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Abstract 

Visual working memory maintains both continuous-perceptual information and discrete-

categorical information about memory items. Both types of information are represented in 

working memory, but the representation structure remains unknown. Continuous and categorical 

information about a single stimulus could be represented separately, in two different 

representations. Alternatively, continuous and categorical information could be represented 

jointly as a single representation. To investigate this, we fitted two different computational 

models to delayed estimation data assuming either separate or joint representations of continuous 

and categorical information in working memory, for three different, commonly used features 

(orientation, color, and shape). Across a set of 9 experiments, model fits clearly show that feature 

identity drives the representation structure, with a joint representation structure for orientation, 

but a separate representations structure for color and shape. This pattern was remarkably 

invariant across a variety of task contexts. Existing models miss this distinction, leading to 

mischaracterization of memory precision.  

Keywords: visual working memory; short-term memory; computational modeling; delayed 

estimation; mental representation 
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Public Significance Statement 

Mental representations are the building blocks of human thought. Accordingly, 

understanding the structure of these representations is a critical step for the accurate modeling of 

human thought processes. In the present work, we show that the build-up of visual 

representations differs for three common features: orientation, color, and shape. Our results 

indicate that orientation memories combine perceptual (i.e., fine-grained details) and categorical 

(i.e., prototypical or gist-like information) into a single representation, whereas for color and 

shape these sorts of information are stored and used separately. By combining both sorts of 

information into a single unit, orientation memories are necessarily biased by categorical 

knowledge (e.g., cardinal orientations such as top, bottom, left and right), impacting the fidelity 

or precision of this information in mind.   
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Feature identity determines representation structure in working memory 

 

 To remember an image over a brief delay requires representing it in working memory. 

Research over the last two decades has increasingly focused on differentiating the number of 

items stored in memory and the precision with which those items are maintained (Adam et al., 

2017; Bays et al., 2009; Bays & Husain, 2008; Forsberg et al., 2020; Ma et al., 2014; Ovalle-

Fresa et al., 2021; Pratte et al., 2017; Rouder et al., 2008; van den Berg et al., 2014; Zhang & 

Luck, 2008). While studying memory precision has resulted in many new insights about visual 

working memory, our understanding of how information is represented in visual working 

memory is still quite rudimentary. This presents problems for any study relying on measures of 

memory precision. The precision of a memory cannot be reasonably estimated without 

knowledge of the structure of the involved representations. The present work aims to advance 

our understanding of what is stored in memory by testing whether continuous-perceptual and 

discrete-categorical aspects of visual features such as orientation, color and shape are represented 

separately or jointly in visual working memory.  

Delayed Estimation and Working Memory Representations 

The delayed estimation task has become a popular experimental paradigm to examine the 

properties of visual representations in working memory (Bays et al., 2009; Wilken & Ma, 2004; 

Zhang & Luck, 2008). In this task, individuals see a set of memory items varying in a continuous 

visual feature, typically colors, and must reproduce this feature within a circular feature space 

after a brief delay (see Figure 1a). Zhang and Luck (2008) developed a computational model of 

performance on this task that characterizes responses as memory-based or guessing (see Figure 

1b). Memory-based responses were assumed to occur with some probability, Pm. These 
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responses were assumed to be centered on the feature of the presented item with some standard 

deviation (), which were assumed to characterize the variance in responses around the presented 

feature, and hence the precision of the memory representation. Guessing responses were assumed 

to occur with probability 1-Pm and were characterized as a distribution of uniform responses 

throughout the feature space. The assumption that memory-based responses are centered on the 

presented feature implies that the memory representation is of the exact continuous feature value, 

not of a gist or categorical representation of the visual feature.  

 Zhang and Luck (2008)’s central argument was not about the nature of the representation, 

but rather the nature of capacity limits. They argued in favor of a discrete item limit governing 

visual working memory capacity based upon the finding that changes in the set size lead 

primarily to changes in the probability an item was in memory. The primary challenge to the 

discrete item-based model of delayed estimation performance has been from the distributed 

resource model of Bays and Husain (2008) who argue that capacity is limited by a flexible 

resource that determines the precision of representations. According to Bays and Husain, all 

items are represented in memory, but the memory capacity limits how precise each of these items 

are represented. If more of the resource is devoted to an item, then that item should show a 

higher level of precision and this should lead to lower precision for other memory items. Much 

work has since debated whether a discrete item limit or a flexible-resource limits working 

memory capacity (e.g., Adam et al., 2017; Bays et al., 2009; Ma et al., 2014; Pratte et al., 2017; 

van den Berg et al., 2014). This is not surprising as a debate between fixed-discrete capacity or 

variable-continuous memory capacity limits has preceded the computational modeling of delayed 

estimation performance (Baddeley et al., 1975; Brown et al., 2007; Cowan, 2001; Crowder, 

1976; Kintsch, 1967; Rouder et al., 2008; Wilken & Ma, 2004).  
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Figure 1 

(a.) A typical delayed estimation task for color. (b.) In the delayed estimation model proposed by 

Zhang and Luck (2008), errors for memory-based responses (in blue) are assumed to be 

centered at zero and distributed with some standard deviation representing memory precision. 

Guesses (in green) are assumed to be equally distributed across all possible feature values. A 

weighted combination of the memory-based and guessing responses produces each individual’s 

overall response distribution (in red).

 
  The implicit assumption underlying both approaches to computational modeling of 

delayed estimation data is that memories are representations of the continuous feature value of 

Presentation Test 
a. 

b. 
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the target item and not a verbal label or gist representation. This assumption is what allows the 

uniform response distribution to be mapped onto guessing rates and the standard deviation of the 

error distribution to be mapped onto memory precision. Bae et al. (2014) questioned this 

assumption by asking whether individuals reproduce all perceived and remembered colors 

equally well. If not, then some process is causing the mental representation to deviate 

systematically from the color of the presented item. They found consistent biases both in a 

perceptual estimation task and a delayed working memory estimation task indicating that 

individuals systematically underproduce some color hues and overproduce others. Participants in 

their studies tended to reproduce some colors more frequently than others, with the clusters of 

frequent responses coinciding with color categories, and infrequent responses moving away from 

color-category boundaries.  

