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Abstract

Filtering methods are powerful tools to estimate the hidden state of a state-

space model from observations available in real time. However, they are known

to be highly sensitive to the presence of small misspecifications of the under-

lying model and to outliers in the observation process. In this paper, we

show that the methodology of robust statistics can be adapted to sequential

filtering. We introduce an impact function that quantifies the sensitivity of

the state distribution with respect to new data. Since the impact function of

standard filters are unbounded even in the simplest cases, we propose filters

with bounded impact functions which provide accurate state and parameter

inference in the presence of model misspecifications. In particular, the ro-

bust particle filter naturally solves the degeneracy problems that plague the

bootstrap particle filter (Gordon, Salmond and Smith, 1993) and its many

extensions. We illustrate the good properties of robust filters in several ex-

amples, including linear state-space models and nonlinear models of stochastic

volatility.

Keywords: Kalman filter, Kullback-Leibler divergence, particle filter, robust

statistics, state-space model, stochastic volatility, weight degeneracy.



1 Introduction

Filtering techniques are used in many different fields to sequentially estimate the

hidden states of a state-space model from data observed in real time. More specif-

ically, suppose that at date t ∈ N, a set of observations Yt = {y1, . . . , yt}, yt ∈ R
p,

has been collected, and assume that they have been generated from a general state-

space model specified by a Markov process xt with kernel ρ(xt|xt−1) and observation

density f(yt|xt, Yt−1). Examples include linear state-space models (see e.g. Harvey,

1989) and nonlinear systems of the type commonly used in engineering and finance

(see Section 4).

The statistician is interested in estimating the filtering distribution λ(xt|Yt) of the

states, as well as the unknown parameters of the kernel and the observation density.

The estimation is usually based on Bayes’ rule:

λ(xt|yt, Yt−1) ∝ f(yt|xt, Yt−1)λ(xt|Yt−1). (1.1)

The filtering distribution has an analytical expression in selected cases, such as linear

Gaussian (Kalman, 1960) or finite state-space models (Hamilton, 1989; Lindgren,

1978). In more complex situations, implementation of (1.1) can proceed by particle

filter approximations and related methods (Gordon, Salmond and Smith, 1993), for

which a large body of literature exists. Good textbook treatments include Del Moral

(2004) and Cappé, Moulines and Rydén (2005), and useful overviews are Doucet, De

Freitas and Gordon (2001) (basic introduction), Doucet and Johansen (2011) (unified

framework and recent results) and Johannes and Polson (2009) (finance focus).

While the Bayesian filter and its refinements are very powerful techniques which

flexibly adapt to new incoming data, they are also highly sensitive to outliers in the
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observation process. To illustrate this point, suppose that at a given date t, instead

of yt we observe a noisy version ycontt of the form

ycontt = yt + vt , (1.2)

where the contaminating process vt ∈ Vk(yt; Yt−1) is unknown (see Assumption 1).

This includes contaminations such as additive outliers (AO), replacement outliers

(RO) and innovative outliers (IO) typically considered in the robustness literature;

see Maronna, Martin and Yohai (2006) p. 252 ff. Since the filtered distribution

at date t is calculated using the structural non-contaminated observation density

f(ycontt |xt, Yt−1) evaluated at ycontt instead of the unavailable contaminated observa-

tion density fcont(y
cont
t |xt, Yt−1) in (1.2), we can ask about the difference between

the former and the latter. This quantifies the impact of the contamination on the

estimation of the filtering distribution.

To measure the accuracy of the estimation, we use the backward Kullback-Leibler

divergence between the structural and exact filtering distributions:

KLt = KL
[
λ(xt|ycontt , Yt−1), λcont(xt|ycontt , Yt−1)

]
, (1.3)

where λcont(xt|ycontt , Yt−1) ∝ fcont(y
cont
t |xt, Yt−1)λcont(xt|Yt−1) and λcont(xt|Yt−1) co-

incides with λ(xt|Yt−1) if no outliers occurred prior to date t. As an illustrative

example, the top panel of Figure 1 reports observations generated from a Markov-

switching multifractal (MSM) volatility model without contamination (left panel)

and under 5% contamination (right panel, where 5% of randomly chosen observa-

tions are magnified by a factor of 4). The exact specification of the MSM model

along with the parameter choices are provided in Section 4.1.1. The middle panel of
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Figure 1: Accuracy of standard and robust filters for an MSM volatility model with-
out contamination (left panel) and with 5% contamination (right panel).

Figure 1 reports the Kullback-Leibler divergence KLt, t = 1, . . . , T, in (1.3) for the

standard Bayesian filter. While in the uncontaminated case (left panel) the stan-

dard Bayesian filter shows good accuracy, under a small amount of contamination

(right panel) it becomes very inaccurate. This example illustrates that the Bayesian

filter loses its power to extract the underlying state in the presence of outliers in the

observation process.

The bottom panel of Figure 1 reports the accuracy of a robust filter that will be

introduced in Section 3 of this paper. The robust filter performs like its standard

counterpart in the uncontaminated case. It can also withstand small misspecifica-

tions in the observation model and exhibit very good accuracy under contamination.
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Robust statistics deals with deviations from parametric models and develops in-

ference procedures which are not unduly influenced by such deviations. A large body

of literature exists and robust estimators and tests are available for many different

models; see the classical books by Huber (1981, 2nd edition by Huber and Ronchetti

2009), Hampel et al. (1986), and Maronna, Martin and Yohai (2006). In particu-

lar, robust alternatives to the Kalman filter have been proposed; see in particular

Masreliez and Martin (1977), the good overview in Schick and Mitter (1994) with

the references thereof, and more recent work by Ruckdeschel (2010a), Ruckdeschel

(2010b), Ruckdeschel, Spangl and Pupashenko (2012). A robust Kalman filter can

be viewed as a special case of our framework, since it provides the expected value

of the filtering distribution. In this paper we go beyond the basic framework of the

Kalman filter by studying the robustness properties of the entire estimated filtering

distribution and by deriving a robust particle filter which is a robust estimator of

the latter.

More specifically, our contributions to the literature are as follows. In Section 2,

we define a filter’s impact function, which measures how the innovation yt impacts

the state distribution of xt by means of the backward Kullback-Leibler divergence

between λ(xt|Yt−1) and λ(xt|yt, Yt−1). By requiring a bounded impact function, we

can state a sufficient condition for the robustness of a filter. It is based on the

observation density and can be used as a robustness diagnostic tool for any specific

model.

In Section 3, we obtain a general robust filter by appropriately truncating the

observation density, which is in line with the basic principles of robust statistics. The

construction is achieved by “huberizing” the derivative of the log-observation den-

sity (∂ log f)/(∂y) and then by integrating it. When the original observation density

is a (univariate or multivariate) Gaussian, the robustified observation density has
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a closed-form expression and efficiency provides a natural selection method for the

tuning constant, which gives guidelines to researchers for the operational develop-

ment of the filter. Furthermore, for some special systems, we develop an alternative

robustification method based on the Student t distribution and derive a selection

criterion for the number of degrees of freedom of the robust Student t filter. In

applications, robust filtering can be applied in closed form when the state space is

finite, or by way of a particle filter in richer environments. One key advantage of the

robust approach is that it naturally overcomes the degeneracy problem that plagues

the bootstrap filter and its many extensions (Gordon, Salmond and Smith, 1993;

Pitt and Shephard, 1999).

In Section 4, we show the generality of our results by presenting three main ap-

plications. The first example is a Markov-Switching Multifractal model (Calvet and

Fisher, 2001), a complex model for which classical estimation is non-trivial and no

robust procedures are available. In addition to the improvements in filtering reported

in Figure 1, our procedure is shown to permit robust model selection, applied to the

number of volatility factors. The second example is a linear Gaussian state-space

model. We summarize available robust Kalman filter procedures and compare their

performance with that of the standard Kalman filter and our robust particle filter.

Although the new robust particle filter is not tuned for a linear system, we show

that under contamination its performance is comparable to the benchmark robust

Kalman filters. Of course both clearly outperform standard techniques in the pres-

ence of contamination. The third example is a stochastic volatility model. We show

that the robust filter solves the degeneracy problem of classical particle filters, as

Figure 9 illustrates, and accurately tracks the underlying state under contamination.

In contrast to standard methods, the robust filter generates a simulated likelihood

function that varies smoothly with the parameters of the model. Furthermore, the
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robust filter greatly reduces the bias exhibited by the standard maximum likelihood

estimator of the model parameters in the presence of even small amounts of contam-

ination.

Section 5 concludes with possible directions for future research. Assumptions and

proofs are provided in the Appendix.

2 A Robustness Measure for the Filtering Distri-

bution

2.1 Impact Function

We measure the impact of the innovation yt on the conditional distribution of xt by

the backward Kullback-Leibler divergence between λ(xt|Yt−1) and λ(xt|yt, Yt−1):

KL
[
λ(xt|Yt−1), λ(xt|yt, Yt−1)

]
= Eλ(xt|Yt−1)

[
log

λ(xt|Yt−1)

λ(xt|yt, Yt−1)

]
. (2.1)

Assume that at date t, the contaminated data point ycontt = yt+vt is observed instead

of yt. An expansion of the backward Kullback-Leibler divergence around vt = 0 gives

KL
[
λ(xt|Yt−1), λ(xt|yt + vt, Yt−1)

]
= KL

[
λ(xt|Yt−1), λ(xt|yt, Yt−1)

]
+

+ v′t
∂

∂yt
KL
[
λ(xt|Yt−1), λ(xt|yt, Yt−1)

]
+ O(‖vt‖2) .

This leads to the following definition.

Definition 1 (Impact function) Under contamination (1.2), the impact function
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at date t of λ(xt|yt, Yt−1) is defined by

I(yt;λ, Yt−1, vt) = v′t
∂

∂yt
KL
[
λ(xt|Yt−1), λ(xt|yt, Yt−1)

]
(2.2)

for every vt ∈ R
p.

The impact function quantifies the sensitivity of the filtered distribution with respect

to the contaminated observation. For this reason, it is the filtering analogue of the

sensitivity curve that is commonly considered in robust statistics.

