voxel level. (d,e,f,g,h) Magnitude and time-course of brain activity (parameter estimates) for relevant
regions during the different task periods in Experiment 2. (d) Example of a region (in MCC) responding to HE
vs LE videos, but showing no significant difference during rest after HE vs LE videos. (e,f) Example of regions
(PCC/Prec and dMPFC) responding to HE > LE videos and showing significant carryover with sustained activity
during subsequent rest. (g,h) The right amygdala as well as the ventral part of the right anterior insula did not
reliably respond to HE vs LE videos but showed significant increases in activations during corresponding rest.
Grey lines track activity time-courses during LE conditions. Pink lines track activity time-courses during HE
conditions. Grey and pink bars indicate activity (blocks of 3 videos = ~45 seconds) for LE and HE videos
respectively, white bars indicate activity (over 3 bins of 30 seconds) during rest periods subsequent to
corresponding videos periods. *** P < 0.05 FWE-corrected. PCC: posterior cingulate cortex, Prec: precuneus,
MCC: mid-cingulate cortex, ACC: anterior cingulate cortex, AMPFC: dorsomedial prefrontal cortex, r. ventral
Al right anterior insula (ventral part), r. AMYG: right amygdala, IFG: inferior-frontsal gyrus, MTG : middle
temporal gyrus, Hipp: Hippocampus.

Exposure to others suffering impacts subsequent brain network connectivity in

older but not younger adults

To further assess the lingering impact of emotional videos on brain activity dynamics
(emotional inertia), we examined differences in functional connectivity between and within a
priori defined networks. To do so, we first determined the functional connectivity patterns in
regional time-series from the default mode network, the empathy network, and bilateral
amygdala measured during the rest periods after HE videos, compared to rest periods after LE
videos (Fig. 2). We computed connectivity matrices using Pearson correlations between the
time-series of every pair of nodes in the three networks of interest. The resulting connectivity
matrices obtained for each participant were then group-averaged for illustration (see
supplementary Fig. 3). In both experiments, we observed a general pattern of intra-network
connectivity (Empa-Empa, Amy-Amy, DMN-DMN) during rest periods subsequent to both
the HE and LE videos (see supplementary Fig. 3), consistent with functionally coherent
activity within each specific network. To specifically unravel the differential connectivity
during rest periods due to emotional inertia (post HE vs post LE rest periods), we directly

compared the two connectivity matrices using permutation tests (see methods).
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In Experiment 1, significant differences were observed for functional connections of
the DMN with bilateral amygdala selectively in older adults: In contrast to post-LE rest
periods, resting after HE videos exhibited stronger coupling between the PCC and right
amygdala (¢ = 2.52, P = 0.008, Z = 2.4 one-tailed), PCC and left amygdala (z = 2.1, P = 0.02,
Z = 1.97 one-tailed), as well as between the aMPFC and right amygdala (z =2.02, P = 0.03, Z
= 1.95 one-tailed), and between aMPFC and left amygdala (r = 2.24, P = 0.02, Z = 2.04 one-
tailed) (Fig. 7a). No significant differences in functional connectivity between rest periods

after HE and LE videos were found for young adults (see Fig. 7a).

To confirm these age-related differences in functional connectivity patterns, we
performed #-tests for each connectivity node between younger and older adults. This direct
between-group comparison (Young vs Old: Rest post HE > post LE) showed that, in contrast
to younger adults, the older showed significantly larger increases in connectivity between left
amygdala and PCC (¢ = 2.12, P = 0.03, two-tailed), as well as left amygdala and aMPFC(¢ =
2.08, P = 0.04, two-tailed) (Fig. 7b).

