B GENEVE

Chapitre d'actes 1998 Published version

This is the published version of the publication, made available in accordance with the publisher’s policy.

Di Marzo Serugendo, Giovanna; Guelfi, Nicolas

How to cite

DI MARZO SERUGENDO, Giovanna, GUELFI, Nicolas. Formal development of Java based Web
parallel applications. In: Proceedings of the 31st Hawaii International Conference on System Sciences -
HICCS'98. Institute of Electrical and Electronics Engineers (Ed.). Kohala Coast (United States).
Washington : IEEE Computer Society, 1998. p. 604-613. (IEEE Conference Proceedings INSPEC) doi:
10.1109/HICSS.1998.649261

This publication URL: https://archive-ouverte.unige.ch/unige:48308
Publication DOI: 10.1109/HICSS.1998.649261

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:48308
https://doi.org/10.1109/HICSS.1998.649261

Formal Development of Java Based
Web Parallel Applications®

Giovanna Di Marzo Serugendo!?
LCUI, University of Geneva
Swntzerland

dimarzo@di.epfl.ch

Abstract

The Java object-oriented programming language has
been the subject of an important involvement from pro-
grammers and the industry. FEspecially for applica-
tions related to the Web. The problem of such a rapid
penetration of Java programs into commercial products
1s that software engineers do not have any methodol-
ogy and have to develop complex parallel applications.
Here, we present a formal development methodology
based on the stepwise refinement of CO-OPN/2 for-
mal specifications, using a real Web parallel applica-
tion. Starting from a centralized view, we present the
following refinement steps: data distribution, behavior
distribution, communication layer, and Java program.
During the whole refinement process, we study the evo-
lution and the verification of one specific property.

Keywords: Software Engineering, Petri Nets, Alge-
braic Specifications, Refinement, Concurrent and Dis-
tributed Systems, Java, Web.

1. Introduction

Java is a recent programming language [1] that is
widely used to develop distributed applications over the
Web. Thus, software engineering techniques must be
introduced in order to support the software life cycle
for this application domain. The high complexity of
such applications is due to the concurrent components
and their coordination algorithm.

In this paper we apply a top-down engineering
methodology for the development of a Java based Web

*Copyrigth 1998 IEEE. Published in the Proceedings of the
Hawaii International Conference on System Sciences, January 6-
9, 1997, Kona, Hawaii. This work has been sponsored partially
by the Esprit Long Term Research Project 20072 “Design for
Validation” (DeVa) with the financial support of the OFES (Of-
fice Fédéral de I’éducation et de la Science), and by the Swiss
National Science Foundation project “Formal Methods for Con-
currency”.

Nicolas Guelfi?
2LGL-DI, Swiss Federal Institute

of Technology, Switzerland
quelfi@di.epfl.ch

parallel application (written JPA for short) based on
formal specifications. The advantage of a formal speci-
fication is that it allows a precise system description
necessary when complex applications are developed
and is useful for verification and validation purposes.
We have chosen to use the CO-OPN/2 (Concurrent
Object Oriented Petri Nets) specification formalism [3]
which is developed by our team and which provides
many features adapted to the applications addressed
in this paper. More precisely, CO-OPN/2 integrates,
in an object-oriented approach, Petri nets for the de-
scription of concurrent behaviors, and algebraic speci-
fications [6] for the specification of the structured data
evolving in the Petri nets.

The applied formal development methodology con-
sists of: (1) providing a set of informal application’s
requirements including validation objectives expressed
by a set of desired properties; (2) building an initial
CO-OPN/2 specification, I, of the JPA, based on the
informal requirements, and abstract enough to be as
independent as possible of the implementation con-
straints; this specification provides an abstract view
of the application, where the problem is neither dis-
tributed nor decentralized. This first specification must
validate the desired properties; (3) performing four re-
finement steps, (R1 to R4), concerning both the for-
mal specification and the properties: (R1) provides a
decentralized view of the application, where the data
is distributed but not yet the behavior; (R2) provides
the application with a client/server architecture where
both the data and the behavior are distributed; (R3)
introduces the communication layer, i.e. the TCP/IP
based sockets, the applets, the server, and all necessary
threads handling the sockets. In addition, it introduces
features of the Java programming language. This step
leads to a view close to the code, where the problem
has been spread on the Web but not yet implemented
with Java; (R4) produces the Java program directly

from refinement R3. Evidence (by formal or informal
proof) must be provided for the properties preservation
between two consecutive refinement levels.

This formal development methodology for Java
based Web parallel applications is presented trough a
concrete example (running at the following address
http://lglsun.epfl.ch/Team/GDM/DSGamma.html).
The application is based on the Gamma paradigm [2]
(a programming paradigm integrating chemical re-
action concepts). A Gammar-like addition is realized
on distributed multisets of integers. A Java applet
maintains locally a multiset of integers, and a user
may enter new integers into the system with the
help of a graphical user interface provided by the
applet. The global multiset is given by the union of
all the multisets maintained by the applets; chemical
reactions are Java threads that collect pairs of integers,
add them and put them into the multiset maintained
by one of the applets.

The full description of the formal development of this
application, together with properties verification can
be found in [4].

