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SUMMARY

The quality and quantity of tumor-infiltrating lymphocytes, particularly CD8+ T cells, are important param-
eters for the control of tumor growth and response to immunotherapy. Here, we show in murine and hu-
man cancers that these parameters exhibit circadian oscillations, driven by both the endogenous circa-
dian clock of leukocytes and rhythmic leukocyte infiltration, which depends on the circadian clock of
endothelial cells in the tumor microenvironment. To harness these rhythms therapeutically, we demon-
strate that efficacy of chimeric antigen receptor T cell therapy and immune checkpoint blockade can
be improved by adjusting the time of treatment during the day. Furthermore, time-of-day-dependent
T cell signatures in murine tumor models predict overall survival in patients with melanoma and correlate
with response to anti-PD-1 therapy. Our data demonstrate the functional significance of circadian dy-
namics in the tumor microenvironment and suggest the importance of leveraging these features for
improving future clinical trial design and patient care.

INTRODUCTION

Immunotherapy is currently one of the most effective means of

controlling tumors and, in some cases, curing patients.1 The

most promising interventions involve the injection of chimeric an-

tigen receptor (CAR) T cells or immune checkpoint inhibitors

(also known as immune checkpoint blockers [ICBs]).2,3 CAR

T cell therapy consists of administering to the patient T cells

that are genetically engineered to recognize tumor cells.4 ICB

therapy aims to activate the antitumor functions of endogenous

T cells; for example, the administration of an anti-programmed

cell death protein 1 (PD-1) antibody inhibits suppressive mole-

cules on the surface of T cells, thereby activating them.5

Anti-tumor immunity has recently been demonstrated to be

time-of-day dependent.6 Specifically, dendritic cells are more

effective in controlling tumors grafted into mice at specific times
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of the day.6 Overall functions of the immune system are under a

circadian, �24 h control.7–13 Leukocytes emigrate from blood to

tissues such as lymph nodes in a rhythmic fashion,14–18 which

has been associated with better antigen recognition at specific

times of the day.19–21 In addition to trafficking properties, the

phenotype of immune cells is also time-of-day gated, so that

stimulation at a specific time of the day yields different outcomes

in the associated immune responses.22,23 This has been linked to

time-of-day dependent reactions to vaccines in mice and hu-

mans24,25 andwas recently extended also to anti-tumor vaccina-

tions.6 Although the immune system is highly rhythmic in the

steady state and after inflammatory challenge, it is unknown

whether circadian rhythms regulate the distribution and pheno-

type of immune cells within tumors.

Considering that the immune system is under circadian con-

trol, it seems important to define the possible relevance of circa-

dian rhythm in an immunotherapy context. Here, we set out to

define whether the tumor microenvironment (TME) itself exhibits

circadian oscillations. We demonstrate that tumor-infiltrating

leukocytes (TILs) exhibit circadian oscillations in both number

and phenotype, which can be exploited therapeutically with

timed administration of CAR T cells or ICBs.

RESULTS

Leukocyte infiltration of tumors exhibits circadian
oscillations
We explored whether the number of leukocytes in tumors ex-

hibits time-of-day differences, by injecting B16-F10 melanoma

cells expressing ovalbumin (B16-F10-OVA) subcutaneously

(s.c.) into cohorts of mice at one time of the day (that is, at zeit-

geber time 9 [ZT9; 9 h after light onset in a 12 h light/12 h dark

environment]) and harvested tumors 12 days later at 4 different

times of the day (ZT1 [‘‘morning’’], ZT7 [‘‘day’’], ZT13 [‘‘evening’’],

and ZT19 [‘‘night’’]). The overall number of TILs was

highly dependent on the time of day of tumor harvest, with

total leukocyte numbers peaking in the evening (ZT13)

(Figures 1A and S1A). Specifically, we detected time-of-day

differences in the numbers of tumor CD4+ and CD8+ T cells,

NK1.1+ cells, CD11b+Ly6C+ cells, CD11c+MHCII+ as well as

CD19+ cells (phase-shifted from blood leukocyte counts),

whereas CD11b+F4/80+ cells and CD11b+Ly6G+ cells did not

exhibit significant changes (Figures 1A, S1B, and S1C). We

confirmed these data by immunofluorescence staining of tumor

sections, showing higher T cell numbers in the evening (ZT13)

compared with the morning (ZT1) (Figure 1B). We did not

observe significant differences in tumor volumewithin a day (Fig-

ure S1D), and although tumors had longer times to grow when

harvested at night (ZT19) compared with the evening (ZT13),

we observed higher leukocyte numbers in the evening (Fig-

ure 1A). This demonstrated that differences in leukocyte

numbers were due to the time of day of tumor harvest. We further

observed no changes in vascular density in the tumor (Fig-

ure S1E), indicating this phenotype to be immune cell specific.

We confirmed the phenotype in a spontaneous melanoma tumor

model (Tyr::CreERT2; PtenloxP; BRafCA)26 (Figures 1C, S1A, and

S1F), which together demonstrated that numbers of TILs exhibit

time-of-day differences, peaking in the evening.

We next transferred animals to complete darkness conditions,

as circadian rhythms persist even under constant environmental

conditions, such as in the absence of rhythmic lighting patterns.

Constant darkness did not alter the observed time-of-day differ-

ences, demonstrating these oscillations to be bona fide circa-

dian in nature and not simply a response to a rhythmic light:dark

environment (Figure 1D). However, switchingmice from a normal

light-dark to a 12 h inverted dark-light cycle inversed TIL

numbers (Figures 1E and 1F). This demonstrated that the oscil-

lations were not dependent on light per se but that they could

be synchronized to a new lighting regime. This ability to be syn-

chronized by an external cue is an additional feature of circadian

rhythms (Figure 1F). Subjectingmice to an acute jet-lag protocol,

which consisted of shifting mice to a 6 h phase-delay and har-

vesting tissues at the previously assessed respective morning

and evening time points thereafter (Figure 1E), furthermore abro-

gated time-of-day differences in TILs (Figure 1F). Together,

these data provide unexpected evidence that TILs exhibit circa-

dian oscillations in cellularity, a process that is entrained by light.

Endothelial cells gate circadian leukocyte infiltration
To assess the etiology of these oscillations, we quantified

whether leukocyte proliferation, death, egress, and/or infiltration

exhibited time-of-day differences.Wedid not observe significant

differences in total leukocyte proliferation, apoptosis, or egress

(Figures S2A–S2C). By contrast, an acute (24 h) block of leuko-

cyte infiltration with an anti-lymphocyte function-associated an-

tigen 1 (LFA-1)-integrin (anti-aLb2) antibody greatly reduced

leukocyte counts in the tumor in the evening (ZT13) and abro-

gated the time-of-day differences (Figure 2A). This suggested

that leukocyte input from the blood accounted for the time-of-

day differences and was required to maintain overall TIL cellu-

larity. It further indicated that leukocyte supply to the tumor

from the blood was surprisingly dynamic over such a short

time frame. Leukocyte infiltration into the tumor from blood

was of functional relevance since chronic anti-LFA-1-integrin

treatment strongly increased tumor volume (Figure S2D). To

investigate whether leukocytes indeed infiltrated the tumor in a

time-of-day-dependent manner, we performed short-term (2 h)

homing assays with adoptively transferred leukocytes. Cells

were harvested from donor mice at one time of the day and intra-

venously (i.v.) injected into phase-shifted recipients, housed in

cabinets with inverted lighting regimes, thus limiting the variable

to timing in the recipient only. Leukocyte trafficking to the tumor

was strongly time-of-day dependent, with more cells reaching

the tumor in the evening, in line with the infiltration block data

(Figure 2B). This demonstrated that, in mice, the TME exhibited

pro-migratory properties in the evening, which were not driven

by differences in vascular density (Figure S1E). Since the aLb2-in-

tegrin mediated leukocyte infiltration (Figure 2A), we quantified

expression levels of its ligands on endothelial cells of the tumor

vasculature, as gatekeepers located at the blood-tumor inter-

phase. Intercellular adhesion molecule 1 (ICAM-1) was much

higher expressed by endothelial cells in the evening (ZT13)

compared with the morning (ZT1) (Figure 2C), whereas vascular

cell adhesion molecule 1 (VCAM-1) as well as E-selectin, addi-

tional endothelial cell adhesion molecules, did not exhibit time-

of-day differences (Figure S2E). This phenotype was still present
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Figure 1. Time of day of harvest dictates numbers of tumor-infiltrating leukocytes

(A) Normalized total numbers of tumor-infiltrating leukocytes in a B16-F10-OVA tumor, harvested at 4 different times of the day (zeitgeber time [ZT]); n = 15, 11, 11,

12 mice from 4 independent experiments, cosinor analysis. Shaded areas indicate dark phases.

(B) Imaging (left) and quantification (right) of CD4+ and CD8+ T cells in B16-F10-OVA tumors harvested at ZT1 or ZT13; n = 3mice, unpaired Student’s t test, scale

bars: 200 mm.

(C) Numbers of tumor-infiltrating leukocytes in Tyr::CreERT2, BRafCA, PtenloxP mice harvested at ZT1 or ZT13; n = 7 mice, unpaired Student’s t test.

(D) Normalized total numbers of tumor-infiltrating leukocytes in a B16-F10-OVA tumor, harvested at different times of the day under constant darkness conditions

(circadian time [CT]); n = 12, 7, 10, 9 mice, from 3 independent experiments, one-way ANOVA.

(E) Light schedule of light:dark (LD), inverted dark:light (DL), and jet lag (JL) conditions. Shaded areas indicate dark phases, and numbers indicate the har-

vest times.

