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Abstract The plastoquinone (PQ) pool of the photosyn-
thetic electron transport chain becomes reduced under
anaerobic conditions. Here, anaerobiosis was used as a tool
to manipulate the PQ-pool redox state in darkness and to
study the effects of the PQ-redox state on the Chl-a fluo-
rescence (OJIP) kinetics in pea leaves (Pisum sativum L.).
It is shown that the Fy (fluorescence intensity at 3 ms) is
linearly related to the area above the OJ-phase (first 3 ms)
representing the reduction of the acceptor side of photo-
system II (PSII) and F; is also linearly related to the area
above the JI-phase (3—-30 ms) that parallels the reduction of
the PQ-pool. This means that Fy depends on the availability
of oxidized PQ-molecules bound to the Qg-site. The linear
relationships between Fj and the two areas indicate that Fy
is not sensitive to energy transfer between PSII-antennae
(connectivity). It is further shown that a ~94% reduced
PQ-pool is in equilibrium with a ~19% reduction of Qx
(primary quinone acceptor of PSII). The non-linear rela-
tionship between the initial fluorescence value (Fy ) and
the area above the OJ-phase supports the idea that Fy s is
sensitive to connectivity. This is reinforced by the
observation that this non-linearity can be overcome by
transforming the F,g ,s-values into [Q57]-values.
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Abbreviations
Chl
DCMU

FNR
Fo

1::20 us

Fy
FJ—Ux

Is20 nm

Is20 nm-10s FR
OJIP-transient

P680 and P700

PC
PQ

Chlorophyll

3-(3’,4’-dichlorophenyl)-
1,1-dimethylurea
Ferredoxin-NADP*-reductase
Fluorescence intensity at 20 ps when all
reaction centres are open

Fluorescence intensity measured at

20 ps, also called apparent F,
Fluorescence intensity at ~3 ms
Fj-value after 10 s of far-red pre-
illumination

Fluorescence intensity at ~30 ms

The maximum measured fluorescence
intensity

Fluorescence intensity when all PSII
reaction centres are closed

A measure for the transmitted light at
820 nm

Transmission value obtained after 10 s of
far-red illumination

Fluorescence induction transient defined
by the names of its intermediate steps
The primary electron donors of
photosystems II and I, respectively
Plastocyanin

Plastoquinone
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Qa4 and Qg Primary and secondary quinone electron

acceptors of photosystem II, respectively

Introduction

The plastoquinone (PQ) pool forms the functional
connection between photosystems II (PSIIs) and cyto-
chrome bg/f-complexes (cyt bg/f) in the photosynthetic
electron transport chain. The redox state of PQ plays a role
in the regulation of several processes. A reduced PQ-pool
causes the activation of a kinase that is responsible for the
phosphorylation of several PSII-subunits (reviewed by
Bennett 1991; Allen 1992). The interaction of reduced PQ
with the cyt bg/f-complex is thought to activate another
kinase capable of the phosphorylation of a part of the PSII
light-harvesting complex (LHCII) (Vener etal. 1995;
1997). The redox state of the PQ-pool in conjunction with
the redox state of the ferredoxin/thioredoxin pool is also
thought to play a role in the regulation of the transcription
of several genes related to photosynthetic electron transport
(e.g. Allen 1993; Escoubas et al. 1995; Pfannschmidt et al.
1999; Trebitsh and Danon 2001). The PQ-pool plays a role
in linear electron transport, in chlororespiration, cyclic
electron transport around photosystem I (PSI) and the
Q-cycle (Heber and Walker 1992; Kramer and Crofts 1993;
Bennoun 2001; Haldimann and Tsimilli-Michael 2002;
Joét et al. 2002). The PQ-pool forms a buffer between PSII
and the rest of the electron transport chain. It has been
suggested that the occupancy state of the Qg-site (that
depends directly on the redox state of the PQ-pool) may
play a role in the determination of the Chl-a fluorescence
yield (Samson et al. 1999; Schreiber 2002; Yaakoubd et al.
2002). On the other hand, the suggested PQ-pool quench-
ing of fluorescence by oxidized PQ-molecules was recently
shown not to occur in intact leaves (T6th et al. 2005).
Despite the central role of the PQ-pool, an accurate and
experimentally tested non-invasive assay to determine its
redox state in leaves is still lacking. Although it has to be
noted that Kruk and Karpinski (2006) recently introduced
an invasive, HPLC-based assay for the PQ-pool redox
state. Two Chl-a fluorescence parameters have been used
for the determination of the PQ-pool redox state: the area
above the fluorescence transient (Bennoun 1982, Bennoun
2001) and the initial fluorescence (apparent F) value (Joét
et al 2002; Groom et al. 1993; Harris and Heber 1993;
Feild et al. 1998; Munekage et al. 2002). The use of the
apparent F, is based on the equilibrium between Q, and
the PQ-pool (Velthuys and Amesz 1973; Diner 1977). It is
very sensitive to pre-illumination, connectivity (energy
transfer between PSII antennae) (Joliot and Joliot 1964;
Strasser 1978; Strasser and Greppin 1981; Strasser et al.
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2004) and changes in the redox equilibrium between Qa
and the PQ-pool (e.g. after heat stress, Ducruet and Lem-
oine 1985). The area above the entire fluorescence transient
has as a disadvantage that the reduction of the ferredoxin
pool (Terashima and Inoue 1985; Holtgrefe et al. 2003) on
the acceptor side of photosystem I considerably contributes
to it (Joliot and Joliot 2002).

