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Terminology, concepts and acronyms 

“Artisanal and Small-Scale Gold Mining” (ASGM) is defined in the Minamata Convention 

as gold mining conducted by individual miners or small enterprises with limited capital 

investment and production. “Artisanal mining” is understood as mining operations that use 

traditional or customary rudimentary methods and manual tools to access mineral ore, usually, 

on the surface or subsurface. ASGM is orchestrated with little or no mechanization, and the 

ore is largely processed with the use of mercury. ASGM practitioners, largely, operate 

informally; illegally or in legal “grey” areas. According to UNEP, ASGM contributes about 12-

15% of global annual gold production and introduces about 1220 tones of mercury into the 

atmosphere, soils, and releases into water (UNEP a., 2021). 

“Community-based indicators” refer to those pieces of information that are collected 

through every day’s experiences from ASGM practitioners themselves, children, health 

workers and community leaders. 

“Community-based monitoring” is the involvement of communities to address resource 

development-related environmental issues in ways that can contribute to local sustainability. 

“Ecological community-based monitoring” allows affected groups in a community to 

gather and provide relevant information to government agencies or organisational bodies on 

the extraction and use of natural resources. It allows collaboration between environmental 

activists, governmental agencies, industry, scientists, local institutions and groups for the 

monitoring, tracking, and management of environmental issues. 

“Informal Artisanal and Small-Scale Mining” is mining activity performed by an individual 

or a group of people, company, or foundation, without a legal mining permit from regulatory 

government agencies. Minerals mined this way include gold, cassiterite, wolframite, colored 

gemstones, diamonds, cobalt, and even coal. 

“Informal Artisanal and Small-Scale Gold Mining” refers to a mining activity conducted by 

a person, group of persons, a company, or a foundation, which does not hold a legal mining 

permit from regulatory government agencies for the extraction, marketing of gold.  

“Indicators” are the primary sources of monitoring mercury pollution with the use of RS 

techniques. Indicators depend on several knowledge systems to determine the presence of 

ASGM and mercury pollution.   

“Monitoring” is the process of taking regular observations over an activity or phenomenon 

using valid methods, tools and indicators for informed decision making. It is a tool that can be 

used to gather relevant information on mercury use in ASGM communities. 

“Mercury inventory” is the process of gathering and documenting information on the extent 

of mercury pollution using reliable and scientific processes of investigation. 

“Science-based indicators” are pieces of information identified through scientific process 

and analysis on the extent and presence of illegal ASGM activities and environmental pollution 
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by mercury. Examples include the use of Remote Sensing (RS) and geographic information 

systems (GIS). 

“Traditional knowledge indicators” pieces of information that are usually gathered from the 

perspectives of elders about how and when mercury use in ore processing started in the 

locality. 

 

List of abbreviations 

Acronym Description 

AfDB African Development Bank 

AI Artificial Intelligence 

ANN Artificial Neural Networks 

API Application programming interface 

ASGM Artisanal and Small-Scale Gold Mining 

ASM Artisanal and Small-Scale Mining 
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BS Bare Soil 
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CNN Convolutional Neural Network 

CPU Central Processing Unit 

CSV Comma-separated values 

DCoD Data Cube on Demand 

DDI Diamond Development Initiative 

DEM Digital Elevation Model 
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DL Deep Learning 

DRC Democratic Republic of the Congo 

DSM Digital Surface Model 

DT Decision Tree 

EEB European Environmental Bureau 
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Executive summary 

This technical guidance document aims at showing the benefits and challenges of the use of 

Remote Sensing (RS) technologies to identify and monitor artisanal and small-scale gold 

mining (ASGM) activities and related environmental pollution, to support policy development, 

implementation and evaluation to address ASGM, with a special focus on the context of the 

Minamata Convention on Mercury. The document includes a comprehensive literature review 

on the various uses of RS for ASGM detection and monitoring, protocols and guidance on 

satellite image analysis, and final insights on benefits and challenges of such techniques. The 

document also includes recommendations targeting decision makers, providing them with 

evidence-based insights to support decision making and policy implementation. Finally, the 

document demonstrates two concrete case studies featuring ASGM activities in the 

Democratic Republic of the Congo and in Peru, illustrating how RS can support the 

identification and quantification of the impacts of mining activities occurring in remote areas.  