Modeling Continuous and Categorical Representations in Working Memory 

 Bae et al. (2015) expanded upon the notion that participants were remembering color 

categories by providing a computational model of delayed estimation similar to the Zhang and 

Luck model but incorporating color categories into the memory response. The traditional 

approach had been to model the response error, namely the distance between the reported and 

presented feature value, which disregards what was the specific feature value studied. Rather 

than modeling response errors, Bae et al. modeled response color as a function of the studied 

color. This approach allowed them to see evidence for categorical representations, gist 

representations such as the concept “red” or “left”, that are unobservable in error distributions 

collapsed across stimulus locations. Categorical representations can be thought of as separate 

from continuous representations of the exact feature value which have been the more typical 

target of research. Figure 2 shows a scatterplot of response values as a function of the presented 
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feature value in several scenarios. Panel a shows responses when there is only memory for the 

continuous feature value. Panel b shows responses when there is only memory for the item 

category. Whereas continuous memories of the exact feature produce a smooth pattern along the 

diagonal in Figure 2a, categorical responses result in a staircase pattern as shown in Figure 2b 

whereby the responses for a range of different stimulus values cluster together around the same 

response value. Modeling of error distributions, as shown in Figure 1b, cannot differentiate the 

two response patterns shown separately in Figures 2a and 2b. Error distributions become blind to 

color category signatures because all stimulus values are pooled into a single error distribution, 

making the category-based offset from the diagonal appear to be reduced memory precision. 

Changes in estimates of precision inevitably alter the estimates of guessing rates as both 

parameters are estimated jointly. The lack of accurate model specification in earlier models 

brings any findings regarding parameter values into question.  
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Figure 2 

Response angle resulting from successful memory retention as a function of the presented angle 

for (a.) continuous representations and (b.) categorical representations. Simulated response 

patterns produced by successful memory retention in the (c.) joint representation model and (d.) 

separate representation model. Tree model representations of the (e.) joint representation 

variant and (f.) separate representation variant. In the joint representation model PO represents 

the memory-state mixture weighting. Larger values mean more weight on the continuous 

perceptual memory element. Smaller values mean more weight on the categorical memory 

element. 
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Hardman et al. (2017) developed a model of color representation similar to Bae et al. 

(2015), but with differences in how color categories are determined and in how categorical 

representations contribute to the representation held in visual working memory. Whereas Bae et 

al.’s approach had individuals label their internal color categories, Hardman et al. estimated the 

category locations from the data itself (see also Pratte et al., 2017),  thereby allowing the category 

locations to vary across participants and trials. Both Bae et al. (2015) and Hardman et al. (2017) 

agree that categorical representations are necessary to accurately model delayed estimation data. 

They differ in how categorical information is incorporated into the overall mental representation 

of the stimulus. In Bae et al.’s approach the categorical representation is implemented as a bias 

upon the precise continuous representation. The category and the continuous information are 

combined to form a mental representation that is different from either one alone. We refer to this 

model as the joint representation model (see Figure 2c). This representation is conceptually 

equivalent to remembering the exact shade of red presented, but with a bias towards the 

individual’s conception of a generic red color. The resulting memory is more stereotypical than 

the presented color, with the deviation from the presented color being larger as the presented 

shade gets farther from the generic category value. Within this model, responses are drawn from 

a single distribution that is a mixture of the categorical and continuous response distributions. 

Memory-based responses form a characteristic pattern on the stimulus-response plot in Figure 

2c, zigzagging above and below the diagonal across the stimulus space.  

Hardman et al., on the other hand, implemented categorical and continuous information 

as two separate mental representations. This second approach assumes that the exact hue and the 

general color category can both be remembered, but that these representations are maintained 

and used separately. We refer to this model as the separate representation model (see Figure 2d). 
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Memory-based responses on the stimulus-response plot in Figure 2d show the individual 

response patterns from Figures 2a and 2b superimposed upon one another. 

 The two methods of incorporating categorical representations into delayed estimation 

models were tested and contrasted by Hardman et al. (2017) to establish whether individuals 

maintained joint or separate representations of the color category and the continuous color hue 

presented. Hardman et al. referred to these as the within and between model variants, but joint 

and separate representation models are perhaps more intuitive names for differentiating the two 

variants. In two experiments, Hardman and colleagues found that the separate representation 

model outperformed the joint representation model, indicating that individuals represent 

categorical and continuous information as separate mental representations when remembering 

colors for brief periods of time.  

 Studies of visual working memory using the delayed estimation paradigm continue to be 

abundant with a strong focus on interpreting computational model parameter estimates (e.g., 

Forsberg et al., 2020; Huang, 2020; Long et al., 2020; Ovalle-Fresa et al., 2021; Pratte, 2019; 

Rhodes et al., 2020; Schneegans et al., 2021; Son et al., 2020). For these parameter values to be 

meaningful, an accurate model of the structure of the mental representation involved must be 

used for their estimation. This includes an accurate characterization of how categorical 

information is used in combination with continuous perceptual detail in visual working memory. 

While Hardman et al. (2017) found a superior fit of the separate representation model over the 

joint representation model (see also Souza & Skóra, 2017), this has not been tested with any 

features beyond color. That is the goal of the present study. 

The Present Study 
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Here, we examined whether representations of continuous detail and categorical gist are 

always stored separately or whether, instead, the representation structure varies across feature 

identity, physical characteristics of the stimuli, the number or features per stimulus, and task set-

ups. First, we report four new experiments that were conducted to examine the structure of the 

working memory representation of orientation across different task set-ups (Experiments 1-4). 