The plan of the paper is the following: firstly, we
introduce the basic concepts of the specification for-
malism CO-OPN/2; secondly we present in details the
methodology by applying it to the chosen distributed
application.

2. The CO-OPN/2 specification
formalism

CO-OPN/2 [3] is an hybrid specification formalism
based on algebraic specifications [6] and Petri nets that
are combined in a way that is similar to algebraic
nets [5]. Algebraic specifications are used to describe
the data structures and the functional aspects of a sys-
tem, while Petri nets allow to model the system’s con-
current features. To compensate for algebraic Petri
nets’ lack of structuring capabilities, CO-OPN/2 pro-
vides a structuring mechanism based on a synchronous
interaction between algebraic nets, as well as notions
peculiar to object-orientation such as the notions of
class, inheritance, and subtyping.

A system is considered as being a collection of in-
dependent objects (algebraic nets) that interact and
collaborate together in order to accomplish the various
tasks of the system.

Object and class. An object is considered as an
independent entity, composed of an internal state, and
that provides some services to the exterior. The only
way to interact with an object is to ask for its services;
the internal state is thus protected against uncontrolled
accesses. CO-OPN/2 defines an object as being an en-

capsulated algebraic net in which the places compose
the internal state, and the transitions model the con-
current events of the object. A place consists of a mul-
tiset of algebraic values. The transitions are divided
into two groups: the parameterized transitions, also
called the methods, and the internal transitions. The
former correspond to the services provided to the out-
side, while the latter describe the internal behaviors of
an object. Contrary to the methods, the internal tran-
sitions are invisible to the exterior world and may be
considered as being spontaneous events. A class de-
scribes all the components of a set of objects and is
considered as an object template. Thus, all the objects
of one class have the same structure. Objects can be
dynamically created. The usual dot notation has been
adopted.

Object interaction. In our approach, the inter-
action with an object is synchronous, although asyn-
chronous communications may be simulated. Thus,
when an object requires a service, it asks to be synchro-
nized with the method (parameterized transition) of
the object providing the service. The synchronization
policy is expressed by means of a synchronization ex-
pression (declared after the Wi t h keyword), which may
involve many partners joined by three synchronization
operators (one for simultaneity ‘/ / ’, one for sequence
‘.., and one for alternative or non-determinism ‘+’).
For example, an object may simultaneously request two
different services from two different partners, followed
by a service request to a third object.

For each transition (parameterized or not), one or
more behavioral axioms are defined, in order to de-
scribe: (1) an optional condition imposed on the alge-
braic values involved in the axiom, (2) an optional syn-
chronization expression, (3) pre- and post-conditions
corresponding respectively to what is consumed and
what is produced in the different places composing the
net, once the transition is executed.

Object identity. Within the CO-OPN/2 frame-
work, each class instance has an identity, that is also
called an object identifier, that may be used as a ref-
erence. Moreover, a type is explicitly associated with
each class. Thus, each object identifier belongs to at
least one type. An order-sorted algebra of object iden-
tifiers is constructed, in order to reflect the subtyping
relation that is established between the classes types.
Since object identifiers are algebraic values, they can be
stored in places of algebraic nets. Moreover it is possi-
ble to define data structures that are built upon object
identifiers, e.g. a stack or a queue of object identifiers.

Constructors. Class instances can be dynamically
created. Particular creation methods that create and
initialize the objects can be defined; these methods may

be used only once for a given object. A pre-defined cre-
ation method is provided. Usually classes are used to
dynamically create new instances, but it is also possible
to declare static instances.

Inheritance and subtyping. We believe that in-
heritance and subtyping are two different notions that
are used for two different purposes. Inheritance is con-
sidered as being a syntactic mechanism that frees the
specifier from the necessity of developing classes from
scratch and is mainly utilized to reuse parts of existing
specifications. A class may inherit all the features of
another class, and may also add some services or change
the description of some services already defined. Our
subtyping relationship is based upon the strong ver-
sion of the substitutability principle, and is a seman-
tical mechanism: in any context, any class instance of
a type may be substituted to a class instance of its
super-type, and the behavior of the whole system re-
mains unchanged. The respective hierarchies generated
by these two relationships do not necessarily coincide.

Semantics. The formal semantics of CO-OPN/2 is
given in terms of concurrent transition systems express-
ing all the possible evolutions of objects’ states. State
changes are associated to a multiset of events that are
simultaneously executable. The firing of an object’s
method causes (internal) transitions to be fired (spon-
taneously). The transitions are fired as long as their
pre-condition is fulfilled. An object’s method can be
fired only if no transition is firable. The complete se-

mantics of CO-OPN/2 can be found in [3].

3. Formal development:
from CO-OPN/2 to Java

This section presents the proposed formal develop-
ment methodology applied to the concrete application
described in section 1.

3.1. Informal requirements and
properties

The Gamma paradigm [2] advocates a way of pro-
gramming that is close to the chemical reactions. One
or more chemical reactions are applied on a multiset: a
chemical reaction removes some values from a multiset,
computes some results and inserts them into the mul-
tiset. We consider the following example: computing
the sum of the integers present in a multiset. Figure 1
depicts a multiset and a possible Gamma computation
achieving the result 8.