These guidelines are designed as a supplement to the UNEP guidance document on 

Developing a National Action Plan to Reduce, and Where Feasible, Eliminate Mercury Use in 

Artisanal and Small-Scale Gold Mining, which offers overarching guidance to countries 

formulating ASGM National Action Plans (NAPs) for the Minamata Convention. 

The document is structured in 5 chapters, as follows: 

1. Background on Remote Sensing and Artisanal Small-Scale Gold Mining. 

2. Literature review and main findings on the state-of-the-art use of RS applied to 

ASGM contexts. 

3. Conceptual framework for ASGM monitoring for policy development, implementation 

and evaluation. 

4. Summary of the potentials and challenges of using RS for ASGM monitoring. 

5. Conclusions and recommendations. 

This document aims at enabling users to understand how to use RS to detect and monitor 

ASGM activities; identify challenges and limitations in using RS technologies to monitor ASGM 

activities; raise awareness of decision makers of the potential for RS to be applied as a tool 

for monitoring ASGM; and provide tangible insights on the use of RS to inform decision 

making. 

 

  



13 

1. Background: Remote Sensing and Artisanal 

and Small-Scale Gold Mining 

1.1. What is Artisanal and Small-Scale Gold Mining? 

In the last three decades, there have been relevant discussions on Artisanal and Small-Scale 

Gold Mining (ASGM) at various international, regional, and national development platforms. 

The ASGM sub-sector is a global activity, which provides a critical longstanding livelihood for 

over 100 million people around the world (Eftimie et al., 2012). The practice of ASGM activities, 

as a means of economic livelihood, has been an intergenerational matter. In both historical, 

present, and future terms, the ASGM sub-sector has proven to have the potential to 

emancipate many rural folks out of poverty if properly structured, regulated, monitored, and 

organized responsibly (World Bank, 2009). Within the last decade, the sub-sector has received 

significant attention from international donor agencies due to its close relation to poverty. It is 

now in the agendas of many national governments and appreciably in Sub-Saharan Africa, 

Central and South America, and Southeast Asia, and other developing regions. It is ever more 

considered as a viable pathway for sustainable livelihood building and poverty alleviation. The 

sub-sector produces approximately 18% of Africa’s gold export to the global market (O’Neill & 

Telmer, 2017; UN ECA, 2009). It is, therefore, essential to enhance public understanding of 

the ASGM sub-sector in perspective, to maximize its benefits and mitigate the associated 

costs. 

There is no standardized definition of ASGM in literature. The proper definition of ASGM is 

location-based and country specific. In some countries, ASGM is defined as a sort of mineral 

extraction that is individual or group-based, highly labor-intensive, involving a limited capital 

investment, basic tools, manual devices, or simple portable machinery (Bryceson & Jønsson, 

2014). This definition is in line with Sennett’s work on artisanal craftsmanship and its impacts 

on human society (Sennett, 2009). That is, that class of workers who work primarily with their 

hands and with the use of hand-held tools. The government of Ghana for instance acknowledged 

the relevance of the ASGM sub-sector in gold production by enacting a Small-Scale Gold Mining 

Law (PNDCL 218) in 1989. This law defines small-scale gold mining as: “The mining of gold by 

any method not involving substantial expenditure by an individual or group of persons not 

exceeding nine in number or by a cooperative society made up of ten or more persons” (Ofei-

Aboagye et al., 2004). Thus, ASGM refers to the mining of gold by individual miners or small 

enterprises with a limited capital investment and production (Coulter, 2016).  

