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probability. To compute such probability and the abundance of PBHs, the curvature perturbation is
frequently adopted. In this note we emphasize that its use does not provide the correct PBH formation
probability. Through a path-integral approach we show that the exact calculation of the PBH abundance
demands the knowledge of multivariate joint probabilities of the curvature perturbation or, equivalently,
of all the corresponding connected correlators.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The formation of PBHs in the early universe is a rare event (for recent reviews, see [1-3]). In the most standard mechanism PBHs are
originated from the enhancement of the curvature power spectrum below a certain length scale. If the power spectrum of the curvature
perturbation is enhanced during inflation from its value ~ 10~ at large scales to ~ 102 on small scales, and after the fluctuations are
transferred to radiation during the reheating process after inflation, PBHs may form from sizeable fluctuations in the radiation density
field. This happens if they are able to overcome the resistance of the radiation pressure (see Ref. [4] and references therein for more
details).

Since such PBHs are generated thanks to large and rare fluctuations beyond a given threshold, the formation probability, as well as
their mass fraction, are extremely sensitive to tiny changes in the tail of the probability distribution, and therefore to possible non-
Gaussianities [5-17].

There is much ambiguity in the literature about which criterion should be used to identify the perturbations able to form a PBH
and how the corresponding critical threshold is calculated. Nevertheless, it is rather clear by now that the correct quantity to use is the
smoothed density contrast §,; (to be defined later on) rather than a metric perturbation such as the comoving curvature perturbation ¢.

First of all, on superhorizon scales and by a coordinate transformation, one can always shift the comoving curvature perturbation by an
arbitrary constant, making the calculation of the PBH abundance not physical. This problem is avoided if the density contrast is adopted,
as it depends on spatial derivatives of the curvature perturbation. Second of all, the density distribution may be not already smooth on
scales smaller than the scale being considered, and therefore a smoothed density contrast should be used.

While these comments are already present in the literature [18-23], the confusion seems to persist as, when realized that a perturbative
treatment of the statistics of rare fluctuations fails [24-31], the comoving curvature perturbation continues to be adopted in the calculation
of the PBH abundance.

The goal of this note is to show that

1. the knowledge of the probability distribution of the comoving curvature perturbation does not suffice to calculate the abundance of
PBHs, being the smoothed density contrast the correct variable to use. This in turn requires the knowledge of the probability distribu-
tion of the radial derivative ¢’ at a distance ry, (to be defined later on) from the threshold (or peak) and, therefore, of all the connected
n-point correlators of the curvature perturbation. In other words, one needs to know its joint probability P[¢(X1),--- ,{Xn)].
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2. As the abundance of PBHs depends on the threshold §. of the smoothed density contrast which, in turn, depends on the (mean) profile
of the curvature perturbation ¢(r) [32], again the knowledge of at least the joint two-point probability P[¢(X1), {(X2)] is necessary.

We will use a path-integral approach to make these points as transparent as possible. Of course, if the comoving curvature perturbation
¢ is a functional of a Gaussian linear component, whose multivariate joint probability is known, one should calculate the corresponding
joint probability of the non-linear variable ¢ and the abundance of PBHs passing through the smoothed density contrast and its threshold.

This note is organised as follows. After some preliminaries in Section 2, Section 3 is dedicated to discuss the two main points raised in
the introduction. Section 4 offers a comparison of the calculation of the PBH abundance through the smoothed density contrast and the
curvature perturbation. Finally our conclusions are given in Section 5.

2. Some preliminaries

As we mentioned in the introduction, we focus on one of the most likely scenario for the formation of PBHs, the collapse of sizeable
overdensities generated during inflation which re-enter the cosmological horizon during the subsequent radiation-dominated era.