(F) Numbers of tumor-infiltrating leukocytes in a B16-F10-OVA tumor, harvested as the indicated time points (1 or 13 h in E) after the onset of the cycle under

light:dark (LD, n = 3 mice), inverted dark:light (DL, n = 4 mice), or corresponding jet lag (JL, n = 7 mice) conditions, from 3 independent experiments, unpaired

Student’s t test. Shaded areas indicate dark phases. All data are represented as mean ± SEM, ns, not significant, *p < 0.05; **p < 0.01; ***p < 0.001. See also

Figure S1.
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in highly immune-deficient NOD scid gamma (NSG) mice, indi-

cating that these differences were not caused by the observed

oscillations in the tumor leukocyte infiltrate (Figure 2C). We

thus focused on endothelial cells as potential mediators of circa-

dian leukocyte infiltration and grafted tumors into animals exhib-

iting an inducible, lineage-specific lack of the circadian gene
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Figure 2. Endothelial cells gate circadian leukocyte infiltration and T cell therapy

(A) Normalized total numbers of tumor-infiltrating leukocytes in a B16-F10-OVA model, harvested at ZT1 or ZT13, 24 h after the treatment of isotype control or

anti-LFA-1 antibodies; n = 19, 18, 15, 16 mice, from 5 independent experiments, unpaired Student’s t test.

(B) Gating strategy and quantification of adoptively transferred cells in B16-F10-OVA tumors 2 h post i.v. injection at ZT1 or ZT13; n = 11mice, from 2 independent

experiments, unpaired Student’s t test.

(C) Imaging (left) and quantification (right) of ICAM-1 expression on CD31+ endothelial cells in B16-F10-OVA tumors, harvested at ZT1 or ZT13 from control

(pooled of B6 mice and Bmal1flox mice), NSG or Bmal1DEC mice; n = 50, 12, 47, 15, 8, 9, 18, 19 sections, from 16, 4, 15, 5, 3, 3, 5, 5 mice, respectively, from 4

independent experiments, unpaired Student’s t test and cosinor analysis, scale bars: 200 mm.

(D) Numbers of leukocytes in B16-F10-OVA tumors, harvested at ZT1 or ZT13 from littermate control or Bmal1DECmice; n = 9, 7, 11, 10 mice, from 4 independent

experiments, unpaired Student’s t test.

(E) Normalized numbers of adoptively transferred leukocytes harvested from B16-F10-OVA tumors 2 h post i.v. injection at ZT1 or ZT13 into littermate control or

Bmal1DEC mice; n = 7, 8, 8, 8 mice, from 2 independent experiments, unpaired Student’s t test.

(F) Normalized numbers of adoptively transferred OT-I cells in B16-F10-OVA tumors 2 h post injection at ZT1 or ZT13; n = 7 mice, from 2 independent exper-

iments, unpaired Student’s t test.

(G) Tumor volume after i.v. injection of 106 activated OT-I cells at ZT1 (n = 14 mice) or ZT13 (n = 13 mice), control (n = 11 mice), from 3 independent experiments,

Student’s t test.

(H) Tumor volume after i.v. injection of 106 activated OT-I cells at ZT1 (Bmal1flox, n = 5mice, Bmal1DEC, n = 6mice) or ZT13 (n = 6mice), control (n = 8mice), from 2

independent experiments, Student’s t test, *Bmal1flox ZT1 vs. ZT13.

(I) Tumor volume after i.v. injection of 106 human CD19 CAR-CD28-CD3z T cells in DoHH2 tumor-bearing NSGmice at ZT1 (UT, untransduced T cells, n = 5mice,

CAR T, n = 7 mice) or ZT13 (UT, n = 5 mice, CAR T, n = 7 mice), control (n = 4 mice), from 2 independent experiments, two-way ANOVA.

(J) Number of CAR T cells in DoHH2 tumors 24 h post i.v. injection at ZT1 (n = 7mice) or ZT13 (n = 6mice), from 2 independent experiments, unpaired Student’s t

test. All data are represented as mean ± SEM, ns, not significant, *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. See also Figure S2.
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BMAL1 in endothelial cells (Cdh5creERT2:Bmal1flox, Bmal1DEC). In

Bmal1DECmice, time-of-day differences in ICAM-1 expression in

tumor endothelial cells were completely abrogated (Figure 2C),

yet vascular density was similar to wild-type mice (Figure S1E).

Furthermore, total tumor leukocyte numbers in Bmal1DEC mice

(Figure 2D) as well as adoptively transferred leukocyte infiltration

to the tumor ceased to be time-of-day dependent (Figure 2E).

Together, these data demonstrate that endothelial cells control

a rhythmic leukocyte infiltration process into tumors, which

peaks in the evening and is dependent on the endothelial cell-

autonomous circadian clock machinery.

Efficacy of CAR T cell therapy is time-of-day dependent
Given that T cells currently represent the most promising target

of anti-cancer immunotherapies,27 we focused our subsequent

functional assays on these cells. To evaluate a potential clinical

translational aspect of rhythmic T cell infiltration into tumors,

we initially harvested OVA-specific CD8+ T cells from OT-I

mice and performed T cell therapy on mice engrafted with

B16-F10-OVA-expressing tumors. After i.v. adoptive transfer of

activated OT-I cells into tumor-bearing mice 10 days after tumor

engraftment, we detected significantly increased numbers of

transferred cells, when T cell infusion had been administered at

ZT13 compared with ZT1 (Figure 2F). Of relevance, this yielded

significantly better tumor control and reduced tumor burden

(Figures 2G and S2F). By contrast, in Bmal1DEC mice, the time-

of-day effects were abrogated, demonstrating that the therapeu-

tic benefit was governed by the endothelial cell-autonomous

circadian clock (Figures 2H and S2G). To further evaluate a po-

tential clinical translational aspect of rhythmic T cell infiltration

into tumors, we employed human CAR T cells, bearing an anti-

human CD19CAR (CD19 CAR-CD28-CD3z). NSGmice were en-

grafted with DoHH2 cells, a tumor cell line for human diffuse

large B cell lymphoma (DLBCL), the major indication for CAR

T cell therapy in the clinic.28,29 Tumor-bearing mice were treated

with CAR T cells in a time-of-day-dependent manner, with infu-

sion of CAR T cells at ZT13 showing a reduction in tumor volume,

while infusion at ZT1 had no effect on tumor control (Figures 2I

and S2H). This observation was linked to increased CAR T cell

homing after 24 h at ZT13 compared with ZT1 in these animals

(Figure 2J), in line with our previous observation (Figure 2B).

These data demonstrate clearly enhanced T cell therapy effi-

cacy, simply by adjusting the time of injection to the optimal

leukocyte infiltration time of the day.

Diurnal differences in TIL phenotype
Knowing that the number of TILs depends on the time of day and

that this variable could be exploited for therapeutic purposes, we

next assessed whether the phenotype of TILs was also time-of-

day dependent. To this end, we performed single-cell RNA

sequencing (scRNA-seq) analyses of the CD45+ population,

sorted from tumors 12 days after engraftment and harvested at

four different times of the day, at ZT1, ZT7, ZT13, and ZT19, anal-

ogous to the previous experiments. Uniform manifold approxi-

mation and projection (UMAP) analyses revealed 18 distinct

leukocyte populations, providing insights into subsets and states

of leukocytes (Figures S3A–S3C, S4A, and S4B). The most

prominent population consisted of macrophages, which made

up 17%–28% of the infiltrate, followed by natural killer (NK) cells

(10%–22%) and B cells (5%–18%) (Figures S4A and S4B). Circa-

dian clock genes were expressed rhythmically in all leukocyte

subsets with Per1 exhibiting the most wide-spread oscillation,

peaking at �ZT13 (Figures 3A and S4C). Macrophages dis-

played the highest number of oscillating genes, followed by

monocytes and NK cells (Figure S4D). However, each immune

cell population exhibited distinct oscillatory gene signatures

(Figures S4D–S4F; Table S1). Gene ontology analyses showed

that oscillating genes were mostly enriched in metabolism but

also showed differences in cell adhesion and differentiation as

well as T cell activation (Figure S4E; Table S1). These data indi-

cate that the number and phenotype of immune cells in the TME

are highly oscillatory and strongly depend on the time of day.

Time-of-day differences in the tumor T cell phenotype
Focusing on T lymphocytes, we performed further analyses and

detected 15 subclusters, with CD8+ T cells representing the

largest population (Figures 3B, 3C, and S5A–S5C). We observed

significant time-of-day-dependent changes in the ratio of cell

clusters defined as ‘‘anti-’’ versus ‘‘pro-tumorigenic’’ lympho-

cytes (see STAR Methods for cluster definition), peaking at

ZT13 and troughing at ZT1 (Figure 3D). Furthermore, the ratio

in clusters defined as ‘‘non-exhausted’’ versus ‘‘exhausted’’

CD8+ T cells exhibited differences, a phenotype we also

observed by flow cytometry (Figures 3E and S5D), which could

be further refined to the ratio of CD8+ T cells defined as ‘‘effector

memory’’ versus exhausted (Figure 3D). This suggested that

CD8+ T cells exhibited a more suppressed phenotype in the

morning and a more anti-tumorigenic signature in the evening.

To investigate this, we defined the gene signatures of T cells ex-

pressed in the evening (ZT13) versus the morning (ZT1)

(Table S2). The evening signature was enriched in leukocyte

adhesion and T cell activation pathways (Figure 3F) and was

indeed strongly correlated with better survival in human mela-

noma patients from the The Cancer Genome Atlas (TCGA) data-

set, indicating higher anti-tumorigenic immunogenicity of this

gene expression signature (Figure 3G). These data show that in

addition to oscillations in the number of T cells in the TME, their

function also changes in a time-of-day-dependent manner.