The kinetics of the Chl-a fluorescence (OJIP) transient
are thought to be largely determined by changes in the
redox state of Q4 (for a recent review see Lazar 2006) but
at the same time, the OJIP-transient reflects the reduction
of the photosynthetic electron transport chain (e.g.
Schansker et al. 2005). It was suggested that the OJ-phase
represents a single charge separation (e.g. Strasser et al.
1995; Schreiber 2002). This interpretation is based on the
similarity of the kinetics of the OJ-phase in the presence
and absence of the inhibitor DCMU (3-(3’,4’-dichlorophe-
nyl)-1,1-dimethylurea) (e.g. Schreiber 2002; Strasser and
Stirbet 2001). However, it is also known that in response to
a light intensity of 3,000 pmol photons m™ s~' (a standard
intensity for fluorescence measurements), each PSII reac-
tion centre is excited approximately once every 200 ps (cf.
Schreiber and Neubauer 1990) and 3 ms—where the J step
is situated—equates more than 10 potential charge separa-
tions. In addition, in heat-treated samples where only one
single stable charge separation can occur, fluorescence has
a maximum at 300400 us (K peak, e.g. Srivastava et al.
1997) and not at ~3 ms. Furthermore, Petrouleas and Crofts
(2005) concluded that a pair of electrons needs about 2 ms
to reach the PQ-pool. Simulations give similar indications
(e.g. Strasser and Stirbet 2001; Lazar 2003; Zhu et al. 2005
(although it has to be noted that Zhu et al. call the 2-3 ms
point I)). These observations suggest that the OJ-phase
represents the reduction of the PSII acceptor side (reduc-
tion of Q, and Qg if the site is occupied by a quinone/
semiquinone) as suggested by Schansker et al. (2005). This
can also be derived from the light-intensity dependence of
the OJIP-transients: below 200-300 pmol photons m—> s~
the J-level disappears (e.g. Strasser et al. 1995; Tomek
et al. 2001; Schansker et al. 2005). On the basis of the
excitation rate calculated by Schreiber and Neubauer
(1990) this is understandable, because below
200-300 pmol photons m™> s~' the excitation rate drops
below 1 per 2-3 ms. This means that the excitation rate
becomes slower than the exchange of PQH, for PQ. In
other words, the F; represents the moment when the
reduction of the PQ-pool starts.