On super-horizon scales, one can apply the gradient expansion approach [33] to write down the relation between the non-linear
density contrast §(r) and the time independent curvature perturbation ¢ (r) as [34]

8/ 1\ 5202 2
s=——(—) e £(/2yy2¢()/ , (2.1)
9 \aH

in terms of the scale factor a and Hubble rate H. The criterion for which a cosmological perturbation may undertake gravitational collapse
and form a PBH depends on the amplitude measured at the peak of the compaction function, defined to be the mass excess compared to
the background value in a given radius. It can be expressed on super-horizon scales in terms of the curvature profile as [34,35]

c(r) :—%rg/(r) [24+7¢'(M)]. (2.2)

where the prime stands for differentiation with respect to r.
The compaction function takes its maximum at the comoving length scale rp, satisfying
C'(rm)=0 or  ¢'(rm)+rm¢"(rm) =0. (2.3)

One can then define consistently the smoothed perturbation amplitude as the volume average of the energy density contrast within the
scale rp;, measured at the cosmological horizon crossing time aHry, =1 [35]

'm

3 2 /
— 40 ¢
= 0 eC(rm))3 O/drtS(r) (re ) (re ) , (2.4)

where we have adopted a top-hat window function to account for the treatment of the threshold [36]. This represents the main quantity
determining the abundance of PBHs, which can be simplified to give

3 4
dm =6 — 5812» = _grmf/(rm)- (2.5)

As one can already appreciate at this stage, only gradients of the comoving curvature perturbation may affect the PBH formation, given
that on super-horizon scales one can always perform a coordinate transformation which shifts the ¢, but without affecting the physics.
Furthermore, a correspondence between peaks in the curvature perturbation and peaks in the density contrast is guaranteed only at linear
level [20]. These comments clarify how a well-posed criterion to distinguish which perturbations may collapse to a PBH should be based
on the smoothed density contrast and not on the curvature perturbation.

The PBH abundance can then be computed by integrating the probability distribution function of the smoothed density contrast from
a threshold value §. on, as

ﬂ:/P(cSm)dSm. (2.6)
e

However, using the relation shown above, one can use the conservation of the probability to write

P(8))dd; = P(8m)ddm, (2.7)

such that the linear smoothed density contrast is the ultimate key parameter which we have to compute the probability of, with a
corresponding threshold given by

4 3
be=3 (1 —J1- 55,:) ) (2.8)

It is crucial to note finally that the probability of §; depends on the statistical properties of the curvature perturbation ¢, which are
dictated by the dynamics of the formation scenario under consideration.
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The curvature perturbation profile is also fundamental to determine the threshold to collapse. In particular, many general-relativity
numerical simulations have been dedicated to the computation of the threshold assuming a benchmark parameterization of the curvature
profile as (see for instance Refs. [35,37])

r\%
¢(r) =goexp [— (r—> } (2.9)

in terms of the amplitude ¢o and scale ry;,; of the collapsing perturbation. This corresponds to a energy density profile of [20]

5—812 r2y2 1 rzyz ¢ 210
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obtained by inserting the assumed parameterization in Eq. (2.1). One can then relate the threshold of the smoothed density contrast to
the amplitude of the curvature profile as [20]

e 3
ng(l— 1—5&). (2.11)

While we will use the parametrization (2.9) of the curvature perturbation profile in Section 4, we stress that, being the curvature pertur-
bation a stochastic quantity, one may only calculate the mean profile of the curvature perturbations above a threshold.

As we will show in the next section, both the probability of the smoothed density contrast and the knowledge of the curvature
perturbation profile may be obtained employing a path-integral approach in terms of the n-point correlators of the curvature perturbation.
This requires however the knowledge of its joint probability.

3. What is required to calculate the PBH abundance

In this section we are going to show, with the same path integral technique used in the literature to study the non-Gaussian fluctuations
in the context of large scale structure [38-41], the dependence of both the smoothed density contrast probability and the curvature
perturbation profile in terms of the correlators of the curvature perturbation field.
3.1. The smoothed density contrast probability

As stressed in the previous section, the key parameter to compute the PBH probability is the smoothed linear density contrast §;. The

joint probability that, at a given spatial point X, the linear field & (X) attains a value in the range between §; and 8, + d§; is given using the
path integral approach as

P31 =/[D§(7<)]P[§(7<)]8D[51(?<) =&l (3.1)
where 8p[---] indicates the Dirac-delta distribution, while P[¢(x)] represents the probability distribution of the curvature field. Given that

1= — ot () = — a3 /drrZG(R nv? (3.2)

1=-3 m¢ (Fm) = 92 H2 R3 ¢ R=rm’ .

where 6 indicates the Heaviside step function, we can restrict to the calculation of the more general integral