As to what form of mining operation constitutes ASGM or a method of operation showing 

ASGM is not clearly defined. This is so partly because the legal instruments that define ASGM 

vary from country to country. To this end, the scientific community, funding agencies and 

industry players use a combination of criteria to determine what constitutes ASGM. Currently, 

the United Nations (UN) uses the levels of mineral production to define ASGM as an extraction 

entity that operates between 50,000 tons a year for underground mines and 100,000 tons a 

year for open-pit mines. In terms of project financing, most ASGM operate under $5 million, 

with a limited labor force of less than 50 workers (UN ECA, 2011). However, some countries 

draw a boundary between artisanal and small-scale mining. For instance, in some Western 

African countries such as Mali, Niger, and Burkina Faso, while artisanal mining is an operation 
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that is purely manual and involves the use of rudimentary tools, small-scale mining is an 

operation that is more mechanized with the presence of permanent, fixed installations 

(Hentschel et al., 2002). Anyhow, in Ghana and other West African Countries, there is no 

difference between artisanal mining and small-scale mining. What is common in the African 

context is that the ASGM operations are generally done either on private, public, or vested 

lands without any formal permission. Thus, ASGM operations are mostly uncontrolled, 

informal, and unauthorized. 

A combination of criteria is used to determine whether a mining operation is ASGM or not. For 

instance, the laws in Brazil provide definitions for ASGM through its “Garimpo” or 

“Garimpogen” law (Hentschel et al., 2002). According to those authors, the criteria generally 

used to determine a mine operation as an ASGM are the following: 

1. The volume of production, 

2. Maximum number of workers, 

3. Initial capital base, 

4. Labor productivity, 

5. Size of mine claim, 

6. Quantity of reserves, 

7. Sales volume, 

8. Operational continuity, 

9. Operational reliability, 

10. Duration of the mining cycle. 

However, the informal nature of ASGM sub-sector operations makes it difficult to appraise its 

total negative and positive impacts to the economies of African countries and their 

environment. 

1.1.1. The impacts of Artisanal and Small-Scale Gold Mining 

ASGM has become a basic livelihood activity and an agent of local economic development in 

the many local communities that it is practiced. Notwithstanding, ASGM operations bring a 

complex array of positive and negative socioeconomic and environmental impacts, which are 

discussed in the succeeding paragraphs.  

1.1.1.1. Positive 

The World Bank estimates that about 44.75 million people across 80 countries worldwide are 

employed by ASGM (World Bank, 2020). In Ghana, the ASM sector alone directly employs 

about 1 million people and indirectly supports about 4.5 million more. Despite the dearth of 

reliable statistics, it is universally acknowledged that the ASGM sub-sector contributes a 

significant amount of gold to global production and consumption. The estimate is at 330 tones 

a year (Hentschel et al., 2002) and at least 134 million people work in related industries (World 

Bank, 2020). An estimated 3.7 million people directly engage in the ASGM operations, and 

support about 30 million households in Africa (UN ECA, 2009). For instance, in Sierra Leone, 

it is estimated that the ASGM sub-sector alone employs over 80,000 youth, which represents 

over 3% of the total rural workforce in the country (Environment Protection Agency Sierra 

Leone, 2019). The ASGM sub-sector catalyzes economic multipliers through enhancing local 
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purchasing power with mining returns and the growth of small and medium scale businesses 

(Franks et al., 2020). These arrays of positive impacts of the ASGM sub-sector 

notwithstanding, the sub-sector has sustainability challenges, with negative impacts 

outweighing the positives. 

1.1.1.2. Negative 

It is noted that both private and public initiatives on managing and mitigating the negative 

impacts of ASGM activities often focus on land, water, vegetation and society. That is, ASGM 

activities may lead to the contamination of water bodies (see  

Figure 1); which further serve as breeding grounds for mosquitos and malaria, and heavy 

metal contamination of soils; making land unavailable for crop farming. The operators of 

ASGM often use mercury, a highly toxic chemical, in ore processing. As little as 19 million 

ASGM operators in the world use mercury in ore processing, which makes the use of mercury 

in the sub-sector a global issue (Esdaile & Chalker, 2018). Currently, it is estimated that ASGM 

operations alone release over 1,000 tones of mercury per annum (UNEP, 2019). A study 

conducted in Tanzania found that about 98% of all ASGM sites in the country use mercury in 

ore processing. Out of this, about 71% of the sites are found near residential areas and 

associated vulnerable groups (Merket, 2019).  

  
 
Figure 1. The negative impacts of informal ASGM on river networks in Ghana. Left: pollution of the Pra 
River. Right: pollution of the Ankobra River. 