3.1.1. Informal requirements. We intend to de-
velop an application allowing several users to insert
integers into a multiset that would be possibly dis-

tributed. According to the Gamma paradigm, chemical
reactions are applied on the multiset; they have to per-
form the sum of all the integers entered by all the users.
We call DSGamma (Distributed Gamma) system, the
system made of the users, the multiset and the chemi-
cal reaction. We present the informal requirements in
two parts. The first one presents the system operations
that must be provided to the users, and the second one,
the details about the data and internal computations.

Global Multiset

Figure 1. Gamma addition

System operations: [1] A new user can be added
to the system at any moment; [2] A user may add new
integers into the system, at any moment, between his
entering time and his exit time; [3] At any moment,
the application can give a partial view of the state of
the multiset; [4] A user may exit the system provided
he has entered it.

State and internal behavior: [5] The integers
entered by the users are stored in a multiset; [6] The
application realizes the sum of all the integers entered
by all the users; [7] The sum is performed by chemi-
cal reactions according to the Gamma paradigm; [8] A
chemical reaction removes two integers from the multi-
set, adds them up, and inserts the sum into the multi-
set; [9] There is only one type of chemical reaction, but
several of them can occur simultaneously and concur-
rently on the multiset; [LO] A chemical reaction may
occur as soon as the state of the multiset is such that
the chemical reaction can occur, i.e. as soon as there
are at least two integers in the multiset.

3.1.2. Properties. In order to observe the prop-
erty preservation during refinement, we will establish
one fundamental property and follow it during each re-
finement step: If there is only one integer in the multi-
set, then it must be the result of a parallel computation
of the sum of all the integers entered by all the users
since the application beginning.

3.2. Initial specification I:
centralized view

The initial CO-OPN/2 specification I provides the
most abstract view of the DSGamma system, that ful-

fills the informal requirements. There is a global mul-
tiset with several chemical reactions occurring concur-
rently on it. We have a non distributed data (the mul-
tiset), several processes (the chemical reactions), and
each process, considered separately, is not distributed.

3.2.1. CO-OPN/2 specification. The ini-
tial CO-OPN/2 specification I is given by the
DSGammaSystem class depicted by figure 2.

Class DSGammaSystem

new_user(usr)

(TN e T

usr Integer usr

NS

user_exit(usr)

usr usr
usr BSInt:Integer
P —

result(i,usr) t N user-_action(i,usr)

i+j o i

1/

\ ChemicalReaction /

Figure 2. The initial CO-OPN/2 specification

System operations: The four CO-OPN/2
methods, new_user(usr), user_action(i,usr),
result(i,usr), and user_exit(usr) specify the four
services, system operations [1] to [4], that the system
provides to the outside.

The new user(usr) method inserts the wusers’
identity, wusr, into the users place. The
user_action(i,usr) method checks if usr has
already entered the system (i.e. if usr is in the place
users), and inserts the i value, into the multiset
MSInt. If the user usr has not yet entered the system,
the method cannot be fired, thus the i value is not
inserted into the multiset!. The result(i,usr)
method checks if usr has already entered the system,
and reads one integer i in the place MSInt. If usr is in
the users place, the user_exit (usr) method removes
usr.

State and internal behavior: A multiset of inte-
gers stores the integers entered in the system by all the
users. The CO-OPN/2 MSInt place, of type Integer,
models this multiset (the type Integer is specified
using algebraic specifications as equivalent to natural
numbers). Due to the CO-OPN/2 Petri net semantics
of places, the content of a place is always given by a
multiset. The CO-OPN/2 place users of type Integer
stores the identity of the users as integers.

Iremember that if one element needed by a method or tran-

sition event is not available than its execution is impossible.

The CO-OPN/2 ChemicalReaction transition mod-
els the chemical reaction. It takes two integers 1, j from
the MSInt place, and inserts their sum i+j in MSInt.

3.2.2. Properties. We now consider the property
stated in subsection 3.1.2.; and we check how it has
evolved during this step. We will informally show, how
and why, the property is fulfilled.

The computation of the result is realized by the
transition ChemicalReaction. Due to the CO-OPN/2
semantics, the ChemicalReaction transition can be
fired simultaneously several times, provided the pre-
condition is fulfilled for each occurrence. The firing is
repeated until the pre-condition is no longer fulfilled,
i.e. if only one integer remains in the multiset. At the
beginning of the system, no integer is present in MSInt.
We assume that n integers enter the system simulta-
neously (several simultaneous user_action(i,usr)).
Thus, [n/2] pairs? of integers are present in MSInt and
ChemicalReaction will be fired [n/2] times simultane-
ously. After these firings, m = n — [n/2] integers will
remain in MSInt. The firings of ChemicalReaction
proceed similarly on these m integers, and stop when
m = 1. The initial specification I provides the fol-
lowing: (1) after a firing of user_action(i,usr) only
one integer remains in MSInt; (2) the computation is
realized fully in parallel over all the available pairs of
integers present in MSInt; (3) the remaining integer is
the sum of the integers present in MSInt before the
firing of ChemicalReaction.

3.3. First refinement R1:
data distribution

The initial specification I provides a centralized view
of the application. As we intend to obtain an imple-
mented application distributed over the Web, it is now
necessary to introduce distributivity in the specifica-
tion. Refinement R1 is concerned with data distribu-
tivity.