P(a) =/[DC(?O]P[C(i)]SD[VZER(?() —ol, (3.3)
where we have introduced the quantity

V2R() = / &y Wr(R =DV () = %/ drr*0(R —n)V2¢, (34)
choosing a top-hat window function in real space W (|x — y|) =6(R — |x — y|)/Vg with Vg =47 R3/3 and |x — y| =r, and performing

the angular integral assuming isotropy. To compute the functional integration in Eq. (3.3) one can make use of the integral representation
of the Dirac-delta function

7o
5D(X)=f ge”", (3.5)
to write
[ d o T T
P(a) = / E/[’DC(X)]P[;“(X)]eXp —zxa+zk/d YWRr(x—yDVae(y)|. (3.6)

By using the definition of the partition function
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2U1= [1De@PLelexs [i / d3y](5/)§(37)} , (3.7)
in terms of the arbitrary external source J, we therefore get
i dh a0 7%y 2 5 >
P(a) = / 77 ¢ Z[]], ](y)=>»VxWR(IX—J/I)’, . (3.8)
g x=0

The probability of PBH formation P(«) can then be expressed introducing the connected correlation functions of the curvature perturba-
tion

EM Ry, - ,;Cn):/[Df(})]P[f(})]g(}1)'"C(;‘n)s (3.9)
by expanding the logarithm of the partition function as

nz{=y l—n, / Exy o P EP G TG TG =) (i’\‘)n £n(R). (3.10)

n=2 " = "
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n
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The probability then becomes

P(a) = «/;_n exp L; %&(R) <%>n} exp [—az/Z] . (312)

Having chosen a top-hat window function for which

3p(R—1Xal)  38p(R — [Xal)

VRViWR(Xa — X])l3mg = —2——= - , (3.13)
. 4T Xl 3 %q|
Eq. (3.11) can be rewritten as (labelling |Xq| =r4)
4 \" 1 2 38p (R — 1) dQ;  d, -
R=—(— drar? [ =sp(R — — — MRy,
£n(R) (vR> /[]1 TaTg (ra D(R—ro) + —— - ) / 1 E G R
A \" [ & 2 38p (R —14)
== (55) [TTara (Zon—ra+ 20T el o, (3.14)
VR o T'a 0rq
One finally gets
3\N"r 9 .
Ry=| — — nr’...’r 3.15
£a(R) <R> garasavu n) - (3.15)

From this final equation one can then appreciate how, in order to properly compute the abundance of PBH formation, one needs the
knowledge of the n-point correlation functions of the curvature field, which can be only computed knowing the joint probability of the
field in different spatial points.

3.2. The smoothed density contrast threshold

As we previously stressed, the knowledge of the threshold of the smoothed density contrast passes through the calculation of the mean
profile of the curvature perturbations which are above a given threshold (or peaks). In other words, the threshold is not an universal
number, it depends on the perturbation profile. The goal of this section is to show that the calculation of the threshold demands the
knowledge of, at least, the two-point joint probability of the curvature perturbation.

We follow Ref. [42] where such calculations are already present and we summarise them here for the sake of the reader. The starting
point is the conditional probability to have at a distance r from a threshold a given value ¢ (r)

(606G — crNo G0 —vo)

(9(;0 - va)> (3.16)

P ()0 >vo) =

Here o is the square root of the variance of the curvature perturbation and the threshold is indicated by vo. The mean curvature
perturbation we look for corresponds to
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P(¢(r), &0 > vo)

;(r):(g(r)|;0>vo)=/df(f)é“(r) P(Zo > Vo)

" P> va) / dé(r>§<r><an(c(x)—m))e(;o—va))

= 5o / de(r) ¢ () / [DZ@)IPL(X)]8p (£ (X) — £ ()6 (Lo — vO)
(¢o > vo)

(¢®o0—vo)

1 - - -
= /[DC(X)]PU(X)] (X)) 05 —vo) = (317)
P (%o > vo) <9(;0 _ v0)>
Using the definition (3.7), we can write
(oG —vo))= @m0 [ darar [ day / o f e @r0n 02 71 ) (318)
with
2
J®O =" JiGi X,  JiGi, %) = ¢idp R — ). (3.19)

i=1

Recalling the standard expansion for InZ[J]