Next, we report the re-analysis of three published experiments in which the memoranda were 

multi-feature objects, allowing us to study the structure of the working memory representation of 

color, orientation, and shape when more than one feature was maintained (Experiments 1a-b and 

2 of Overkott & Souza, in press). Finally, we report the re-analysis of two published experiments 

in which shape needed to be remembered, allowing us to study the structure of the representation 

for yet another feature in visual working memory, again across task situations (Experiments of 

Souza et al., 2021, and Li et al., 2022). Across these three sets of analyses, we found that not all 

memory representations use the same structural format. Feature identity (orientation, color, or 

shape) drives the structure of the memory representation irrespective of the type of the physical 

characteristics of the stimuli, the number or features per stimulus, and task set-up.  

 

Representing Orientation: Experiments 1-4 

 

 In a first step, four experiments were conducted to test whether the mental representation 

of orientation maintains continuous and categorical information separately or jointly. In these 

experiments, a variable number of orientation stimuli were presented. Once all stimuli were 

presented, they were immediately probed and reproduced by the participants. Orientations varied 

from 1-360 degrees by increments of 1 degree. Participant response angles were modeled using 
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both the joint (see Figure 2c) and separate (see Figure 2d) model variants developed by Hardman 

et al. (2017) to determine the structure of the mental representation. In the following paragraphs 

we explain the basic model structure for each variant, as illustrated in Figure 2e for the joint 

variant and 2f for the separate variant. For formal model specifications see the original work by 

Hardman et al.   

The separate-representations model variant (see Figure 2f) assumes that there is some 

probability, PM, that a probed memory item will be available in mind at test, otherwise the 

participant responds by guessing, with probability 1- PM. If a response is informed by memory, 

then there is some probability, PO, that the response is based on a continuous representation 

(similar to the distribution shown in Figure 2a). In this case, the participant’s response 

distribution will be centered at the location of the presented feature with continuous imprecision 

parameter, σO, indexing memory variability. Alternatively, with probability 1- PO, the memory 

response is based on a categorical representation of the item (as illustrated in Figure 2b). In that 

case, the response will be centered on values that represent the stereotypical representation of a 

category, such as 180 degrees for down or 90 degrees for right. Response variability of 

categorical responses is characterized by parameter, σA. Hence, in the separate-representation 

model variant, for each memory item on a given trial, the participant’s response is based on 

either a continuous representation or a categorical representation of the item, but not both. The 

number and center of the categories are estimated from the data for each participant with 

variability assumed across trials, allowing the model to account for variability in categorization 

schemes across participants and throughout an experimental session. Categories are estimated 

without fixing the distance between category centers, allowing both narrow categories and 

categories that stretch across a wide stimulus space. Category estimation details are presented in 
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Hardman et al. (2017). When participants guess, they respond by selecting a random category, 

with probability PAG, or by selecting a random value from a uniform distribution with probability 

1 - PAG.  

The joint-representation model variant (see Figure 2e) uses the same basic structure as 

the separate representations model, with one major change. In this model there is only one type 

of memory representation that drives all memory-based responses. This memory representation 

has both a continuous perceptual component and a categorical component. Thus, in contrast to 

the separate representation model, here, for each memory item on a given trial, the participant’s 

response is based on a mixture of continuous and categorical information of the item. Parameter 

PO serves as the continuous distribution mixing weight in this model variant and can be thought 

of as the proportion of the representation of the item in question that is based upon the 

continuous perceptual representation. When PO = 1, then participants only use the continuous 

information for responding, with no categorical component (see Figure 2a). When PO = 0, the 

response is instead purely based on the categorical information (see Figure 2b). Intermediate 

values determine the relative strength of each component that makes up the joint memory 

representation and that drives the participant’s response. Figure 2c shows the pattern of memory-

based responses produced when PO = 0.6.  

 In Experiments 1-4, we test whether the separate representation or the joint representation 

model captures best how orientation is represented in visual working memory. It is important to 

note that our approach at this step was to determine via model comparison which model variant 

(separate or joint representation) best described the response patterns across task set-ups. This 

contrast will allow us to make inferences about the basic structure of the mental representation 
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used in working memory, something that changes in parameter values cannot reveal. In the 

General Discussion, we will discuss how the model variant impacts parameter values.  

Method 

Participants  

One-hundred nighty-nine individuals (ages 18-52 years, M = 20.0; 139 female, 60 male)1 

with normal or corrected-to-normal vision participated in Experiments 1 to 4 (47 in Experiment 

1, 46 in Experiment 2, 61 in Experiment 3, 45 in Experiment 4). The recruitment strategy was to 

collect data from at least 40 participants in each experiment. Participants signed up several 

weeks in advance for each session. Enrollment was reviewed weekly to determine whether more 

data needed to be collected. This resulted in sample sizes larger than the minimum target 

number. Participants were recruited from the psychology department participant pool at the 

College of Staten Island and received partial course credit for participation. The study was 

approved by the City University of New York Integrated Institutional Review Board, project 

#2015-1156. All participants gave informed consent prior to participation.  

Methods and Procedure  

All four experiments used a variation of the same basic design and procedure shown in 

Figure 3. Within each experiment the memory set size (1, 2, 3, or 5 items) was varied randomly 

across trials. All other variables were held constant across trials within an experiment. We next 

explain the basic structure of a trial in all experiments and then concisely summarize the 

differences across experiments. 

Participants initiated each trial by pressing the space bar. A fixation cross was presented 

on the screen for 500 ms, followed by memory item presentation. Memory items were composed 

 
1 Participant gender was collected by a demographic question asking participants to “Select Your Gender” with two 

options “Male” and “Female”. 
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of a ring with a dot somewhere along its perimeter (360 possible locations, equally spaced). The 

task was to remember the orientation of each dot on the ring. The ring diameter was in 36 mm in 

Experiments 1 and 2, and 23 mm in Experiments 3 and 4. Dot diameter was 5 mm in 

Experiments 1 and 2, and 3 mm in Experiments 3 and 4. The rings appeared in 1 of 8 equally-

spaced locations along an invisible circle, centered on the middle of the screen. Each 

presentation location was at a distance from the center of the screen of 67 mm in Experiments 1 

and 2, and 42 mm in Experiments 3 and 4. The difference in size across experiments was due to 

a change in computer monitors. Each location was associated with a specific color. Whenever a 

ring was shown it appeared in the color associated with that location (colors: red, grey, blue, 

yellow, violet, orange, lime, cyan). Ring color was irrelevant to the task and intended as a 

redundant retrieval cue in addition to the item location. The background color was black. 
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Figure 3  

Example of the flow of events for Experiments 1-4, the new experiments to examine 

representation structure of orientations. Panel (a.) shows the item study phase. Panel (b.) shows 

the item recall phase. 

