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Abstract: Fault analysis of modern power systems cannot be only addressed on classical reliability techniques but also consid-
ering the impact of cascading failures. This paper proposes an original integrated approach for the risk management of a power
system subject to random contingencies by using vulnerability and reliability quantitative measures. Five different systems based
on the IEEE-RTS have been studied from the vulnerability and reliability perspectives. According to the calculation carried out and
the Multi-Criteria Decision Making (MCDM) method applied to better consider the integration of both concepts, the vulnerability
and reliability perspectives are complementary viewpoints that can help to design a more robust critical infrastructure.

1 Introduction

In the last years, increasing efforts have been developed on the
analysis and prevention of possible disruptions of electricity sup-
ply. Two complementary approaches can be taken into account to
manage these risks in power systems, considering high-probability
but low-impact events and low-probability but high-impact events
[1–3].

The first kind of events is related to N-1 contingencies and it
comes under the scope of the reliability. Reliability can be defined
as the ability of the electric power system to meet the demand with
continuity and an acceptable level of quality. Several approaches are
possible to assess the reliability of the power systems, from ana-
lytical to Monte Carlo probabilistic models. Monte Carlo is a more
flexible methodology in comparison with analytical approaches but
it takes more computation time, especially when complex operating
conditions and system states are considered [4].

The second kind of events is related to N-k contingencies and
it refers to cascading failures in power systems. Vulnerability can
be defined as the level of degradation of a system when deliberate
attacks or random failures make the network elements successively
out of operation. A single outage of a transmission line of the power
grid can lead to an overload of other lines, making more likely
the failure of other electric assets and finally resulting in a catas-
trophic failure of the whole system. Some of the biggest blackouts
have occurred in recent years, causing serious economic damage
and driving the need for vulnerability assessment of the electric
power critical infrastructures [5]. In the scientific literature some
works analyze the vulnerability of electrical infrastructures through
the use of different techniques. For instance, some authors justified
that the statistical measures of graph theory are adequate to carry
out assessments of structural vulnerability on power systems [1].
Other researchers are using alternative measures, such as [6] that
incorporated several topological and power flow based indices into a
general framework able to evaluate system vulnerability and, con-
sequently, provide information about the susceptible areas of the
energy infrastructure.

The concepts of reliability and vulnerability are both related to the
continuity of operations of critical infrastructures, and their study
is required to prevent potentially destructive events [7]. However,

researchers have not considered integrating both risk analysis per-
spectives into a unique decision framework. Few papers can be found
in literature about joint consideration of reliability and vulnerabil-
ity [8, 9]. Reliability analysis has been the main approach for risk
management in electrical critical infrastructures and vulnerability
analysis has received attention only in last years, but both concepts
should be taken simultaneously into account to improve the planning
of the expansion of power systems.

Previous research applied to power systems concluded that vul-
nerability analysis should be used as a complement to reliability
analysis but it did not address how to use the results from vul-
nerability and reliability analyses for making decisions on critical
infrastructures [8]. In contrast, our research provides a robust cal-
culation of reliability and vulnerability indices and, at the same
time, a combination of both approaches to improve the decision
making process on the best network topology under an integrated
risk assessment framework using MCDM. We propose a method to
compare the performance of different networks under reliability and
vulnerability criteria.

The rest of this paper is organized as follows: first, Section 2
introduces the methodology and the algorithms proposed to calculate
vulnerability and reliability. A case study is presented in Section 3.
Then, simulation results of the vulnerability and reliability analyses
are shown and explained in Section 4. Finally, in Section 5, the com-
parison and discussion of results are done, and an MCDM method
is applied to jointly analyze both concepts. The paper summary and
conclusions will be provided in Section 6.

2 Methodologies

2.1 Structural vulnerability assessment

Vulnerability is an internal characteristic of critical infrastructures
that measures the inability of the system to withstand the effects
of failures [10]. Frequently, it is quantified based on the largest
connected component, both before and after cascade events [11].

To determine the impact of cascading failure events, power grid
performance is measured according to the electrical loads that
remain connected after several interdiction events. Some measures
have been applied to previous research works to estimate load shed-
ding as a percentage of the total system demand [12–14]. In this
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Fig. 1: Flowchart to calculate the structural vulnerability of power
systems.

article, we propose the unsatisfied demand (UD) index to mea-
sure the power system performance when it is subject to cascading
failures caused by disconnection of overloaded power lines.