InZ[J Z /d3y1 fdynZ Zjh(yhx]) Jin O X)E @ (G, -+ In)

i1=1 in=1

_Zny Z( >¢1 ¢g " (r:l'l)n m]> (3.20)

where
(n) _ (11) > - > -
ml = X1, , X1, X2, , X2 ), 3.21
Epmn—m =€ ( ) (3.21)
m-times (n—m)-times
we obtain

o0 o0 oo

(¢Gr)0G) —vo)) = 2m) 20 / day / day / dé f a6
= 1)" n) A
exp{ Z ( ) [m,n—m)] aar]n 8ag—m}

exp (-502@% +¢3) —io(¢1a1 + ¢202)>- (3:22)

The prime on the sum indicates that it has to be performed by omitting the terms containing qﬁ and qb%. Integrating over the variables
¢1 and ¢,

(¢Gr)0G) —vo)) = 2m) o / day ay / da

(- 1)“ . 1 gm gn-m 1
eXP{ Z (,Z)n m5aT gl ™ exp —5(a3+a5) , (3.23)
we find
= 5 o 2 (PR, %) e P V2 —1 @ 3 s s
<§(xl)0(¢(xz)—vcr)>= 5 2( o2 T35 (KX x) e E (X X0 ) o )

(3.24)
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The connected piece of Eq. (3.24) turns out to be

oo
o 2 1 1 1%
X1)0(¢ (% —1)cr>=—e_”/2 M2 X1, %2, -+, %) Hm | —= ) ,
(¢GOEE) —vo) = mX_‘;Zm/Z(m+1)!o(m+2)g 1., o) H (5
(3.25)
where Hp,(x) are the Hermite polynomials. At the same time, the one-point non-Gaussian threshold probability for v > 1 is
e~V /2 * -
(60— vo)~ = —exp [ /e @/m! ). (3.26)
21y =

where £™(0) are the n-point correlators calculated at the same point. The mean profile at distance r from the origin and for large
thresholds is given by (|x; —X1| =T)

_ (2) L. 2 . L 00
C(r)=v[S O(r) +— 5(3)(X1,Xz,xz)+6‘;—35(4)(X1,Xz,xz,xz)+~--]exp (—Z(V/O)”S(”)(O)/n!>.

2
20 et
(3.27)

This expression, which is the starting point for the calculation of the smoothed density contrast threshold, shows that the knowledge of
the PBH abundance asks at least for the bivariate joint probability of the curvature perturbation P[¢(X1), ¢(X2)], necessary to compute all
the connected n-point correlators evaluated in two different points.

Another, maybe more intuitive, way to understand why the correlators of the curvature perturbation are needed is the following.
Take a peak of the curvature perturbation, located at X = 0 where the value of the curvature perturbation is &p, which by itself is a
stochastic variable. Performing a rotation of the coordinate axes to be aligned with the principal axes of length A; (i =1,2,3) of the
constant-curvature perturbation ellipsoid and Taylor expanding up to second-order gives [43]

3 3
1 2 2 2
(=g~ Zkixi , = Zx,- : (3.28)
i=1 i=1
It is straightforward to obtain
4 8
5l=—§rm§/("m)3 g[fo_f(rm)]- (3.29)

This expression shows that the statistics of the smoothed density contrast calculated in a volume of radius r; demands the knowledge of
the correlations of the curvature perturbation in two different spatial points.

4. A simplified comparison

Given the result of the previous section, one is obliged to ask how far we can go in the calculation of the PBH abundance. Finding that
the tail of the probability of the curvature perturbation is not Gaussian but, e.g. an exponential function, is not enough. On the contrary, it
makes the story more intricate. Indeed, while for a Gaussian variable the joint probability is a multivariate normal distribution, for other
functions the joint probabilities are not unique.

One option is, of course, to know the expression of the non-linear curvature perturbation in terms of a Gaussian component. If so,
one may and must calculate the joint probability of the curvature perturbation from the multivariate normal distribution of the linear
Gaussian component.! In this section we are less ambitious, and we offer one example to show that the abundance calculated from the
curvature perturbation is different from the one inferred from the smoothed density contrast. We do so by starting from the benchmark
profile (2.9).