If the OJ-phase represents the reduction of the acceptor
side of PSII and the IP-phase represents the reduction of
the acceptor side of PSI (Munday and Govindjee 1969;
Schansker et al. 2005; Ilik et al. 2006; Schansker et al.
2006) then it follows that the JI-phase represents the
(partial) reduction of the PQ-pool. This agrees with
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observations of Schreiber et al. (1989) and is corroborated
by the observation that in the presence of DBMIB (it
blocks the re-oxidation of PQH, by the cyt be/f-complex)
the IP-phase disappears and the JI-phase increases in
amplitude (Schansker et al. 2005).

Anaerobiosis is an excellent tool to reduce specifically
the PQ-pool. Oxygen-depletion inhibits the terminal oxi-
dase that normally keeps the PQ-pool in an oxidized state
(Cournac et al. 2000; Carol and Kuntz 2001). As a result,
constitutive chlororespiratory activity (Joét et al. 2002;
Groom et al. 1993; Harris and Heber 1993; Feild et al.
1998; Munekage et al. 2002) leads to a reduction of the
PQ-pool. Intermediate states can be obtained by varying
the length of the treatment. The acceptor side of PSI
remains in the oxidized state (e.g. Kautsky et al. 1960).

The effects of anaerobiosis on the OJIP-transient are
well described (e.g. Kautsky et al. 1960; Schreiber and
Vidaver 1974; Haldimann and Strasser 1999). In this study,
we have used anaerobiosis to study the responses of dif-
ferent parameters derived from the OJIP-transient to a
gradual reduction of the PQ-pool. This analysis was used to
develop a non-destructive, in vivo assay for the determi-
nation of the PQ-pool redox state.

Materials and methods
Plant material

Measurements were carried out on mature leaves of
2-4 weeks old pea plants (Pisum sativum L. cv. Ambassa-
dor). Plants were grown in a greenhouse where the tem-
perature was 20-25°C during the day and ~14°C at night.

Anaerobiosis treatment

Plants were dark-adapted overnight before the treatment in
order to achieve complete QA and Qg™ re-oxidation.
Leaves were cut off and placed in leaf clips of which the
sponges were moistened in order to avoid desiccation
during the treatment. These leaf clips were put in a plastic
bag. The head of the measuring equipment (Handy PEA or
PEA Senior, see below) was also placed in there but the
control unit was outside the bag. To achieve anaerobiosis,
N,-gas was blown into the bag for 1-10 min; some outflow
was allowed. The measurements were carried out in the
N,-atmosphere. We note that the Chl-a fluorescence
transients were completely recovered in air within 20 min
following a 10-min N,-gas treatment (data not shown).

DCMU-treatment

Plants were put in darkness for about 1 h before the
DCMU-treatment, and then pairs of leaves were placed in

small trays (without detaching them from the plant) filled
with 10 ml DCMU solution (containing 200 uM DCMU
and 1% ethanol that was used to dissolve DCMU). The
treatment was carried out in complete darkness and lasted
~14 h. Following the treatment, the leaves were removed
from the DCMU-solution (still not detached and in dark-
ness), wiped and left in the air for about 1 h before the
measurements were made. This treatment does not damage
the leaves and changes in the F,, and Fy-values were
avoided (Té6th et al. 2005).

Measuring equipment

Chl-a fluorescence emission was measured with a Handy
PEA instrument (Hansatech Instruments Ltd, UK). Sam-
ples were illuminated with continuous light (650 nm peak
wavelength, ~3,000 pmol photons m2s~' light intensity)
provided by three light-emitting diodes (LEDs) and the
fluorescence was measured at wavelengths longer than
700 nm. The first reliably measured point of the fluores-
cence transient is at 20 ps, which is taken as F; in the case
of aerobic dark-adapted leaves.

820 nm transmission (Igrg ,m) and Chl-a fluorescence
were measured with a PEA Senior instrument (Hansatech
Instruments Ltd, UK). The excitation light intensity was
~1,800 pmol photons m~2 sfl, produced by four LEDs
(650 nm peak wavelength). Far-red light (718 nm peak
wavelength, light intensity of 200 pmol photons m— s™')
and modulated FR measuring light (820 nm peak wave-
length) were provided by two additional LEDs. Further
technical details are described by Schansker et al. (2005,
2006).