Experiment 2 revealed similar patterns of increased connectivity in our larger group of
elderly. Significant differences were observed for highly selective functional connections of
the DMN with limbic areas: In contrast to rest periods after LE videos, rest periods after HE
videos induced stronger functional coupling between the PCC and the right amygdala (¢ =
1.82, P = 0.03, Z = 1.81 one-tailed), as well as between the aMPFC and left insula (¢ = 1.98,
P =0.02, Z = 2.02 one-tailed). In addition, there was also higher coupling of the bilateral
amygdala during rest periods after HE vs LE videos (right with left, r = 1.88, P = 0.02, Z =
1.95 one-tailed) (Fig. 7c).

Because r. AMYG-PCC functional connectivity during rest post HE > LE was
significantly increased in older adults from Experiment 1 and this results was replicated in
older adults from Experiment 2, we conducted additional #-tests in Experiment 2 that allowed
us to assess whether the between-network functional coupling for this pair of nodes was also
statistically stronger than for other pairs of nodes including either the right amygdala or the
PCC. Results showed that . AMYG-PCC connectivity was indeed significantly greater than
between-network connectivity for other pairs of nodes including left AI-PCC, right AI-PCC
and right AMYG-aMPFC (see Fig. 8a).
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748 Figure 7. Functional connectivity (FC) results illustrated as correlation matrices between pairs of ROIs
749 for the different rest conditions in Experiment 1 (a,c) and Experiment 2 (d). a Correlation for the difference
750  between the two rest conditions, showing functional coupling between regions for post emotion increases (green)
751 and post emotion decreases (orange) for each age group in Experiment 1, N=55). Left and right halves of the
752 matrix with respect to the diagonal depict the values for inverse contrasts (upper part: post HE - post LE rest
753 periods; lower part: post LE - post HE rest periods. Significant changes in correlations with Z > 1.64 are marked
754 by an asterisk * corresponding to P < 0.05, one-tailed). b Age-related differences between functional
755  connectivity changes (Rest post HE > post LE: Old vs Young) were examined with two sample #-tests to identify
756 increases predominating in older adults (OLD > YOUNG, violet) or younger adults (YOUNG > OLD, blue).
757 Significant differences were observed only for older relative to younger aduls, depicted by an asterix *
758 corresponding to P < 0.05, two-tailed, uncorrected. ¢ Correlation matrix showing significant differences in FC
759  between rest conditions in older adults (N=127) from Experiment 2. The upper right figure illustrates the a priori
760  ROIs selected for the current analysis, including regions from the default mode network, DMN (PCC: posterior
761 cingulate cortex, aMPFC: anterior medial prefrontal cortex.), empathy network, Empa (left and right Al: anterior
762 insula, MCC: anterior mid-cingulate cortex) and bilateral amygdalae, Amy (left and right AMYG).
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Relationship between functional connectivity patterns and psycho-affective

measures

Our fMRI connectivity analyses identified a selective impact of emotional videos on
functional brain connectivity of the posterior DMN (PCC) with the amygdala, replicated
across two independent experiments carried out at different sites. In Experiment 1,
connectivity at rest was significantly increased between PCC and bilateral amygdalae in older
adults as well as between PCC and left amygdala when directly comparing older to younger
adults. In Experiment 2, connectivity was significantly increased between PCC and right
amygdala in the larger older sample. These converging results provide a plausible neural
mechanism underlying emotional inertia '®2* that is specific to older adults and may thus offer

a valuable biomarker of homestatic emotion regulation processes in aging.

In Experiment 2, we could therefore further examine whether this connectivity pattern
was related to individual differences in socio-emotional abililites and psycho-affective traits.
To do so, we tested for a correlation between the Z-values from significant edges in
connectivity matrices (i.e., connections between two ROIs showing a significant difference Z
> 1.64 between post HE vs post LE rest) and specific scores on trait anxiety (STAl-trait),
rumination (RRS), and empathy (IRI). This analysis showed a significant positive relationship
between the magnitude of changes in . AMYG-PCC connectivity (rest HE — rest LE) and the
individual scores of trait anxiety (» = 0.21, P < 0.01, two-tailed) and rumination (rho = 0.22,
P < 0.01, two-tailed) (Fig. 8b), but no correlation with empathy (» = 0.1, P = 0.25, two-
tailed).

