
Archive ouverte UNIGE
https://archive-ouverte.unige.ch

Chapitre d'actes 2016                                     Accepted version Open Access

This is an author manuscript post-peer-reviewing (accepted version) of the original publication. The layout of 

the published version may differ .

Engineering Adaptivity, Universal Autonomous Systems Ethics and 

Compliance Issues

Di Marzo Serugendo, Giovanna

How to cite

DI MARZO SERUGENDO, Giovanna. Engineering Adaptivity, Universal Autonomous Systems Ethics 

and Compliance Issues. In: Leveraging Applications of Formal Methods, Verification and Validation: 

Foundational Techniques. Corfu, Greece. Cham : Springer International Publishing, 2016. doi: 

10.1007/978-3-319-47166-2_50

This publication URL: https://archive-ouverte.unige.ch/unige:91743

Publication DOI: 10.1007/978-3-319-47166-2_50

© This document is protected by copyright. Please refer to copyright holder(s) for terms of use.

https://archive-ouverte.unige.ch
https://archive-ouverte.unige.ch/unige:91743
https://doi.org/10.1007/978-3-319-47166-2_50


Engineering adaptivity,
Universal autonomous systems
Ethics and compliance issues

ISOLA’2016 - Panel Discussion
Position Paper

Giovanna Di Marzo Serugendo

Centre Universitaire d’Informatique,
Institute of Information Services Science,

University of Geneva, Switzerland
giovanna.dimarzo@unige.ch

Abstract This paper summarises some of the discussion held during the panel of
the ISOLA’2016 conference on whether artificial systems actually adapt to unforeseen
situations and whether we master autonomous adaptive systems. We focus here on
three questions: (1) What is a collective adaptive system and what are the elements
to consider when engineering a collective adaptive system? (2) What type of universal
autonomous system can we envision and what for? and finally (3) How are we consid-
ering and integrating ethics, trust, privacy and compliance to laws and regulations in
adaptive systems?

1 What is adaptivity and how to engineer it?

Figure 1 shows a mind-map describing the different elements participating to
the engineering of (artificial) collective adaptive systems [5,6]. First it requires
the use of software agents, autonomous in their behaviour, having a common
or personal goal, able to sense and act upon their environment. They may be
(among others) intelligent, reactive and/or mobile [20]. They can also be em-
bodied into physical devices such as robots, autonomous cars, or purely sitting
in electronic/computing environments, e.g. auction agents, soft-bots, or personal
digital assistants.

Second, for a collective adaptive system to work as a collective of agents, we
need to define an interaction mechanism, usually coded locally in each agent.
An interaction mechanism is typically a set of rules, that the agents follow and
apply according to their local perceptions. By locally applying their rules, the
agents as a collective entity display some emergent behaviour. These rules allow
the agents to continuously adapt their behaviour to the sensed conditions and
perceived changes in their environment. Here we can identify a spectrum of rules
that vary in their capability (or not) to change or adapt. Most of the engineered
self-organising systems today adopt interaction mechanisms based on fixed rules.
This is typically the case for bio-inspired systems using mechanisms such as evap-
oration, gradient, flocking, ant foraging, etc. For instance, agents locally apply



Figure 1: Engineering Collective Adaptive Systems

flocking rules, and as a collective are able to move in a coherent manner as flocks
of birds. A common characteristic of collective adaptive systems is their sensit-
ivity to parameters. Parameters are either set up (and fixed) in advance or may
adapt on-the-fly, bringing increased adaptivity [8]. In the spectrum of adaptiv-
ity, we further distinguish interaction mechanisms that employ self-modifying
rules: starting from a set of rules established at design-time, through evolution-
ary algorithms, learning and memory (e.g. immune systems), or reinforcement
learning, the rules of each agents progressively change and modify themselves to
better adapt to the agent’s own observation and goal. If we move further along
an adaptivity axis, we consider the next level, the case of interaction mechan-
isms provided by self-building rules. Here, agents are not provided with rules
at design-time, but progressively build their own rules from scratch based on
their own experiences [14,12]. Finally, we also consider the whole body of work
on autonomic, self-managed systems involving explicit feedback loops [2,13] and
revolving around four key activities: Monitor, Analyse, Plan, and Execute func-
tions, also known as the MAPE architecture [4], decoupling the component that
is adapted from the one that reasons and enforces the adaptation. Advanced ver-
sions of the MAPE architecture involve distribution and different variants sup-
porting decentralised control [19]. Systems are generally designed in a top-down



manner. This is in contrast to self-organising sysytems that employ multiple im-
plicit feedback loops and decentralised control, and are generally designed in a
bottom-up manner.