Bayes’ rule allows us to relate the impact function to the sensitivity of the obser-

vation density.

Proposition 1 (Analytical expression of the impact function) Under the con-

tamination (1.2), the impact function is given by

I(yt;λ, Yt−1, vt) = v′t

{
Eλ(xt|Yt)

[
∂ log f(yt|xt, Yt−1)

∂yt

]
− Eλ(xt|Yt−1)

[
∂ log f(yt|xt, Yt−1)

∂yt

]}

for every vt ∈ R
p.

Illustrative Example. Consider a state-space model where the observation den-

sity f(yt|xt, Yt−1) is univariate Gaussian N[0, σ(xt)
2]. By Proposition 1, the impact

function at date t is

I(yt;λ, Yt−1, vt) =
{
E[σ(xt)

−2|Yt−1]− E[σ(xt)
−2|Yt]

}
ytvt .

Suppose that the state space is finite and that the transition probabilities between

the states are all strictly positive (as in the case of MSM volatility models, see
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Section 4.1.1). Let u = maxxt
σ(xt). Then, lim|yt|→∞E[σ(xt)

−2|Yt] = u−2 and as

|yt| → ∞ the impact function is equivalent to

{
E[σ(xt)

−2|Yt−1]− u−2
}
ytvt .

The impact function I(yt;λ, Yt−1, vt) is asymptotically proportional to yt and can

therefore be arbitrarily large. The next subsection provides a general sufficient con-

dition guaranteeing the boundedness of the impact function under an appropriate

class of disturbances.

2.2 A Robustness Condition

If the impact function (2.2) has a bounded linear coefficient ∂KL/∂yt, the filtering

distribution cannot be driven arbitrarily away by a very small contamination. This

motivates the following definition of robustness.

Definition 2 (Robustness of λ) Let Vk(yt; Yt−1) denote the class of admissible

disturbances defined in Assumption 1. The filtering distribution λ(xt|Yt) is robust

with respect to Vk(yt; Yt−1), if there exists a positive constant c̃ such that

|I(yt;λ, Yt−1, vt)| ≤ c̃ .

for every yt ∈ R
p and vt ∈ Vk(yt, Yt−1).

Robustness is guaranteed by the following key criterion.

Proposition 2 (Sufficient condition for robustness) If Assumptions 1 and 2
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hold and there exists c ∈ R+ such that for all xt, yt

∥∥∥∥
∂ log f(yt|xt, Yt−1)

∂yt

∥∥∥∥ ‖yt − E(yt|Yt−1)‖ ≤ c , (2.3)

then the filter is robust.

Condition (2.3) can be used as a diagnostic tool to check the robustness of a given

filter. For instance, the Bayesian filter in the illustrative example of Section 2.1 fails

to meet (2.3) for any choice of c ∈ R+. In the next section we provide an explicit

construction of a robust filter for a general state-space model.

3 Robust Filters

3.1 A General C1 Solution

We develop a general robust solution to (2.3), which has the key feature of being

continuously differentiable on the observation space. The C1 property will imply

that robustified procedures have excellent numerical stability, as will be illustrated

in Section 4.

The construction consists of “huberizing” the derivative of the log-observation

density (∂ log f)/(∂yt) and then integrating it to obtain the robust density. Let

µ(xt) = E(yt|xt, Yt−1),

µt = E(yt|Yt−1).

We show in the Appendix the following result.
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Proposition 3 (Nonnormalized robustified observation density) We consider

that Assumptions 2 and 3 hold and define

g(y) = h c
‖y−µt‖

[
∂ log f

∂y
(y|xt, Yt−1)

]
, (3.1)

where hτ (z) = zmin(1; τ/‖z‖) is the multivariate Huber function and c ∈ R+ is a

tuning constant. Then the function

f̃(yt|xt, Yt−1) = f [µ(xt)|xt, Yt−1] exp

{∫ 1

0

[yt − µ(xt)]
′ g[µ(xt) + s(yt − µ(xt))] ds

}

(3.2)

belongs to C1(Rp) (i.e. is continuously differentiable everywhere) and satisfies the

robustness condition (2.3) for every yt ∈ R
p.

The solution f̃ coincides with the observation density if the tuning constant is infinite.

More generally, a high tuning constant corresponds to mild robustification, while a

low constant implies strong robustification.

The function f̃(yt|xt, Yt−1) in (3.2) generally does not integrate to unity and

must be normalized to obtain a proper density. Consider the normalized robustified

observation density

f̂(yt|xt, Yt−1) = Bt(xt)f̃(yt|xt, Yt−1) (3.3)

with Bt(xt) such that
∫
Rp Bt(xt)f̃(yt|xt, Yt−1)dyt = 1. Assume that conditional on

Yt−1, the state xt is drawn from λ(xt|Yt−1). We then define the robustified one-step

likelihood associated with the normalized robustified density by

f̂(yt|Yt−1) = Eλ(xt|Yt−1)[f̂(yt|xt, Yt−1)] . (3.4)

In Section 3, we will introduce a robustified version of the full likelihood of YT .
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Huberizing the derivative of the observation density ensures robustness to outliers,

but this comes at the cost of a loss of accuracy in the likelihood approximation when

f(yt|Yt−1) is the true data-generating process of Yt. We measure the efficiency cost

by the Kullback-Leibler divergence:

KLeff
t = KL[f(yt|Yt−1), f̂(yt|Yt−1)] = Ef(yt|Yt−1)

{
log

[
f(yt|Yt−1)

f̂(yt|Yt−1)

]}
. (3.5)

The analyst can choose the tuning constant c such that the efficiency cost KLeff
t is

always less than a given maximal deviation α (typically 1% or 5%). Specific formulas

for the upper bound of KLeff
t are provided in Section 3.4, and a method to estimate

KLeff
t is described in Section 4.3.

3.2 Robustifying a Univariate Gaussian Model

In this section, we consider that the observation density f(yt|xt, Yt−1) is a univariate

Gaussian with mean µ(xt) and variance σ2(xt), where µ(xt) and σ2(xt) may depend

on Yt−1. Condition (2.3) holds as an equality if and only if

|yt − µ(xt)| |yt − µt| = c σ2(xt). (3.6)

This equation has two distinct roots yt if c > [µ(xt)−µt]
2/[2σ(xt)]

2, and four distinct

roots otherwise. We separately examine these two cases.

First, assume that c > [µ(xt) − µt]
2/[2σ(xt)]

2. This condition holds for instance

if µ(xt) = µt, or if µ(xt) 6= µt and robustification is mild. Equation (3.6) then has

two distinct roots:

y∗± =
µ(xt) + µt ±

√
(µ(xt)− µt)2 + 4cσ(xt)2

2
. (3.7)
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Figure 2: Robustified Gaussian. The figure illustrates the nonnormalized robustified
Gaussian f̃(yt|xt, Yt−1) defined by (3.9).

The nonnormalized robustified density (3.2) is

f̃(yt|xt, Yt−1) =





D1,t(xt)|yt − µt|−c if yt < y∗−,

fN[yt;µ(xt), σ(xt)
2] if yt ∈ [y∗−, y

∗
+),

D2,t(xt)|yt − µt|−c if yt ≥ y∗+,

(3.8)

where fN[·;µ(xt), σ(xt)
2] is the density of the normal distribution with mean µ(xt)

and variance σ(xt)
2, and D1,t(xt) and D2,t(xt) are chosen to guarantee continuity at

y∗− and y∗+ (see Appendix for explicit formulas.)

Conversely, if c ≤ [µ(xt)− µt]
2/[2σ(xt)]

2, condition (3.6) holds for the values y∗−

and y∗+ defined by the maintained equation (3.7), as well as for the two additional

roots:

z∗± =
µ(xt) + µt ±

√
(µ(xt)− µt)2 − 4cσ(xt)2

2
.
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We observe that y∗− < z∗− ≤ z∗+ < y∗+. If µ(xt) ≤ µt, the nonnormalized robustified

density satisfies:

f̃(yt|xt, Yt−1) =





C1,t(xt)|yt − µt|−c if yt < y∗−

fN[yt;µ(xt), σ(xt)
2] if yt ∈ [y∗−, z

∗
−)

C2,t(xt)|yt − µt|c if yt ∈ [z∗−, z
∗
+)

C3,t(xt)fN[yt;µ(xt), σ(xt)
2] if yt ∈ [z∗+, y

∗
+)

C4,t(xt)|yt − µt|−c if yt ≥ y∗+

. (3.9)

The constants C1,t(xt), . . . , C4,t(xt) are chosen to guarantee the continuity of the

robustified density and are provided in closed form in the Appendix. A similar

definition holds if µ(xt) > µt. The robustified Gaussian is plotted in Figure 2 for

different values of c. We will show in Section 3.4 that the normalizing constant Bt(xt)

in (3.3) has an explicit form and can be used to define a selection rule for the tuning

constant c.

3.3 Robustifying a Multivariate Gaussian Model

We now assume that yt ∈ R
p and that the observation density f(yt|xt, Yt−1) is a

multivariate Gaussian with mean µ(xt) and variance-covariance matrix Σ(xt), de-

noted fN[yt;µ(xt),Σ(xt)]. Despite the conveniently short notation, the mean µ(xt)

and variance Σ(xt) can also depend on Yt−1. The robustified density (3.2) is defined

as a line integral over the segment [µ(xt), yt], which we can subdivide into truncation

and no-truncation subsegments. For example, if p = 2 and the Gaussian is spherical:

Σ(xt) = σ2(xt) I2×2, the no-truncation region: {y ∈ R
p : ‖y − µ(xt)‖ ‖y − µt‖ ≤

cσ2(xt)} is bounded by a Cassini oval with foci µt and µ(xt) (see, e.g., Lockwood,

13
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µ(xt) µt
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µ(xt) µt
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Figure 3: Cassini ovals for three different values of c. The segment between µ(xt)
and yt corresponds to the integration domain in Proposition 4. Dotted lines indicate
the no-truncation region and continuous lines the truncation region.

1961), as Figure 3 illustrates. The segment [µ(xt), yt] can intersect the Cassini oval

multiple times, and is correspondingly partitioned into truncation (dotted lines) and

no-truncation (solid lines) subsegments.