Relationship between functional connectivity patterns and thought probes

Because we observed that rumination scores were positively associated with greater changes
in functional coupling between . AMYG-PCC for the contrast post HE > post LE at rest, we
reasoned that some participants (i.e., with higher ruminative tendencies) may have kept more
negative-related content in their thoughts during the rest periods after emotional videos. This
was directly tested in Experiment 2 by using the explicit thought probe given after different
rest conditions (see Fig. 1b). To do so, we compared the r. AMYG-PCC connectivity between

a subgroup of participants who verbally reported negative content in their spontaneous
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thoughts in response to the probe question (Present) vs. those who did not (Absent), for both
the HE and LE conditions.

Behaviorally, for rest periods after HE videos, 59(54%) participants reported negative
thought content, while 30(28%) reported no negative thought content and 20(18%) were
ambiguous (judgments by our two raters did not match). Interrater reliability analyses
revealed a good agreement (kappa=0.61) between the two independent raters (see
supplementary Table 4 for details). A Chi-square test revealed that these proportions
(negative present 54% vs. negative absent 28%) were statistically different; X* (1, N = 109) =
45.88, P < 0.001 (two-tailed), demonstrating that HE videos induced more frequent negative
than non-negative thoughts in our participants.

Conversely, for rest periods after LE videos, only 41(37%) participants reported
negative thought content, while 50(45%) reported no negative thoughts, and 19 (17%) were
considered ambiguous. The rater agreement was again good (kappa = 0.66) (see
supplementary Table 4 for details). This proportion of negative thoughts (37%) was
significantly lower than the proportion of non-negative thoughts (45%); Chi-squared test, X°
(1, N = 110) = 51.59, P < 0.001 (two-tailed), indicating that the LE videos induced less
frequent negative mental thought content (than non-negative thoughts). An additional
McNemar's test further determined that, as expected, participants reported more negative
thoughts for rest periods after HE videos than for rest periods after LE videos, X?= 10.28, P =
0.02 (two-tailed).

Finally, to relate these behavioral indices to brain effects, we used a non-parametric
permutation analysis in which the rrAMYG-PCC connectivity difference (observed diff =
0.08) between these two subgroups (negative thoughts Present-Absent) was compared to a
null-distribution built by permuting the labels 5000 times. As hypothesized, we found that the
54% of participants reporting negative content in their thoughts (vs. 28% not reporting)
showed increased r.AMYG-PCC connectivity for the rest periods following HE videos (P =
0.02, one-tailed). The same difference between the two subgroups for rest periods following
LE videos was only a trend (observed diff = 0.06; P = 0.07, one-tailed) (Fig. 8c). Taken
together, these findings further unveil a direct relation between r. AMYG-PCC connectivity
changes after negative emotions and individual reactivity to aversive or stressful socio-