3.3.1. Refinement process. The multiset of inte-
gers is physically distributed over several different lo-
cations. We call local multiset the portion M S; of the
multiset present in a given location, and we call global
multiset the multiset obtained by the union of all the
local multisets. Figure 3 gives an illustration of chem-
ical reactions over the distributed multisets M S;, that
compute the result 8.

The refinement process has to preserve the sys-
tem operations. Thus, the overall specification
of the DSGamma system must provide the same
four methods new_user(usr), user_action(i,usr),

2[n/2] stands for the integer part of the real number /2.

MS 2 -3
! Y | MS3
! P
1 5. 2+6
15 MSy8./

Figure 3. Distributed Gamma-like addition

result(i,usr), and user_exit(usr)? than the initial
specification I. As the global multiset is split over sev-
eral local multisets (one for each user), we must rede-
fine the system operations and internal behaviors such
that: (1) each user is mapped to a local multiset spec-
ified with a bag?* (2) the chemical reactions have to
remove integers from one or more local multisets, (3)
the integers present in the local multiset of a user who
wants to leave the system must be properly dispatched
to the other local multisets.

3.3.2. CO-OPN/2 specification. The CO-
OPN/2 specification of the application with dis-
tributed multisets is given by the DSGammaSystem class
depicted by figure 4.

System operations: The new_user(usr) method
inserts <usr,@> into the MSInt place. A new user
joins the system with an empty bag, representing
an empty local multiset. The user_action(i,usr)
method checks if usr has already entered the system,
i.e. removes the pair <usr,bag> from the place MSInt,
and inserts the i value into bag, i.e. inserts the pair
<usr,bag+i> into MSInt. bag+i stands for a new bag
made of the union of bag and the set {i}. This method
cannot be fired if usr has not already joined the sys-
tem. The result(i,usr) can be fired iff the bag of
user usr contains exactly one element i (i.e. @ + 1i).
It is worth noting that due to the CO-OPN/2 seman-
tics, after each firing of the chemical reactions, only one
integer remains in one local bag.

The user_exit(usr) method inserts the usr value
in the place UsrToExit. The exit transition then re-
moves the pair <usr,bag> from the MSInt place and
inserts it into the MSIntToEmpty place. As the user
is tightly coupled with a local multiset, it is necessary
to introduce at this point a treatment for dispatching
his values. After having exited the system, a user may
no longer enter a new integer, nor get the result, nor
exit the system, unless it reenters the system, and the
system itself cannot add integers into the user’s local
multiset.

3this will be the case for all the next refinements.

4the specification of the type Bag is made using an algebraic
specification which defines an empty bag and the usual opera-
tions.

Class DSGammaSystem

user_action (i,usr) new_user(usr) result(iusr) user_exit(usr)

T

[} kg UsrToExit:
f; %, /g\ * . . Integer
% g @ ¢ Ny exit
< R
% G:) Q lj & 7 <usr,bag>
V K o
x. I 419?’ l HSIntToEmpty:
N 15 CP(Integer,Bag)
CR4
—
CR3 HSInt:CP(Integer,Bag)
— A
CR2 “ I 2 —
S T, 2OA CR8
* s, yoe
X 4 % 25
> N 2 T o0 CR7T
& r v ', ® o ‘
< & 2 " (S A —
x * 2, . + x
& % A . L) CR6
o & ?, b7 v
v & é‘z\\ N T
K v
l L \\\

Q
2
Q
-
o

)

Figure 4. Refinement R1: data distribution

State and internal behavior: The MSInt place
stores the local multiset of users currently in the sys-
tem, while the MSIntToEmpty place stores the local
multiset of users wishing to leave the system. They
are of type CP(Integer,Bag), an algebraic specifica-
tion for Cartesian products of Integers and Bags; they
store pairs <usr,bag>. Thus, we handle a multiset as a
whole, and not through its elements as it was the case
in the initial specification I.

Four chemical reactions (CR1 to CR4) have been de-
fined on MSInt only. They describe the four possible
ways of removing two integers from one or two bags and
inserting their sum into a (possibly other) bag. Four
chemical reactions (CR5 to CR8) have been defined on
both MSInt and MSIntToEmpty. They are basically the
same as the four chemical reactions defined on MSInt
only, except for the fact that they have to remove in-
tegers from local multisets stored in the MSIntToEmpty
place, and they have to insert integers into local mul-
tisets stored in the MSInt place. These four chemical
reactions specify the fact that once a user has decided
to leave the system, then his local multiset has to be
emptied, no new integers may be inserted into his local
multiset. For simplicity purpose, figure 4 depicts only
the behavior of chemical reactions CR1 and CR5: for
CR1 two integers i,j are removed from the same local
multiset, their sum is inserted into this local multiset;
for CR5 two integers 1, j are removed from the same lo-
cal multiset in MSIntToEMpty, and their sum is added
to another local multiset in MSInt.