The UD metric allows determining the impact of cascading
failures by quantifying the demand that can be satisfied in the elec-
trical infrastructure after multiple line removals. The UD index is
calculated as follows:

UD = 1−
∑

iDemandi
Demandbase

(1)

where:
Demandi: demand met on island i.
Demandbase: total demand for base case.
The UD index varies between 0 and 1. Thus, as the UD index

increases, the impact on satisfied demand in the power system also
increases.

The flowchart of the algorithm presented in Fig. 1 allows deter-
mining the structural vulnerability of the power grids. The calcula-
tion is performed using (1) where the UD index is calculated during
each disintegration stage of network.

Initially, the algorithm calculates DC power flows and determines
power line overload limits using a user-defined parameter α, as
shown in (2).

Overloadthreshold = αj × Flowbasej (2)

where:

≤

Fig. 2: Flowchart of reliability analysis of power systems.

αj : tolerance parameter of line j
Flowbasej : base power flow of line j
Cascading failures are initiated by removing the most heavily

loaded line. The algorithm then calculates the new power flows and
verifies that the power lines do not exceed the overload threshold
determined in (2). If the latter is not achieved, the overloaded elec-
trical lines are removed, and then the formation of islands or isolated
elements caused by the previous event is determined. We used Deep
First Search (DFS) algorithm to solve the problem mentioned above
[15].

Due to the formation of multiple islands, the developed algorithm
incorporates an energy balance routine to determine the maximum
demand that can be satisfied in each subnet. In other words, islands
with a generation higher than their demand will be able to satisfy
the connected load, while islands with a generation lower than their
demand will only be able to satisfy the load equivalent to the gener-
ation. Islands without generation or isolated buses are considered as
unsatisfied load in the algorithm. Cascading events also continue on
these islands. In this way, DC power flows are run in each subsystem
and, in parallel, the UD index is calculated. The algorithm ends once
all power lines have been removed or there are no more overloads in
the system.

DC load-flow models provides a suitable capability for this kind
of power system security analysis. In this regard, voltage magnitudes
might not be a major concern and DC power flow studies provide
sufficient accuracy [16].

The algorithm has been programmed in the MATLAB program-
ming environment.
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Fig. 3: Diagram of IEEE 24-bus Reliability Test System.

2.2 Reliability assessment

In Monte Carlo simulation, two main techniques are usually
employed: time-sequential and non-sequential. In non-sequential
techniques (system state sampling) each time step or system state are
considered independently while sequential techniques can be used
realistically to simulate the actual chronological process and random
behavior of system [17, 18].

Time-sequential Monte Carlo technique is used here for the reli-
ability assessment because is more flexible, accurate and provides
calculation of different indices such as Expected Frequency of Load
Curtailments (EFLC) but it needs more computation time [4, 17–19].
For an in-depth description, some useful references can be found in
the literature [3, 20, 21].

Implemented time-sequential Monte Carlo technique for reliabil-
ity assessment of a power system is presented in the flowchart of Fig.
2 using the following steps [4, 17, 18]:

Step 1. specify the initial state and number of components that can
fail. It is assumed that all components are in a normal state and have
only two states (normal and failure).

Step 2. calculate the residing time (the time the component spends
in each state). In this case, uniform random numbers (r) are used, and
Time To Failure (TTF) and Time To Repair (TTR) are sequentially
calculated employing failure rates (λ) and Mean Time To Repair
(MTTR) of components, using (3) and (4):

TTF = − ln (r)

λ
× 8760 (3)

TTR = − ln (r)×MTTR (4)

This step should be repeated for each component for a specific
time span, normally one year.

Step 3. after providing the artificial history of the system in above
steps, overlapping times of elements failures are needed. The time
steps considered are hours of one year (8760 steps).

Step 4. power flow calculation of new topology by considering
the element failures. Optimal DC power flow (OPF) is employed to
specify the effects of failed elements removal on supplied energy and

Fig. 4: Three areas diagram IEEE RTS-96.

normal operation of system. MATLAB is used for OPF calculations
[22].

Step 5. calculate the reliability indices using the results provided
from previous step and following reliability indices [4, 8, 17, 18]:

• Expected Energy Not Supplied (EENS) (MWh/year):

EENS =

∑Ny

i=1(
∑Ni

j=1Ej,i)

Ny
(5)

Where, Ej,i is power system energy not supplied of jth power
interruption, in year i, Ny is total number of simulated years and Ni
is total number of interruption in year i.