Suppose that the segment [µ(xt), yt] in R
p intersects the boundary of the non-

truncation region (3.1) J ≥ 0 times in the values {y(j)t }j=1,...,J . We let y
(0)
t = µ(xt)

and y
(J+1)
t = yt. Partition the unit interval into s0 = 0 < s1 < ... < sJ < sJ+1 = 1

such that

y
(j)
t = µ(xt) + sj [yt − µ(xt)] , j = 0, 1, . . . , J + 1 . (3.10)

Then, by subdividing the integral in (3.2) in J+1 parts delimited by {sj}j=0,...,J+1 we

14



obtain the robustified multivariate Gaussian summarized in the following proposition.

Proposition 4 (Robustified multivariate Gaussian) Given a multivariate nor-

mal observation density fN[yt;µ(xt),Σ(xt)] on R
p, the robustified density is

f̃(yt|xt, Yt−1) = fN[y
(1)
t ;µ(xt),Σ(xt)]

J∏

j=1
j even

fN[y
(j+1)
t ;µ(xt),Σ(xt)]

fN[y
(j)
t ;µ(xt),Σ(xt)]

J∏

j=1
j odd

q[y
(j+1)
t ;µt, xt]

q[y
(j)
t ;µt, xt]

where {y(j)t }j=1,...,J+1 are defined in (3.10) and

q(y;µt, xt) =

{
‖y − µt‖+

[y − µ(xt)]
′(y − µt)

‖y − µ(xt)‖

}−cβ(y;xt)

if µt − µ(xt) and yt − µ(xt) are linearly independent,

q(y;µt, xt) =

{ |[y − µ(xt)]
′(y − µt)|

‖y − µ(xt)‖

}−cβ(y;xt)sgn{[y−µ(xt)]′(y−µt)}

otherwise, and

β(y; xt) =
[y − µ(xt)]

′Σ(xt)
−1[y − µ(xt)]

‖y − µ(xt)‖ ‖Σ(xt)−1[y − µ(xt)]‖
.

The function β(y; xt) takes values in the unit interval [0, 1]; it is identically equal to

unity if Σ(xt) is proportional to the identity matrix.

Remark 1 In the univariate case, the function q reduces to q [y;µt, µ(xt)] = |y − µt|−c

if y /∈ (µt;µ(xt)), and |y − µt|c if y ∈ (µt;µ(xt)). The robust filter provided by Propo-

sition 4 coincides with the univariate solution obtained in Section 3.2.
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Step 1 (Critical Roots): Compute the real roots s1 < ... < sJ in the unit
interval (see Appendix) of the equation

s2
∥∥Σ(xt)

−1ỹt
∥∥2 (s2 ‖ỹt‖2 − 2sµ̃′

tỹt + ‖µ̃t‖2
)
− c2 = 0 , (3.11)

where ỹt = yt − µ(xt), µ̃t = µt − µ(xt).

Step 2 (Critical Threshpoints): Calculate y
(j)
t = µ(xt) + sj[yt − µ(xt)] for

s0 = 0 < s1 < ... < sJ < sJ+1 = 1.

Step 3 (Robustified observation density): Compute f̃(yt|xt, Yt−1) equal to

fN[y
(1)
t ;µ(xt),Σ(xt)]

J∏

j=1
j even

fN[y
(j+1)
t ;µ(xt),Σ(xt)]

fN[y
(j)
t ;µ(xt),Σ(xt)]

J∏

j=1
j odd

q[y
(j+1)
t ;µt, xt]

q[y
(j)
t ;µt, xt]

Construction of the Robustified Gaussian

Remark 2 If µ(xt) = µt and Σ(xt) = σ2(xt)Ip×p, the nonnormalized robustified

density coincides with the Gaussian if ‖y − µt‖ ≤ √
cσ(xt), and is equal to

f̃(y|xt, Yt−1) =
1

(2π)p/2ec/2σ(xt)p

( ‖y − µ‖
σ(xt)

√
c

)−c

(3.12)

if ‖y − µt‖ >
√
cσ(xt).

3.4 Choosing the Tuning Constant

The following proposition can be used to select the tuning constant.

Proposition 5 (Efficiency of the robustified Gaussian) If the observation den-

sity f(yt|xt, Yt−1) is a spherical multivariate Gaussian N[µ(xt), σ
2(xt)Ip×p] with mean

µ(xt) = µt for every xt, then the normalizing constant is independent of the state:
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Bt(xt) = B for all xt. The constant B is if p = 1 :

B =

[
2Φ(

√
c)− 1 +

2
√
c

c− 1
φ(
√
c)

]−1

,

if p is odd and p ≥ 3 :

B =
{
1 +

e−c/2

2p/2−1Γ(p/2)

[ cp/2

c− p
− (p− 2)!

√
2c

2p/2−2((p− 3)/2)!

(p−3)/2∑

i=0

2i(i+ 1)!

(2i+ 2)!
ci
]

− 2
√
π

2p−2Γ(p/2)

(p− 2)!

((p− 3)/2)!
[1− Φ(

√
c)]
}−1

,

and if p is even:

B =



1 +

e−c/2

2p/2−1Γ(p/2)


 cp/2

c− p
−
(p
2
− 1
)
! 2p/2−1

p/2−1∑

i=0

1

i!

( c
2

)i






−1

.

In the above equations, the tuning constant c is strictly larger than p, Γ is Euler’s

Gamma function, and φ(·) and Φ(·) respectively denote the density and cumulative

distribution function of a standard normal. Furthermore, the backward Kullback-

Leibler divergence in (3.5) satisfies

KLeff
t ≤ − log(B) .

For a given deviation α, the analyst can choose the tuning constant c such that:

− log(B) = α .

In Figure 4 we plot − log(B) as a function of c for spherical Gaussians of dimensions

1 to 4 centered around µt. Table 1 reports the tuning constants corresponding to
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Figure 4: Link between the tuning constant c and the normalizing constant B.

α = 0.05 and 0.01.

3.5 An Alternative Robustification via Student t

In the special case where the observation density f(yt|xt, Yt−1) is a spherical Gaussian

N[µt, σ
2(xt)Ip×p] centered around µt, we can construct an alternative robustified filter

by using a noncentered multivariate Student t distribution with ν degrees of freedom:

f̂S(yt|xt, Yt−1) =
Γ[(ν + p)/2]

Γ(ν/2) (ν + p)p/2 πp/2 σ(xt)p

[
1 +

‖yt − µt‖2
(ν + p)σ2(xt)

]−(ν+p)/2

. (3.13)

Since

∥∥∥∥∥
∂ log f̂S(yt|xt, Yt−1)

∂yt

∥∥∥∥∥ ‖yt − µt‖ =
(ν + p)‖yt − µt‖2

(ν + p)σ2(xt) + ‖yt − µt‖2
< ν + p, (3.14)
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Table 1: Selection of the tuning constant c

p α = 0.05 α = 0.01

1 3.3091 5.1413

2 5.0786 7.2646

3 6.6405 9.0844

4 8.1043 10.7618

the function f̂S satisfies robustness condition (2.3) for c = ν + p. In Section 4.3,

we will investigate in the context of a stochastic volatility model the behavior of a

robust filter using a Student distribution f̂S with ν = c− p degrees of freedom.

3.6 Implementation

Robust filtering can be applied to a variety of models.

3.6.1 Finite State Space

When the state space is finite and contains d possible elements m1, . . . , md, the

Bayesian filter is available analytically (Hamilton, 1989; Lindgren, 1978):

λt =
ωt(yt)⊙ (λt−1A)

[ωt(yt)⊙ (λt−1A)]1′ , (3.15)

where λt = [P(xt = mj|Yt)]1≤j≤d denotes the row vector of filtered probabilities,

ωt(yt) = [f(yt|xt = mj , Yt−1)]1≤j≤d the row vector of observation densities, A =

(ai,j)1≤i,j≤d the transition matrix with elements ai,j = P(xt+1 = mj |xt = mi), 1 =

(1, . . . , 1) ∈ R
d, and⊙ denotes the Hadamard product: x⊙y = (x1y1, . . . , xdyd) for all

x, y ∈ R
d. In applications, the initial filter λ0 is usually set equal to the ergodic dis-
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tribution. The log-likelihood of the dataset YT is L(YT ) =
∑T

t=1 log[ωt(yt)(λt−1A)
′].

We obtain a robust filter λ̂t by replacing the noncontaminated observation density

with its robust version (3.2) in the recursion (3.15):

λ̂t =
ω̂t(yt)⊙ (λ̂t−1A)

[ω̂t(yt)⊙ (λ̂t−1A)]1′
, (3.16)

where ω̂t(yt) = [f̃(yt|xt = mj, Yt−1)]1≤j≤d is the row vector of nonnormalized robus-

tified observation densities. The robustified log-likelihood is then

L̂(YT ) =
T∑

t=1

log[ω̂t(yt)(λ̂t−1A)
′]. (3.17)

Note that the use of nonnormalized robustified densities in the definition of ω̂t(yt) is

driven by computational convenience. Indeed, consider the alternative filter based

on the normalized densities f̂(·|xt, Yt−1). By (3.17), the alternative filter coincides

with the former filter λ̂t when the normalizing constant Bt(xt) is state-invariant, as

is the case with the Gaussians N[µt, σ
2(xt) Ip×p] investigated in Proposition 5. In

general, however, the alternative filter requires the computation of the normalizing

constants Bt(xt) for every state in every period, which is numerically expensive. For

this reason, we do not pursue this alternative definition and use only the robustified

filter λ̂t in the rest of the paper.

3.6.2 Particle Filtering

In more complex environments, Bayesian inference can proceed via particle filters,

defined as a set {x(n)
t }Nn=1 that discretely approximates the filtering distribution

λ(xt|Yt). More specifically, we consider bootstrap filters such as those by Gordon,

Salmond and Smith (1993), which are defined by the following recursive three-step
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procedure.

1. Particles {x̃(n)
t }Nn=1 are generated from {x(n)

t−1}Nn=1 using ρ(·|x(n)
t−1).

2. Each particle x̃
(n)
t , n = 1, . . . , N , is given an importance weight

w
(n)
t = f(yt|x̃(n)

t , Yt−1).