CD8+ T cell phenotype oscillates
These expression data indicated that T cell function within the

TME exhibited time-of-day differences. Genes associated with

T cell activation, suppression, migration, and effector functions

showed an oscillation in effector CD8 T cells across the day (Fig-

ure 4A). Notably, expression of the immune checkpoint gene

Pdcd1 (encoding for PD-1) was rhythmic in this CD8 T cell clus-

ter, peaking at ZT1 and exhibiting a trough at ZT13 (Figures 4A

and 4B). This was in line with expression of Pdcd1 in the whole

CD8 T cell population, as assessed by qPCR analyses of sorted

CD8 T cells from tumors as well as by pseudobulk analyses of

the scRNA-seq data (Figures 4C and S5E). PD-1 was also differ-

ently expressed at the cell surface protein level, in line with the

transcriptomic analyses, yet phase-shifted, similar to what has

been described for other circadian-expressed mRNA-protein

pairs30 (Figure 4D). This difference in PD-1 expression could

be abrogated when the clock gene Bmal1 was deleted in
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T cells (Cd4cre:Bmal1flox, Bmal1DT) (Figure 4E), indicating that

rhythmic expression of PD-1 in CD8+ T cells was circadian and

cell-intrinsic. To confirm this, we activated CD8+ T cells in vitro

and synchronized the cells (Figures 4F and S6A). Activated

CD8+ T cells showed a strong oscillatory expression of Pdcd1 af-

ter synchronization, which was significantly dampened in T cells

harvested from Bmal1DT mice and Per1�/�Per2�/� animals (Fig-

ure 4G). PDCD1 also exhibited circadian oscillations in vitro in

synchronized human CD8+ T cells, indicating these oscillations

to be of relevance in the human setting as well (Figure 4H). These

data demonstrated Pdcd1 expression in CD8+ T cells to be bona

fide circadian and cell autonomous in nature, at both the mRNA

and surface protein levels, whichmight be targetable by anti-PD-

1 immune check inhibitors in a time-of-day-dependent manner.

Anti-PD-1 therapy is time-of-day dependent
We therefore assessed the relevance of time-of-day-dependent

expression of PD-1 by performing timed administration of anti-

PD-1 antibodies. Time of day of antibody administration had a

strong impact on tumor growth in the B16-F10-OVA melanoma

tumor model, with tumors growing less when therapy was per-

formed in the evening compared with the morning (Figures 5A,

5B, and S6B). In fact, therapy in themorning had surprisingly little

effect on tumor burden, even when morning administration pre-

ceded that of evening administration by 12 h (Figures 5A, 5B, and

S6B). We could confirm these data in anMC-38 colon carcinoma

model, indicating that this phenotype extended to other tumor

models (Figures S6C and S6D). The time-of-day effect was crit-

ically dependent on CD8+ T cells, as anti-PD-1 therapy yielded

no benefit in a scenario where CD8+ T cells had previously

been depleted (Figures 5C and S6E). Furthermore, the T cell

circadian clock machinery was required since circadian oscilla-

tions were altered in Bmal1DT mice, demonstrating the T cell

clock to be mediating the phenotype (Figures 5D, S6F, and

S6G). Using several cycles of timed anti-PD-1 therapy and com-

binations of evening and morning administrations, we observed

that time of day of the first treatment was responsible for the dif-

ference, in contrast to the subsequent dose (Figures 5E and

S6H). We thus focused on the first administration cycle to further

elucidate the underlying mechanism and performed flow
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Figure 3. Diurnal differences in T cell parameters

(A) Circadian gene Per1 expression in total tumor infiltrating leukocyte clusters with fitted cosinor curve (line) and 95% confidence interval (shaded area).

(B) UMAP representation of scRNA-seq analyses of T cells harvested at 4 different times of the day.

(C) Relative abundance of T cell subsets across different times of the day.

(D) Abundance ratio of specific T cell subsets across different times of the day by scRNA-seq. ‘‘Anti-tumorigenic lymphocytes’’ include NK, gdT, natural killer T

(NKT), CD8 effector, CD4 naive, CD8 effector memory, CD8 mitotic, and CD4 effector clusters, whereas ‘‘pro-tumorigenic lymphocytes’’ include Treg, Treg

mitotic, and CD8 exhausted clusters.

(E) Normalized ratio of non-exhausted over exhausted CD8+ T cells across different times of the day by flow cytometry; n = 14, 8, 20, 8 mice, from 5 independent

experiments, cosinor analysis.

(F) Gene ontology analysis of genes oscillating in CD8+ T cells.

(G) Survival analysis in melanoma patients from the TCGA dataset using a high or low expression of the murine ZT13 gene signature in Table S2, logrank test. All

data are represented as mean ± SEM, *p < 0.05. See also Figures S3–S5 and Table S1.
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cytometry analyses of CD8+ T cells in the tumor, 24 h after anti-

PD-1 treatment performed in the morning compared with the

evening. The results indicated that the administration of anti-

PD-1 at ZT13 but not at ZT1 caused a significant increase of

CD8+ T cell activation and degranulation in the tumor, as shown

by higher expression CD137 and CD107a levels, respectively

(Figure 5F). Additionally, anti-PD-1 treatment at ZT13 also

increased the production of interferon (IFN)g and Granzyme B

in tumor-infiltrating CD8+ T cells compared with ZT1 (Figure 5G).

To maximize the observed chrono-therapeutic anti-tumor ef-

fects, we combined timed OT-I T cell therapy with timed anti-

PD-1 infusion. Activated OT-I T cells were co-injected with

anti-PD-1 antibody into phase-shifted mice at ZT13 or at ZT1.

Anti-tumor effects were now enhanced, with ZT13 treatment

further reducing tumor burden compared with ZT1 conditions

(Figures 5H and S6I). This indicates that both CD8+ T cell

numbers and phenotype dictate circadian differences in the

response to tumor immunotherapy. Together, our data demon-

strate a strong time-of-day-dependent phenotype of the tumor

immune cell infiltrate, which can be harnessedwith timed admin-

istration of immunotherapies to maximize anti-tumor effects.

Circadian immune cell phenotype in human cancers
To interrogate whether time-of-day oscillations in the immune

cell infiltrate also exist in human tumors, we analyzed human

melanoma samples from patients that had undergone surgical

removal of the tumor at different times of the day. Using immuno-

histochemical analyses, we found that numbers of CD4+ and
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Figure 4. CD8+ T cell phenotype oscillates

(A) Heatmap of scRNA-seq analyses of CD8+ effector T cells, harvested at 4 different times of the day.

(B) Pdcd1 expression by scRNA-seq of CD8+ effector T cells at different times of the day.

(C) Pdcd1 expression by qPCR of fluorescence-activated cell sorting (FACS)-sorted CD8+ cells from B16-F10-OVA tumors at ZT1 (n = 10 mice) or ZT13 (n = 11

mice), from 3 independent experiments, unpaired Student’s t test.

(D) PD-1 expression by flow cytometry of tumor CD8+ T cells harvested at different time (n = 22, 13, 22, 11 mice), from 5 independent experiments, one-way

ANOVA and cosinor analysis.

(E) PD-1 expression by flow cytometry of tumor CD8+ T cells, harvested at ZT1 or ZT13 from littermate control (n = 4 mice) or Bmal1DT mice (n = 5, 6 mice),

unpaired Student’s t test.

(F) Relative bioluminescence of activated CD8+ T cells generated from PER2::LUC mice post synchronization, representative data from n = 3 mice.

(G) Pdcd1 expression of activated CD8+ T cells post synchronization from control (n = 7, 14, 12, 11, 11, 4 mice) or Bmal1DT mice (n = 6 mice) or Per1�/�Per2�/�

mice (n = 4 mice) from 4 independent experiments, ***cosinor analysis. #Two-way ANOVA.

(H)PDCD1 expression in human activated CD8+ T cells post synchronization, n = 6, from 4 independent experiments, cosinor analysis. All data are represented as

mean ± SEM, *p < 0.05; **p < 0.01; ***p < 0.001. See also Figure S6.
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CD8+ cells exhibited a striking time-of-day-dependent profile

with a peak in the early afternoon (Figures 6A and 6B). This indi-

cated that the time of day also dictated numbers of TILs in hu-

mans. To obtain broader information with respect to the timed

immune cell infiltrate in human tumors, we utilized our mouse

scRNA-seq datasets together with publicly available, time-

stamped mouse skin scRNA-seq and bulk RNA-seq datasets

to train a machine learning model to be able to time stamp

sequencing datasets where information on the time of day was

not available (Figure 6C).We trained a ZeitZeiger algorithm,31 us-

ing either all genes or conserved coefficients (57 genes), which

were predicted by ZeitZeiger to oscillate (Figure 6C; Table S3).

Both approaches predicted the time of testing data well—

including healthy skin as well as melanoma samples—with an

average error of �1.5 h (Figures S6J–S6L; Table S3). We further

validated the ZeitZeiger model on public mouse skin RNA-seq

and microarray datasets and again achieved good time stamp-

ing (Figures 6D and S6M). This allowed us to correctly identify

the time of day of healthy tissues in mice as well as our mouse

tumor samples in a blinded manner with an error of �2 h. Using

the trained ZeitZeiger model, we next aimed to predict the time

of day of harvest also in human biopsies. Indeed, using publicly

available microarray data from healthy human skin where time of

day information was known, we could adequately predict the

time of day in these samples with an error of <4 h (Figures 6E

and S6N). Knowing that the algorithm adequately assigned

time of day to human samples, we next assigned time-of-day in-

formation to 103 primary melanoma samples from the TCGA da-

taset. Interestingly, we observed time-of-day differences in the

ratio of exhausted CD8+ T cells versus non-exhausted CD8+

T cells, analogous to the mouse data, but—as expected—

phase-shifted due to inverted immune oscillations between

diurnal humans and nocturnal mice,14,32 with a higher anti-tumor

ratio in the morning compared with the afternoon (Figure 6F).