• Expected Demand Not Supplied (EDNS) (MW):

EDNS =
EENS

8760
(6)

• Expected Frequency of Load Curtailment (EFLC) or Loss of Load
Frequency (LOLF) (outages/year):

EFLC =

∑Ny

i=1Ni

Ny
(7)

• Expected Duration of Load Curtailment (EDLC) or Loss of Load
Expectancy (LOLE) (hours/year):

EDLC =

∑Ny

i=1(
∑Ni

j=1Dj,i)

Ny
(8)

Where, Dj,i is duration of jth power interruption, in year i.

• Probability of Load Curtailment (PLC) or Loss of Load Probabil-
ity (LOLP) (%):

PLC =
EDLC

8760
(9)

• Average Duration of Load Curtailments (ADLC) or Loss of Load
Duration (LOLD) (hour/disturbance):

ADLC =
EDLC

EFLC
(10)

Step 6. The steps 2-5 are repeated and the indices are accumulated
until the coefficient of variation EENS is less than tolerance error.
According to previous works, a relative tolerance error of 6 % is
established [4].
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Fig. 5: Vulnerability curves.

3 Case studies

In this paper, the IEEE Reliability Test System (RTS-96) [23] is used
as a test system. This network is a good test case for bulk power sys-
tem reliability evaluation studies because of available required data
(see Fig. 3). IEEE RTS-96 bus system has three areas that are mir-
rored copies of Fig. 3. These areas are interconnected with different
components (Fig. 4). For example, Area 1 is connected with three
lines to Area 2, Area 2 with 1 line to Area 3 and Area 3 is connected
with an extra bus, a transformer and a line to Area 1 [24]. In this
paper, five different combinations of the three areas are used for reli-
ability evaluation in five case studies. In each area, 94 components
can fail i.e., 24 buses, 32 generators and 38 branches and transform-
ers. In addition to data which are available in [23], failure rate and
MTTR of buses are considered 0.001(/year) and 24 hours, respec-
tively [8]. It is assumed that the annualized peak power demand for
each area is 2850 MW [23].

4 Simulation results

4.1 Results of vulnerability analysis

Fig. 5 reports the degradation of the networks under study caused
by the outage of transmission line 14-16. This power line is the most
loaded in all systems. We obtain the plotted results after applying the
algorithm shown in Fig. 1 by considering a parameter α = 1 in all
cases.

The curves represent the unsatisfied demand (UD) calculated dur-
ing each disintegration step of the network. Initially, the UD index
has a value equal to 0 when all the load in the power grid is satisfied.
Then, the UD index progressively increases until a value equal to
1 when the whole system is disintegrated due to the removal of the
overloaded lines. At this point, the system cannot meet the demand
of the power grid.

Fig. 5 shows that Area 1 & 3, Area 2 & 3 and Area 1 & 2 & 3 reach
their maximum point of disintegration in iteration six, while Area 1
& 2 in iteration five and Area 1 in iteration four. The above indi-
cates that the propagation of cascading effects grows as the network
increases in size.

Therefore, it can be observed that Area 1 & 2 & 3 is the most
vulnerable network since 70 % of the demand is not satisfied, while
Area 1 & 2 proves to be the most robust network since about 50
% of the load on the power network remains satisfied. In short, the
most vulnerable systems can be determined graphically from least to
most vulnerable as follows: Area 1 & 2, Area 1, Area 1 & 3, Area 2
& 3 and Area 1 & 2 & 3. In this manner, we have a measure of the
behavior of the networks under study, which allows us to classify
them according to their degree of vulnerability.

Fig. 6: EENS and coefficient of variation for area 1 and 1500-year
time span.

Fig. 7: Comparison of reliability index (Relative EENS) for differ-
ent topologies.

4.2 Results of reliability analysis

The time-sequential Monte Carlo Simulation approach has been
applied to the same five different topologies from IEEE RTS-96.
Fig. 6 shows the deviations of EENS and coefficient of variation
(COV) for a 1500-years simulation. The simulation process can be
stopped when the coefficient of variation (COV) for EENS or EDNS
is less than 6 %, following recommendations from [4]. Convergence
is slower than others [8] and it is also clear from comparing the coef-
ficient of variation (COV) of different reliability indices in Table 1.
As it can be concluded from Fig. 6, it is not necessary to run a 1500-
years simulation to reach a coefficient of variation (COV) below 6 %.
Thus, results plotted in Fig. 7 are obtained from calculations done for
a 500-year simulation.