3. A new set of particles {x(n)
t }Nn=1 is drawn from a multinomial distribution

with support {x̃(n)
t }Nn=1 and associated probabilities {π(n)

t }Nn=1, where π
(n)
t =

w
(n)
t /

∑
n′ w

(n′)
t .

The one-step likelihood f(yt|Yt−1) is consistently estimated by N−1
∑N

n=1w
(n)
t and

µt = E(yt|Yt−1) by the sample mean of {µ(x̃(n)
t )}Nn=1. We define the robust particle

filter as a modified version of this algorithm, where in Step 2 the importance weights

w
(n)
t are replaced by their robustified version ŵ

(n)
t = f̃(yt|x̃(n)

t , Yt−1).

The robust filter naturally solves the degeneracy problems that plague classical

particle filters, as Figure 2 illustrates. If yt is an outlier in the right tail of the figure,

the classical filter assigns quickly declining importance weights w
(n)
t = f(yt|x(n)

t , Yt−1)

to particles x̃
(n)
t associated with a high mean; in Step 3 of the procedure, the filter

can therefore “collapse” into the particle with the largest weight. By contrast, the

robust filter assigns more evenly distributed weights to states ŵ
(n)
t with a positive

mean, so that a wide range of particles are drawn in Step 3. In Section 4.3, we will

verify by Monte Carlo simulation the validity of this intuition.

3.7 Piecewise Differentiability and Optimality

We have so far focused on filters that are continuously differentiable on the entire

observation space. More generally, one can consider piecewise differentiable filters.
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Assume for simplicity that yt ∈ R, and let PC1(R) denote the space of functions that

are continuous everywhere and piecewise continuously differentiable on the real line.

If the observation density f(·|xt, Yt−1) belongs to PC
1(R) for every xt and Yt−1, then

one can easily rewrite Definition 2.2 (Impact function) and Definition 2 (Robustness)

with left and right derivatives. Under these definitions, the filtering distribution λ is

robust if the observation density satisfies the conditions

|(yt − µt)∂− log f(yt|xt, Yt−1)| ≤ c (3.18)

|(yt − µt)∂+ log f(yt|xt, Yt−1)| ≤ c (3.19)

for every yt, xt, and Yt−1.

These extensions permit the construction of new robustified filters. For instance

if xt is fixed, we can consider two threshpoints y∗ and ȳ∗ such that y∗ < µt < ȳ∗, and

define the function:

f ∗(y|xt, Yt−1) =





C∗
1,t(xt)|yt − µt|−c if yt < y∗,

B∗
t (xt)f(y|xt, Yt−1) if yt ∈ [y∗, ȳ∗],

C∗
2,t(xt)|yt − µt|−c if yt > ȳ∗,

(3.20)

where C∗
1,t(xt) = B∗

t (xt)f(y
∗|xt, Yt−1)|y∗−µt|c and C∗

2,t(xt) = B∗
t (xt)f(ȳ

∗|xt, Yt−1)|ȳ∗−
µt|c. The function f ∗ has a unit integral if the normalizing constant B∗

t (xt) is selected

as follows:

[B∗
t (xt)]

−1 = F (ȳ∗|xt, Yt−1)− F (y∗|xt, Yt−1) (3.21)

+(c− 1)−1
[
(µt − y∗) f(y∗|xt, Yt−1) + (ȳ∗ − µt) f(ȳ

∗|xt, Yt−1)
]
,
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where F (y|xt, Yt−1) =
∫ y

−∞ f(z|xt, Yt−1)dz denotes the cumulative distribution func-

tion of the observation density. The class of functions defined by (3.20) and (3.21)

generalizes the normalized robustified density constructed in earlier sections. When

the threshpoints y∗ and ȳ∗ are appropriately selected, the function f ∗ is optimal in

the Kullback-Leibler sense.

Proposition 6 We consider that the observation density satisfies Assumptions 2

and 4 and that the tuning constant exceeds unity: c > 1. If the transition points

y∗and ȳ∗ solve the equations

f(y∗|xt, Yt−1)(µt − y∗)

F (y∗|xt, Yt−1)
= c− 1, (3.22)

f(ȳ∗|xt, Yt−1)(ȳ
∗ − µt)

1− F (ȳ∗|xt, Yt−1)
= c− 1, (3.23)

then the function f ∗(yt|xt, Yt−1) defined by (3.20) and (3.21) is the unique solution

to the program:

min
h(·|xt,Yt−1)∈PC1(R)

KL [f(yt|xt, Yt−1); h(yt|xt, Yt−1)] (3.24)

subject to h(yt|xt, Yt−1) > 0,
∫
R
h(yt|xt, Yt−1)dyt = 1, and the robustness constraints

(3.18)–(3.19) for every yt ∈ R.

More generally for any m > 0, the function mf ∗(yt|xt, Yt−1) is the unique solution

to (3.24) subject to ∫

R

h(yt|xt, Yt−1)dyt = m,

and the maintained positivity and robustness constraints.

The optimum f ∗(·|xt, Yt−1) is the probability density function which is the closest
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to the model’s f(·|xt, Yt−1) according to the Kullback-Leibler divergence (efficiency

measure), subject to a bound of the impact function (robustness measure). More-

over, the optimum is piecewise differentiable in the observation vector y and exhibits

corners at y and ȳ. It is therefore a “broken extremum” in the terminology of the

calculus of variations.

Related optimization problems also have broken extrema. Thus in the class of

robust functions with the same mass as the nonnormalized filter f̃(·|xt, Yt−1) in (3.2),

the rescaled function [Bt(xt)]
−1 f ∗(·|xt, Yt−1) minimizes the Kullback Leibler diver-

gence to f(·|xt, Yt−1). One can also consider criteria other than (3.24) and verify that

broken extrema with two corners (not shown here) minimize the L1 or L2 distance

to the model’s observation density.

These results are in the spirit of the optimality properties previously obtained

for robust estimators and tests (Hampel et al., 1986) and for the robust Kalman

filter (Ruckdeschel, 2010a), as will be discussed in Section 4.2. In unreported sim-

ulations, we have observed that the optimum f ∗(·|xt, Yt−1) does not substantially

improve on the robustified density f̃(·|xt, Yt−1) in terms of filtering efficiency. Be-

cause the optimum f ∗(·|xt, Yt−1) contains corners, however, it generates likelihoods

that vary irregularly with the structural parameters of the model, which induces

large losses in estimation efficiency. The filter f ∗(·|xt, Yt−1) is thus not operational

for likelihood-based estimation or model selection. For this reason, we henceforth

focus on the general-purpose methodology based on the nonnormalized robustified

density f̃(·|xt, Yt−1), which is fully described in Section 3.6.2.
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4 Applications

We now present several applications of robust filtering. Section 4.1 considers filter-

ing and model selection in finite-state space models, for which the robust filter is

available in closed form. Section 4.2 focuses on linear Gaussian state-space models

and investigates how the robust particle filter performs relative to the original and

an earlier robust version of the Kalman filter. Section 4.3 applies robust filtering to

a stochastic volatility model.

4.1 Finite State-Space Model

We begin our investigation with finite state-space models of the type described in

Section 3.6.1.

4.1.1 A Univariate Multifractal Model

We consider a Markov-Switching Multifractal (MSM) model, as defined in Calvet

and Fisher (2001) and Calvet and Fisher (2008). That is, the state xt has k com-

ponents that can each take two values, m0 or 2 − m0. Consequently, the state

xt ∈ {m0, 2−m0}k takes d = 2k values m1, . . . , md. The transition matrix A defined

in Section 3.6.1 has elements

ai,j =
k∏

l=1

[(
1− γl

2

)
1mi

l
=mj

l
+

γl
2
1mi

l
6=mj

l

]
(4.1)
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Table 2: Model selection, robust filter with α = 0.01

Number of times model Prop. of

with k components is selected correct sel.

k = 1 k = 2 k = 3 k = 4 · · · k = 8 k = 9 k = 10 (in %)

L, no cont. 0 0 100 0 · · · 0 0 0 100

Rob. L, no cont. 0 0 100 0 · · · 0 0 0 100

PF, no cont. 0 0 100 0 · · · 0 0 0 100

RobPF, no cont. 0 0 100 0 · · · 0 0 0 100

L, 5% cont. 0 0 0 0 · · · 0 3 97 0

Rob. L, 5% cont. 0 0 100 0 · · · 0 0 0 100

PF, 5% cont. 0 0 0 0 · · · 0 4 96 0

RobPF, 5% cont. 0 0 100 0 · · · 0 0 0 100

with γl = 1− (1− γ1)
bl−1

for all l = 1, . . . , k. The observations are given by

yt = σ(xt)ǫt,

σ(xt) = σ
(
Πk

i=1xt,i

)1/2
,

where the random variables ǫt are independent standard normals. MSM is specified

by the parameter vector θ = (m0, γ1, b, σ). In all simulations, we set m0 = 1.5,

γ1 = 0.0005, b = 2 and σ = 1.

We first generate an uncontaminated dataset YT of size T = 103 from an MSM

with k = 6 components. We then contaminate the dataset with replacement outliers:

ycontt = η yt, (4.2)
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which replace yt with probability 5% at every date t. We set η = 4 in simulations.

In the notation of Maronna, Martin and Yohai (2006) p. 253, the statistician ob-

serves (1 − zt) yt + zt y
cont
t , where ycontt is the replacement process and the z′ts are

independent Bernoulli variates such that P(zt = 1) = 0.05. Note that the pertur-

bation is unbounded and therefore more challenging to address than the bounded

contaminations considered in Sections 2 and 3.

Since the state-space is finite and the observation density Gaussian, we can im-

plement the robust filter defined in Section 3.6.1 using the robustified Gaussian

observation density defined in Section 3.2. The tuning constant is c = 5.1413 (see

Table 1 with α = 0.01). Figure 1 reports at each date t the standard and robust

filters as measured by the KLt divergence in (1.3) under uncontaminated (left panel)

and 5% contaminated (right panel) data. Figure 1 illustrates that the robust filter

is much less sensitive to contamination than the standard Bayesian filter. We now

turn to likelihood-based model selection. To compare the model selection accuracy

of the various filtering methods, we generate 100 samples from a univariate MSM

with k = 3 components. We estimate the likelihood functions for uncontaminated

and 5%-contaminated cases and various k = 1, . . . , 10 using four methods: standard

and robust Bayesian updating, standard and robust particle filter with N = 105

highlighted in Section 3.6.2.