These data indicate that both leukocyte numbers and phenotype

in human TILs are time-of-day dependent.

Lastly, we investigated whether the evening RNA signature

identified in mouse melanoma T cells was sufficient to correlate

with the response of patients to ICBs. Indeed, the signature un-

veiled a significant difference in the response rate of pa-

tients,33,34 with patients that exhibited a higher expression of

this signature in T cells also showing favorable response to

ICB treatment (Figure 6G; Table S2). Together, our data provide

compelling evidence that the immune cell compartment of
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Figure 5. Circadian efficacy of anti-PD-1 treatment

(A) Tumor volume after anti-PD-1 treatment (arrows) administered at ZT1 or ZT13, anti-PD-1 (n = 15, 15, 9 mice), control (n = 11 mice), from 3 independent

experiments, two-way ANOVA.

(B) Tumor volume 14 days post tumor engraftment, anti-PD-1 (n = 15, 5, 15, 6, 9 mice), control (n = 11 mice), from 3 independent experiments, cosinor analysis.

(C) Tumor volume after anti-PD-1 treatment (arrows) administered at ZT1 or ZT13 with or without (n = 4 mice) CD8 depletion.

(D) Tumor volume after anti-PD-1 treatment (arrows) administered at ZT1 or ZT13 in control (ZT1, n = 9 mice, ZT13, n = 10 mice) or in Bmal1DT (ZT1, n = 9 mice,

ZT13, n = 10 mice), from 3 independent experiments, two-way ANOVA.

(E) Tumor volume after two doses of anti-PD-1 treatment (arrows) administered at ZT1 or ZT13; n = 7 mice, from 2 independent experiments, two-way ANOVA.

(F) Phenotype of tumor CD8+ T cell harvested at ZT1 or ZT13, 24 h post isotype control (n = 12 mice) or anti-PD-1 treatment (ZT1, n = 13 mice, ZT13, n = 15mice),

from 4 independent experiments, two-way ANOVA, and Sidak’s post test.

(G) Cytokine production by tumor CD8+ T cells harvested at ZT1 (n = 9mice) or ZT13 (n= 11mice) 24 h post anti-PD-1 treatment, from 4 independent experiments,

unpaired Student’s t test.

(H) Tumor volume after control (n = 12mice) or combination therapy of anti-PD-1 andOT-I cell administration (arrow), administered at ZT1 (n = 6mice) or ZT13 (n =

5 mice), from 2 independent experiments, two-way ANOVA. Dotted lines indicate tumor growth from Figure 2F. All data are represented as mean ± SEM, ns, not

significant, *p < 0.05; **p < 0.01; ***p < 0.001. See also Figure S6.

ll
OPEN ACCESS

Cell 187, 2690–2702, May 23, 2024 2697

Article



melanomas is surprisingly time-of-day dependent and that this

can be harnessed therapeutically with timed interventions of

CAR T cell infusions or immune checkpoint blockade.

DISCUSSION

Here, we provide evidence for circadian dynamics in the tu-

mor immune microenvironment, with functional implications

for the optimal time point for the administration of immuno-

therapies. In patients with melanoma,35–37 non-small cell

lung cancer (NSCLC) patients,38,39 and patients with metasta-

tic squamous cell carcinoma of the esophagus,40 retrospec-

tive data of matched cohorts treated with ICB was recently

indicated to be time-of-day sensitive, with better survival

observed after ICB infusion in the morning compared with

the afternoon.35,38,41 These clinical observations are in line

with what we define here in mechanistic detail. Future ran-

domized and prospective clinical trials will be required to sup-

port that claim.

A key question in the field is the mechanism of these time-of-

day effects. Antibody titers remain high over weeks in patients,42

which may indicate that the observed long-term circadian ef-

fects are mediated via the timing of the first interventions. Our

data indicate that the first cycle of therapy yields different circa-

dian outcomes and that the timing of the subsequent dose(s)

may not be as relevant. Data from retrospective clinical trials

support the potential importance of the timing of the first infu-

sion(s) for therapeutic benefits.36,43 Our data suggest that an

antibody infused at different times of the day encounters differ-

ences in both the number of immune cells present in the tumor

as well as their levels of PD-1. This would mean that the product

of circadian changes in numbers and the phenotype of TILs—

and thus the target of the antibody—exhibits circadian oscilla-

tions, which could be responsible for this chronotherapeutic

impact. However, whether local levels of antibody oscillate,

such as found within the tumor interstitium, is not known. Tumor

macrophages have been shown to quickly strip antibodies off

adjacent T cells,44 which may be an additional mechanism for
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Figure 6. Circadian immune cell phenotype in human cancers

(A and B) Imaging (left) and quantification (right) of CD4+ (n = 18 patients) and CD8+ (n = 19 patients) T cells in humanmelanoma, harvested at different times of the

day, cosinor analysis, scale bar: 10mm, CD8 or CD4 staining in red.

(C) Schematic for the algorithm training and validation to predict time of day in non-time stamped samples. A final algorithm containing 57 genes was used for

external validation and prediction.

(D and E) Error (hours) of the time prediction algorithm in external validation in mouse (n = 56 mice) (D) and human (n = 369 samples) (E) tissues.

(F) Exhausted/non-exhausted CD8+ T cell ratio in primary melanoma tissues from the TCGA melanoma dataset, plotted by using the algorithm to predict time of

biopsies, morning, n = 24 patients; afternoon, n = 42 patients, Student’s t test.

(G) Enrichment of the murine ZT13-gene expression signature in patients responding or not responding to ICB treatment (non-responders, n = 8,608 cells;

responders, n = 4,242 cells). All data are represented as median and quartile. See also Figure S6 and Tables S2 and S3.
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time-of-day sensitivity, given that we also see oscillations in

macrophage phenotype in the TME. We have focused on CD8

T cells in this study, as they currently represent major therapeutic

targets in the clinic. Our data show that antibody administration

alters the phenotype of CD8 T cells within the tumor in a time-of-

day-dependent manner, already 24 h after the infusion,

indicating that these cells are involved in the initial circadian

responses. Nevertheless, oscillations in other immune cell

lineages that we describe, notably of myeloid cells, may be of

additional functional relevance for the circadian effect. The

contribution of different immune cell populations in this

circadian anti-tumor response remains to be investigated in

future studies.

Ultimately, it appears that challenging the immune systemwith

an antibody at a specific time of day not only changes the quan-

tity but also the quality of the response so that the immune sys-

tem, once stimulated at the ‘‘wrong’’ time, may not be able to

respond anymore to the same level and quality as an immune

system challenged at the ‘‘right’’ time—just 12 h apart. In an

analogous manner to the anti-tumor response described here,

a depot effect exists in vaccines, with antigen being present

over several days. Yet, time-of-day effects are observed also

in vaccination studies, in the pre-clinical setting,6 and in patients,

with higher immune sensitivity present at very similar time win-

dows.24 The precise mechanisms at play underlying these phe-

nomena remain to be identified.

Sex differences have been reported in cancer immunotherapy,

with retrospective analyses indicating that men often respond

better compared with women.45 Of note, with respect to chro-

noimmunotherapy, subgroup analyses did reveal that women

had a particularly high benefit in overall survival with immune

checkpoint inhibition infused earlier in the day compared with

in the afternoon.35,46 To what extent and what the mechanisms

are will need to be investigated in more detail in future studies.

The circadian dynamics in the TME that we uncover here should

prove to be of use in the clinic, as tumor biopsies represent

currently the main means of assessing the level of immune cell

infiltration and defining the ensuing therapeutic regimen. Given

that this immune cell infiltration is strongly time-of-day depen-

dent, therapy may differ, depending on when biopsies were per-

formed. Together, we demonstrate in mechanistic detail that

TILs exhibit circadian oscillations in both number and pheno-

type, which can be exploited therapeutically with timed adminis-

tration of CAR T cells or ICBs.

Limitations of the study
We focused on melanoma in this study, and it remains to be

demonstrated in future studies whether this also applies to other

tumors. Our observations in mice indicate that at least time-of-

day differences in ICB also extend to colon carcinoma. Further-

more, retrospective clinical data indicate that optimization of

infusion timing may provide benefits for several types of cancer,

including melanoma, NSLSC, and metastatic esophageal squa-

mous cell carcinoma patients. Although our data indicate the

optimal time point of infusion to be the evening in mice, the

best time point for humans may be the morning hours, given

the different periods of behavioral rest and activity in the two

species. However, the precise time window remains to be

defined, as current data only assessedmorning versus afternoon

effects.

Although our data indicate that the lineage-specific, inducible

deletion of Bmal1 in endothelial cells affects the oscillatory

behavior of these cells and, by extension, the recruitment of leu-

kocytes, there may be additional factors that could contribute to

the observed abrogation of time-of-day-dependent leukocyte

migration.
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V., Pick, R., Jemelin, S., Mühlstädt, M., Boehncke, W.H., et al. (2021).

Circadian clocks guide dendritic cells into skin lymphatics. Nat. Immunol.

22, 1375–1381. https://doi.org/10.1038/s41590-021-01040-x.