 

There are relevant health concerns as the toxic chemical is transported along both surface 

and underground waterways surrounding the mining sites (see (Basu et al., 2015)). The health 

effects on both miners and host local communities include neurological damage, physical and 

mental disabilities, and compromised development. In most of the ASGM endemic areas in 

Ghana, water quality has been significantly affected by turbidity, resulting in a water quality 

index of at least 500% higher than the upper limit of the WHO water potability index (Bansah 

et al., 2018). A study conducted by the United Nations Industrial Development Organisation 

(UNIDO) to determine the environmental impacts of mercury found widespread contamination 

of groundwater, rivers, and soil systems in Dumasi, a village in the Bono Region of Ghana, 

found that mercury losses mainly occurred during amalgamation and have resulted in 

widespread pollution of soils and sediments throughout the village. Many fish fillets in the river 

channels were found to have mercury contents exceeding the United States Food and Drug 

Agency (US-FDA) action level (Babut et al., 2003).  
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Three studies were independently conducted in different Ghanaian ASGM localities (Paruchuri 

et al., 2010; Basu et al., 2015; Rajaee et al., 2015). They compared the urine mercury 

concentration levels between miners and non-miners of the same locality but who reside 

outside 10 km from the mine site on one hand, and between non-miners of a mining locality 

and residents of non-mining localities on the other hand. One of the studies found that the 

mean urine mercury concentration in small-scale miners in Dunkwa and Tarkwa (e.g., mining 

localities) is higher than that found in farmers of the same locality. Another study found the 

difference between the results found in non-miners living in the same area and non-mining 

Accra residents was quite small. Overall, many means exceeded the average mercury 

concentration in urine for the U.S. population (Basu et al., 2015). At Talensi Nabdam in the 

Upper East Region of Ghana, it was certified that ASGM workers who handle mercury most 

often have significantly higher urine mercury concentration levels than those who have little 

contact with mercury in their routine businesses on site (Paruchuri et al., 2010). It was found 

that 5% of such workers had urine mercury concentration levels that exceeded the World 

Health Organisation (WHO) guideline value of 50 μg/L. Furthermore, a significant positive 

correlation was found between fish consumption and hair mercury levels. Whereas sediment 

mercury concentrations exceeded WHO guideline values in 64% of the study samples, 

arsenic, cadmium, and lead also exceeded the WHO guideline values of water samples.   

Additional ASGM-related negative impacts include deforestation, biodiversity loss, social 

issues (e.g., armed conflicts, socio-environmental struggles over control of space, mineral 

resources and development opportunities, defense of human rights and citizenship, and 

dissatisfaction with the distribution of mineral rents, see (Bebbington, 2007; Bebbington et al., 

2008; Collier & Hoeffler, 2005; Peluso et al., 2001; Ross, 2008)) and potential linkages to 

climate change (Rajaee et al., 2015). Between 2014 and 2017, it was found that approximately 

47’000 ha (⨦2,218 ha) of vegetation were destructed in Ghana by the ASGM activities at an 

average rate of ~2,600 ha yr−1. It is further found that about 700 ha of protected areas have 

been disturbed by the ASGM as mapped by the World Database of Protected Areas (Barenblitt 

et al., 2021). According to the Global Mercury Assessment report 2018 (UNEP, 2019), ASGM 

activities are estimated to account for 38% of the global anthropogenic atmospheric mercury 

emissions to the environment. The sub-sector’s negative impacts on social issues include 

labor migration, human trafficking, and conflicts in Latin America and Africa (Franks et al., 

2020). It is also sometimes observed to promote truancy, child labor, teenage pregnancy, and 

sexually transmitted diseases. The ASGM sector can be tax evasive and non-compliant if the 

government is unable to detect their presence in space and in places. Especially in case the 

extracted mineral is converted to non-local money (generally the case for gold), the benefits 

that the ASGM sector brings to the local market may disappear fast, while the negative 

consequences at social and environmental scales may last for a long time (IIED, 2002). 

Despite the global concerted efforts aimed at addressing all the identifiable negative impacts 

of the ASGM sub-sector, there has been limited overall progress and success in evidence. 