In Table 2, we report for each filtering method the number of times a particular

specification k achieves the highest likelihood and is therefore selected. Under no

contamination, all four methods consistently select the right model specification k =

3. Under 5% contamination, standard filters are highly inaccurate and select models

with the largest number of volatility components considered (k = 10). The two

robust filters, however, consistently select the correct model specification.
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Figure 5: Accuracy of standard and robust Bayesian filters in a bivariate MSM
without contamination (left panel) and with 5% contamination (right panel).

4.1.2 Tracking the State of a Bivariate Multifractal Model

We consider the bivariate MSM model defined in Calvet, Fisher and Thompson

(2006):

yt = µ(xt) + Σ(xt)ǫt , (4.3)
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where xt is defined in the previous section,

µ(xt) =


 0
∑k

i=1(xt,i − 1)


 , Σ(xt) =

(
Πk

i=1xt,i

)1/2

σ1 0

0 σ2


 (4.4)

and ǫt are independent bivariate normal variables with expectation 0, variances 1,

and correlation ρ̃. In all simulations, the parameter values are γ1 = 0.0005, m0 = 1.5,

b = 2, ρ̃ = 0.5, and σ1 = σ2 = 1.

Consider an uncontaminated process Yt drawn from (4.3)–(4.1) and a 5%-RO

contaminated process:

ycontt = yt + ξt (4.5)

where ξt ∼ N(0, η2I2×2). We use η = 4 in simulations.

Figure 5 illustrates the accuracy measure KLt in (1.3) for uncontaminated (left

panel) and 5%-contaminated (right panel) bivariate MSM samples of size T = 103

with k = 6. The robust filter in Section 3.6.1 is applied here with a robustified bi-

variate Gaussian with tuning constant c = 7.2646 (see Table 1 with α = 0.01). Con-

sistent with the univariate results of the previous section, the robust filter achieves

considerable gains in accuracy compared to the standard Bayesian filter under con-

tamination.
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4.2 Linear Gaussian State-Space Model

We consider the linear Gaussian model

yt = Hxt + ut ,

xt = Fxt−1 + wt−1 ,

where yt ∈ R
p, xt ∈ R

m, ut ∼ N(0, R), wt ∼ N(0, Q), and E(utw
′
t) = 0. In

simulations, we set p = m = 2,

F =


0.9 0

0 0.9


 , H =


1/

√
2 −1/

√
2

1/
√
2 1/

√
2


 ,

and R = Q = I2×2.

Kalman Filter (“KF”). The state distribution xt|Yt ∼ N(x̂t, Pt) can be estimated via

Kalman’s algorithm:

xt = F x̂t−1 , (4.6)

Mt = FPt−1F
′ +Q , (4.7)

Σt = HMtH
′ +R , (4.8)

Kt = MtH
′Σ−1

t , (4.9)

x̂t = xt +Ktǫt , (4.10)

ǫt = yt −Hxt , (4.11)

Pt = Mt −KtHM ′
t . (4.12)

We initialize the filter with x̂0 = 0 and the stationary value P0 = (1− 0.92)−1I2×2.
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Robust Kalman Filter (“RobKF”). A robust version of the Kalman filter can be

obtained by “huberizing” the prediction error ǫt in (4.10):

x̂t = xt +Ktǫt min

(
1,

κ

‖Ktǫt‖

)
. (4.13)

This is a natural operation, which has been used in many different models in order to

obtain robust estimators and tests. Indeed the Huber function bounds the unlimited

influence of a single observation yt (through ǫt) on the filter. Moreover, as shown by

Theorem 3.2 in Ruckdeschel (2010a), the robust Kalman filter obtained by replacing

(4.10) by (4.13) has two optimality properties. First, it is minimax in the sense that

it minimizes the worst mean squared error over a neighborhood of the underlying

model distribution. Secondly, it minimizes the mean squared error, subject to a

bound of the bias in the neighborhood.

Filter Comparison. We now compare the accuracy of KF, RobKF, the bootstrap

filter (“PF”) of Gordon, Salmond and Smith (1993) and the robust particle filter

defined in Section 3 (“RobPF”). We consider contaminations defined in (4.5) and

η = 4. Note that an exact Kalman filter is available when the contamination (4.5)

is known; it consists of the algorithm (4.6)–(4.12) except that (4.8) is replaced by

Σcont
t = Σt + η2I2×2 when an outlier occurs. We denote the associated mean and

variance processes by {x̂cont
t } and {P cont

t }.
The accuracy measure KLt in (1.3) is here the backward Kullback-Leibler diver-

gence between the Gaussian distributions N(x̂t, Pt) and N(x̂cont
t , P cont

t ):

KLt =
1

2

{
tr[(P cont

t )−1Pt] + (x̂cont
t − x̂t)

′(P cont
t )−1(x̂cont

t − x̂t)− log
( detPt

detP cont
t

)
− p
}
.

Figure 6 illustrates the divergence computed every period with the KF, RobKF, PF,
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Figure 6: Kullback-Leibler divergences between normal distributions with filtered
estimates of µ(xt) and Σ(xt), bivariate case with 5% contamination.

and RobPF filters. RobPF is implemented with the tuning constant c = 7.2646, (see

Table 1), while the RobKF method (4.13) is applied with κ = 1.345/
√
1− 0.92 =

3.0856 based on the stationary variance P0. The sample size is T = 103 and the

particle filter size N = 104. The maximum value of {KLt}t=1,...,T is 17.95 for KF,

4.14 for RobKF, 12.40 for PF and 2.90 for RobPF. (In the noncontaminated case,

the corresponding maximum values are 0, 0.51, 0.26 and 0.69, respectively.)

We next generate 100 samples with η = 0, 2, 4 and for each sample and filter

compute the average Kullback-Leibler divergence KLeff,a = T−1
∑T

t=1 KLt. The ag-
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Figure 7: Boxplots of aggregate Kullback-Leibler divergences between normal distri-
butions with filtered estimates of µ(xt) and Σ(xt), bivariate case with 5% contami-
nation N(0, η2I2×2). (Notice that KL ≡ 0 for the Kalman filter for η = 0.)

gregate KLeff,a measures are reported in the boxplots of Figure 7. Both figures show

the extreme sensitivity of the nonrobust methods (KF and PF) to a small amount

of contamination. Their robust versions lose very little accuracy under no contami-

nation, but provide large gains under contamination. Finally, notice that although

the robust particle filter is not tuned for this particular application, its accuracy is

similar to that of the robust Kalman filter which is specifically designed for Gaussian

linear models.

4.3 Stochastic Volatility

Stochastic volatility models play an important role in finance and particle filters

are often used to estimate them; see e.g. Chib, Nardari and Shephard (2006) and
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Figure 8: Efficiency measures in an uncontaminated SV simulation, using robustified
Gaussian and Student t particle filters with c = ν + 1.

Johannes and Polson (2009). We consider the popular specification

yt = ext/2ǫt ,

xt = a+ b xt−1 + σut ,
(4.14)

with ǫt and ut independent standard normal variables. In simulations, we let a =

−0.005, b = 0.99 and σ = 0.1.

Since yt|xt ∼ N(0, ext), the robustified density (3.8) and the Student t variant

(3.13) can both be applied. By (3.14), the robustified Gaussian with tuning constant

c and the Student t with ν = c − 1 provide similar robustness levels, in the sense

that both functions satisfy condition (2.3) with an upper-bound equal to c.

We now compare the efficiency costs of the two robust methods for a variety of

tuning constants c > 1. We generate a dataset of size T = 103 from the uncontami-
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nated model (4.14), which is illustrated in the top left panel of Figure 9. For a given

robust filter, we can measure the average efficiency cost by

K̂L
eff,a

=
1

T

T∑

t=1

K̂L
eff

t , (4.15)

where

• K̂L
eff

t = (NK)−1
∑N

m=1

∑K
k=1

{
log
[∑N

n=1 f(ỹ
(k)
t |x̃(n)

t ,Yt−1)
∑N

n=1 f̂(ỹ
(k)
t |x̃(n)

t ,Yt−1)

]}
is a particle filter es-

timator of the divergence KLeff
t ;

• {x̃(n)
t }Nn=1 are the Step 1 particles of the standard bootstrap filter;

• for each m = 1, . . . , N , the values {ỹ(k)t }k=1,...,K are sampled from N(0, ex̃
(m)
t ).

Figure 8 plots K̂L
eff,a

for the two robust particle filters for various c and K = N =

200. For convenience, Figure 8 also reports the upper-bound for KLeff
t considered

in Proposition 5 and Figure 4. We see that for any robustness level, the robustified

Gaussian particle filter always results in a smaller efficiency cost than its Student t

equivalent. Note also that the upper-bound derived in Proposition 5 is a very accu-

rate approximation of the actual efficiency cost of the robustified Gaussian particle

filter.

For a given level of desired efficiency cost α, we can choose the corresponding

constants c and ν. For instance, we reach K̂L
eff,a

= 0.05 with a robustified Gaussian

with c = 2.8 and a Student t with ν = 4.9 degrees of freedom. Likewise, we reach

K̂L
eff,a

= 0.01 with a robustified Gaussian with c = 4.2 and a Student t with ν = 12.7

degrees of freedom.

We now illustrate the ability of robust filters to avoid weight-degeneracy problems.
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Figure 9: Proportion of effective particle sizes under uncontaminated (left panel)
and 5%-contaminated (right panel) SV simulations, using robustified Gaussian and
Student t particle filters with c = 2.8 and ν = 4.9. Sample size is T = 103 and filter
size is N = 106.