63. Wittenbrink, N., Ananthasubramaniam, B., Münch, M., Koller, B., Maier,

B., Weschke, C., Bes, F., de Zeeuw, J., Nowozin, C., Wahnschaffe, A.,

et al. (2018). High-accuracy determination of internal circadian time from

a single blood sample. J. Clin. Invest. 128, 3826–3839. https://doi.org/

10.1172/JCI120874.

64. Newman, A.M., Steen, C.B., Liu, C.L., Gentles, A.J., Chaudhuri, A.A.,

Scherer, F., Khodadoust, M.S., Esfahani, M.S., Luca, B.A., Steiner, D.,

et al. (2019). Determining cell type abundance and expression from bulk

tissues with digital cytometry. Nat. Biotechnol. 37, 773–782. https://doi.

org/10.1038/s41587-019-0114-2.

ll
OPEN ACCESS

2702 Cell 187, 2690–2702, May 23, 2024

Article

https://doi.org/10.1073/pnas.2116027119
https://doi.org/10.1073/pnas.1209592109
https://doi.org/10.1073/pnas.1118641109
https://doi.org/10.1093/nargab/lqac097
https://doi.org/10.1073/pnas.1809442115
https://doi.org/10.1073/pnas.1809442115
https://doi.org/10.1371/journal.pone.0260095
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1093/bioinformatics/btz834
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1093/nar/gkv1507
https://doi.org/10.1093/nar/gkv1507
https://doi.org/10.1093/bioinformatics/bts034
https://doi.org/10.1038/s41590-021-01040-x
https://doi.org/10.1172/JCI120874
https://doi.org/10.1172/JCI120874
https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.1038/s41587-019-0114-2


STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-mouse CD45 clone 30-F11 BD Biosciences 564279/AB_2651134

Anti-mouse CD3e clone KT3.1.1 BioLegend 155617/AB_2832541

Anti-mouse CD4 clone GK1.5 BD Biosciences 563232/AB_2738083

Anti-mouse CD8a clone 53-6.7 BD Biosciences 563152/AB_2738030

Anti-mouse CD11c clone N418 BioLegend 117307/AB_313776

Anti-mouse CD19 clone 1D3 BD Biosciences 566412/AB_2744315

Anti-mouse NK1.1 clone PK136 BioLegend 108715/AB_493591

Anti-mouse MHCII clone M5/114.15.2 BioLegend 107643/AB_2565976

Anti-mouse Ly6G clone 1A8 BioLegend 127645/AB_2566317

Anti-mouse Ly6C clone HK1.4 BioLegend 128023/AB_10640119

Anti-mouse CD137 clone 17B5 BioLegend 106106/AB_2287565

Anti-mouse CD107a clone 1D4B BioLegend 121610/AB_571991

Anti-mouse PD-1clone 29F.1A12 BioLegend 135213/AB_10689633

Anti-mouse Granzyme B clone QA16A02 BioLegend 372207/AB_2687031

Anti-mouse IFN-g clone XMG1.2 BioLegend 505837/AB_11219004

Anti-mouse CD31 clone MEC13.3, BioLegend 102520/AB_2563319

Anti-mouse CD4 clone, GK1.5 BioLegend 100405/AB_312690

Anti-mouse CD54 clone, YN1/1.7.4 BioLegend 116114/AB_493495

Anti-mouse CD8 clone 53-6.7 BioLegend 100724/AB_389326

Anti-mouse VCAM-1 clone 429 BioLegend 105710/AB_493427

Anti-mouse anti-CD11a clone M17/4 BioXCell BE0006/ AB_1107578

Anti-mouse anti-CD18 clone M18/2 BioXCell BE0009/ AB_1107607

Anti-mouse PD-1, clone 29F.1A12� BioXCell BE0273/ AB_2687796

Anti-mouse CD8a, clone YTS 169.4 BioXCell BE0117/ AB_10950145

Anti-mouse E-selectin clone UZ6 Invitrogen MA1-06506/

AB_2186701

Anti-human CD3 clone BW264/56 Miltenyi Biotec 130-113-687/AB_2726228

Anti-human CD8 clone RPA-T8 BD Biosciences 563795/AB_2722501

Anti-human CD4 clone SK3 BD Biosciences 565995/AB_2739446

Anti-human CD19 clone HIB19 BioLegend 302219/AB_389313

Anti-human CD4 clone EP204 Zhongshan Golden Bridge Biotechnology ZA-0519

Anti-human CD8 clone SP16 Zhongshan Golden Bridge Biotechnology ZA-0508

rat IgG2a isotype control, clone 2A3 BioXCell BE0089/ AB_1107769

rat IgG2b isotype control, clone LTF-2 BioXCell BE0090/ AB_1107780

Dynabeads human T-Activator CD3/CD28 Gibco 11132D/AB_2916088

Anti-human CD3 clone BW264/56 BioLegend 317348/ AB_2571995

Dynabeads� Mouse T-Activator CD3/

CD28 for T-Cell Expansion and Activation

Gibco 11453D

Goat anti-Rat IgG (H+L) Cross-Adsorbed

Secondary Antibody

Invitrogen A21247/ AB_141778

Chemicals, peptides, and recombinant proteins

DRAQ7 Biolegend 424001

Counting Beads ThermoFisher C36950

(Continued on next page)

ll
OPEN ACCESS

Cell 187, 2690–2702.e1–e8, May 23, 2024 e1

Article



Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

eBioscience� Fixable Viability Dye

eFluor� 780

eBioscience� 65-0865-18

Foxp3 / Transcription Factor Staining

Buffer Set

eBioscience� 00-5523-00

Phorbol 12-myristate 13-acetate Sigma-Aldrich P1585

Ionomycin Sigma-Aldrich I3909

GolgiPlug� BD Biosciences 555029

CellEvent� Caspase-3/7 Green Ready

Flow� Reagent

Invitrogen R37167

CellTracker� Deep Red Dye Invitrogen C34565

RBC lysis buffer Biolegend 420302

EdU Alexa Fluor� 594 Flow Cytometry

Assay Kit

Invitrogen C10646

Trizol Reagent Invitrogen 15596018

Human IL-2 PeproTech 200-02

Mouse IL-2 Biolegend 575406

retronectin Takara T100B

streptavidin Biolegend 405207

biotinylated protein L ThermoFisher 29997

Collagenase IV Worthington Biochemical Corporation LS004189

Collagenase D Roche 11088866001

DNase I Roche 04716728001

DAPI Biolegend 422801

BlockAid� Blocking Solution Invitrogen B10710

Bond Polymer Refine Red Detection kit Leica DS9390

Critical commercial assays

Chromium Single Cell 30 v3.1 Reagent Kit

with dual indexes

10x Genomics 1000269

CD8+ T Cell Isolation Kit, human Miltenyi Biotec 130-096-495

CD8a+ T Cell Isolation Kit, mouse Miltenyi Biotec 130-104-075

Deposited data

Timed scRNA-seq of TILs from murine

melanoma

This paper GEO: GSE260641

Mouse epidermal scRNA-seq Duan et al.47 GEO: GSE223109

Mouse skin RNA-seq Welz et al.48 GEO: GSE115104, GSE114943

Mouse skin RNA-seq Wang et al.49 GEO: GSE83855

Mouse epidermal RNA-seq in constant

darkness

Tsujihana et al.50 GEO: GSE174155

Mouse skin microarray Geyfman et al.51 GEO: GSE38622, GSE38623

Human epidermal suction blister microarray Spörl et al.52 GEO: GSE35635

Human skin microarray del Olmo et al.53 GEO: GSE205155

Human forearm skin microarray Wu et al.54 GEO: GSE112660

Human skin microarray (fractional laser

treatment)

Sherrill et al.55 GEO: GSE139305

Human melanoma scRNA-seq Sade-Feldman et al.33 GEO: GSE120575

Other supporting data This paper (https://doi.org/10.26037/yareta:

5rmtlmd5sreo7bmcbe44bbijfm).

Experimental models: Cell lines
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Further information and requests for resources or reagents should be directed to and will be fulfilled by the lead contact, Christoph

Scheiermann (christoph.scheiermann@unige.ch).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Single-cell RNA-seq data have been deposited at GEO: GSE260641 and are publicly available as of the date of publication.

Accession numbers of public data used in this study are listed in the key resources table. All data supporting the conclusions

of this paper are available online (https://doi.org/10.26037/yareta:5rmtlmd5sreo7bmcbe44bbijfm).

d All original code has been deposited at GitHub https://github.com/zqun1/circadian_immune_mouse_melanoma and is publicly

available as of the date of publication.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Animals
C57BL/6 and NSGmice were purchased fromCharles River or the Jackson Laboratory. Transgenic mouse linesBmal1flox/flox,Cd4Cre

(purchased from Jackson Labs) andCdh5CreERT2 (gift fromDr. Ralf Adams, Max-Planck-Institute for Molecular Biomedicine Münster,

Germany) were crossed and bred at ENVIGO. Transgenic mice were maintained as homozygous for Bmal1flox/flox and heterozygous

for the relevant Cre. CD45.1 OT-I (gift from Walter Reith) mice were bred in house. All mice used were at 8-12 weeks of age. Cre

recombination in Cdh5CreERT2 mice was induced by intraperitoneal injection of tamoxifen (1mg per injection) for 5 consecutive

days. Unless specified, mice were housed under a 12 h:12 h light:dark schedule with food and water ad libitum. When multiple

time points were investigated simultaneously, light-tight cabinets (Techniplast) were used to shift animals to the respective phase

prior to the experiments. Treatment times correspond to Zeitgeber time (ZT) and indicate timing relative to lights on in the animal

facility such that ZT1 is 1 h after lights on (morning), and ZT13 is 1 h after lights off (evening). A spontaneous tumormodel was induced

in BRafCA, PtenloxP, Tyr::CreERT2 mice as previously described26 by topically treatment with 1 ml 4-hydroxytamoxifen (8 mg/ml in

ethanol) on the skin surface. During the dark phase, all manipulations were performed under dim red light. All animal procedures

and experiments were approved and performed in accordance with the guidelines of the animal research committee of Geneva,

Switzerland, the veterinary authority of Canton de Vaud, Switzerland, or the MGH Institutional Animal Care and Use Committee

(IACUC) and were performed in accordance with MGH IACUC regulations.