emotional stimuli.
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Figure 8. (a) Between-network functional connectivity during rest periods after HE > LE videos. Pairs of nodes
are ordered from left to right according to the connectivity strenght. In red, the . AMYG-PCC pair was
significantly more connected than other pairs (but not all) involving either the PCC or the right amygdala (in
bold); significant comparisons from ¢-tests (one-tailed) are marked with corresponding P values, NS: not
significant (b)Pearson (r) and Spearman (740) correlations show that higher functional connectivity between
amygdala and posterior cingulate cortex during rest periods after HE > LE videos [, AMYG-PCC(rest HE-rest
LE)] was positively related to trait anxiety (STAIL.B) and rumination (RRS total). (¢) . AMYG-PCC connectivity
between the group of participants who verbally reported negative content during the thought probes (Present) vs.
the group who did not (Absent), for both HE and LE conditions. After HE videos, 59(54%) participants reported
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negative content in their thought probes, 30(28%) did not report negative content and 20(18%) were ambiguous.
After LE videos, only 41(37%) reported negative content, 50(45)% reported negative thoughts, and 19(17%)
were ambiguous. At the brain level, we performed a non-parametric permutation analysis to compare the
observed mean r AMYG-PCC connectivity difference between the two groups Present-Absent (observed diff =
0.08), relative to a null-distribution built by permuting the labels 5000 times. As hypothesized, we found that
54% of the participants reporting negative content in their thoughts (vs. 28% not reporting negative thoughts)
showed increased r.AMYG-PCC connectivity in the HE condition (P = 0.02, one-tailed). In the LE condition,
there was no significant difference in . AMYG-PCC connectivity between the two groups (observed diff = 0.06;
P = 0.07, one-tailed). Red: High Emotion (HE) condition, Grey: Low emotion (LE) condition. . AMYG-PCC:
connectivity between the right amygdala and the posterior cingulate cortex. Percentages in the text are rounded.
Data from Experiment 2.

DISCUSSION

The current study sought to delineate neural markers of emotional resilience and empathy in
aging, which are increasingly recognized as important protective factors against mental illness
and cognitive decline in this population 8. We assessed both reactivity and recovery of brain
networks to negative socio-affective situations (i.e., during and after videos) in two
independent experiments, including a large number of younger and older adults (N=182). In
Experiment 1, we focused on validating the task and assessing aging effects on affective
processes that allowed us to probe for emotional carryover effects in resting state (emotional
inertia) as an indirect indicator of maladaptive regulation processes !°. In Experiment 2, we
replicated the results and further examined the relationship between brain carryover effects

and measures of anxiety, rumination, and negative thoughts in older adults.

Aging effects on behavioral characteristics

Overall, our two samples of older adults (Experiment 1 and Experiment 2) did not differ in
any of the questionnaires assessing affective or cognitive traits. Compared to younger adults,
older adults reported lower scores in cognitive-related processes, including reflective
rumination and cognitive empathy. These findings converge with previous work showing a
decline of cognitive abilities as people get older, including cognitive components of social

functions *, while socio-affective abilities tend to remain stable.

Accordindly, measures of affect and empathy showed largely preserved patterns in the

elderly that extend previous findings in younger adults 3. Seeing videos of others' suffering
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induced higher levels of negative affect, lower positive affect, and higher empathy scores than
mundane scenes of daily life, in both younger and older participants. Nonetheless, age
differences were observed, with older adults reporting more positive emotions for both LE
and HE videos. Moreover, despite a restricted age range in our elderly population, we found
that the older the age, the lower the negative and the higher the positive emotions reported to
videos of suffering (see Fig. 4b). This relationship between age and affect was not present for
young participants. These results confirm the "positivity bias" often described in the elderly 7,
which may reflect a motivation to upregulate positive and downregulate negative information
from emotional stimuli 7. In contrast, young and older adults reported similar levels of
negative affect in response to others’ suffering. This suggests that the positivity bias of older
adults does not necessarily impair their capacity to feel negative emotions when facing
someone who is suffering. This underlines the importance of separately assessing negative
and positive emotions, as done in the SoVT-Rest task, an issue already highlighted in

previous research®!-82

Finally, we found that emotional responses were modulated by levels of experienced
empathy. Higher empathy correlated not only with increased negative affect during HE videos
but also with increased positive affect during LE videos, for both older and younger adults
(see Fig. 4c). However, positive emotions were reduced with higher empathy during HE
videos only in older adults. These results indicate that modulation of positive emotions by
empathy in older adults may depend on the context: the higher the empathy, the higher the
positive emotions when facing social stimuli without overt emotional content, but the lower
the positive emotions when facing social stimuli of others' distress. These data offer a new
perspective on how empathy for others' suffering may impact the "positivity bias" usually

observed in the elderly.