3.3.3. Properties. The computation of the sum is
realized by the transitions CR1 to CR8. Due to the
CO-OPN/2 semantics, the CRi transitions can be fired
simultaneously, and each of them can be fired simul-
taneously several times, provided the pre-condition is
fulfilled. The firing is repeated until the pre-condition
is no longer fulfilled for none of the CRi, i.e. if only
one integer remains in the multiset. At the beginning
of the system, only empty bags are present in MSInt.
We assume that n integers enter the system simulta-
neously (several simultaneous user_action(i,usr)).
These n integers are distributed over exactly n bags
(one integer per bag), because each occurrence of
user_action(i,usr) has to access a whole bag in or-
der to insert one integer. It is not possible for a bag
to be accessed by two or more methods or transitions.
In the initial specification I, [n/2] pairs of integers are
immediately involved in the chemical reactions. This is
always the case as the n bags are accessed concurrently
by the CRi internal transitions. The firing of the CRi
transitions proceeds until none of them can be fired,
thus only one integer remains in the union of all the
bags.

Refinement R1 provides the following: (1) after a
firing of the CR1i transitions only one integer remains in
MSInt; (2) the computation is realized fully in parallel
over all available pairs present in the bags of MSInt
and MSIntToEmpty; (3) the remaining integer is the
sum of the integers present in all the bags of MSInt
and MSIntToEmpty before the firing of CRi.

Second refinement R2:
behavior distribution

3.4.

Refinement R1 provides a distributed view of the
application at the data level. As we intend to obtain a
Java application distributed over the Web, it is neces-
sary to think about applets storing the local multiset
related to the user who starts the applet. These ap-
plets need to communicate with each other in order to
realize the DSGamma system. The Java programming
language constrains an applet to connect exclusively to
the host where it comes from. For this reason, refine-
ment R2 introduces a server. This leads to a behavior
distribution.

3.4.1. Refinement process. The server, called
GlobalRelay, acts as a buffer between all the Applets.
The server is only able to receive integers from a set of
applets, and to send these integers to this same set of
applets, such that an integer goes randomly from one
applet to another via the server.

The system operations and internal behaviors are
specified such that: (1) the GlobalRelay server is spec-

ified as a FIFO buffer, (2) each user is mapped to an
applet, (3) the applets are responsible to maintain a
local multiset of integers, (4) an applet has to insert
integers entered by the user into its local multiset, (5)
an applet has to collect pairs of integers, to make their
sum, and to insert this sum into its local multiset, (6)
an applet has to send integers to the server, (7) the ap-
plet has to correctly send its local multiset of integers
to the server, once the user wants to leave the system,
(8) the applets have to avoid a deadlock situation that
would occur when the number of integers present in the
whole system is less than the number of applets.

3.4.2. CO-OPN/2 specification. The CO-
OPN/2 classes of the application viewed with a
client /server architecture is given by figures 5, 6 and 7.

System operations: The overall DSGamma sys-
tem is specified by the DSGammaSystem class, it keeps
the same methods than refinement R1.

Class DSGammaSystem

user_exit(usr)
with a.user_exit

new-DSGammaSystem
with gr.create

i
|

store-applets:
CP(Applet,Integer)

<a,usr>
result(i,usr) <a,usr>

with a.result(i) GR:Globalkelay

AAN

<a,usr>

N gr gr
new_user(usr)
with a.new-Applet(gr)

Sy,

'

user_action(i,nsr)
with a.user_action(i)

Figure 5. Refinement R2: overall system

A constructor new-DSGammaSystem has been added
(a default constructor is no longer sufficient). Tt
requires that, as soon as a DSGamma system ex-
ists, a GlobalRelay buffer gr is created (calling
gr.create), where gr is a CO-OPN/2 object of class
GlobalRelay, and create is the default constructor.
The object identity gr is then stored in the GR place.
The new_user(usr) method implies the dynamic cre-
ation of a new applet a (calling a.new-Applet(gr)).
It stores the pair <a,usr> in the store-applets
place. In refinement R1, the DSGamma system
stores pairs of users and bags. Logically, it stores
always the same information, but as the handling
of the local bag has become more complex, it is
dedicated to an applet. The user_action(i,usr)
method checks if the pair <a,usr> already exists,
and, if so, forwards the action to the dedicated applet,
a (calling a.user_action(i)). The result(i,usr)

method checks if usr already exists and requires the
result from the usr’s dedicated applet, a (calling
a.result(i)). The user_exit(usr) method removes
the pair <a,usr> from the store-applets place, if it
exists; and forwards this information to usr’s dedicated
applet, a (calling a.user_exit).

State and internal behavior: A local multiset is
given by the MSInt place of type Integer of the Applet
class. It stores integers. The global multiset is given
by these places, but also by several other places: first
of type Integer in the Applet class, and by buffer of
FIFO(Integer) type in the class GlobalRelay. For-
mally the FIFO of integers is specified with an alge-
braic specification. An integer travels from an MSInt
place of an applet directly to buffer, and from there
it goes to a first place of another applet, later it is
summed with a second integer, the sum then goes into
the MSInt place of this applet. In refinement R1, the
local multisets are specified separately, but stored in
a same place. In refinement R2, the local multisets
are specified separately and stored in different places
located in distinct objects of class Applet.

The internal behavior is specified by classes
GlobalRelay and Applet. The GlobalRelay class
specifies a FIFO buffer of integers. An integer i is
inserted into this FIFO by the means of the put(i)
method, and is removed using get(i).