METHOD DETAILS

Tumor cell lines and inoculation
Mousemelanoma cell lines B16-F10 (ATCC) and B16-F10-OVA (gift from Stéphanie Hugues, University of Geneva, Switzerland) were

maintained in RPMI (Gibco) supplemented with 10% heat-inactivated FCS (Gibco), 100 mmol/L penicillin–streptomycin (Gibco), and

50 mmol/L of b-mercaptoethanol (Gibco). MC38 murine colon adenocarcinoma cells (gift from Mikaël Pittet, University of Geneva,

Switzerland) were maintained in DMEM (Gibco), 10% heat-inactivated FCS and 100 mmol/L penicillin–streptomycin). Cell lines

were used by passage 10 and tested negative for Mycoplasma. Unless otherwise specified, 53105 tumor cells in 100ml PBS were

injected s.c. into the right flank of mice, under isoflurane anesthesia. For anti-PD-1 therapy experiment, 23105 tumor cells in

100ml PBS or 23106 (MC-38) in 100ml PBSwere injected s.c. Human lymphoma DoHH2 cell line (gift from Francesco Bertoni, Institute

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

TCGAbiolinks Colaprico et al.60 https://bioconductor.org/packages/

release/bioc/html/TCGAbiolinks.html

zeitZeiger Hughey et al.31 https://github.com/hugheylab/zeitzeiger

sva Leek et al.61 https://bioconductor.org/packages/

release/bioc/html/sva.html

Analysis code This study https://github.com/zqun1/circadian_

immune_mouse_melanoma
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of Oncology Research (IOR), Bellinzona, Switzerland) were cultured in RPMI (Gibco) supplemented with 10% heat-inactivated FCS

(Gibco). A total of 53106 cells were injected s.c. into the right flank of NSGmice. Tumor volumewasmonitored every 1 to 2 days using

a caliper and calculated by length 3 width3 width/2.

Mouse T cell activation
Splenocytes from C57BL/6 wild type mice, Cd4cre:Bmal1flox and their littermate controls, or OT-I mice were collected by smashing

the spleen through a 70-mmmesh cell strainer. Red blood cells were lysed using RBC lysis buffer (Biolegend, 420302) for 5min on ice.

To activate CD8+ T cells from C57BL/6 or Cd4cre:Bmal1flox mice, CD8+ T cells were enriched using a cell isolation kit (Miltenyi) ac-

cording to the manufacturer’s instructions. The isolated T cells were counted and resuspended in a concentration of 13106/ml in

T cell complete medium (RPMI, 10% heat-inactivated FCS, 2 mM L-glutamine, 1% penicillin-streptomycin, 50 mM b-mercaptoetha-

nol, 1mMpyruvate sodium) supplemented with 100U/mLmouse interleukin-2 (IL-2) (Biolegend) in 24-well plate. Dynabeads�Mouse

T-Activator CD3/CD28 beads (Gibco, 11452D) were used to activate T cells according to the manufacturer’s instructions. For OT-I

cell activation, whole splenocytes were resuspended in a concentration of 13106/ml in T cell complete medium (RPMI, 10% heat-

inactivated FCS, 2 mM L-glutamine, 1% penicillin-streptomycin, 50 mM b-mercaptoethanol, 1mM pyruvate sodium) supplemented

with 100U/mL mouse interleukin-2 (IL-2) (Biolegend) and 1 nM of OVA257-264 peptide (SIINFEKL, InvivoGen) in a 6-well plate. After

3 days of activation, CD8+ T cells were collected and purified by removing Dynabeads (for polyclonal cells) or using a CD8+ T cell

isolation kit (Miltenyi) (for OT-I). For in vivo experiments, 13 106 OT-I cells were injected intravenously (i.v) into tumor-bearing mice.

Mouse T cell synchronization
Cells were synchronized using horse serum as previously described.6,21,62 In brief, activated T cells (as described above) were

collected and seeded into 24-well plate with a density of 23105/ml in T cell complete medium, supplemented with 100U/mL mouse

interleukin-2 (IL-2) (Biolegend) and 0.1mg/mL anti-mouse CD3 antibody (Invitrogen, 16-0031-85) to maintain the TCR signal. An equal

volume of horse serum (Sigma, h1270) was pre-warmed and added directly to the plate (serum shock). After 2h incubation at 37�C
with 5% CO2, cells were washed and resuspended in T cell complete medium with IL-2 and anti-CD3 antibody.

Human CD8+ T cell activation and synchronization
Human CD8+ T cells were isolated using CD8+ T Cell Isolation Kit (Miltenyi 130-096-495) from the peripheral bloodmononuclear cells

from healthy donors’ buffy coat (provided by University Hospitals of Geneva (HUG), Switzerland) using Ficoll-Paque Plus (Cytiva).

Cells were resuspended at 1x106/ml and activated for 3 days with Dynabeads human T-Activator CD3/CD28 (Gibco, 11132D) in

the presence of recombinant human IL-2 (50 U/mL, PeproTech, 200-02) in T cell complete medium at 37�C with 5% CO2. Cells

were synchronized using horse serum as described above, supplemented with 50U/mL human IL-2 and 0.1mg/mL anti-human

CD3 antibody (Invitrogen, Clone OKT3, 16-0037-81).

Luciferase-expressing CD8+ T cells
CD8+ T cells were isolated from the spleen of Per2::Luc mice and activated as described above. Activated CD8+ T cells were syn-

chronized and resuspended at 23105/ml in 2 ml T cell complete medium containing 100 mM luciferin (Abcam, ab45164). Dishes were

sealed with parafilm and recorded using a LumiCycle detector (Actimetrics).

Tissue digestion and single-cell preparation
Tumor tissue was collected and chopped into small pieces, digestion medium was added (RPMI containing 1mg/mL collagenase IV

(Worthington Biochemical Corporation), 40 mg/mL DNase I (Roche 04716728001) and 2% heat-inactivated FCS) and incubated for

30 minutes at 37 �C. Cells were rinsed through a 70 mm cell strainer to obtain single-cell suspensions. To remove debris, Lympho-

lyte�-M (CEDARLANE) was used according to manufacturer’s instructions.

Flow Cytometry
Single-cell suspensions were prepared and incubated with mouse or human Fc receptor block (anti-mouse CD16/32 Biolegend, hu-

man FcR blocking reagent, Miltenyi Biotec) for 10minutes at room temperature (RT). After incubation, unless specified otherwise, the

antibody mix was added directly into the cell suspension and incubated for 15 min at 4�C.
Cells were washed and resuspended in 300 ml FACs buffer with viability dye (DRAQ7, Biolegend, 2 mM) and characterized using an

18-colour BD LSR Fortessa (BD Biosciences) or Beckman Coulter Cytoflex. Acquired data were analyzed using FACSDiva 6 (BD Bio-

sciences) and FlowJo 10 (BD). Cell counts were calculated using Counting Beads (C36950, C36995, ThermoFisher).

For intracellular staining, cells were stained with viability dye (eBioscience� Fixable Viability Dye eFluor� 780, 65-0865-18), fol-

lowed by surface staining as previously described.6 Cells were fixed and permeabilized using Foxp3 / Transcription Factor Staining

Buffer Set (eBioscience, 00-5523-00). Upon wash with permeabilization buffer, the intracellular antibody was added and incubated

for 30 min at room temperature. The following antibodies were used for intracellular staining: anti-mouse Granzyme and anti-mouse

IFN-g. For cytokine detection (Granzyme B, IFN-g), cells were stimulated before staining in complete RPMI medium with phorbol

12-myristate 13-acetate (PMA, 100 ng/ml; Sigma-Aldrich), ionomycin (1 mg/ml; Sigma-Aldrich), and BD GolgiPlug� (1:1000; BD
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Biosciences, 555029) and incubated 4 hours at 37�C, 5%CO2. Caspase-3/7 detection was performed using CellEvent�Caspase-3/

7 Green Ready Flow� Reagent (Invitrogen R37167) according to the manufacturer‘s instruction.

Mouse leukocyte adoptive transfer
Donor cells were collected frombonemarrow (flushedwith PBS) and spleen (smashing through a 70 mmcell strainer) fromdonormice

and lysedwith RBC lysis buffer (420302Biolegend). Cells were labeledwith CellTracker�DeepRedDye (0.5mM in PBS, 37�C 15min),

and injected i.v. (107 bone marrow cells and 107 splenocytes). Unless specified, tissues were harvested after 2h of cell injection. For

egress assays, a total of 106 cells (50% of bone marrow cells and 50% of splenocytes) in 10ml PBS were injected intratumorally. Tis-

sues were harvested 24h after the injection.

EdU assay
EdU (1 mg per mouse, Click-iT� Plus EdU Alexa Fluor� 594 Flow Cytometry Assay Kit, Invitrogen, C10646) was injected intraper-

itoneally into mice 4h before tissue collection. Tumor tissue was collected and digested as described above. Cells were first stained

with viability dye (eBioscience� Fixable Viability Dye eFluor� 780, 65-0865-18), followed by surface staining as previous described.