As in Kong, Liu and Wong (1994), we use the effective sample size

ESSt =





N∑

i=1

(
ω
(i)
t∑N

j=1 ω
(j)
t

)2




−1

, (4.16)

where {ω(i)
t }Ni=1 are second-step importance weights defined in Section 3.6.2. The

top panels of Figure 9 illustrate an uncontaminated (left panel) and a 5% RO-
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contaminated (right panel) SV simulation with contamination (4.2) and η = 4 of size

T = 103. The three bottom panels in each column of Figure 9 illustrate the propor-

tion of effective particles ESSt/N in standard (second panel), Student t (third panel)

and robustified Gaussian (fourth panel) particle filters. The robustified Gaussian and

Student t filters are based on N = 106 particles and tuning constants c = 2.8 and

ν = 4.9. The standard particle filter encounters weight-degeneracy problems even

when there is no contamination in the underlying observation process and reaches

a minimal proportion of alive particles of 14.59% in the uncontaminated case and

0.04% in the contaminated cases. Robust filters, and in particular the robustified

Gaussian, are much less affected by weight degeneracy problems. The proportion of

alive particles in the Student t filter is always above 66.09% in the uncontaminated

and 46.13% in the contaminated case; while in the robustified Gaussian filter, it is

always above 86.61% under no contamination and 71.09% under contamination.

The robust particle filter can be used to estimate the parameters of the SV

model. The boxplots in Figure 10 contain 200 estimates of a, b and σ obtained by

maximizing the log-likelihood approximated by standard, Student t and robustified

Gaussian particle filters. Data are generated from uncontaminated (left panel) and

5%-contaminated (right panel) SV models with contamination (4.2) and η = 4.

The sample size is T = 103 and the particle filter size is N = 106. When there

is no contamination in the data, the three methods estimate the model parameters

equally well. However, huge accuracy gains are obtained using robust methods in

the contaminated case.

Additional information is provided by Figure 11 which shows the smooth behavior

of the log-likelihood function obtained through the robust particle filter when the

data are 5%-contaminated and model specifications, data and filter size are the same

as in Figure 10. This should be contrasted with the rugged behavior of the same
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Figure 10: Particle filter ML estimates of the SV parameters using standard, a
Student t with ν = 4.9-robustified and a truncated density-robustified filter with
c = 2.8 without (left panel) and with 5% contamination with η = 4 (right panel).
Sample size is T = 103 and filter size is N = 106.

function for a and b obtained using the standard particle filter (which would lead in

addition to numerical problems).

Finally, we can compare the robust method with the auxiliary particle filter (Pitt

and Shephard, 1999), an algorithm that samples states in Step 1 from a distribution

other than the kernel. In work not reported here, we found that auxiliary filters

produce very similar results to the ones obtained in Figures 9–11 with the standard

bootstrap filter. The explanation is that the auxiliary filter’s importance weights are

proportional to the model’s observation densities and are therefore highly sensitive

to outliers, just like the weights of the standard filter. In future work, it might be
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Figure 11: Objective functions cuts of the particle filter estimated likelihood function
for the estimation of the SV parameters using standard and robust filters with c = 2.8
and ν = 4.9 with 5% contamination with η = 4. Sample size is T = 103 and filter
size is N = 106. Real parameter values are shown with dotted lines.

interesting to robustify auxiliary filters along the lines of this paper, which might

bring about further improvements in efficiency.
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5 Conclusion

In this paper, we have developed a general class of robust filters based on the method-

ology of robust statistics. Our method applies to any observation process yt that is

defined on Euclidean space, is driven by a latent Markov state xt, and has a smooth

observation density f(yt|xt, Yt−1). The robust filter provides accurate state and pa-

rameter inference, even if the model is slightly misspecified. This novel approach is

based on the impact function, which we have defined as the sensitivity of the state

distribution λ(xt|Yt) with respect to new data. By Bayes’ rule, the impact function

also measures the sensitivity of the observation density f(yt|xt, Yt−1). Traditional

Bayesian filters have unbounded impact functions, even in the simplest examples.

This leads to define a filter to be robust if it has a bounded impact function.

We have illustrated the good performance of the new method in a number of

examples. First, we have shown its excellent precision in filtering applications. The

robust filter entails only modest efficiency costs in the absence of contamination, but

achieves large efficiency gains in the presence of modest contamination. In particular,

the robust filter is as accurate as the robustified Kalman filter used in the literature,

even though our filter is fully general and does not rely on the Gaussian linear struc-

ture of the state space. Second, because it is less sensitive to outliers, the robust

method naturally solves the degeneracy problem that plagues the bootstrap particle

filter and its many extensions. Third, the robust particle filter provides a highly

accurate likelihood-based model selection method, with or without contamination.

It is also useful for parameter estimation, for instance in the context of single- or

multi-factor stochastic volatility models. Fourth, the robust filter generates smoother

probability estimates and smoother likelihood functions than its standard counter-

part. In complex settings in which a particle filter must be used, the robust filter
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permits to use less particles than its traditional counterpart. Computational speed

can therefore be an additional benefit of our approach.

The paper offers several directions for future research. One would like to better

understand the computational gains that robustness permits to achieve for particle

filtering. It would also be useful to extend the approach to a number of closely related

filtering environments. For instance, one would like to construct a robust version of

particle filters developed for systems in which the observation density is not available

in closed form (Calvet and Czellar, 2012). Application to online parameter learning

(Storvik, 2002) are also envisioned and will be the subject of future research.

A General Assumptions

Assumption 1 (Contamination) The class of admissible disturbances is

Vk(yt; Yt−1) = {vt ∈ R
p s.t. ‖vt‖ ≤ k‖yt − E(yt|Yt−1)‖} .

The constant k defines an upper bound for the ratio between the disturbance (noise)

and the possible deviations of the observation at time t (signal) from its conditional

expected value given the past.

We now list assumptions on the observation density

Assumption 2 (Observation density) For every instant t, state xt and observa-

tion history Yt−1, the observation density f(yt|xt, Yt−1) is strictly positive and twice

continuously differentiable at every yt ∈ R
p. Furthermore, the observation density

has a finite differential entropy: −
∫
Rp f(yt|xt, Yt−1) log[f(yt|xt, Yt−1)]dyt ∈ R.
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Assumption 3 (Critical region) For every c ∈ R+ and for every xt, Yt−1, and

z ∈ R
p, the critical region

{
y ∈ R

p s.t.

∥∥∥∥
∂ log f(y|xt, Yt−1)

∂yt

∥∥∥∥ ‖y − E(yt|Yt−1)‖ = c

}
,

intersects the segment [µ(xt), z] finitely many times.

Assumptions 2 and 3 are satisfied by many standard models, such as the Gaussian

and Student distributions considered in the main text.

For the optimality results (Proposition 6), we rely on the following condition.

Assumption 4 (Regular region) For every xt, Yt−1 and c > 1, the region

R =

{
y ∈ R s.t.

∣∣∣∣
d log f(y|xt, Yt−1)

dyt

∣∣∣∣ |y − E(yt|Yt−1)| ≤ c

}
, (A.1)

is an interval.

B Proofs

Proof of Proposition 1

Bayes’ rule implies that λ(xt|Yt−1)/λ(xt|yt, Yt−1) = f(yt|Yt−1)/f(yt|xt, Yt−1), and

KL
[
λ(xt|Yt−1), λ(xt|yt, Yt−1)

]
=Eλ(xt|Yt−1)

[
log

f(yt|Yt−1)

f(yt|xt, Yt−1)

]

= log f(yt|Yt−1)− Eλ(xt|Yt−1)[log f(yt|xt, Yt−1)].

Hence, the impact function is

I(yt;λ, Yt−1, vt) = v′t

{
∂ log f(yt|Yt−1)

∂yt
− Eλ(xt|Yt−1)

[
∂ log f(yt|xt, Yt−1)

∂yt

]}
,
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where

∂ log f(yt|Yt−1)

∂yt
=

1

f(yt|Yt−1)

∂

∂yt

{
Eλ(xt|Yt−1)[f(yt|xt, Yt−1)]

}

=
1

f(yt|Yt−1)
Eλ(xt|Yt−1)

[
f(yt|xt, Yt−1)

∂ log f(yt|xt, Yt−1)

∂yt

]

= Eλ(xt|Yt)

[
∂ log f(yt|xt, Yt−1)

∂yt

]
.

Proof of Proposition 2

By Proposition 1, the impact function |I(yt;λ, Yt−1, vt)| is bounded above by

‖vt‖
[
Eλ(xt|Yt)

(∥∥∥∥
∂ log f(yt|xt, Yt−1)

∂yt

∥∥∥∥
)
+ Eλ(xt|Yt−1)

(∥∥∥∥
∂ log f(yt|xt, Yt−1)

∂yt

∥∥∥∥
)]

.

Since ‖vt‖ ≤ k‖yt − E(yt|Yt−1)‖, we conclude that |I(yt;λ, Yt−1, vt)| ≤ 2kc.

Proof of Proposition 3

Since the construction is based on truncation, we begin with the following definition.

Definition 3 (Semi-differentiability) Consider the function U : D → R, where

D is a subset of R
p. Let y∗ denote an interior element of D. We say that U is

semi-differentiable at y∗ if for every v ∈ R
p,

∂vU(y∗) = lim
ε→0+

U(y∗ + εv)− U(y∗)

ε

exists as a real number.

We can easily show the following lemma.
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Lemma 1 Consider a continuous function

u : [0, 1]×D −→ R

(s, y) 7−→ u(s, y),

where D ⊂ R
p. Assume that y∗ is in the interior of D and that for every s ∈ [0, 1], the

function u(s, ·) is semi-differentiable at y∗. Furthermore, there exists a nonnegative

measurable function m(s),
∫ 1

0
m(s)ds < ∞, such that for all ε > 0 and v ∈ R

p,

|u(s, y∗ + εv)− u(s, y∗)| ≤ ε ‖v‖m(s). (B.1)

Then the function

U(y) =

∫ 1

0

u(s, y)ds

is semi-differentiable at y∗, and ∂vU(y∗) =
∫ 1

0
∂vu(s, y

∗)ds for every v ∈ R
p.