Class GlobalRelay

get(i) b+i b+i put(i)
empty-fifo

buffer:
FIFO(Integer)

Figure 6. Refinement R2: server side

The Applet class specifies three CO-OPN/2 meth-
ods: user_action(i), user _exit, result(i), and one
non default constructor new-Applet(gr). As soon as
a new user enters the DSGamma system, a new ap-
plet is created by the means of the new-Applet(gr)
constructor. The constructor creates an object of
the class Applet, stores the gr object identity of the
GlobalRelay in the place store-gr, initializes the end
place with false, and the beginning place with true.
The end place stores the value false if the user is cur-
rently in the system and stores the value true if the
user exits. The beginning place stores the value true
if a first integer has to be requested, and nothing if
a first integer has already been obtained. This place
is used to ensure that a new first integer is requested
only after the previous sum has been computed. The
user_action(i) inserts the integer i into the local

multiset specified with the MSInt place. The user_exit
method replaces the token false by the token true in
place end.

The chemical reactions are specified by the means
of the four transitions: getfirst, getsecond, tik,
put. The getfirst transition is responsible for ob-
taining the first integer being involved in a sum; as
soon as it obtains a first integer it enables a timeout.
The getsecond transition is responsible to remove a
second integer from the FIFO gr, and to disable the
timeout. The tik transition handles a timeout event
occurring before a second integer can be obtained by
the getsecond transition. It is responsible to disable
the timeout and to insert the first integer (instead of a
sum) into the local multiset. This timeout is necessary,
because a deadlock occurs as soon as the number of in-
tegers present in the global multiset (the union of the
local multisets) is smaller than or equal to the number
of users, because all integers are blocked by different
applets. The put transition randomly removes integers
from the local multiset, and sends them to the FIFO
buffer.

Class Applet

user-exit new-Applet(gr)

getfirst with
gr.get(i) // .
true false random (millis) // clock(hour)
gr
/ false
false &r store-gr:
a:Bool 8T Globalkelay
end:Boolean N
true i —
&
§
g .
beginning: * first:Integer
& Boolean 4
rue §
~ gt
8" 8T 8T
true
true
i getsecond
getfirst 2 E‘::":t a with gr.get(i)
B 8 i
’ i+
put with
l HSInt: gr.put(i)

hour > d => tik
with clock(hour)

Figure 7. Refinement R2: client side

Integer _ i
i
t .
i : ‘%—/
——

user-action (i)

result(i)

3.4.3. Properties. The computation of the re-
sult is realized by the four transitions getfirst,
getsecond, tik, and put. All these transitions are
fired concurrently, simultaneously, and each one sev-
eral times simultaneously, as soon as it is possible and
as long as their pre-conditions are fulfilled.

At the beginning of the system, no integers are
present in the whole system. We assume that n in-

tegers enter the system simultaneously (several simul-
taneous user_action(i,usr)). These n integers are
distributed over several applets, say b. Note that b can
be greater or smaller than n because a user may en-
ter several integers, while another one may enter none.
For simplicity purpose, we suppose that the users will
not add new integers into the system. From now on,
it is possible to interleave put, getfirst, getsecond,
and tik internal transitions inside an applet object and
between applet objects.

getfirst, getsecond, and tik collaborate to com-
pute sums of integers. Due to the specification of
the FIFO buffer, the get(i), put(i) methods of
GlobalRelay must access the whole FIFO in order to
insert or remove one integer. Thus, one chemical reac-
tion occurs in parallel with another chemical reaction.
However, the smaller steps (transitions) that realize
one chemical reaction occur in an interleaved way with
those of another chemical reaction. We can see two
chemical reactions as two sequences of several transi-
tions, each transition requiring an exclusive access to
the FIFO buffer, thus the transitions occur in an inter-
leaved way. The chemical reactions stop when only one
integer remains in the global multiset. Note that due to
the tik transitions, this integer will go from one applet
to the other one. When the number of integers present
in the global multiset is smaller than the number of
applets, a short period of deadlock occurs, before the
tik transitions are firable. After a possibly long (but
finite) time, only one integer will remain in the system,
because pairs of integers will succeed to meet in the
same applet.

As soon as a user exits, the getfirst transition stops
receiving integers. If all the users leave the system si-
multaneously, then the applets will send all their inte-
gers, stored in MSInt, and stop receiving integers, thus
GlobalRelay will store all the integers in its FIFO.

Refinement R2 provides the following: (1) after a
firing of the chemical reactions and of the tik transi-
tions, only one integer remains in the system; (2) the
computation is realized in an interleaved way by non-
atomic chemical reactions; (3a) a remaining integer is
obtained provided that at least one user remains in the
system. Otherwise GlobalRelay stores several inte-
gers; (3b) the remaining integer is the sum of the inte-
gers present in MSInt before the firing of the chemical
reactions.

3.5. Third refinement R3:
communication layer

Refinement R2 provides a client/server view of the
application, with applets communicating with each
other through a relay server. The applets communicate

directly with the server. As the targeted application
has to run across several physically distributed hosts,
it is now time to introduce the sockets, i.e. the commu-
nication layer between the applets and the server. The
specification provided at this stage is also intended to
be the last one before the Java program. For this rea-
son, refinement R3 takes into account some features of
the Java programming language, and specifies all the
Java components that will be part of the final program.