Then cells were fixed, permeabilized, and EdU detected according to the manufacturer’s instruction.

CD8 T cell sorting and RNA extraction
To obtain CD8+ T cells, tumor tissues were digested and processed as described above. Tumor-infiltrating leukocytes were then

stained using anti-mouse CD45 (clone 30-F11 BUV 395), CD3e (clone KT3.1.1, BV421), CD4 (clone GK1.5 BV650), CD8a (clone

53-6.7 BV605), CD19 (clone 1D3, BB700), andNK1.1 (clone PK136, PE/Cy5) together with DRAQ7, and CD45+CD3+CD8+CD19- cells

were sorted using a BD Aria II. Flow cytometry sorted CD8+ T cells were collected in RNAprotect Cell Reagent (cat. #76526, Qiagen).

RNA was isolated using an RNeasy Plus Micro Kit (cat. #74034, Qiagen) according to the manufacturer’s instructions. RNA integrity

and quantity were assessed with a Bioanalyzer (Agilent Technologies) or a Nanodrop 2000 (ThermoFisher).

RNA extraction, reverse transcription and qPCR
Cells were collected and lysed using Trizol Reagent. RNA quantity and quality was analyzed using a Nanodrop 2000 (ThermoFisher)

or Bioanalyzer. Reverse transcription was performed using PrimeScript� RT Reagent Kit (Takara) according to the provided instruc-

tions. Q-PCR analyses were performed using PowerUp SYBR Green (Applied Biosystems). Quantification of the transcript was per-

formed using the 2-DDCt method using Rplp0 or Rpl32 as internal reference genes.

In vivo antibody treatments
To block LFA-1, anti-CD11a (clone M17/4, 100mg) and anti-CD18 (clone M18/2, 200 mg) antibodies were administered intravenously

(i.v.). Anti-PD-1 antibody (anti-mouse PD-1, clone 29F.1A12�, 200mg) was administrated intraperitoneally (i.p) at day 4 or 6 (B16-F10-

OVA) or day 6 or 7 (MC-38) after tumor engraftment. To deplete CD8+ T cells, depletion antibody (anti-mouse CD8a, clone YTS 169.4,

100mg) was injected i.p. at the same day of PD-1 administration and repeated every 2 days. Isotype control rat IgG2a (clone 2A3) and

rat IgG2b (clone LTF-2) antibodies were used. All antibodies were purchased from BioXCell.

Human CAR T cell generation
Human peripheral blood mononuclear cells (PBMCs) were collected from healthy donors’ buffy coat (provided by University Hospi-

tals of Geneva (HUG), Switzerland) using Ficoll-Paque Plus (Cytiva), then frozen in aliquots and stored in liquid nitrogen. Cryopre-

served PBMCs were thawed and resuspended at 1x106 cells per ml, activated for 3 days with Dynabeads human T-Activator

CD3/CD28 (Gibco, 11132D) in the presence of recombinant human IL-2 (50 U/mL, PeproTech, 200-02) in RPMI1640 (Gibco) media

supplemented with 10% heat-inactivated FBS (Gibco) and 1% penicillin-streptomycin at 37�C with 5% CO2. Activated T cells were

transduced by culturing them for 48 hours in retronectin (Takara, T100B)-coated 24-well plates with retrovirus encoding second gen-

eration anti-CD19-CD28-CD3zCAR. The CAR construct was kindly provided byDr. Crystal Mackall (Stanford University). Dynabeads

were removed, and after washing, cells were cultured in complete media with 100 U/mL IL-2. At day 14, cells were harvested and

frozen until further use. Transduction efficacy of CAR expression on T cells was evaluated by APC-conjugated streptavidin (Bio-

legend, 405207) binding to biotinylated protein L (ThermoFisher, 29997). Before use, CAR T cells were thawed, washed and rested

for 4 hours at 37�C.

Human CAR T cell adoptive transfer
Human DoHH2 lymphoma cells were engrafted as described above. For long-term treatment experiments, 1x106 CAR T cells or

equal number of untransduced cells were injected i.v. into tumor-bearing mice at ZT1 or ZT13 on day 12 after tumor engraftment.

For short-term homing experiment, 1x106 CAR T cells were injected i.v. at ZT1 or ZT13 on day 15 after tumor engraftment.

Twenty-four hours post transfer, tumors were harvested and digested using digestion medium (RPMI containing 1mg/mL collage-

nase IV (Worthington Biochemical Corporation), 2mg/mL collagenase D (Roche, 11088866001), 40 mg/mL DNase I (Roche

04716728001) and 2% heat-inactivated FCS) and incubated for 30 minutes at 37 �C. Single cell suspension were analyzed as

described above.
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Immunofluorescence imaging
Tumor tissues were collected and embedded into OCT blocks (CellPath) and kept at -80�C. Tumors were sectioned into 10 mm sec-

tions using a Cryostat. Sections were postfixed with 4%PFA for 10 min at room temperature. Following three washes with PBS, they

were incubated with BlockAid� Blocking Solution (Invitrogen�, B10710) for 2 h at RT. After PBS, sections were stained with an anti-

body diluted in Blocking Solution at 4�C overnight. The following antibodies were used, AF594 anti-mouse CD31 (clone MEC13.3,

Biolegend 102520), FITC anti-mouse CD4 (clone, GK1.5, Biolegend 100405), AF647 anti-mouse CD54 (clone, YN1/1.7.4, Biolegend

116114), AF647 anti-mouse CD8 (clone 53-6.7, Biolegend 100724), AF488 anti mouse VCAM-1 (clone 429, Biolegend 105710),

E-selectin (clone UZ6, Invitrogen MA1-06506), Goat anti-Rat IgG (H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor� 647

(Invitrogen A21247). Slides were washed 3 times using PBS and stained with DAPI (300nM, Biolegend 422801) for 5min at room tem-

perature. Images were obtained as sections using a Zeiss Axio Examiner.Z1 confocal spinning disk microscope equipped with 405-,

488-, 561- and 640-nm laser sources. All image analyses were performed in ImageJ and Slidebook (Intelligent Imaging Innova-

tions, 3i).

Human immunohistochemistry
Formalin-fixed, paraffin-embedded (FFPE) sections of melanoma were stained by immunohistochemistry using anti-CD4 (EP204) or

anti-CD8 (SP16) (Zhongshan Golden Bridge Biotechnology, Beijing, China) primary antibodies. All staining was performed on the Le-

ica Bond III automated platform (Leica Biosystems, Newcastle, UK) using Bond Polymer Refine Red Detection kit (DS9390). Slides

were scanned with a Pannoramic P250 FLASH slide scanner (3DHistech, Budapest, Hungary).

Single cell sequencing and analysis
Tumors were harvested at different times of the day and processed as described above. Tumor infiltrating leukocytes were sorted

(CD45+ DRAQ7-) using a Biorad S3 sorter in PBS with 1% BSA. Cellular suspension was loaded on a 103 Genomics Chromium in-

strument. Single-cell RNA-Seq libraries were prepared usingChromiumSingle Cell 30 v3.1 Reagent Kit with dual indexes according to

manufacturer’s protocol. Library quantification and quality assessment was performed using a Qubit fluorometer (ThermoFisher Sci-

entific) and a Tapestation (DNA High sensitivity chip - Agilent Technologies). Libraries were sequenced on an Illumina NovaSeq 6000

using paired-end 28 3 90 bp as sequencing mode. In total, 30693 single cells were sequenced (ZT1: 9764; ZT7: 7933; ZT13: 6255;

ZT19: 6651).

Raw count matrices were generated with Cell Ranger v6.1.2 with mouse genome build mm10 as reference. Genes expressed in

less than 20 cells were removed. Cells expressing less than 200 features, more than 7500 features, or more than 10% of mito-

chondrial genes were removed from further analysis. Dimensionality reduction and clustering analysis were done using Seurat

v4.56 Cells were annotated by conventional cell markers: B (Cd79a, Igkc), cDC1 (Clec9a, Xcr1), cDC2 (H2-Aa, H2-Ab1, Itgax,

Clec10a), activated cDC (Ccr7, Fscn1), pDC (Siglech, Bst2), macrophage (Cd68, Itgam), monocyte (Ly6c2, Ccr2), neutrophil

(G0s2, Csf3r), NK (Nkg7, Klrb1c), gdT (Trdc, Tcrg-C1), dendritic epidermal T cells (Trdv4, Tcrg-C1), CD4 (Trac, Cd4), CD8 (Trac,

Cd8a), Treg (Foxp3, Ctla4), melanocyte (Mlana, Dct), and mitotic cells (Birc5, Top2a). ‘Anti-tumorigenic lymphocytes’ include

NK, gdT, NKT, CD8 effector, CD4 naı̈ve, CD8 effector memory, CD8 mitotic, and CD4 effector clusters, whereas ‘Pro-tumorigenic

lymphocytes’ include Treg, Treg mitotic and CD8 exhausted clusters. Further annotation of CD4 and CD8 T cell subclusters cells

were based on exhaustion (Tox, Lag3, Pdcd1, Havcr2), effector (Gzmb, Prf1, Ifng, Il2, Il4), memory (Gzmk, Itga4), and memory/

naı̈ve (Tcf7, Sell, Ccr7, Lef1) markers. Oscillatory genes were identified by Discorhythm58 with each cell as one read. Gene set

over-representation analyses were performed with clusterProfiler57 and gene signature scores were calculated by GSVA.59 Sur-

vival analyses were performed by using the TCGAbiolinks package.60 Cosinor fitting of gene expression was performed by using

the cosinor package.