Results
Effects of anaerobiosis

Figure 1 demonstrates the effects of anaerobiosis (i.e. the
reduction of the PQ-pool) on the Chl-a fluorescence (OJIP)
transient. Anaerobiosis induces an increase of Fyg , a
strong increase of Fj, approaching F,, under the most
anaerobic conditions (after 10 min of N,-treatment) and a
strong decrease of the areas above the OJ and JI-phases of
the transient (Figs. 1B, C). The F,, and the IP-phase
remained nearly unaffected by the anaerobiosis treatment.
The anaerobiosis-treatment also caused an increase of the
initial slope (Figs. 1A, B). In the most anaerobic samples,
the fluorescence rises during the OJ-phase as in DCMU-
treated samples (Haldimann and Strasser 1999), where the
Qg-site is occupied by a DCMU-molecule and not by an
oxidized PQ-molecule.
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Fig. 1 Effects of anaerobiosis
(1-10 min N,-gas treatment) on
the Chl-a fluorescence (OJIP)
transient of pea leaves measured
at 3,000 pmol photons m™> s7".
(A) OJIP transients presented on
a logarithmic time scale. (B) the
first 3 ms of the OJIP transients
presented on a linear time scale;
the area above the OJ-phase is
indicated for the control sample.
(C) the first 30 ms of the OJIP
transients presented on a linear
time scale; the area above the
JI-phase is indicated for the
control sample. Each transient is
an average of ~15
measurements; the data are
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It is known from other studies that Fj is very sensitive to
changes in the redox state of the PQ-pool induced either by
anaerobiosis or a preceding saturating light pulse (Haldi-
mann and Strasser 1999; Haldimann and Tsimilli-Michael
2002). This is demonstrated in Fig. 1. The time needed to
reach Fj is nearly independent of the Q4 redox state at the
start of the measurement (see e.g. Fig. 2 in Schansker et al.
2005) and therefore the J-step is not expected to be affected
by the initial QA concentration. As mentioned in the
Introduction, it is very likely that during a saturating light
pulse the acceptor side of PSII is largely reduced at the J
step and the J step may be the starting point for the
reduction of the PQ-pool. Therefore, F; could be an
indicator of the PQ-pool redox state at the start of the
saturating light pulse. In the following this hypothesis was
evaluated.

Analysis of the area above the fluorescence transient

The area above the fluorescence transient is generally
assumed to be a measure for the number of electrons that
have to flow through the electron transport chain in order to
reach F, (e.g. Bennoun 1982; Strasser and Strasser 1995;
Joliot and Joliot 2002). However, the area above the fluo-
rescence transient can only be used as an indicator for the
PQ-pool redox state under special conditions (e.g. in the
case of mutants that show little electron transport beyond
the PQ-pool (Bennoun 1982, 2001). Otherwise the area
above the IP-phase, representing the filling up of the
Fd-pool on the acceptor side of PSI (Schansker et al. 2005)
contributes considerably to the total area (Joliot and Joliot
2002). Therefore we treated the areas above the different
phases separately.