Moving along Figure 1, the third element of the engineering of collective ad-
aptive systems, necessary to make them trustworthy and possibly deployed on
an industrial large-scale basis in everyday life, concerns the Methods and Tools
we can use to help develop those systems, like Middleware Infrastructures, most
of them based on blackboard deriving from the early Linda system [11], such
as SAPERE or those using nature-inspired coordination [21]; Patterns facilitat-
ing the understanding and use of self-organising mechanisms [10]. A large body
of work is provided by Analysis and Verification efforts, in particular the use
of Formal methods of different kinds and recent works on spatio-temporal lo-
gics [3]. There are no actual software engineering methodologies that emerge,
even though efforts are provided in this direction since several years [18]. Most
of these methods are heavily based on simulations, either purely simulation
tools [16] or hybrid prototyping tools [17,9].

Finally, even though recent research provided some answers to some pending
issues, we still have no definite solution for formal verification of collective adapt-
ive systems properties, in particular emergent ones; clear techniques for address-
ing parameters sensitivity of collective adaptive systems, or how to still remain
in control of a fully self-* decentralised system once it has been deployed, and
how to solve the macro to micro issue, i.e. how to engineer the local agents so
that collectively they actually behave as intended.

2 What about a universal autonomous system?

There exists problems of very high complexity, such as hyper-complex or wicked
problems, defined by [15] as “those that defy conventional approaches to un-
derstanding, planning, design, implementation and execution because: (1) The
stakeholder interests are so diverse and divisive; (2) Interdependencies are so
complex and so little understood; (3) Behaviours are so dynamic and chaotic
(unpredictable)”. Wicked problems have no purely algorithmic solution and need
a combination of machine processing and human-based experience and heurist-
ics to be solved. These are problems where stakeholders have different views
and understanding of the problem, and the problem itself is subject to changing
constraints. This is typically the case with computational or societal problems,
where human intelligence, dynamically changing data, the Internet services, net-
works of sensors and machines need to be combined to address them. These are
problems for which we often do not know if they have a good solution, or even
less how to reach a reasonable solution if it exists.

A possible vision is to develop a new type of computer, a Social Computer [7]
- a “machine-enhanced society”. An instance of a Social Computer is a network of
humans (individuals, groups) and machines (computers, data, services, sensors)
able together and together only to assist experts in solving a specific large-
scale (scientific or societal) problem that cannot be tackled by either computers



or humans alone. It innately integrates human abilities based on intelligence,
competences and skills with machine processing power so that they complement
each other. A Social Computer is a Computer because it accepts input data, can
store and process it, and can produce output results. It is, however, also Social
since it is based on collaboration between humans and machines. In addition
and by design, it must operate in an ethical, law-abiding, correct and trustable
way.

Examples of primitive social computers encompass groups of coworkers sup-
ported by computing resources, people playing massively multiplayer online
games, or a single person whose activity would be supported by a network of
machines. In these cases, however, the matter at hand is often not presented
under the form of a problem to be solved, or the decomposition of problems
into subtasks; furthermore the links between humans and/or machines are not
established in any principled, problem-solving way. A lot of burden is still placed
on humans to identify problems and their solution.

The types of problems we envision a Social Computer should be able to solve,
and the environments in which it should exist, are of a much higher complexity.
We anticipate that people and society, by using and interacting in principled
ways through a Social Computer, will be able to solve hyper-complex prob-
lems. Such issues can be computational (e.g. how to solve a scientific problem
that cannot be completely formalised), consensual (e.g. how to reduce the costs
of health insurance) or controversial (e.g. how to reduce our carbon footprint,
more generally how to reach UN defined sustainable goals). Addressing them will
require collecting partial solutions from diverse human and machine clusters, as-
sessing opinion from experts and from the public, predicting the outcome and
consequences of individual subproblems, and other similar tasks impossible to
achieve by humans or machines independently. A Social Computer is an in-
tegration of humans and machines collaborating together on-demand to solve
problems and answer questions. It frees users from organisational burden, help-
ing them in breaking down problems into manageable tasks; it allows deep and
exhaustive search of information and data mining in order to obtain partial solu-
tions; and it exploits at best the different human and computational resources
to obtain effective solutions. Social Computers are not fixed, pre-defined entit-
ies like today’s computers, but are dynamic, evolving collaborations of humans
and/or machines, adapting themselves to the problem at hand.

Social Computers can also be seen as tools supporting decisions during the
process of establishing public policies. They help gather, understand and create
evidence in support of policy-making processes.