Brain activity markers of empathy and age differences

Exposure to others’ suffering (contrast HE > LE videos) engaged several regions overlapping
with networks previously associated with social cognition and emotion. These encompassed
regions related to affective empathy, pain processing, or more generally salience detection
(aMCC, Al), as well as parts of the theory of mind (ToM) network (PCC, r.TPJ, dMPFC,
IFG) and the compassion network (ventral striatum) 777, These results converge with

36,50

abundant evidence implicating aMCC and Al in empathy for pain °°~°, encoding behaviorally
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salient information 3% and negative affect 3%, Likewise, TPJ and dMPFC are consistently
engaged in scenarios requiring cognitive abilities to infer others' affective and mental state
8788 "and therefore implicated in cognitive aspects of empathy and theory of mind ¢!, In
addition, in younger adults in Experiment 1 and the larger sample of older adults in
Experiment 2, the HE>LE videos also activated clusters in ventral striatum, an area associated

with positive affect and reward % and engaged during compassion for other’s suffering 5477

Remarkably, despite its prominent role in emotional processing, there was no
significant activation in the amygdala during the HE > LE videos in either group. This null
result might however accord with the notion that the amygdala responds more broadly to

social or self-relevant information rather than just negative valence %!

, and may already
activate to the content of LE videos. This would accord with similar increases seen during

both video conditions in Experiment 2 (see supplementary Fig. 2 and Fig. 6h).

Importantly, age differences were observed in these neural responses. Older adults
activated less regions typically related to empathy (Al, PAG) and more those related to social
cognition and emotion regulation (DMPFC, PCC, IFG). This adds to a few previous studies

that examined age-effects on empathy for pain #34

and empathy for negative and positive
emotions *2. Lower activity in affect-related regions, along with higher activity in cognition-
related frontal regions have been interpreted as a mechanism for enhanced emotion regulation
perfomance, possibly mediating the positivity bias of older people *°3. On the other hand,
increased activity in frontal regions may also reflect compensatory brain mechanisms acting
to overcome cognitive deterioration in older adults (Cabeza, 2002; Davis, 2008). Further
research is therefore needed to explicitely test cognitive functioning and clarify how it

accounts for this activation pattern in older adults, an issue beyond the purpose of the present

study.

In any case, our findings suggest that socio-affective functions and brain regions
mediating empathy and theory of mind exhibit globally normal patterns of engagement in
response to negative social situations in the healthy elderly. These data also demonstrate that
our video paradigm effectively engaged emotion and empathy processes in our participants,
and confirm a positive affective bias of older individuals in both their behavioral and neural

responses to social scenes, indicating globally preserved empathy and emotional balance.
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Emotional inertia and recovery from emotions after exposure to others' suffering

Beyond transient responses to negative stimuli, assessing the impact of emotions over time is
crucial to determine how people cope with stressful events **. Emotional inertia denotes a

persistence of emotional states !¢

reflecting inefficient recovery and greater risk for
psychological maladjustment 22%4%, Although well-studied behaviorally '®2°, emotional
inertia remains largely unexplored at the brain level, especially in old populations. To uncover
its neural underpinnings, we probed for carryover effects in brain activity at rest following

exposure to emotional videos and assessed age-related differences.

Across our two experiments, we observed selective increases during rest periods after
HE relative to LE videos in midline brain areas (ACC/MPFC and Precuneus/PCC), involving
core parts of the DMN typically active at rest 2, together with increases in amygdala and
insula, two regions implicated in emotional processing *7. Importantly, these effects occurred
only in older adults, suggesting an important modulation of emotion regulation mechanisms
during aging. The DMN is implicated in self-related internally-oriented processes, including
memory, interoception, and value-based decision making >34, Interestingly, previous research
found that the duration of activation in midline DMN regions was a better predictor of the
subjective emotional intensity of negative stimuli than the magnitude of activation 26, Other
fMRI studies reported modulations of DMN in response to emotional challenges, although

with divergent findings. While some researchers reported attenuated DMN activation