3.5.1. Refinement process. The informal view of
both the specification and the implementation of the
DSGamma system is given by figure 8. The relay server

Host 2
=]

DSGammaC\iemAp;ala "]%
o s

TakeoffLocal TakeoffGlobal
@ s
InputRelay Oulpu!RéAy Host 0

O Sty SN

r|w RandomRelayServer

]

B
JavaApplet
O Multiset of Integers %@

D Thread
[]

)

Figure 8. DSGamma implemented architecture

is bigger than it was in refinement R2, it is now given
by class RandomRelayServer (position 1 on figure 8).
It handles the following elements: a FIFO buffer of
integers of class GlobalRelay; and for each applet a
pair of threads, of classes OutputRelay, InputRelay,
is dedicated to the handling of the communication with
an applet (position 2 on figure 8).

The global multiset is logically given by the union
of (1) several local multisets, each one located into
an applet, (2) the FIFO buffer maintained by the
GlobalRelay object, and (3) the sockets buffers.

The communication layer is given by the sock-
ets. A socket has been specified by four classes:
Socket class, FIFO(Bytes), and DatalnputStream,
DataOutputStream classes. As soon as an applet con-
nects to the RandomRelayServer, a Socket is cre-
ated together with two streams. The first stream
goes from the server to the applet, it is made of

one DatalnputStream at the applet side and one
DataOutputStream at the server side working upon a
FIFO(Bytes). The second stream goes from the ap-
plet to the server; it is made of one DataInputStream
at the server side and one DataOutputStream at the
applet side working upon another FIFO(Bytes).

The applets are given by class DSGammaClientApp.
They are more complex than what they are at the re-
finement R2. As soon as an applet is created, two
threads of classes TakeoffLocal, TakeoffGlobal are
created. These threads are responsible for the han-
dling of the chemical reactions, the timeout and the
quitting protocol (position 2 on figure 8). The applet
also handles the local multiset MSInt.

3.5.2. CO-OPN/2 specification. The CO-
OPN/2 specification of the application viewed as
a Java applet based application is given by several
CO-OPN/2 classes. Firstly, a set of basic Java classes
has been specified into CO-OPN/2 classes, respecting
the same inheritance tree than the Java programming
language. A Java scheduler and an Appletviewer
have been also specified. The Java Object class has
been specified by the JavaObject CO-OPN/2 class,
it is the same for the Java Thread, Applet, Socket,
ServerSocket, DatalnputStream, DataOutputStream
classes. Upon this layer of CO-OPN/2 classes, we
have built the CO-OPN/2 specification of the future
program.

System operations: The overall DSGamma sys-
tem is specified with the DSGammaSystem class, it
keeps the same methods (with exactly the same be-
havior) than the refinement R2, except the construc-
tor new-DSGammaSystem(port) that takes into ac-
count the fact that the server waits for applets con-
nections on a given port. Thus, the constructor
new-DSGammaSystem(port) creates an object of the
class RandomRelayServer waiting on the port.

State and internal behavior: The local multi-
sets are given by the MSInt places of each applet. The
global multiset is given by the union of these local mul-
tisets and by the buffers of all the sockets streams and
by the FIFO buffer of GlobalRelay.

The internal behavior is specified by classes
RandomRelayServer, InputRelay, OutputRelay,
GlobalRelay at the server side, and by
DSGammaClientApp, Takeofflocal, TakeoffGlobal
classes at the applet side. The communication
layer is specified by the Socket, DatalnputStream,
DataOuputStream and ServerSocket classes. These
last four classes specify the homonymous classes of the
Java programming language.

Server side: The
tor of the

construc-

CO-OPN/2

RandomRelayServer class is

new-RandomRelayServer(port). It creates the
GlobalRelay FIFO buffer, and a ServerSocket on
port port. A RandomRelayServer is a thread, whose
run method waits indefinitely for connections on the
ServerSocket, and as soon as an applet connects, it
creates two threads of class OutputRelay, InputRelay
respectively connected to the applet’s socket.

The creation of an InputRelay thread implies the
creation of an DataInputStream. The main task of this
thread is to read integers from the DataInputStream,
and to forward them to the GlobalRelay FIFO buffer
(positions 3 on figure 8). It is also responsible for the
handling of end signals incoming from the applet.

The creation of an OutputRelay thread implies the
creation of an DataOutputStream. The main task of
this thread is to remove integers from the GlobalRelay
FIFO buffer, to write them to DataOutputStream (po-
sitions 4 on figure 8). It is also responsible to handle
end signals.

The GlobalRelay FIFO buffer is specified as in re-
finement R2.

Applet side: The constructor
new-DSGammaClientApp(port,remotehost) of the
DSGammaClientApp applet class just stores the remote
host and the port of the server. An init method
has been added that creates: (1) the Socket, (2)
the DataInputStream and DataOutputStream at the
applet side, (3) the local multiset: MSInt vector (spec-
ifying a Java vector); (4) two threads, TakeoffLocal,
TakeoffGlobal that realize the chemical reaction, the
timeout, and the quitting protocol.