@ Springer
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The area above the OJ-phase is likely to represent the
number of electrons needed for the reduction of the PSII
acceptor side (see Introduction). As the PQ-pool becomes
more reduced (longer anaerobiosis treatment) fewer
Qg-sites will be occupied by an oxidized PQ-molecule and
fewer electrons are needed to reduce the acceptor side of
PSII. The area above the JI-phase may be proportional to
the number of electrons needed for the reduction of the
PQ-pool. Figure 2 shows that both areas (calculated by
taking into account the changes in the data acquisition of
the fluorescence signal and using a linear time-base) were
linearly related to the Fj-value. The linear relationship
between Fj and the area above the OJ-phase is an indication
that the Fj-value is linearly related to the number of elec-
trons needed to reduce the acceptor side of PSII. This
implies at the same time that the Fj-value is not sensitive to
connectivity. This agrees with the study of Strasser and
Stirbet (2001) who showed that connectivity only affected
the first few hundreds of ps of the fluorescence rise but
disagrees with Baker and Oxborough (2004) and Kramer
et al. (2004) who assumed that the whole fluorescence rise
(OJIP) was affected by connectivity. The linear relation-
ship between F; and the area above the JI-phase indicates
that changes in Fj follow the reduction of the PQ-pool very
closely. The transients measured on the more anaerobic
leaves show that during the JI-phase the area above the
transient is due to a decrease of the fluorescence value. The
fluorescence decrease is caused by a partial re-oxidation of
the PQ-pool and electron transfer towards PSI (e.g. Kaut-
sky et al. 1960; Schreiber and Vidaver 1974). As a result
fewer electrons are needed during the IP-phase to reduce
the acceptor side of PSI and this is observed as a decrease
of the area above the IP-phase as a function of Fy (data not
shown).
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Fig. 2 Areas above the OJ (A) and JI (B) phases of the OJIP
transients plotted as a function of F;. The values are derived from
transients like the ones presented in Fig. 1. Each point corresponds to
an average of ~15 measurements

The OlJ-rise

A basic requirement for using the Fy as an indicator of the
PQ-pool redox state would be that there is no change in the
PQ-pool redox state during the first 2-3 ms of the strong
light pulse. On the basis of published data there is a strong
experimental support for this (see Introduction), but we
looked for further evidence investigating the initial part of
the OJIP-transient in relation to the Fj-value. The apparent
Fo-value (Fy s in our case) has been used as an indicator of
the PQ-pool redox state (see Introduction). In Fig. 3A the
relationship between Fy and the Fyg s values is shown. The
relationship between the two parameters was hyperbolic. If
the Fyg ,s-value would be affected by connectivity and the
Fj-value not (as suggested in the previous paragraph) a
hyperbolic relationship between the F,j ., and Fj-values
would be expected (Strasser et al. 2004). Another parameter
representing the first part of the fluorescence transient is the

initial slope ((F7o us—F20 1s)/50 ps). It was assumed that the
two time points (Fy s and Fyg ) were so close to each
other that they were affected to the same extent by con-
nectivity, so the difference (F79 us—F20 us) should be free
from it. Fig. 3B demonstrates that there is a linear rela-
tionship between the initial slope and F;. This indicates that
both the F; and the initial slope are affected in the same way
by changes in the PQ-pool redox state. The control value in
Fig. 3B did not fall on the regression line. Although we do
not know the reason for this deviation we may speculate that
non-Qg-reducing centres are insensitive to the PQ-redox
state. Their contribution to the fluorescence rise could be an
explanation for the observed deviation (see Schansker and
Strasser 2005 and references therein).

In Fig. 4 a more elaborate approach was used to deter-
mine the effect of the PQ-pool redox state on Fyq 5 in the
absence of connectivity. If the non-linearity between the
Fyo us-values and F; is really due to connectivity, the
relationship between the fraction Q4  and F; should be
linear. In DCMU-treated samples (Fig. 4A) the Q4-reduc-
tion kinetics can be obtained by determining the area-
growth kinetics of the complementary area above the Chl-a
fluorescence transient (Malkin and Kok 1966; Murata et al
1966; Joliot and Joliot 1979; Melis and Schreiber 1979).
Melis and Schreiber (1979) showed that the area growth,
C-550 (electrochromic band-shift in response to changes in
the Q4 redox state) and A320 (direct measure of the redox
state of Q,) kinetics are strictly proportional. Since the two
maxima of the normalized area growth are defined (all Q4
either oxidized or reduced), the fraction QA  can be
obtained by normalizing the area growth (Fig. 4B) between
0 and 1. In Fig. 4C the raw fluorescence kinetics are plotted
versus the normalized area growth. We assumed that this
curve could be used to determine the fraction QA at Fyg s
in the absence of DCMU (see the arrows from Fig. 4A to
the x-axis of Fig. 4C). The observation that the normalized
area growth of the OJ-phase is nearly identical in the
presence or absence of DCMU (Té6th 2006) supports this
assumption. It is important to note that the F, and
F,-values were the same for DCMU-treated and control
leaves (see Toth et al. 2005 for details).