 

  

 In Experiments 1 and 2, all memory items were presented concurrently as a memory 

array. In Experiment 1 the entire array was presented for 400 ms. In Experiment 2 the array was 

presented for 400 ms x the set-size (i.e., 400, 800, 1200, or 2000 ms, for 1, 2, 3, or 5 memory 
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items, respectively). Experiments 3 and 4 used serial presentation of the memory items with each 

item presented for 400 ms. 

 After presentation of each memory item a mask appeared at the location of that memory 

item for 200 ms. The mask was composed of 8 rings, each slightly displaced from the location of 

the memory item, and eight dots placed randomly within the area that the rings were drawn. Each 

of the rings and dots were a unique color matching the colors associated with each of the eight 

locations. After each mask was a 100 ms delay containing only a fixation cross before the next 

stimulus appeared. 

 Once the item presentation sequence was completed for all items, memory was probed 

for all items. Memory probes were presented for each item individually. The probe sequence was 

in random order in Experiments 1, 2, and 3. The probe sequence was in the order of presentation 

in Experiment 4.  

 After each trial, feedback was given. The feedback screen showed all rings with the 

correct location marked by a white dot and the participants response marked by a colored dot 

matching the color of the ring. If mean response error was less than or equal to 30 degrees a 

happy tone sequence played. If mean error was greater than 30 and less than or equal to 60 

degrees a neutral tone sequence played. If mean error was greater than 60 degrees a sad tone 

sequence played.  

 There were 8 practice trials in all experiments. In Experiments 1, 3, and 4, there were 6 

blocks of 35 experimental trials in. In Experiment 2, there were 8 blocks of 40 trials. A summary 

of the experimental manipulations in each experiment is given in Table 1.   
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Table 1 

Summary of Experimental Manipulations in Experiments 1-4 

Experiment  Presentation Type Presentation Time Recall Order 
1 Simultaneous 400ms Random 
2 Simultaneous 400ms x Set Size Random 
3 Serial 400ms per item Random 
4 Serial 400ms per item Serial 

 

Analysis  

We fit the two versions of our model to individual response angles with Bayesian 

Markov-Chain Monte-Carlo sampling using the “CatContModel” package (Hardman, 2017) for 

the R statistical computing language. Formal model specification can be found in Hardman et al. 

(2017). We ran 11,000 iterations and discarded the first 1,000 as burn in.  Model selection was 

performed using Watanabe-Akaike Information Criterion (WAIC), a version of AIC appropriate 

for hierarchical Bayesian model selection that accounts for effective number of parameters in the 

penalty term. For details on WAIC calculation and interpretation see Gelman et al. (2014). 

Transparency and Openness 

All data first reported in this work and all code for our quantitative analyses are available 

on the Open Science Framework at https://osf.io/bv6fh/. This study was not preregistered. 

Results 

 Mean error and key parameter estimates for Experiments 1-4 are provided as a function 

of Set Size and Experiment in Figure 4. As can be seen in Table 2, the joint model variant 

outperformed the separate model variant by a large margin in all four experiments, with a WAIC 

advantage of 261 points in Experiment 1, 586 points in Experiment 2, 693 points in Experiment 

3, and 514 points in Experiment 4.   

https://osf.io/bv6fh/
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Figure 4 

Error and parameter values as a function of condition and experiment. (a.) Mean error, error 

bars are standard error of the mean. (b.) Probability an item is in Memory (c.) Proportion of the 

mixture that is from continuous perceptual information. (d.) Imprecision of the Continuous 

distribution. Error bars in panels b-d represent the 95% credible interval of the posterior of the 

estimated parameter. 
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Table 2 

WAIC fits for Orientation Experiments 1-4 by 

Experiment for each Model Variant 

Experiment  Model WAIC WAIC difference 

from best model 
1 Separate 286,257 261 
 

Joint 285,996 0 
2 Separate 350,331 586 
 

Joint 349,745 0 
3 Separate 359,737 693 
 

Joint 359,044 0 
4 Separate 261,285 514 
 

Joint 260,771 0 
*Bold rows indicate the winning model for each experiment. 

 

Discussion 

 The results from all four experiments produced the same pattern of findings. The joint 

representation model fit participant response-angle data for orientations better than the separate 

representation model by a clear margin irrespective of the task set-up. This is in contrast to the 

findings of Hardman et al. (2017) who found that the color data from their two experiments was 

better fit by the separate representation model. The fact that both sets of observations are 

consistently observed across the respective experiments indicates that orientation and color use 

different representation structures within working memory to complete similar tasks. In the 

following sets of experiments, we assess whether this conclusion is warranted by replicating our 

current findings for orientation and those of Hardman et al. for colors in several published data 

sets. We also test whether a third feature, that of continuous shape, is represented using separate 

or joint representations. Modeling data from different studies using different memory materials 
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and task contexts allowed us to test whether stimulus feature identity drives the representation 

structure in a way that is task independent. 