Proof of Lemma 1. We know that ε−1[u(s, y∗+ εv)−u(s, y∗)] converges pointwise

to ∂vu(s, y
∗) as ε → 0. Lebesgue’s dominated convergence theorem implies that

U(y∗ + εv)− U(y∗)

ε
=

∫ 1

0

u(s, y∗ + εv)− u(s, y∗)

ε
ds −→

ε→0

∫ 1

0

∂vu(s, y
∗)ds

�

Consider M : Rp −→ [0,∞] defined by M(y) = c/‖y − µt‖. The function

g(y) =
∂ log f

∂y
(y|xt, Yt−1)min

(
1;

M(y)

‖(∂ log f/∂y)(y|xt, Yt−1)‖

)

is finite and semi-differentiable at every y ∈ R
p.
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Lemma 2 The equation

∂ log f̃

∂y
(y|xt, Yt−1) = g(y) (B.2)

has a unique solution f̃ such that f̃ [µ(xt)|xt, Yt−1] = f [µ(xt)|xt, Yt−1]. Furthermore,

f̃ belongs to C1(Rp) and satisfies (3.2).

Proof of Lemma 2. Let f̃ denote a solution to (B.2). The function ξ(s) =

log f̃ [µ(xt) + s(y − µ(xt))|xt, Yt−1] has derivative ξ′(s) = [y − µ(xt)]
′g[µ(xt) + s(y −

µ(xt))] . Since

log f̃(y|xt, Yt−1) = ξ(1) = ξ(0) +

∫ 1

0

ξ′(s)ds

we infer that equation (B.2) has at most one solution up to a normalizing constant.

We now check that the proposed solution (3.2) is indeed correct. The auxiliary

function u(s, y) = [y−µ(xt)]
′g[µ(xt)+s(y−µ(xt))] is semi-differentiable with respect

to y and satisfies

∂vu(s, y) = v′g[µ(xt) + s(y − µ(xt))] + s [y − µ(xt)]
′∂vg[µ(xt) + s(y − µ(xt))] ,

for every s ∈ [0, 1] and y, v ∈ R
p. It follows from Assumption 2 that condition (B.1)

holds. Hence for all v ∈ R
p,

∂v log f̃(y|xt, Yt−1) =

∫ 1

0

∂vu(s, y)ds.

The function h(s) = s v′g[µ(xt) + s(y− µ(xt))] is continuous, semi-differentiable and

∂+h(s) = v′ g[µ(xt) + s(y − µ(xt))] + s v′ ∂y−µ(xt)g[µ(xt) + s(y − µ(xt))].
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By Assumption 3, there are at most finitely many points s1, . . . , sJ where s 7→
g[µ(xt) + s(y − µ(xt))] is not differentiable. For any s /∈ {s1, . . . , sJ},

∂y−µ(xt)g[µ(xt) + s(y − µ(xt))]
′v = ∂vg[µ(xt) + s(y − µ(xt))]

′[y − µ(xt)]

and therefore ∂+h(s) = ∂vu(s, y). We infer that

∂v log f̃(y) =

∫ 1

0

∂vu(s, y)ds = h(1)− h(0) = g(y)′v.

Since ∂v log f̃(y) is linear in v, the function log f̃(y) is differentiable and solves equa-

tion (B.2). �

Lemma 2 implies that the proposition holds.

Constants in the Robustified Univariate Gaussian of Section 3.2

• If c > [µ(xt) − µt]
2/[2σ(xt)]

2, the constants in equation (3.8) are D1,t(xt) =

|y∗− − µt|cfN[y∗−;µ(xt), σ(xt)
2] and D2,t(xt) = |y∗+ − µt|cfN[y∗+;µ(xt), σ(xt)

2].

• If c ≤ [µ(xt)−µt]
2/[2σ(xt)]

2 and µ(xt) ≤ µt, the constants in equation (3.9) are

C1,t(xt) = |y∗−−µt|cfN[y∗−;µ(xt), σ(xt)
2], C2,t(xt) = |z∗−−µt|−cfN[z

∗
−;µ(xt), σ(xt)

2],

C3,t(xt) = C2,t(xt)|z∗+ − µt|c/fN[z∗+;µ(xt), σ(xt)
2] and C4,t(xt) = C3,t(xt)|y∗+ −

µt|cfN[y∗+;µ(xt), σ(xt)
2].

Proof of Proposition 4

We observe that g(y) = hc/‖y−µt‖ {−Σ(xt)
−1[y − µ(xt)]} , or equivalently

g(y) = −Σ(xt)
−1[y − µ(xt)]min

{
1;

c

‖y − µt‖ ‖Σ(xt)−1[y − µ(xt)]‖

}
.
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Our main task is therefore to compute

∫ 1

0

g {µ(xt) + s[yt − µ(xt)]}′ [yt − µ(xt)]ds

= −[yt − µ(xt)]
′Σ(xt)

−1[yt − µ(xt)]

×
∫ 1

0

smin

[
1;

c

s ‖µ(xt)− µt + s[yt − µ(xt)]‖ ‖Σ(xt)−1 [yt − µ(xt)]‖

]
ds.

To simplify notation, we consider µ̃t = µt − µ(xt), ỹt = yt − µ(xt), and

Ω(ỹt; 0, 1) =

∫ 1

0

g [µ(xt) + sỹt]
′ ỹtds

= −ỹ′tΣ(xt)
−1ỹt

∫ 1

0

smin

[
1;

c

s ‖sỹt − µ̃t‖ ‖Σ(xt)−1ỹt‖

]
ds.

Threshold points. The no-truncation condition is equivalent to

s2 ‖sỹt − µ̃t‖2
∥∥Σ(xt)

−1ỹt
∥∥2 ≤ c2.

The quartic equation

χ(s) = s2
∥∥Σ(xt)

−1ỹt
∥∥2 (s2 ‖ỹt‖2 − 2sµ̃′

tỹt + ‖µ̃t‖2
)
− c2 = 0

has at most four real roots. One of the roots is negative since χ(0) = −c2 < 0 and

lims→−∞ χ(s) = +∞. So the equation χ(s) = 0 has at most three roots in [0, 1].

Integration. We now compute

Ω(ỹt; a, b) = −ỹ′tΣ(xt)
−1ỹt

∫ b

a

smin

[
1;

c

s ‖sỹt − µ̃t‖ ‖Σ(xt)−1ỹt‖

]
ds.
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Consider an interval [a, b] over which there is no truncation. Then

Ω(ỹt; a, b) = −ỹ′tΣ(xt)
−1ỹt(b

2 − a2)/2.

If instead there is truncation on [a, b], then

Ω(ỹt; a, b) = −c
ỹ′tΣ(xt)

−1ỹt
‖Σ(xt)−1ỹt‖

∫ b

a

ds

‖sỹt − µ̃t‖
.

Note that ‖sỹt − µ̃t‖ =
√

s2 ‖ỹt‖2 − 2(µ̃′
tỹt)s+ ‖µ̃t‖2. Hence

Ω(ỹt; a, b) = −c
ỹ′tΣ(xt)

−1ỹt
‖Σ(xt)−1ỹt‖

∫ b

a

[(
s ‖ỹt‖ −

µ̃′
tỹt

‖ỹt‖

)2

+
‖ỹt‖2 ‖µ̃t‖2 − (µ̃′

tỹt)
2

‖ỹt‖2

]−1/2

ds.

We infer that the function Ω reduces to

Ω(ỹt; a, b) = −cβ(yt, xt)

[
sgn

(
s ‖ỹt‖ −

µ̃′
tỹt

‖ỹt‖

)
log

∣∣∣∣s ‖ỹt‖ −
µ̃′
tỹt

‖ỹt‖

∣∣∣∣
]s=b

s=a

(B.3)

if |µ̃′
tỹt| = ‖ỹt‖ ‖µ̃t‖ , and is otherwise given by:

Ω(ỹt; a, b) = −cβ(yt, xt)

[
log

(
s‖ỹt‖ −

µ̃′
tỹt

‖ỹt‖
+ ‖sỹt − µ̃t‖

)]s=b

s=a

. (B.4)

We easily verify that for yt(s) = µ(xt) + s[yt − µ(xt)]:

s ‖ỹt‖ −
µ̃′
tỹt

‖ỹt‖
=

ỹ′t(sỹt − µ̃t)

‖ỹt‖
=

[yt(s)− µ(xt)]
′ [yt(s)− µt]

‖yt(s)− µ(xt)‖
. (B.5)

We plug (B.5) into (B.3) and (B.4) and conclude that the proposition holds.
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Critical Roots of the Robustified Gaussian

If yt 6= µ(xt), solving (3.11) is equivalent to finding the roots of

χ̃(s) = s4 − 2
µ̃′
tỹt

‖ỹt‖2
s3 +

‖µ̃t‖2
‖ỹt‖2

s2 − c2

‖Σ(xt)−1ỹt‖2‖ỹt‖2
.

The derivative of χ̃(s) is χ̃′(s) = 2s [2s2 − 3µ̃′
tỹts/‖ỹt‖2 + ‖µ̃t‖2/‖ỹt‖2] . Consider the

discriminant ∆ = ‖ỹt‖−4 [9(µ̃′
tỹt)

2 − 8‖µ̃t‖2‖ỹt‖2] . We note that s̃0 = 0 is a root of

χ̃′. If ∆ ≥ 0, the real numbers s̃± = [3(µ̃′
tỹt)/‖ỹt‖2 ±

√
∆]/4 are also zeros of χ̃′, and

have the property that sgn(s̃−) = sgn(s̃+) = sgn(µ̃′
tỹt). This suggests the following

algorithm for computing the roots of χ̃.

1. If µ̃′
tỹt < 0 or s̃− > 1 or ∆ ≤ 0, then χ̃ has at most one root in the open interval

(0, 1), which is obtained by dichotomy if χ̃(1) > 0.

2. Otherwise, the computation proceeds as follows. If χ̃(s̃−) > 0, there is a root

in [0, s̃−] which is obtained by dichotomy. For the investigation of the roots in

[s̃−, 1], we consider the following subcases.

(a) If s̃+ > 1: there is a root in [s̃−, 1] if sgn[χ̃(s̃−)] 6=sgn[χ̃(1)] and it is

obtained by dichotomy.

(b) If s̃+ ≤ 1, we implement the following two steps (which are based on

conditions that are not mutually exclusive).