An applet keeps the same methods than refinement
R2: the user_action(i) method just stores i in the
MSInt vector; the result (i) method returns an inte-
ger of the local multiset maintained by the applet; the
user_exit method sends an end signal to the server.

The TakeoffLocal thread permanently checks for
integers in MSInt, removes randomly one and writes
it to DataOutputStream at the applet’s side. It also
handles end signals.

The TakeoffGlobal thread reads a first integer from
the DataInputStream at the applet’s side. As soon as
it has obtained it, TakeoffGlobal enables a timeout,
and reads a second integer. If the second integer arrives
before the timeout deadline, then it is added to the
first one, and inserted into MSInt. Otherwise, a tik
transition prevents a deadlock, by inserting the first
integer into MSInt. It also handles end signals.

In refinement R2, the timeout had been already
specified, it is specified exactly in the same manner
in refinement R3. The quitting protocol of refinement
R2 was more simple, because there were no interme-
diate buffers storing integers. It has been enhanced

in refinement R3, in order to (1) notify the server that
the user wants to exit; (2) receive from the server even-
tual integers present in the DataOutputStream at the
server’s side; and finally (3) empty the local multiset
MSInt a last time before stopping.

Communication layer: The DataOuputStream
and DataInputStream are used to insert or remove
integers into or from a FIFO buffer of bytes, real-
izing the conversions. The Socket class creates two
FIFO(Bytes), so that the sockets realize the TCP/IP
protocol (they neither lose nor disorder the packets).
The Socket class actually specifies the connection with
a ServerSocket given a remote host and a port.

3.5.3. Properties. In refinement R2, the compu-
tation of the sum is distributed over several applets’
transitions. In refinement R3, this computation is
distributed over the four threads handling an applet’s
socket. Actually, the getfirst, and getsecond tran-
sitions of refinement R2 have been split into two
transitions each: one in TakeoffGlobal and one in
OutputRelay, the put transition has been split over
TakeoffGlobal and InputRelay, and the tik has been
relocated to the TakeoffGlobal thread. Provided this
extension of the chemical reaction to the communica-
tion layer, the same conclusion than refinement R2 ap-
plies: (1) after a firing of the chemical reaction only one
integer remains in the global multiset; (2) the compu-
tation is realized in an interleaved way by non-atomic
chemical reactions; (3a) a remaining integer is obtained
provided that at least one user remains in the system,
otherwise GlobalRelay stores several integers; (3b) the
remaining integer is the sum of the integers present in
MSInt before the firing of chemical reactions.

3.6. Fourth refinement R4:

the Java program

The Java program has exactly the same classes than
refinement R3 with exactly the same behavior.

3.6.1. Refinement process. The only differences
with refinement R3 are the following: firstly, in re-
finement R3 we assumed that the streams work on
FIFO(Bytes), whereas in the concrete program, we
need to be aware of the fact that the InputStream and
OutputStream classes are necessary. Secondly, due to
the Java semantics a CO-OPN/2 transition is firable as
soon as its precondition is fulfilled, in the Java program,
the four involved thread classes: TakeoffGlobal,
TakeoffLocal, InputRelay, OutputRelay use wait,
notify methods in order to avoid polling. Thirdly,
the applet provides a graphical user interface enabling
a user to enter some integers and to see the state of the

10

local multiset.

3.6.2. Properties. As the result of this paper, the
Java program is derived immediately from refinement
R3. The program and refinement R3 show very few
differences. Thus, we obtain the same justification for
the property verification.

4. Conclusion

We have applied a formal development methodology
for Java Web based parallel applications. Our method-
ology is based on several refinement steps of formal
specifications and of a set of properties the application
has to fulfill. Each refinement step is guided by the
targeted implementation and by the necessity to fulfill
the properties. We applied this methodology on a real
Java application, using the CO-OPN/2 formal speci-
fication language. We have explained how these re-
finement steps were influencing the system properties.
Currently, we express only informally these properties,
but we envisage to use temporal logic for expressing,
verifying and validating them.

References

[1] Ken Arnold and James Gosling. The Java Programming
Language. The Java Series. Addison-Wesley, 1996.

[2] J.-P.Banatre and D. Metayer. Gamma and the chemical
reaction model. In IC Press, editor, Proceedings of the

Coordination’95 workshop, 1995.
Olivier Biberstein, Didier Buchs, and Nicolas Guelfi.

Object-oriented nets with algebraic specifications: The
CO-OPN/2 formalism. In G. Agha and F. De Cindio,
editors, Advances in Petri Nets on Object-Orientation,
volume to appear of Lecture Notes in Computer Science.

Springer-Verlag, 1997.

Giovanna Di Marzo Serugendo and Nicolas Guelfi. For-
mal development of java programs. Technical Report
97/248, Software Engineering Laboratory, Swiss Federal

Institute of Technology, Lausanne, Switzerland, 1997.

Wolfgang Reisig. Petri nets and algebraic specifications.
In Theoretical Computer Science, volume 80, pages 1—-
34. Elsevier, 1991.

Algebraic specification. In J. van
Handbook of Theoretical Computer
Science, volume B: Formal Methods and Semantics,
chapter 13, pages 675-788. North-Holland, Amsterdam,

1990.

Martin Wirsing.

Leeuwen, editor,