Fig. 7 shows that connecting similar networks that can meet their
demands by self-generation increases the reliability index (Relative
EENS). Moreover, how the three coupled networks are connected is
also important. Here, Area 1 & 2 is more reliable because there are
three interconnecting lines between the networks 1 and 2, providing
redundancy to the system. Area 1 & 3, that has three interconnecting
components, has similar behavior. However, Area 2 & 3, with only
one interconnecting component, is less reliable. The reason can be
the small failure rates of the bus (0.001/year) and the transformer
(0.02). Therefore, these components can be ignored in one-year
simulation span. So, we can assume that Areas 1 & 3 and 2 & 3
have interconnecting lines with failure rates of 0.52 and 0.53 /year,
respectively.
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Table 1 Annualized system indices for the IEEE-RTS (AREA 1)

Reliability Ref. [8] Ref. [25] This paper COV (%)
index

EENS 127546 134590.60 130513.96 5.54
EDNS 14.56 15.36* 14.90 5.54

(134590.6/8760)
EFLC 18.8 18.57 19.12 3.83
EDLC 732 740.22* 744.69 3.43

(0.0845 × 8760)
PLC 8.3 8.45 8.50 3.43
ADLC 38.8 39.86* 38.95 3.23

(740.22/18.57)

*These are calculated using available data in reference [25]

Table 2 Annualized system indices and data for the IEEE-RTS

Reliability index Area 1 Area 1 & 2 Area 1 & 3 Area 2 & 3 Area 1 & 2 & 3

Total Demand (MW) 2850 5700 5700 5700 8550
Number of Components 94 191 191 189 289
EENS (MWh/year) 130513.96 118913.10 145876.59 147422.55 56990.00
Relative EENS (EENS/Total Demand/8760 hours) 0.0052 0.0024 0.0029 0.0030 0.0008
EDNS (MW) 14.90 13.57 16.65 16.83 6.50
EFLC (outages/year) 19.12 26.33 26.86 26.69 18.08
EDLC (hours/year) 744.69 901.17 1017.94 1029.78 439
PLC (%) 8.50 10.29 11.62 11.76 5.01
ADLC (hour/disturbance) 38.95 34.22 37.90 38.58 24.30

Fig. 8: Distribution of number (hours) of simultaneous failures in
different topologies for a 1500-year time span (maximum num-
ber of possible simultaneous failure and maximum percentage of
simultaneous component failures are presented in parenthesis).

5 Discussion

5.1 Reliability and vulnerability concepts

Reliability and vulnerability assessment study the ability of a system
to perform its desired functions under given conditions for a period
of time and the weakness level of a system to failures, disasters
or attacks, respectively [8, 26]. Reliability assessment is dependent
on probability of component failure but vulnerability assessment
does not consider probability. Other difference relies on the differ-
ent number of simultaneous failures that both techniques take into
account.

Fig. 6 and Fig. 7 show that vulnerability assessment considers 0 to
100 % of components removal. On the other hand, in order to show
the number of simultaneous failures in reliability assessment, 1500-
year time span (1500 × 8760 hours) for all topologies is simulated.
The results are presented in Fig. 8. It shows that the percentage of
simultaneous failures decreases when the dimension of the network
increases. In addition, it shows that reliability analysis only considers
maximum 10.6 % of component outages. Vulnerability assessment
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Fig. 9: Comparison of Relative EENS (reliability index) and vulner-
ability index for different systems.

can complement the reliability analysis considering the rest of N-k
failures.

5.2 Reliability and vulnerability comparison

This section is intended to the joint comparison and discussion of the
results of reliability and vulnerability assessment, integrating both
risk analysis perspectives.

With respect to the structural vulnerability analysis, observing
Fig. 5 it is possible to conclude that Area 1 & 2 & 3 is the least robust
case since the unsatisfied demand is higher than in the remaining
cases under study. In other words, large systems are highly vul-
nerable, when compared to those systems with small size but more
compact.