24,25 26,32

following various emotions , others reported increases , similar to the current results.
In Experiment 2, we further found that two midline nodes of DMN (i.e., Precuneus/PCC and
dMPFC) were not only activated in the HE > LE contrast during videos, but also continued
their activity in the corresponding contrast during subsequent rest (post HE > post LE),
providing direct evidence for “emotional inertia” in the aging brain. These findings resonate
with previous work showing that older, but not younger, adults fail to deactivate regions of
the DMN during cognitive control and visuospatial tasks *'*>. To our knowledge, these data
reveal for the first time that increased DMN activations in the elderly can persist over time

after exposure to negative socio-emotional contexts.

Sustained changes were also observed in limbic regions in Experiment 2. The anterior
insula showed increased activity during both the (HE > LE) videos and the (post HE > post
LE) rest periods, although the voxelwise activations did not fully overlap between the two

conditions: while there was a more dorsal engagement during videos, more ventral parts of
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the anterior insula were active after the emotional event. In light of previous research in
younger adults °7 suggesting that dorsal AI may be recruited during adaptive behavior
mechanisms while ventral AI may be highly recruited during internal homeostatic regulation,
our result may reflect a shift from controlled/explicit adaptation to more spontaneous/implicit
homeostatic regulation. On the other hand, the amygdala did not differentially respond during
the (HE > LE) videos, but it showed a lower return to baseline levels during rest after HE vs.
LE videos. Accordingly, prolonged amygdala activity after negative images was reported to
predict greater trait neuroticism 3%, and enhanced amygdala response to threat faces after
negative emotion elicitation is amplified in high anxiety individuals *°.

Altogether, our data highlight the importance of the temporal dynamics of brain
responses to emotion in order to determine individual affective styles and risks for

24,26,29

psychopathology
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Brain connectivity patterns related to emotional inertia

Our functional connectivity analysis revealed that post-emotional carryover effects were
organized in different circuits, linking core parts of the DMN (PCC and MPFC) with limbic
regions (amygdala and anterior insula). These connections were selectively enhanced in post
HE relative to post LE rest, exclusively in older adults, and across both experiments (see Fig.
7). These results unveil sustained coupling patterns between the midline DMN and limbic
networks induced by emotional inertia, which were accompanied by distinctive behavioral

features.

The PCC and amygdala were more active and functionally more connected in the post-
emotional rest periods in older adults. Detailed analyses of Experiment 2 revealed that PCC-
amygdala connectivity was stronger for HE than LE conditions, but also selectively stronger
than other between-network connectivity patterns involving either the PCC or the amygdala
(see Fig. 8a). Interestingly, the strength of PCC-amygdala enhanced connectivity was
predicted by individual anxiety and rumination. Older adults reporting higher rumination
tendencies and anxious traits on questionnaires also exhibited stronger PCC-amygdala
connectivity after emotional videos. In addition, explicit verbal reports revealed that more
participants expressed negative thought contents during the rest period that followed HE
videos. Importantly, these participants with more frequent negative thoughts also had higher
PCC-amygdala connectivity than those who reported no negative thoughts, and this was not
the case during rest periods after LE videos. These findings suggest that increased functional
connectivity between PCC and amygdala may directly underpin the persistence of negative

content in spontaneous thoughts.