3 What about privacy, trust, ethics and compliance to
laws and regulations?

Central to Social Computers above, and central to any adaptive system are the
notions of ethics, privacy, trust and legal aspects. Most of the ICT developments
so far were however primarily guided by the market, leaving behind ethical, legal,



and psychological considerations. Today’s services offer no ethical warranty. Pri-
vacy is becoming a very fragile matter, with sensitive data often stored, used
and aggregated unbeknownst to their owners, sometimes with malicious intent.
For instance, people have not fully grasped the impact of the reputation of their
online persona and their online actions, with undesired social or professional
consequences. Society regularly define, revisit and enforces laws. Autonomous
systems should not only adapt to unforeseen circumstances in their environ-
ment, but also be fully compliant with current regulations when first deployed
and able to adapt - on their own - to any law or regulation change. The vis-
ion and proposal here is double: (1) we need to address ethical, trust, privacy
and law-abiding considerations from the start, i.e. providing those consideration
by design (ethics by design, privacy by design, compliance by design [1]); (2)
we need also to develop research for engineering autonomous systems able to
adapt to changes of laws and regulations on-the-fly. For autonomous systems,
this could be provided by an ethical middleware or an ethical operating system
ensuring in a built-in manner all those considerations; and/or ethical principles
to be included into individual agents and global systems developed with them.

4 Conclusion

The considerations above have engineering concerns in mind. Including ethics,
privacy and trust by design renders autonomous systems apparently more ac-
ceptable. Some questions still need to be considered: (1) How do we define the
ethics to integrate into those systems? this shouldn’t be left to individuals but
thought at some universal world-wide level; (2) What about legal issues arising
from situations involving autonomous systems? who is responsible when an acci-
dent, a failure or any harm happens: the user, the programmer, the designer, the
company’s manager? (2) To which extent is it a good thing to develop the “ulti-
mate” adaptive system so intelligent that it may decide to question the usefulness
of humans or even take over? Fortunately, ethicians, lawyers and philosophers
are already busy thinking this through.

References

1. Guillaume Aucher, Guido Boella, and Leendert van der Torre. A dynamic logic
for privacy compliance. Artificial Intelligence and Law, 19(2-3):187–231, 2011.

2. Betty Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, Jeff Magee, Jes-
per Andersson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Giovanna
Di Marzo Serugendo, Schahram Dustdar, Anthony Finkelstein, Cristina Gacek,
Kurt Geihs, Vincenzo Grassi, Gabor Karsai, Holger Kienle, Jeff Kramer, Marin
Litoiu, Sam Malek, Raffaela Mirandola, Hausi Müller, Sooyong Park, Mary Shaw,
Matthias Tichy, Massimo Tivoli, Danny Weyns, and Jon Whittle. Software en-
gineering for self-adaptive systems: A research roadmap. In Betty Cheng, Rogério
de Lemos, Holger Giese, Paola Inverardi, and Jeff Magee, editors, Software En-
gineering for Self-Adaptive Systems, volume 5525 of Lecture Notes in Computer
Science, pages 1–26. Springer Berlin / Heidelberg, 2009.



3. Vincenzo Ciancia, Diego Latella, Michele Loreti, and Mieke Massink. Specifying
and verifying properties of space. In IFIP TCS’14, pages 222–235, 2014.

4. IBM Corporation. An architectural blueprint for autonomic computing, 2006.
5. G. Di Marzo Serugendo. Robustness and dependability of self-organising systems

- a safety engineering perspective. In Int. Symp. on Stabilization, Safety, and
Security of Distributed Systems(SSS), volume 5873 of LNCS, pages 254–268, Lyon,
France, 2009. Springer, Berlin Heidelberg.

6. Giovanna Di Marzo Serugendo, Marie-Pierre. Gleizes, and Anthony Karageorgos,
editors. Self-Organising Software - From Natural to Artificial Adaptation. Natural
Computing Series. Springer, 1st edition edition, 2011.

7. Giovanna Di Marzo Serugendo, Matteo Risoldi, and Mohammad Solemayni. The
social computer. In J. Pitt, editor, The computer after me, pages 159–172. World
Scientific, 2014.

8. A. E. Eiben, Zbigniew Michalewicz, M. Schoenauer, and J. E. Smith. Parameter
Setting in Evolutionary Algorithms, chapter Parameter Control in Evolutionary
Algorithms, pages 19–46. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

9. Jose Luis Fernandez-Marquez, Francesco De Angelis, Giovanna Di Marzo Seru-
gendo, Graeme Stevenson, and Gabriella Castelli. The one-sapere simulator: A
prototyping tool for engineering self-organisation in pervasive environments. In
SASO, pages 201–202. IEEE Computer Society, 2014.