 

Representing Orientation and Color in Multi-feature Objects   

 

Overkott and Souza (in press) reported three experiments in which participants recalled 

the color and orientation of multi-feature objects using a continuous feature space. We fit the 

separate and joint representation variants of Hardman et al. (2017)’s model to this data to assess 

whether multiple features of an object can be stored in differing representation structures 

concurrently. If the stimulus feature drives the representation structure, then we should see that 

orientation is best modeled as a joint representation of continuous and categorical information 

while color is best modeled as separate continuous and categorical memory representations, even 

in multi-feature objects. Alternatively, it could be that the representation structure is determined 

at the object level and that all features of a single object are encoded with the same type of 

representation. If this alternative prediction is true, then our model-based analysis should show 

that orientation and color data both favor a common representation structure when they are part 

of the same object (i.e., either both using a separate representations structure or both using a joint 

representation structure). To be clear, this is not a test of whether object-level representations 

exist, there is ample evidence that they do (Cowan, 2001; Donkin et al., 2013; Ngiam et al., 

2022; Rouder et al., 2008). Here we test whether differing features of the same object can use 

different representation structures or if they are constrained to using a common representation 

structure.  
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Procedure of Overkott and Souza (in press) 

Participants remembered several multi-featured objects and then recalled them on a 

circular feature space. In the first two experiments (Experiments 1a and 1b, N = 36 and 59, 

respectively), participants remembered triangles that varied in their orientation and color to recall 

after a brief delay (see Figures 5a and 5b). In the third experiment, participants (N = 51) saw 

Gabor patches with varying orientation, color, and frequency for later recall (see Figures 5c and 

5d). Depending on the condition, participants in the third experiment were asked to either 

remember the color and grating frequency (orientation was held constant at 90°) or the 

orientation and grating frequency (color was held constant at white). The grating frequency took 

only a limited number of discrete values, so we were not able to model the format of the 

frequency representation. In all three experiments, participants were asked to remember two 

features of the same item and were probed to reproduce both features of a randomly selected 

item. 

In all experiments, each memory presentation lasted for 1000 ms with a 1000 ms blank 

inter-stimulus interval. In Experiments 1a and 1b, two sets of two-colored triangles were 

presented on each trial, for a total set-size of four items. In Experiment 2, three Gabor patches 

were presented sequentially. In all experiments, participants were instructed to either engage in 

articulatory suppression or name the value of each feature as the items were presented (see 

Figure 5a for labeling examples). After all items were presented, both remembered features of a 

single (randomly selected) item were recalled by reproducing their feature value within a circular 

feature space (for orientation or color) or linear space (for frequency). The order of feature recall 

was random. 
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Figure 5  

Flow of events in Overkott and Souza (in press)(a.) Experiments 1a and b’s study phase, (b.) 

Experiment 1a and 1b’s test phase, (c.) Experiments 2’s study phase, and (d.) Experiment 2’s test 

phase.  

 



RUNNING HEAD: FEATURE IDENTITY DRIVES REPRESENTATION 26 

 

In all experiments, color recall was accomplished by presenting a probe in one of the 

memory locations along with a color wheel (Experiment 1a) or grey wheel (Experiment 1b and 

2). Participants used the mouse to change the probe color. The grey wheel covered the color 

wheel to minimize color interference: only one color at a time was shown in the probe location 

as participants moved the mouse around the grey wheel (see Figures 5b and 5d for a visual 

depiction of the response procedure). Orientation recall in Experiments 1a and 1b was 

accomplished by presenting a randomly rotated triangle in dark grey at the tested location and 

allowing participants to adjust the orientation of the probe triangle with the mouse. Orientation 

recall in Experiment 2 was accomplished by representing the memory item at a random 

orientation and allowing participants to move a dot along a grey wheel. Moving the dot caused 

the Gabor patch to rotate. 

Results 

 Model fits for the orientation and color responses in Overkott and Souza (in press)’s 

Experiments 1a, 1b, and 2 are provided in Table 3. For color, the separate-representation variant 

was consistently found to be the preferred model, like in Hardman et al. (2017). For orientation, 

the joint-representation variant was consistently found to be the preferred model, like in the 

current Experiments 1-4. For color, the separate model WAIC advantage was 221 points in 

Experiment 1a, 266 points in Experiment 1b, and 339 points in Experiment 2. For orientation, 

the joint model WAIC advantage was 41 points in Experiment 1a, 294 points in Experiment 1b, 

and 423 points in Experiment 2.  
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Table 3 

WAIC fits to Overkott and Souza (in press)’s Data by 

Experiment and Feature Type for each Model Variant 

Experiment & 

Feature 

Model WAIC WAIC difference 

from best model 

1a Color Separate 89,418 0 
 

Joint 89,639 221 

1b Color Separate 140,980 0 
 

Joint 141,246 266 

2 Color Separate 121,291 0 
 

Joint 121,630 339 

1a Orientation Separate 88,904 41 
 

Joint 88,863 0 

1b Orientation Separate 141,414 294 
 

Joint 141,120 0 

2 Orientation Separate 111,750 423 
 

Joint 111,327 0 

*Bold rows indicate the winning model for each experiment. 

 

Discussion  

 The results of our model-based analysis are consistent across Overkott and Souza (in 

press)’s experiments. Color was always represented with separate representations for continuous 

and categorical information while orientation was always represented with a joint continuous and 

categorical representation. These findings agree with our orientation findings in Experiments 1–4 

and the color findings by Hardman et al. (2017).   

Maintaining representations of multiple features for the same object did not coerce the 

representations into a common structure. It was not the object that defined the representation 

structure, but the stimulus feature-identity. This suggests that it is not a strategic choice to hold 

the items in mind using different structures, at least by default, but rather a property arising from 
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the natural mental representation of the feature itself. In our final set of analyses, we assessed a 

third feature, namely shape, across different task set-ups.  

 

Representing Shape  

 

Based on our analyses of response data for orientations and colors, it appears that the 

structure of the visual representations in working memory depends on feature identity, with 

categorical and continuous information being represented jointly for orientations but separately 

for colors. Our final set of modeling analyses explore the mental representation in working 

memory of yet a third visual feature, shape. Abstract shapes can be gradually morphed from one 

to another to create a circular shape space with similar properties to continuous orientation or 

color space. We reanalyzed the data of two experiments which collected continuous response 

data using the circular shape space developed by Li et al. (2020). Data reported by Souza et al. 