Past neuroimaging research suggests that PCC is involved in internally directed

34,98

cognition, rumination and memory especially when people retrieve contextual and

affective autobiographical information %%, As the amygdala also plays a central role in

affective memory by encoding and storing information about emotional relevance 3320101,

we
speculate that PCC-amygdala communication may contribute to emotional inertia and
recovery from socio-emotional stressful situations, possibly by associating the content of
vicarious negative experiences to personal affective memories in older adults, and especially
in individuals with higher levels of anxiety and rumination. These data unveil new age-related

effects on neural processes associated with rumination and repetitive negative thinking, i.e.,
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mental states implying persistent self-relevant thoughts about negative information % that are
associated not only with maladaptive emotion regulation but also with increased risk of

12,14

cognitive decline and Alzheimer’s disease . As neurodegenerative anomalies in PCC and

medial brain regions are commonly seen in Alzheimer's disease 03104

, changes in PCC
connectivity might constitute a possible neural marker for deficient affective resilience, which

is in turn associated with a higher risk for dementia.

Our results thus complement prior work on DMN connectivity in aging populations.
Indeed, recent research demonstrated that functional connectivity between the DMN and
cognitive control regions (dIPFC) was modulated by the cognitive load/efforts on the task in
older but not younger adults #2. Our data extend this to affective contexts and link it to
speficic psychological traits. Indeed, DMN connectivity to limbic regions is amplified after
emotional induction in older (but not younger) adults, with PCC-amygdala coupling being

distinctively sensitive to anxiety, rumination, and self-reports of negative thoughts.

In parallel, increased functional connectivity was also observed between Al and
aMPFC after HE compared to LE videos in the larger older adult sample from Experiment 2.
These neural changes showed no correlation with anxiety or rumination but only a weak
positive correlation with the empathic concern IRI subscale (see supplementary Fig. 4). These

105106 and empathy 3,

findings may reflect a more general role of Al in emotional awareness
and of aMPFC in the representation of affective states in both the self and others 7®1%7. These
results extend prior work by showing that modulation of connectivity between these two
regions may occur not only during the appraisal of socio-emotional stimuli but also persist

beyond emotional events.

LIMITATIONS AND FUTURE DIRECTIONS

Some limitations of our study need to be acknowledged. First, we explicitly instructed
participants to watch videos passively, and therefore some of the subsequent carryover effects
on brain activity and connectivity could be interpreted as unsuccessful implicit emotion
regulation styles inherent to the participants. It would be interesting to assess in future studies
whether instructing participants with explicit emotion regulation strategies may change the
subsequent brain response related to emotional inertia. Second, technical constraints of the

fMRI scanner also engendered some limitations. First, as explained in the methods, we
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obtained affective ratings on videos outside of the scanner, immediately after the scanning
session. Although this may bias how participants rated the videos, we deliberately made the
choice in order to 1) avoid top-down cognitive influences during scanning which may

6566. and 2) maximize older adults’

confound neural activity during emotional perception
comfort by reducing the time spent inside the scanner (particularly because other anatomical
and functional MRI sequences including T1, T2 and T2* were carried out during the same
session). Second, as described in supplementary Fig. 5, some basal forebrain voxels were
automatically excluded from our group analyses in Experiment 2, due to magnetic field
inhomogeneities frequently induced in brain regions near air-filled cavities in the human head

198 " Consequently, we were not able to reliably study regions such as the orbitofrontal cortex

(OFC), which plays an essential role in positive emotions and reward +%°.

CONCLUSION

In sum, our study demonstrates that empathy for suffering and affective resilience can reliably
be investigated in the elderly using the SoVT-Rest, a novel paradigm that has very low
cognitive load and high ecological validity for applications in frail or clinical populations.
Using the SoVT-Rest, we find neural and behavioral markers of the positivity bias in the
elderly and show for the first time sustained carryover effects (or emotional inertia) in
corticolimbic brain circuits in populations of healthy older adults. Interestingly, PCC and
amygdala's functional connectivity at rest was increased during high emotional events, and
such increase was related to anxiety, rumination, and negative thought content, making this
resting connectivity pattern a highly likely neural substrate for emotional inertia. These
findings provide an important cornerstone for better understanding empathy and mechanisms
underlying affective resilience in the brain of the elderly population, and thus contribute to
identifying potential risk markers for neurodegenerative diseases associated with poor social

stress coping.
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