10. Jose Luis Fernandez-Marquez, Giovanna Di Marzo Serugendo, Sara Montagna,
Mirko Viroli, and Josep Lluís Arcos. Description and composition of bio-inspired
design patterns: a complete overview. Natural Computing, 12(1):43–67, 2013.

11. David Gelernter and Nicholas Carriero. Coordination languages and their signific-
ance. Commun. ACM, 35(2):97–107, February 1992.

12. L. Lana de carvalho, S. Hassas, E. J. Lopes, and A. Cordier. Four kinds of models
of emergent representations resulting from the decomposition individual/collective
and internal/external. In Proceedings of 5th European Conference on Complex
Systems (ECCS’08), 2008.

13. Rogério Lemos, Holger Giese, Hausi A. Müller, Mary Shaw, Jesper Andersson,
Marin Litoiu, Bradley Schmerl, Gabriel Tamura, Norha M. Villegas, Thomas Vo-
gel, Danny Weyns, Luciano Baresi, Basil Becker, Nelly Bencomo, Yuriy Brun,
Bojan Cukic, Ron Desmarais, Schahram Dustdar, Gregor Engels, Kurt Geihs,
Karl M. Göschka, Alessandra Gorla, Vincenzo Grassi, Paola Inverardi, Gabor
Karsai, Jeff Kramer, Antónia Lopes, Jeff Magee, Sam Malek, Serge Mankovskii,
Raffaela Mirandola, John Mylopoulos, Oscar Nierstrasz, Mauro Pezzè, Christian
Prehofer, Wilhelm Schäfer, Rick Schlichting, Dennis B. Smith, João Pedro Sousa,
Ladan Tahvildari, KennyWong, and JochenWuttke. Software Engineering for Self-
Adaptive Systems II: International Seminar, Dagstuhl Castle, Germany, October
24-29, 2010 Revised Selected and Invited Papers, chapter Software Engineering for
Self-Adaptive Systems: A Second Research Roadmap, pages 1–32. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2013.

14. S. Mazac, F. Armetta, and S. Hassas. Bootstrapping sensori-motor patterns for a
constructivist learning system in continuous environments. In 14th International
Conference on the Synthesis and Simulation of Living Systems (Alife’14), New
York, NY, USA, 2014.

15. D. Newman and N. Gall. Gain a Foundation in Design Thinking to Apply Gartner’s
Hybrid Thinking Research. Gartner Analysis, 2010.

16. Danilo Pianini, Sara Montagna, and Mirko Viroli. Chemical-oriented simulation
of computational systems with Alchemist. Journal of Simulation, 2013.



17. Danilo Pianini, Mirko Viroli, and Jacob Beal. Protelis: practical aggregate pro-
gramming. In Roger L. Wainwright, Juan Manuel Corchado, Alessio Bechini, and
Jiman Hong, editors, Proceedings of the 30th Annual ACM Symposium on Applied
Computing, Salamanca, Spain, April 13-17, 2015, pages 1846–1853. ACM, 2015.

18. Mariachiara Puviani, Giovanna Di Marzo Serugendo, Regina Frei, and Giac-
omo Cabri. A method fragments approach to methodologies for engineering
self-organizing systems. ACM Transactions on Autonomous Adaptive Systems,
7(3):33:1–33:25, October 2012.

19. Danny Weyns, Bradley Schmerl, Vincenzo Grassi, Sam Malek, Raffaela Miran-
dola, Christian Prehofer, Jochen Wuttke, Jesper Andersson, Holger Giese, and
Karl. Goschka. On patterns for decentralized control in self-adaptive systems. In
Rogerio de Lemos, Holger Giese, Hausi Mueller, and Mary Shaw, editors, Soft-
ware Engineering for Self-Adaptive Systems II, volume 7475 of Lecture Notes in
Computer Science, pages 76–107. Springer Berlin Heidelberg, 2013.

20. Michael Woolridge and Michael J. Wooldridge. Introduction to Multiagent Systems.
John Wiley & Sons, Inc., New York, NY, USA, 2001.

21. Franco Zambonelli, Andrea Omicini, Bernhard Anzengruber, Gabriella Castelli,
Francesco Luca De Angelis, Giovanna Di Marzo Serugendo, Simon Dobson,
Jose Luis Fernandez-Marquez, Alois Ferscha, Marco Mamei, Stefano Mariani, Am-
bra Molesini, Sara Montagna, Jussi Nieminen, Danilo Pianini, Matteo Risoldi,
Alberto Rosi, Graeme Stevenson, Mirko Viroli, and Juan Ye. Developing pervas-
ive multi-agent systems with nature-inspired coordination. Pervasive and Mobile
Computing, 17:236—-252, February 2015. Special Issue “10 years of Pervasive
Computing” In Honor of Chatschik Bisdikian.