In Fig. 4D the fraction of Q4 at the start of the mea-
surement is given as a function of Fy. There is a very good
linear relationship between the two parameters indicating
that both parameters are affected in the same way by
changes in the PQ-pool redox state. It supports the premise
that Fy can be used as an indicator of the PQ-pool redox
state before the illumination. It may be interesting to note
that under the most anaerobic conditions (~94% of the
PQ-pool reduced) Q4 is reduced in about 19% of the
reaction centres (Fig. 4D).

So far, we have only made use of fluorescence parame-
ters. To confirm the relationship between F; and redox state
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plotted as a function of F;. The values are derived from transients like
the ones presented in Fig. 1. Each point corresponds to an average of
~15 measurements

of the PQ-pool we searched for a completely independent
parameter. 820 nm transmission (Igpg,m) Mmeasurements
can be used to monitor electron flow through PSI since
changes of Ig>0 nm, reflect changes in the redox states of PC,
P700 and ferredoxin (Fd) with Fd being a minor contributor
in pea leaves (Klughammer and Schreiber 1991; Schansker
et al. 2003). Figure 5A shows that a 10 s FR light induces
less and less oxidation of P700 and PC as leaves become
more anaerobic (seen as a decrease in Igyg nm,). Longer FR
illuminations lead to a levelling off of Igg ,, approximately
at the values measured after 10 s (data not shown). In dark-
adapted pea leaves the ferredoxin-NADP*-reductase (FNR)
is inactive and the re-oxidation of the Fd-pool occurs with a
decay time of about 0.4 s (Schansker et al. 2003). This
means that under aerobic conditions 10 s is enough for
several reduction-oxidation cycles. It should be noted that

@ Springer

there was little indication of Mehler-type reactions under
our experimental conditions. This may be due to a pH-
gradient-dependence of this reaction pathway (Hormann
et al. 1994). As the development of anaerobiosis proceeds,
the stroma becomes more and more reduced and the re-
oxidation of Fd more and more difficult. This leads to a
limited oxidation of PC and P700 (Fig. 5A). Therefore, the
extent of PC and P700 oxidation by FR light probably forms
an indicator for the extent of anaerobicity of the sample. In
other words, the linear relationship between Fy and Igyg nm
after 10 s FR light (Ig nm (10s FR)) indicates that Fj is
linearly related to the extent of anaerobicity of the leaf.

Assay for the determination of the PQ-pool redox state

To calculate the PQ-pool redox state not only the Fj-value
of the sample but also the Fj-values of the leaf in the
presence of a fully reduced and a fully oxidized PQ-pool
have to be determined. For leaves with a fully reduced PQ-
pool, it can be assumed that Fy equates approximately F,, as
it is known that at F,;, the whole electron transport chain
including the PQ-pool is reduced (e.g. Schansker et al
2003; Schansker et al 2005) and at short times (0.1-5 s)
after a saturating pulse Fj is very close to the F,,-value
(Fig. 6D).

To obtain an Fj-value for the fully oxidized PQ-pool
(Fiox) a second measurement is needed. To oxidize the
PQ-pool at short times after the measurement of the first
OJIP-transient, FR light was used. Fig. 6A shows that the
FR pulse (200 pmol photons m™ s™') has to be at least 5 s
long to obtain a minimum Fj_y.-value. The relatively long
(5 s) FR pulse is probably necessary because a pool of
stromal electrons (Asada et al. 1992; Schansker et al.
2003) has to be depleted by the FR pulse first, to maintain
the PQ-pool in the oxidized state for some time. Fig. 6B
shows that the second measurement has to be made within
5 s after the FR pulse (the FR pulse length was 10 s in the
case of Fig. 6B) to obtain a reliable Fj_,,-value. At longer
times after the FR-pulse non-photochemical re-reduction of
the PQ-pool leads to a significant increase of the Fj-value.