(2021, Experiment 2) were modeled to identify the structure of the mental representation of 

shape information (separate vs. joint), and to test whether, like for orientation and color, the 

revealed structure is invariant across different task set-ups (verbal labeling conditions in this 

case). Data reported by Li et al. (2022) were modeled to confirm the findings based on the Souza 

et al. data set in a task set-up without verbal labeling instructions and when multi-featured 

objects were maintained in mind. 

Procedures of Souza et al. (2021) and Li et al. (2022) 

 In both experiments, continuous shapes were presented and then immediately recalled 

using a continuous response wheel. Souza et al. (2021, Experiment 2) presented four shapes 

sequentially, each for 250 ms with a 1000 ms blank screen following each item. Participants 



RUNNING HEAD: FEATURE IDENTITY DRIVES REPRESENTATION 29 

 

completed this task under four conditions: Suppression, 2-Labels, 4-Labels, and Free Labels. 

Before the experimental trials, Souza et al. trained participants (N = 31) in the 2-Label and 4-

Label conditions to verbally labels all possible shapes using either 2 or 4 arbitrary labels (non-

words randomly assigned to sections of the wheel). During the presentation phase of the 

experiment (see Figure 6a), participants were instructed to use the learned verbal labels (in the 2-

Label and 4-Label conditions), apply their own verbal labels to the shapes (in the free labeling 

condition), or to engage in articulatory suppression. Condition was blocked and varied within-

subjects, and block order was counterbalanced. In the recall phase (see Figure 6b), participants 

were probed in random order to reproduce the shapes of all memorized items by moving the 

mouse around a grey wheel. The mouse location determined the shape that appeared in the probe 

location. The shape varied continuously across 360 different values. 
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Figure 6  

Flow of events in Souza et al. (2021)’s (a.) study phase, (b.) test phase, and (c.) in Li et al. 

(2022)’s Experiment 1. 

 

 Li et al. (2022, Experiment 1) presented 1 or 2 colored shapes during a single 500 ms 

presentation screen, followed by a 1000 ms blank screen. The task was to remember, depending 

on condition, either the shape, the color, or both the shape and color for reproduction at test. Li et 

al. instructed people (N = 29) to avoid verbal labels entirely whenever possible. See Figure 6c for 
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a graphic depiction of the procedure. Li et al. (2022, Experiment 1) cued the item to be recalled 

by placing a combined shape and color wheel at the location to be recalled.  

Results 

 Model fits for Souza et al. (2021, Experiment 2) are provided for each labeling condition 

in Table 4. Like for orientation and for color, we found the preferred model to be highly 

consistent across task conditions. For shape, in all cases, including the suppression condition, the 

separate-representation model variant was the preferred model. The separate model WAIC 

advantage was 90 points in the suppression condition, 538 points in two-label condition, 194 

points in four-label condition, and 237 points in free labeling condition. 

Table 4 

WAIC fits to Souza et al. (2021, Experiment 2) Shape Data by Condition for each 

Model Variant 

Condition Model WAIC WAIC difference from 

best model 

Suppression Separate 66,224 0 
 

Joint 66,314 90 

Two-Labels Separate 66,682 0 
 

Joint 67,220 538 

Four-Labels Separate 61,133 0 
 

Joint 61,327 194 

Free Labeling Separate 62,260 0 
 

Joint 62,497 237 

*Bold rows indicate the winning model for each experiment. 

 

Model fits for Li et al. (2022, Experiment 1) are provided separately for the color and 

shape data in the single and dual feature conditions in Table 5. In all conditions and for both 

features, the separate model variant was the preferred model. The separate model WAIC 

advantage was 137 points in the color single-feature condition, 60 points in the color dual-feature 
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condition, 194 points in shape single-feature condition, and 221 points in the shape dual-feature 

condition.  

Discussion 

 Our modeling analysis of Souza et al. (2021, Experiment 2) and Li et al. (2022, 

Experiment 1) show that shape memory, like color memory, is supported by separate 

representations of continuous information and categorical information. As in the previous 

analyses, feature identity drove the representation structure. Articulation condition, labeling, and 

concurrent feature maintenance for each object did not change the structure used to represent 

shape in working memory.   

Table 5 

WAIC fits to Li et al. (2022, Experiment 1) by Feature Type and Recall 

Condition for each Model Variant 

Condition Model WAIC WAIC Difference 

from best model 

Color: Single Feature Separate 67,626 0 
 

Joint 67,763 137 

Color: Dual Feature Separate 69,764 0 
 

Joint 69,824 60 

Shape: Single Feature Separate 64,926 0 
 

Joint 65,120 194 

Shape: Dual Feature Separate 66,613 0 
 

Joint 66,834 221 

*Bold rows indicate the winning model for each experiment. 

 

General Discussion 

 In nine experiments we explored whether continuous perceptual information and 

categorical gist information for a memory item are represented separately or as a single joint 

representation. We found that the type of structure used to represent a visual feature in working 

memory is entirely and consistently driven by the identity of the feature represented. Orientation 
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memories are composed of a joint representation of continuous and categorical information, but 

color and shape memories are composed of separate continuous and categorical representations. 

In our four new experiments we varied several procedural variables to assess whether we could 

alter the representation structure through alternative means. These variables included 

sequential/simultaneous array presentation, presentation duration, set size, and random/serial 

response order. None of these factors altered the representation structure of orientation. In our 

reanalysis of previously reported data, we explored whether several additional variables could 

alter the representation structure, specifically, maintaining single or multi-feature objects, the 

identity of concurrently held features within an object (i.e., orientation and color, orientation and 

spatial frequency, color and spatial frequency, color and shape), articulatory labeling, set size, 

testing procedure (whole report vs. single probe), and the surface features of the perceptual 

stimulus (i.e., whether orientation was through a dot on a circle, a triangle, or a Gabor patch). 

None of these factors altered the representation structure of color, orientation, or shape. 