With respect to the reliability analysis, it is possible observing
Figs. 6 and 7 how the largest system (Area 1 & 2 & 3) is the less
sensitive to power outages as a consequence of any element mal-
functioning, i.e., the most reliable. In fact, the ranking of Relative
EENS from Table 2 (Area 1 & 2 & 3, Area 1 & 2, Area 1 & 3, Area
2 & 3, Area 1) seems to be quite different to that obtained from the
vulnerability results shown in Fig. 5 plotted from lowest to highest
vulnerability (Area 1 & 2, Area 1, Area 1 & 3, Area 2 & 3, Area
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Fig. 10: Ranking of five IEEE RTS topologies based on the
decision-makers’ priorities on Reliability (R) and Vulnerability (V).

1 & 2 & 3). This reasoning suggests that a vulnerable power sys-
tem may not be unreliable, or inversely, an unreliable energy power
system is not necessarily vulnerable. The interconnection of energy
sub-systems 1, 2 and 3 results in a global system with higher reli-
ability, i.e., the lowest value of Relative EENS for Area 1 & 2 &
3 in Fig. 9. However, the amount and type of interconnection links
between the sub-systems are crucial from the vulnerability perspec-
tive. The values of vulnerability in Fig. 9 have been obtained through
the parameter AUC (area under curve) for each curve in Fig. 5. The
values of reliability have been taken from the results of Relative
EENS shown in Table 2.

The pairwise comparison in Fig. 9 lets us confirm the previous
conclusions: the system named as Area 1 is the least reliable, but
more robust, because of its compact size, and the system of Area 1 &
2 & 3 is the most reliable, but less robust, since reliability improves
with interconnections, but vulnerability becomes worse due to faster
propagation of cascading failures.

5.3 Reliability and vulnerability integration

In this section, the goal is to show how the decision-makers’ prior-
ities on reliability and vulnerability could be taken into account to
select the best topology. Multi-Criteria Decision Making (MCDM)
methods are usually applied to provide a ranking of alternatives
using different measures and criteria. The Technique for Order Pref-
erences by Similarity to an Ideal Solution (TOPSIS) is one of the
MCDM method to find the best alternative that is the closest to
the positive ideal solution and farthest to the negative ideal solution
[27, 28]. In our case, we consider five different topologies of IEEE
RTS as the alternatives and vulnerability and reliability indices as
the measures.

Thanks to TOPSIS approach, the ranking of five IEEE RTS
topologies based on the decision-makers’ priorities are shown in
Fig. 10 scoring each topology. Reliability (R) and Vulnerability
(V) weights are considered for decision making. For example,
from decision-makers’ perspective "R(10 %), V(90 %)" means the
weights of reliability and vulnerability are 10 and 90 percent, respec-
tively, and the final scores of topologies are from 1 (the best ) to 5
(the worst).

Fig. 10 shows that IEEE RTS Area 1 & 2 would be mostly the
best topology. But when considering vulnerability weights between
0 and 20 % (reliability between 80 and 100 %) IEEE Area 1 & 2 &
3 becomes a better topology. These two solutions dominate the other
three networks IEEE Areas 1, Areas 1 & 3, and 2 & 3 as it can be
also checked in Fig. 9.

6 Conclusion

In this paper, a novel methodology has been developed for the
joint consideration of vulnerability and reliability of power sys-
tems. Indices to measure system vulnerability as well as power

and energy related definitions frequently used on reliability stud-
ies (EENS, EFLC, EDLC, among others) have been integrated into
a wide discussion, aiming to quantitatively determine the pros and
cons of the current energy transmission system designs. Five differ-
ent topologies based on the IEEE RTS-96 test case have been studied
from the vulnerability and reliability perspectives. According to the
information available and calculation carried out, the behavior of the
system from the vulnerability viewpoint could be different to that
observed from the reliability perspective. For example, the largest
system, Area 1 & 2 & 3, shows the highest reliability (relative
EENS value, 0.0008) but the worst vulnerability (value of area under
curve of unsatisfied demand, 2.2275). On the contrary, the smallest
system, Area 1, has low reliability (0.0050) but good vulnerability
measure (1.8446). Thanks to the use of a multicriteria approach,
TOPSIS, rankings of the five IEEE RTS-96 topologies have been
obtained, considering different Reliability (R) and Vulnerability (V)
weights based on the decision-makers’ priorities. The analysis also
depends on how each topology is planned and interconnected. Reli-
ability improves with interconnections between the systems, making
a power system more reliable as more interconnected is but making it
simultaneously more vulnerable as it is more exposed to propagation
of cascading failures. Then, a compromise solution can be found for
each power system, weighting reliability and vulnerability into an
integrated decision framework.
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