On the basis of the data in Figs. 6A and B a protocol for
the determination of the PQ-pool redox state can be
designed: the measurement of two OJIP-transients with a
FR pulse in between. The first transient gives the F; and
F,-values. Subsequently, the minimum Fy_,,-value, repre-
senting a fully oxidized PQ-pool is obtained by giving a FR
pulse (200 pmol photons m™2 s7') of at least 5 s duration
followed within seconds (1 s in this case) by a second
fluorescence measurement. The fraction of reduced PQ
then equates (F;—F)_ox)/(Fn—Fj_ox) as indicated in Fig. 6C.
Our method does not depend on an external reference: the
extremes of the scale (0 and 1 that correspond to Fj_ox and
F..) are determined separately for each sample.
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Fig. 4 Determination of the
fraction of Q™ at Fyg s by
taking connectivity between
PSII antennae into account. (A):
Chl-a fluorescence transients of
untreated (control), anaerobic
(10 min treatment in Nj-gas)
and DCMU-treated samples are
shown. (B): Normalized area
growth curve of a DCMU-
treated sample, which is
assumed to be proportional to
[QA7]. (C): Chl-a fluorescence
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In Fig. 6D an example of an application is given: the
re-oxidation kinetics of the PQ-pool of pea and camellia
were followed after a saturating pulse by giving a second
light pulse at various times after the first one. In
dark-adapted (well-developed) pea leaves approximately
14% of the PQ-pool was in the reduced state and 100 ms
after the first saturating pulse the PQ-pool was ~94%
reduced. The t-value for the re-oxidation of the PQ-pool

21 \ \ \ \ )
800 1000 1200 1400 1600 1800

Fy

100 1000 10000

was ~60 s. The re-oxidation of the PQ-pool in camellia
was much faster but heterogeneous with a 7 ~9s
explaining two thirds of the kinetics. Depending on the
plant species, up to 100-fold differences can be found
(MG Ceppi and G Schansker, unpublished data). This is
most probably caused by the difference in the activity of
the terminal oxidase that re-oxidizes the PQ-pool in
darkness (Cournac et al. 2000; Carol and Kuntz 2001).
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Fig. 6 Determination of the PQ pool redox state. (A) Effect of FR-
pulse length on the measured Fj-value. (B) Effect of the dark-interval
between a 10 s FR-pulse and the Chl-a fluorescence measurement on
the Fj-value. (C) Parameters needed for the calculation of the PQ-pool
redox state. The transient with the open symbols represents the
sample of which the fraction of reduced PQ-pool has to be determined
(in this case a leaf that had been pre-illuminated with red light). This
transient gives the F; and F,,-values. A second transient is measured
1 s after a 10 s FR-pulse (closed symbols). It gives the minimum F;-
value (Fj_,x), representing the oxidized PQ-pool. The fraction of
reduced PQ then equates (Fj)—Fj_ox)/(Fn—Fj_ox). See text for details.
(D): example of an application: the re-oxidation kinetics of the PQ-
pool of pea and camellia leaves were monitored in darkness following
a saturating light pulse. The intensity of the red and FR-pulses was
1,800 and 200 pmol photons m~2 s~" respectively. The data represent
averages of four (A and B) or 2 (C and D) measurements

Therefore, its activity can be studied by the regeneration
of the (F;—F)_ox)/(F,—Fj_ox) value following a saturating
light pulse.
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Discussion

The principle underlying F; as an indicator of the
PQ-pool redox state

The relationship between F; and the redox state of the
PQ-pool may be explained by the sensitivity of F; to the
occupancy state of the Qg-site (the fraction of Qg-sites
containing an oxidized PQ-molecule). If the PQ-pool is
completely reduced there are no oxidized PQ-molecules
available that can bind to the Qg-sites and the fluorescence
rises nearly to F,, in 3 ms like in the case of DCMU-treated
leaves (see Figs. 1A, 4A). Robinson and Crofts (1983)
have suggested that the binding constants of PQ and PQH,
for the Qg-site are the same. This assumption is necessary
to explain the linear relationship between the occupancy
state of the Qg-site and the redox state of the PQ-pool. If
both binding constants are the same, the fraction of
Qg-sites to which PQ-molecules are bound will be
independent of the redox state of the PQ-pool.