Together, this makes a strong argument that feature identity drives the structure of the mental 

representation, that different features utilize fundamentally different representations, and that the 

structure of these representations is invariant across task context. 

Visual working memory representations vary based upon stimulus-specific features. 

Analysis techniques that aggregate data across stimulus-specific variance, using measures such 

as mean condition performance and error distribution comparisons, will mischaracterize the 

structure of the underlying representation. While a coarse level of resolution may be sufficient 

for predicting typical overall performance on a task, detailed models that characterize trial-to-

trial variation in stimulus properties are necessary to understand the structure of individual 

memories. The importance of this issue should not be underestimated. Many studies have 
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explored whether individual memory representations rely upon discrete or continuous resources 

using the delayed estimation task (Adam et al., 2017; Bays et al., 2009; Bays & Husain, 2008; 

Donkin et al., 2015; Keshvari et al., 2013; Pratte, 2019; van den Berg et al., 2014; Zhang & 

Luck, 2008). The norm in this task is to model individual memory items as purely continuous 

representations by characterizing only a single memory representation and guessing distribution, 

sometimes with the inclusion of swap errors.  

To assess how using the wrong model impacts memory performance we compared 

parameter estimates across the separate, joint, and a standard ZL model2 based upon the 

approach of Zhang and Luck (2008). We again found a remarkably consistent pattern with only a 

few examples of deviation from the pattern shown in Figure 7 (see the Supplementary Figures 

for similar parameter comparisons of all experiments analyzed in the paper). In most experiments 

we found that all three models arrived at similar estimates of guessing rates. Memory precision 

differed dramatically across the three model variants while the separate and joint models 

produced modestly different estimates of PO. The failure to account for categorical 

representations or the use of the wrong continuous-categorical structure alters estimates of 

memory precision and gives a minor misestimate of the contribution of categorical 

representations. Hardman et al. (2017) also found that use of the wrong model impacted 

conclusions about whether parameters changed across set sizes. Without the correct model, 

experimental analyses and the accompanying theoretical conclusion relating to memory precision 

and categorical elements may not be valid.  

One could argue that all three model variants (joint, separate, and ZL) all show the same 

pattern of parameter value change across conditions so all model variants would result in the 

 
2 We implemented the ZL model using the hierarchical structure of Hardman et al. (2017) with the probability 

continuous set to 0. 
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same pattern of results across experimental conditions and thus, ultimately, in the same 

theoretical conclusions. While it is certainly true that Figure 7b shows clear loss of precision as 

set size increases across all model variants, the magnitude of change across the different set sizes 

is clearly different between the different models (e.g., response error increases from about 10 

degrees for set size 1 to a bit over 30 degrees for set size 5 for the joint model, but it only 

increases to a bit under 20 degrees for set size 5 for the ZL model). This dramatic difference 

between the models in the magnitude of change of memory precision across different set sizes 

could lead to a failure to detect a change across conditions or an artificially inflated effect across 

conditions when using an incorrect model. It is also clear that the use of the incorrect model 

would introduce problems in any context where the parameter value does matter or in any case of 

comparing precision across estimates derived from different models.    
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Figure 7 

Mean parameter estimates produced by 3 model variants in Experiment 4. Error bars represent 

95% credible intervals. Panel (a) shows the probability an item was in memory. Panel (b) shows 

the memory imprecision. Panel (c) shows the proportion of memory that was continuous. In the 

separate model this means the probability an item in memory was represented continuously. In 

the joint model this means the relative weight of the continuous memory on the joint 

representation. 

 

Mental Representations of Color, Shape, and Orientation in Working Memory 

 Two studies had previously assessed whether continuous and categorical information are 

maintained through separate or joint representations. Hardman et al. (2017) and Souza and Skóra 

(2017) found evidence in favor of separate representations of continuous and categorical features 

for colors. The current study concurs with this conclusion for color memory, replicating the 

findings of Hardman et al. and Souza and Skóra by analyzing four additional experiments 

requiring color memory reproduction using differing experimental procedures, memoranda 

(colored triangles, colored gratings, colored shapes), and task instructions (suppression, labeling, 

single vs. dual-feature storage). Other researchers have previously advocated for the use of color 

categories in memory representation (Bae et al., 2015; Bae et al., 2014; Donkin et al., 2015; 

Olsson & Poom, 2005; Smith et al., 2020), but here, we not only argue that color categories are 
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used, but that they are maintained in mind alongside and distinct from continuous perceptual 

information about color, resulting in separate representations.   

Previous work by Souza et al. (2021) demonstrated clear use of categories in memory for 

abstract shapes. In reanalysis of their experiment and of Li et al (2022), we found that shape used 

a separate representation structure for continuous and categorical memory. Across these 

experiments many variables were manipulated including set size, verbal labeling, and whether 

the objects were single or multi-featured. In all cases a consistent separate representation 

structure was clearly observed for shape, matching the findings from color memory experiments.  

In four new experiments and reanalysis of three published experiments we examined the 

structure of orientation memory. We again found consistent results across many task 

manipulations including, set size, presentation time, recall order, task set-up, single versus multi-

featured items, and verbal labeling conditions. This time the opposite structure was observed. 

Orientation showed a clear pattern of joint representation of continuous and categorical memory. 

This representation structure occurred across three different types of orientation stimuli, rings, 

triangles, and Gabor patches (and they seem to occur also for orientation information conveyed 

by clockface stimuli, see Ngiam et al., 2022), indicating that the particular memory items used 

were not the cause of the joint representation structure for orientation. Taken together, the 

current study (1) confirmed that colors use separate representations of continuous and categorical 

features, (2) revealed that shapes also use separate representations of continuous and categorical 

features, and (3) uncovered that orientations use joint representations of continuous and 

categorical features. 