- If sgn[χ̃(s̃−)] 6=sgn[χ̃(s̃+)] there is a root in [s̃−, s̃+], which we compute

by a dichotomy.

- If sgn[χ̃(s̃+)] 6=sgn[χ̃(1)], there is a root in [s̃+, 1], which we compute

by a dichotomy.

This procedure completes Step 1 of the robustified Gaussian algorithm.
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Proof of Proposition 5

By Remark 2, the nonnormalized robustified density coincides with the model’s ob-

servation density if ‖yt − µt‖ ≤ √
cσ(xt), and is given by (3.12) otherwise. We also

recall that the surface of the unit sphere in R
p is 2πp/2/Γ(p/2). Hence, if c > p,

∫

Rp

f̃(y|xt, Yt−1)dy =

∫ √
c

0

e−r2/2

(2π)p/2
2πp/2rp−1

Γ(p/2)
dr +

∫ +∞

√
c

e−c/2

(2π)p/2
cc/2

rc
2πp/2rp−1

Γ(p/2)
dr

= 1− 1

2p/2−1Γ(p/2)

∫ ∞

√
c

rp−1e−r2/2dr +
e−c/2cc/2

2p/2−1Γ(p/2)

∫ ∞

√
c

1

rc−p+1
dr

= 1− 1

2p/2−1Γ(p/2)

∫ ∞

√
c

rp−1e−ρ2/2dr +
e−c/2cp/2

2p/2−1(c− p)Γ(p/2)
.

Let Ip(x) =
∫∞
x

rp−1e−r2/2dr. We integrate Ip(x) by parts and obtain:

Ip(x) = xp−2e−x2/2 + (p− 2)Ip−2(x).

We note that I1(x) =
√
2π[1− Φ(x)], and I2(x) = e−x2/2. Hence

I2m(x) = e−x2/2 (m− 1)! 2m−1
m−1∑

i=0

1

i!

(
x2

2

)i

,

I2m+1(x) = e−x2/2 (2m− 1)!

2m−2(m− 1)!

m−1∑

i=0

2i(i+ 1)!

(2i+ 2)!
x2i+1 +

(2m− 1)!

2m−1(m− 1)!

√
2π[1− Φ(x)].

We know that

∫

Rp

f̃(y|xt, Yt−1)dy = 1 +
1

2p/2−1Γ(p/2)

[
e−c/2cp/2

c− p
− Ip(

√
c)

]
.

We plug in Ip(
√
c) and conclude that the first part of the proposition holds.

We next show:
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Lemma 3 If f̃(yt|xt, Yt−1) ≥ f(yt|xt, Yt−1) for all xt, yt, the Kullback-Leibler diver-

gence in (3.5) satisfies: KLeff
t ≤ −Ef(yt|Yt−1) (log{E[Bt(xt)|Yt]}) .

Proof of Lemma 3. Equations (3.3) and (3.4) imply that

KL
[
f(yt|Yt−1), f̂(yt|Yt−1)

]
= Ef(yt|Yt−1) log

{
f(yt|Yt−1)

Eλ(xt|Yt−1)[Bt(xt)f̃(yt|xt, Yt−1)]

}
.

Since f̃(yt|xt, Yt−1) ≥ f(yt|xt, Yt−1) for all xt, yt, the denominator satisfies

Eλ(xt|Yt−1)[Bt(xt)f̃(yt|xt, Yt−1)] ≥ Eλ(xt|Yt−1)[Bt(xt)f(yt|xt, Yt−1)︸ ︷︷ ︸
λ(xt|Yt)f(yt|Yt−1)

λ(xt|Yt−1)

] = f(yt|Yt−1)E[Bt(xt)|Yt] ,

and we conclude that the lemma holds. �

If ‖yt − µt‖ ≥ √
cσ(xt), the ratio

f(yt|xt, Yt−1)

f̃(yt|xt, Yt−1)
=

ec/2

(cσ(xt)2)c/2︸ ︷︷ ︸
≡At

‖yt − µt‖c
e‖yt−µt‖2/(2σ(xt)2)

= At
zct

ez
2
t /(2σ(xt)2)

is a decreasing function of the distance zt = ‖yt − µt‖, since

∂[f(yt|xt, Yt−1)/f̃(yt|xt, Yt−1)]

∂zt
= Atz

c−1
t

c− z2t /σ(xt)
2

ez
2
t /(2σ(xt)2)

≤ 0 .

The robustified observation density therefore satisfies assumption in Lemma 3 and

the second part of the proposition holds.

Proof of Proposition 6

Throughout this proof we shorten notation to h(y) = h(y|xt, Yt−1). The set of
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admissible functions, which we denote by H, consists of every h ∈ PC
1(R) such that

∫
R
h(y)dy = 1, h(y) > 0,

−(y − µt)∂+h(y)− c h(y) ≤ 0, (B.6)

−(y − µt)∂+h(y) + c h(y) ≤ 0, (B.7)

−(y − µt)∂−h(y)− c h(y) ≤ 0, (B.8)

−(y − µt)∂−h(y) + c h(y) ≤ 0, (B.9)

for all y ∈ R.

Lemma 4 The set H is non-empty and convex.

Proof of Lemma 4 Under Assumption 4 and the condition c > 1, the nonnor-

malized robustified density f̃ has a finite integral over the real line. The normalized

density f̂(y|xt, Yt−1) is well-defined and belongs to H, so H is not empty.

Given h1 and h2 in H and s1, s2 ∈ [0, 1], s1 + s2 = 1, the convex combination

h = s1h1 + s2h2 satisfies the linear constraints and we conclude that h ∈ H. �

The optimization problem can be rewritten as:

min
h∈H

W (h)

where W (h) =
∫
R
f(y|xt, Yt−1) log[f(y|xt, Yt−1)/h(y)]dy. For every h ∈ H, the func-

tional W (h) = KL[f(y|xt, Yt−1), h(y)] is well-defined and belongs to [0,+∞]. The

functional is strictly convex, and standard arguments (Ekeland and Témam, 1987)

imply that the following results hold.

Lemma 5. The program minh∈H W (h) has at most one solution. A function h ∈ H
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is a local optimum of W if and only if satisfies the first-order condition:

W ′(h)(k − h) ≥ 0 (B.10)

for every k ∈ H. Furthermore, any local optimum of W on H is a global optimum.

We now use the calculus of variations to provide a tractable version of (B.10).

Euler-Lagrange Equation. To simplify notation, we observe that the constraint

can be rewritten as:

sgn(µt − y)
d

dy
[|y − µt|ch(y)] ≤ 0 (B.11)

for all y ∈ R. Let

G(y, h, h′) = −f(y|xt, Yt−1) log [h(y)] + λh(y) + ν(y)sgn(µt − y)
d

dy
[|y − µt|ch(y)].

We note that

∂G

∂h
= −f(y|xt, Yt−1)

h(y)
+ λ− c |y − µt|c−1 ν(y), (B.12)

∂G

∂h′ = ν(y)sgn(µt − y)|y − µt|c. (B.13)

The Euler-Lagrange equation

∂G

∂h
=

d

dy

[
∂G

∂h′

]

is equivalent to

−f(y|xt, Yt−1)

h(y)
+ λ+ sgn(y − µt) ν

′(y) |y − µt|c = 0 (B.14)
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for every y ∈ R.

For given threshpoints y∗ and ȳ∗, we consider the function h∗(y) = f ∗(y|xt, Yt−1)

and the normalizing constant Bt(xt) defined by (3.20) and (3.21). We let

ν∗(y) =





∫ +∞
y

λ∗h∗(z)−f(z)
h∗(z) |z−µt|c dz if y ≥ ȳ∗,

0 if y ∈ [y∗, ȳ∗],
∫ y

−∞
λ∗h∗(z)−f(z)
h∗(z) |z−µt|c dz if y < y∗.

(B.15)

The functions h∗ and ν∗ and the Lagrange multiplier λ∗ = 1/Bt(xt) satisfy the

Euler-Lagrange equation. Since

ν∗(y∗) =
λ∗

(µt − y∗)c−1

[
1

c− 1
−

F (y∗|xt, Yt−1)

(µt − y∗) f(y∗|xt, Yt−1)

]

the condition ν∗(y∗) = 0 holds if and only if y∗ satisfies (3.22). Similarly,

ν∗(ȳ∗) =
λ∗

(ȳ∗ − µt)c−1

[
1

c− 1
− 1− F (ȳ∗|xt, Yt−1)

(ȳ∗ − µt) f(ȳ∗|xt, Yt−1)

]

is equal to zero if and only if (3.23) holds.

Computing the Gâteaux derivative. The Gâteaux derivative of the functional

W at h∗ is given by

W ′(h∗)(h− h∗) =

∫

R

−f(y|xt, Yt−1)

h∗(y)
[h(y)− h∗(y)]dy
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for every h ∈ H. We note that

W ′(h∗)(h− h∗) ≥
∫

R

[
−f(y|xt, Yt−1)

h∗(y)
+ λ∗

]
[h(y)− h∗(y)]dy

+

∫

R

ν(y)sgn(µt − y)
d

dy
[|y − µt|c[h(y)− h∗(y)]dy.

We infer from (B.15) that

0 ≤ ν(y)|y − µt|c [h(y)− h∗(y)] ≤ λ∗

c− 1
|y − µt| [h(y)− h∗(y)],

and therefore lim|y|→+∞ ν(y)|y − µt|c h∗(y) = 0. We can therefore integrate by parts

on the real line:

∫

R

ν(y)sgn(µt−y)
d

dy
{|y−µt|c[h(y)−h∗(y)]}dy =

∫

R

ν ′(y)sgn(y−µt)|y−µt|c[h(y)−h∗(y)]dy.

We plug this relation into (B.16) and infer from (B.14) that W ′(h∗)(h−h∗) ≥ 0. We

conclude from Lemma 5 that the first part of the Proposition holds.

General program. We now consider the program under the general condition
∫
R
h(y)dy = m. The homogeneity of the constraints implies that mh∗ belongs to the

admissible set of the general program. Furthermore since W (mh) = W (h)− log(m)

for every admissible function, the density h solves (3.24) if and only if mh solves the

general program. We conclude that the second part of the Proposition holds.
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