The example is the same used in Ref. [21], in which the authors considered an ultra-slow-roll scenario of single-field models of
inflation, which is based on the assumption that during its evolution, the inflaton field ¢ rolls down a flat region of its potential for a long
enough period, during which violation of the slow-roll conditions results in an enhancement of the curvature perturbation. Using the §N
formalism, one can relate the perturbation of the inflaton field ¢ to the curvature perturbation as

1 8¢
.= 31n(1+3ﬁe>, (41)
where 7, denotes the background velocity of the inflaton field at the end of the ultra-slow-roll phase.

Given the expected Gaussian behaviour of the massless perturbations ¢ in de Sitter, one can determine the non-Gaussian probability
distribution of the curvature perturbation by using probability conservation as

déo Te 1 (72, 2
P()=P[s — = -— =5 £-1) )-3 42
(&) =P[ ¢(c)]’ ac ‘ N exp[ 27, ( 9 (e ) ) c] (4.2)

1 Notice also that the comparison between the abundance of PBHs calculated from the fully non-linear ¢ and the one computed with its Gaussian component adopting
the same threshold, as routinely done in the literature, is in fact meaningless as the corresponding thresholds are different. They indeed depend on the peak profiles which
are different in the two cases.
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Fig. 1. Comparison of the PBH abundance using the smoothed density field (blue line) and the curvature perturbation (red line), in terms of the rescaled variance of the
Gaussian curvature perturbation component.

in terms of the variance of the Gaussian inflaton fluctuations
Opy = / dInk Psy (k), (43)
and the inflaton perturbation power spectrum 7Psq(k). As one can easily appreciate, in the limit of small curvature fluctuations one

recovers a Gaussian distribution, while for large values the probability is exponential and has a non-Gaussian exponential tail.?
Given the exact expression of the non-linear curvature perturbation in terms of the Gaussian inflaton fluctuations, one can estimate the

probability distribution of the smoothed linear density contrast §; by using the relation § = —4r;¢’(r;)/3 and conservation of probability
as [21]
e—1/20% 5 55
P@) = Ux~[20y,/o + 028
VT 02 + 028t XTOvA
V2 oy ek QoRoV 2078 Erf ox (4.4)
V2oy,/0} + 026}
in terms of the variances
1612 9
o =—5 [ dinkk®Psy(k), oy = —05%. (4.5)
9 e ne

The probability function recovers a Gaussian in the limit of small inflaton fluctuations, while tends to a Cauchy distribution for large values
of the field.

One can finally compare the PBH formation probability depending on the use of the smoothed density contrast § or the curvature
perturbation ¢ as

2/3 4/3 o0
ﬂam=/1’(8m)d8m=/1’(5z)d51 Vs ﬁg=/P(§)d§7 (4.6)
¢ 5!,6 S

using the results of Eq. (4.4) and Eq. (4.2) for the probability distributions and Eq. (2.8) and Eq. (2.11) for the threshold to collapse. In
other words, instead of taking the mean profile, we adopt here for simplicity the benchmark profile for the curvature perturbation (2.9).
The comparison is shown in Fig. 1 for the choice of a monochromatic power spectrum of the inflaton perturbations peaked at the
characteristic momentum scale ki, for which 8. ~ 0.59 and k,r,; >~ 2.74 have been computed numerically [35,37]. The corresponding value
¢~ 0.9 is deduced from Eq. (2.11). We have also introduced the normalised variance o, = 054 /T, of the Gaussian component. As one
can appreciate, the two approaches delivery a different abundance of PBHs, at least one order of magnitude different for large fluctuations.

5. Conclusions

The goal of this short note was to clarify some confusion which seems to propagate in the literature about the misuse of the curvature
perturbation probability in the computation of the PBH abundance. Even though the non-Gaussian, non-perturbative, nature of a rare event
like the formation of a PBH manifests itself in the probability of the curvature perturbation, we have stressed that the correct treatment
should involve the smoothed density contrast and its threshold. This, in turns, requires the knowledge of all the n-point connected
correlators of the curvature perturbation. Said in other words, one should in principle know the joint probabilities and not only the
one-point probability P(¢).

2 This result confirms what predicted in Refs. [25,26,44] using a stochastic approach, for large field displacement during the ultra-slow roll phase, for rapid subsequent
transition into the slow-roll phase [45] and for a constant potential.
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