ZeitZeiger analysis
The ZeitZeiger31 model was trained using mouse melanoma scRNAseq data from the present study, mouse skin scRNAseq data

from in-house, mouse skin scRNAseq data from GSE223109,47 and mouse skin bulk RNAseq data from GSE11510448 and

GSE8385549 data sets. To balance the representation of scRNAseq vs RNAseq and melanoma vs healthy skin data, the melanoma

scRNAseq dataset was randomly sampled by 60% four times and the in-house skin scRNAseq dataset was randomly sampled by

60% two times to form the training set. For scRNAseq datasets, pseudobulk expression in eachmousewas calculated andmultiplied

by 100 to generate the transcript per million as in data for training ZeitZeiger. Each dataset was randomly divided into a training set

and a testing set at a ratio of 6:4. Training data and testing data were batch effect corrected by combat from the sva package.61

Conserved coefficients were summarized from 20 runs of cross validation with different random seeds and different sumabsv and

nSpc parameters. The genes Klf9, Nr1d1, Cry2, Per1, Gapdh, Ppia, and Psmb2 were manually added to the coefficients, as previ-

ously described.63 Further validation of the trained ZeitZeiger model was performed using RNAseq or RMA-normalized microarray

data from both mouse (GSE114943,48 GSE174155,50 GSE38622,51 GSE3862351) and human (GSE35635,52 GSE205155,53

GSE11266054 and GSE13930555). To correct for the diurnal and nocturnal behavioral difference between human and mouse, pre-

dicted human sampling time were generated by adding 12h.
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Estimation of cell composition in TCGA melanoma patients
To estimate the ratio of exhausted vs non-exhausted CD8+ T cells, as well as major immune subsets, cells from GSE12057533 were

annotated as described earlier and the top 20 differentially expressed genes were used to estimate the immune cell composition by

cibersortx .64

QUANTIFICATION AND STATISTICAL ANALYSIS

Unless specified, all data were plotted from independent biological replicates. Data was analyzed using Prism 9 and Prism 10

(GraphPad). *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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Supplemental figures
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Figure S1. Time of day of harvest dictates numbers of tumor-infiltrating leukocytes, related to Figure 1

(A) Gating strategy of leukocytes in B16-F10-OVA and Tyr::CreERT2; PtenloxP; BRafCA tumors.

(B) Normalized total cell numbers of leukocyte subsets in B16-F10-OVA tumors, harvested at 4 different times of the day (zeitgeber time [ZT]); n = 15, 11, 11, 12

mice from 4 independent experiments, cosinor analysis.

(C) Blood leukocyte numbers sampled at 4 different times of the day from B16-F10-OVA tumor-bearing mice, n = 18, 14, 14, 10 mice from 5 independent ex-

periments, cosinor analysis.

(D) Tumor volume of B16-F10-OVA tumors, measured 3 times a day, n = 4 mice.

(E) Quantification of the CD31+ area in B16-F10-OVA tumors, harvested at ZT1 or ZT13, n = 10, 4, 9, 5, 5, 5 mice, one-way ANOVA, and unpaired Student’s t test.

(F) Normalized numbers of blood leukocyte sampled at ZT1 or ZT13 from Tyr::CreERT2; PtenloxP; BRafCA tumor-bearing mice, n = 8 mice from 2 independent

experiments, paired Student’s t test. All data are represented as mean ± SEM, ns, not significant. ***p < 0.001; ****p < 0.0001.
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Figure S2. Circadian leukocyte infiltration and T cell therapy, related to Figure 2
(A) Gating strategy and quantification of EdU+ leukocytes in B16-F10-OVA tumors, n = 4 mice, unpaired Student’s t test.

(B) Gating strategy and quantification of caspase-3/-7+ leukocytes in B16-F10-OVA tumors, harvested at ZT1 (n = 7mice) or ZT13 (n= 8mice), from 2 independent

experiments, unpaired Student’s t test.

(C) Normalized numbers of remaining cells in tumors 24 h post intratumoral injection of 106 leukocytes at ZT1 (n = 7mice) or ZT13 (n = 6mice), from 2 independent

experiments, unpaired Student’s t test.

(D) Tumor volume after anti-LFA-1 treatment (n = 8 mice), isotype control (n = 11 mice), from 2 independent experiments, two-way ANOVA.

(E) Quantification of VCAM-1 (n= 9 sections from 3mice) or E-selectin (n = 12 sections from 4mice) expression onCD31+ cells in B16-F10-OVA tumors, harvested

at ZT1 or ZT13, from 2 independent experiments, unpaired Student’s t test. All data are represented as mean ± SEM, ns, not significant.

(F) Tumor volume after i.v. injection of 106 activated OT-I cells at ZT1 (n = 14 mice) or ZT13 (n = 13 mice), from 3 independent experiments.

(legend continued on next page)
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(G) Tumor volume after i.v. injection of 106 activated OT-I cells at ZT1 (Bmal1flox n = 5 mice, Bmal1DEC n = 6 mice) or ZT13 (n = 6 mice), from 2 independent

experiments.

(H) Tumor volume after i.v. injection of 106 anti-human CD19 CAR-CD28-CD3z T cells in DoHH2 tumor-bearing NSGmice at ZT1 (UT, untransduced T cells, n = 5

mice, CAR T, n = 7 mice) or ZT13 (UT, n = 5 mice, CAR T, n = 7 mice), from 2 independent experiments. All data are represented as mean ± SEM, ns, not

significant. **p < 0.01.
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Figure S3. Identification of TIL subsets, related to Figure 3

(A–C) Feature plot and heatmap of genes to identify each leukocyte cluster obtained by scRNA-seq of B16-F10-OVA tumors, harvested at 4 different times of

the day.
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Figure S4. Diurnal oscillating TILs, related to Figure 3

(A) UMAP representation of scRNA-seq analyses of TILs harvested at 4 different times of the day.

(B) Relative abundance of immune cells per cluster across different times of the day.

(C) Expression of the circadian gene Per1 in each leukocyte cluster obtained by scRNA-seq of B16-F10-OVA tumors, harvested at 4 different times of the day.

(D) Number of significantly oscillating genes detected in each cluster using cosinor (CS) and JTK cycle analyses.

(E) Top oscillatory Gene Ontology pathways common in the different immune cell clusters.

(F) Heatmap of oscillating genes of each cluster. Circadian genes are highlighted.
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Figure S5. Diurnal oscillating genes in TILs, related to Figure 3

(A and B) Feature plot and dot plot of genes to identify different T cell clusters obtained by scRNA-seq of B16-F10-OVA tumors, harvested at 4 different times of

the day.

(C) Relative abundance of each T cell cluster across different times of the day.

(D) Gating strategy of exhausted and non-exhausted CD8+ T cells, pre-gated on CD8 T cells.

(E) Expression of Pdcd1 quantified by pseudobulk analysis of the CD8+ cluster obtained by scRNA-seq of B16-F10-OVA tumors, harvested at 4 different times of

the day. To reduce the sparseness of scRNA-seq data, CD8+ cluster was randomly sampled by 20% for 10 times with different seeds. The expression levels of

Pdcd1 at 4 different times of the day were averaged within each pseudobulk cell.
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Figure S6. CD8+ T cell phenotype oscillates in mice and humans, related to Figures 4, 5, and 6

(A) Schematic overview of T cell synchronization in vitro.

(B) Tumor volume after anti-PD-1 treatment administered at ZT1 or ZT13 in B16-F10-OVA tumors; n = 15, 15, 9 mice; control n = 11 mice, from 3 independent

experiments.

(legend continued on next page)
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(C and D) Tumor volume after anti-PD-1 treatment administered at ZT1 or ZT13 in MC-38 tumors; n = 20 mice; control n = 10 mice, from 2 independent ex-

periments, two-way ANOVA.

(E) Tumor volume after anti-PD-1 treatment administered at ZT1 or ZT13 in B16-F10-OVA tumors with or without CD8 depletion, n = 4 mice.

(F) Tumor volume after anti-PD-1 treatment administered at ZT1 or ZT13 in B16-F10-OVA tumors in control (ZT1, n = 9 mice; ZT13, n = 10 mice) or Bmal1DT (ZT1,

n = 9 mice; ZT13, n = 10 mice), from 3 independent experiments.

(G) Tumor volume at 14 days post B16-F10-OVA tumor engraftment inBmal1DTmice, after anti-PD-1 treatment at 4 different times of the day (n = 9, 4, 10, 4mice),

from 3 independent experiments, one-way ANOVA; data are represented as mean ± SEM.

(H) Tumor volume after two doses of anti-PD-1 treatment administered at ZT1 or ZT13; n = 7 mice, from 2 independent experiments.

(I) Tumor volume after combination therapy of anti-PD-1 and OT-I cells administered at ZT1 (n = 6 mice) or ZT13 (n = 5 mice), from 2 independent experiments.

(J) Error (in h) of the time-predicting algorithm in mouse using full gene lists as internal validation gene sets, n = 54 mice; data are represented as median and

quartile.

(K) Frequency of ZeitZeiger coefficient genes across 20 runs; the dashed line indicates the cut-off for 57 conserved coefficient genes.

(L) Error (in h) of the time-predicting algorithm in mouse using 57 conserved coefficient genes in internal validation gene sets, n = 54mice; data are represented as

median and quartile.

(M) Error distribution of Figure 6E, external validation in mouse, n = 56 mice; data are represented as median and quartile.

(N) Error distribution of Figure 6F, external validation in healthy human patients, n = 369 patients; data are represented as median and quartile, *p < 0.05.
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