Different Representation Structure for Different Features 
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 When comparing the results across the three features, it becomes clear that two different 

representation structures exist in visual working memory, and that the structure depends on 

feature identity. The existence of two differing representations structures in visual working 

memory for the storage of continuous and categorical information indicates that individuals are 

not simply attending to and retaining the mental image of a stimulus when performing a visual 

working memory task. Other laboratories exploring the structure of mental representations have 

come to similar conclusions while focusing on different structural elements of the representation 

than those we focus on here. Studies investigating memory for object sets have found strong 

evidence that memory representations contain ensemble statistics reflecting features of the entire 

memory set or a predictable subset (Brady & Alvarez, 2011; Lew & Vul, 2015; Son et al., 2020; 

Utochkin & Brady, 2020). For example, Brady and Alvarez (2011) asked participants to 

reproduce the size of a single circle within a memory set. They found that the reproduced size of 

the circle was biased toward the average size of all circles that shared a color with the target. 

These findings support a hierarchical memory representation that includes representation of 

context or basic summary statistics of relevant set features. Mathy and colleagues have argued 

for a similar representation resulting from stimulus compression. When stimuli undergo data 

compression, commonalities across memory stimuli are represented by a single shared 

representation, lowering the amount of data the system must maintain (Chekaf et al., 2016; 

Mathy & Feldman, 2012). Converging results emphasize that working memory makes use of 

several levels of representation rather than being an isolated verbal or visual trace held within a 

segregated buffer.   

Our finding of differing representations across differing feature types also speaks to the 

larger debate about domain-specific versus domain-general working memory systems (Baddeley, 
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1986; Berry et al., 2019; Cocchini et al., 2002; Cowan, 1995; Morey, 2018; Vergauwe et al., 

2010). Differing feature types are not represented by a common abstracted representation within 

working memory, but rather are driven by the feature type itself. This does not necessarily mean 

that all mechanisms acting on those representations are domain- or feature-specific. It is possible 

that separate and joint representations may be acted upon by the common domain-general 

mechanisms. The present findings are consistent with domain-specific models that propose fine-

grained segmentation of maintenance structures (Logie & Pearson, 1997; Wang et al., 2017), but 

also with domain-general systems that operate upon feature-specific representations (Cowan, 

1995; Postle, 2006).  

Although consistent with both domain-specific and domain-general models of memory, 

models of memory differentiating visual and spatial storage buffers (Logie & Pearson, 1997) 

provide a potential explanation of why the representational structure of orientation is different 

from that of color and shape. One could consider orientation a spatial feature and color and shape 

visual features. If the spatial buffer uses a joint-representation structure and the visual buffer uses 

a separate-representation structure this could explain the difference in representation structure 

across features (see also work on multiple object tracking observing a similar dissociation 

between tracking visual identity of objects vs. the location of objects; e.g., Pylyshyn, 2004). 

Future work testing the representational structure of a larger range of both visual and spatial 

features is needed to fully grasp the broader implications of the current findings. It is important 

to know whether orientation is an outlier or if other features also use joint representation 

structures. Understanding the representational structure of a wider range of features could also 

provide evidence for or against a domain-based fractionation of visuo-spatial working memory 

maintenance into separate, domain-specific buffers (Logie & Pearson, 1997) .  
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Differences in representation structure across visual features also have implications for 

the theoretical interpretation of many experimental findings. For example, many approaches 

assume that verbal rehearsal or labeling effects act by enhancing only a semantic/categorical 

representation and not the exact visual representation (Alogna et al., 2014; Donkin et al., 2015; 

Schooler & Engstler-Schooler, 1990; Sense et al., 2017).  This may be consistent with our model 

of color and shape representations, but orientation does not appear to have a separate (potentially 

verbal) trace different from the perceptual-visual image. Instead with orientation memory, 

categorical information acts as an anchor which is then biased by the perceptual-visual 

information. Verbal rehearsal or labeling in this context may strengthen the anchor but would 

never be truly independent of the perceptual-visual image itself. Accordingly, recent work 

assessing the impact of verbal labeling of color and orientation memories observed that labeling 

affected color and orientation memories differently. Labeling added categorical and continuous 

information to color memories, but only continuous information to orientation memories 

(Overkott & Souza, in press). Rather than viewing manipulations as affecting a specific resource 

or type of representation, the present work makes clear that stimulus-specific characteristics will 

influence how the information is represented mentally and thus, different cognitive mechanisms 

may operate differently on them. 

Better understanding of representation structure is also needed to verify the validity of 

previous work using memory models assuming no categorical representation (Bays et al., 2009; 

Fougnie et al., 2012; Zhang & Luck, 2008) . In our experiments, the model used to estimate 

memory parameters had only a minor impact on guessing parameters but had a strong impact on 

memory precision estimates (see Figure 7 and supplemental materials). Findings relying on 

memory precision estimates may be invalid when estimated with the wrong model of categorical 
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memory or without estimating categorical memory contributions. Going forward it is important 

to recognize that continuous, categorical, ensemble characteristics, and other complex qualities 

of mental representation all contribute to the working memories we utilize in day-to-day 

cognition. The present work provides a crucial step toward understanding the basic 

representations that underly human thought.  

 

Constraints on Generality 

Our findings are based upon data collected in three different countries (The United States, 

Canada, and Switzerland). In Experiments 1-4 the sample was collected from an urban 

community college participant pool composed of individuals reflecting the demographics of the 

general population in the area (New York City). This sample had wide diversity, including a high 

number of immigrants from around the globe, first-generation Americans, and a majority of non-

white individuals. The samples from Switzerland come from the Zurich area, which is quite 

cosmopolitan, including people from different backgrounds. Despite this diversity, all our 

participants did reside in North America or Europe at the time of testing, they were attending 

college, and most, but not all, were young adults. It is possible that individuals with different 

educational backgrounds may use different representation structures, although we view it as 

unlikely. If representation structures reflect brain architecture or optimal data formats, then there 

is no compelling argument to support a demographics-based difference in representation 

structure. Our research does not rule out the alternative possibility that cultural artifacts of some 

sort drive how we structure basic visual representations. Research from a large variety of 

different cultures and socioeconomic backgrounds would be necessary to test this later prediction 

more thoroughly.  
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