Possible factors affecting the calculation of the PQ-pool
redox state

If the first red light pulse (i.e. OJIP-transient) is too long
(longer than 1-2 s), FNR will become activated. This will
lead to a lower F,,-value of the second OJIP-transient. If
the FR pulse is longer than 1-2's, PC and P700 will
become oxidized. As a consequence, more electrons are
needed to reduce the electron transport chain and reach F,
during the second light pulse. In this case FNR may
become activated before F,, is reached (Schansker and
Strasser 2005). In both cases the result is a lower F,-value
for the second OJIP-transient. However, this F,,-value is
not used for the calculation of the PQ-pool redox state and
the activation state of the acceptor side of PSI has no effect
on the Fj-value (Schansker et al. 2005).

Far-red light excites PSII slightly (e.g. Pettai et al. 2005;
Schansker and Strasser 2005), causing an increase of Fxq s
due to some Qu-reduction (Schansker and Strasser 2005).
As argued above the Fj-value is not very sensitive to the
QA concentration at the start of the measurement and
therefore this effect can be ignored as well.

Potential limitations of the assay

This study is based on measurements of unstressed plants.
There are a few practical limitations of the formula (Fj-F;_
o)/ (F—Fj_oy) that have to be considered. Determination of
a correct F,-value is critical for the assay. In severely heat-
treated samples it is not possible to close all PSII RCs with
a strong light pulse (Té6th et al. 2007) and therefore the
assay cannot be quantitatively used. The same limitation



Photosynth Res (2007) 93:193-203

201

applies to light-adapted leaves (Schansker et al. 2006). In
light-adapted leaves an additional problem would be to
obtain an Fj_,-value without affecting the light-adapted
state. The F; also responds to changes in the PQ-pool redox
state in light adapted leaves (Schansker et al. 2006) and
changes in the Fj-value can be used as a qualitative
indicator.

The PSII electron donation capacity can become smaller
because of photoinhibition, UV-damage, partial inhibition
at the Qg-site, etc. Under these conditions the unaffected
reaction centres will function normally. As long as the
remaining PSII centres are able to reduce the electron
transport chain and all the centres can be closed, only the
number of PQ-molecules per PSII will increase. Therefore
the (F3—Fy_ox)/(Fn—F1_ox) value will not be affected. Indeed,
partial (0—60%) inhibition of PSII reaction centres by
DCMU did not affect the calculation of the redox state of
the PQ-pool in dark-adapted leaves (SZ T6th, unpublished
data).

A third factor that can be considered is the excitation
rate of the antenna. Both light intensity and antenna size
affect the excitation rate and thereby the electron transport
activity. By decreasing the light intensity, the limitation
due to the exchange of PQ at the Qg-site becomes less
important (lower J-value) whereas the IP-phase increases in
size (Strasser et al. 1995; Tomek et al. 2001; Schansker
et al. 2005). In isolated thylakoid membranes a large
(10-fold) increase in the Chl-concentration led to a lower
Fj-value (SuSila et al. 2004). A less saturated F; would
indicate a less reduced PSII acceptor side at Fj. This could
lead to some overlap in the reduction of the PSII acceptor
side and the reduction of the PQ-pool, which would cause
an underestimation of F;_,,. However, stress factors rather
lead to a decrease in Chl-content and not to an increase;
therefore the risk of an underestimation of Fy_,, is limited.
In specific cases it may be useful to determine the light
intensity dependence of the calculated PQ-pool redox state.

A fourth potential problem would be a limitation on the
acceptor side of PSI. As shown in Fig. 5, under anaerobic
conditions the flow of electrons through PSI is limited,
which may limit the oxidation of the PQ-pool by a FR light
pulse and therefore the F;_,c-value may be overestimated.

In summary, taking into account the limitations dis-
cussed above, the proposed assay should give a good
estimate of the PQ-pool redox state.
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