The critical challenge towards addressing the ASGM sub-sector issues is how to transform its 

negative impacts into enhanced positive impacts, maximise its contribution to poverty 

reduction and the creation of resilient communities. To this end, there is the need to improve 

the understanding of ASGM issues on the policy, and regulatory domains. Thus, efforts are 

required to encourage the adoption of advanced technologies such as Remote Sensing (RS) 

to give consistent and effective data based on which discussions on the environmental 

protection, sustainability and livelihood security of the ASGM sub-sector can be built. 
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1.1.2. The links between Remote Sensing and Artisanal and Small-Scale 

Gold Mining Monitoring 

According to (White, 1977) and (Lillesand et al., 2015), RS comprises of the set of methods 

scientists and practitioners use to obtain images or record electromagnetic footprints of Earth’s 

surface materials from a distance, process and interpret these images and footprints of the 

Earth’s surface. According to the perspectives of (Campbell, 1996), RS is the method of 

acquiring information about the features or activities on the surface of the Earth including water 

and land using a source of energy and sensors. RS, thus, is the detection and recording of 

the electromagnetic radiation (EMR) of the electromagnetic spectrum (EMS) from target areas 

in the field of view of a sensor instrument. The EMR could originate directly from separate 

components of the target area or activity, or the reflection of solar energy from them. EMR 

may also be the reflections of energy transmitted to the target area from the sensor itself. To 

acquire information about the Earth’s surface, the sensors are placed on a holder called 

platform. Examples of platforms include the stationary tripod for field observations, stationary 

balloon or mobile aircrafts and spacecrafts. Generally, these examples are grouped into (1) 

ground borne, (2) air borne and (3) space borne sensors. The platform is determined by the 

objective, resources, and constraints of the observation mission. According to the United 

Nations (95th Plenary meeting, 3rd December 1986), the general purpose of RS is towards 

improving natural resource management, land use and environmental protection. 

Importantly, remote sensors are classified based on the source of energy used by the sensors 

in data acquisition. These are active sensors and passive sensors. Active RS methods provide 

their own source of EMR to illuminate the terrain. A photographic camera using its flashlight 

to acquire images acts as an active sensor. Radar and laser altimeter are examples of active 

sensors, which mostly work in microwave regions of the EMS, penetrate clouds and are not 

affected by rain. This allows an accurate mapping of ASGM activities in rainforest areas, which 

are otherwise too obscured by clouds and rain. Active remote sensors systems are versatile 

providing images in both day and night and under all-weather conditions, mapping landforms, 

water, soil, vegetation, and crop health around ASGM sites. Passive RS methods do not have 

their own source of energy but detect energy naturally reflected or radiated energy from the 

area being observed. Passive remote sensors include film photography usually employed 

during fieldwork, infrared, and radiometers. The methods of analysing RS data include spectral 

analysis, spatial analysis, contextual analysis, knowledge-based analysis, pixel-based and 

object-based analysis. A detailed discussion on these methods is provided in the succeeding 

subsections. 

1.2. Challenges of Governments’ actions on the monitoring 

of the Artisanal and Small-Scale Gold Mining sub-sector 

1.2.1. Background 

At the end of the last century, UN agencies and NGOs started to raise awareness on the 

consequences related to the use of mercury in the ASGM sector. A typical example is the 

UNIDO’s Global Mercury Project that started in 1994 with some individual projects in the 
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Philippines, Ghana and Tanzania (Spiegel et al., 2015). However, it is only in the last two 

decades that more countries began to embrace more comprehensive actions on reducing the 

use of mercury, thanks to the growing evidence associated with the risks for both the 

populations living near local emission sources as well as more dispersed transboundary 

pollution. This eventually led to the agreed regulation on the use of mercury that is expressed 

in the text of the Minamata Convention on Mercury by Parties to the Convention in 2013. The 

convention regulates the use of mercury in multiple forms and sectors from trade to waste’s 

disposal and focuses on the ASGM sector in its Article 7 by mandating that countries where 

ASGM takes place “shall take steps to reduce, and where feasible eliminate, the use of 

mercury and mercury compounds in, and the releases to the environment of mercury from 

such mining and processing” (Article 7, Paragraph 2). In addition to this, in Paragraph 3, it also 

demands that parties who have notified the Secretariat that they have more than insignificant 

ASGM activity in their territory should develop and implement NAPs for reducing mercury use 

and pollution risks in ASGM within three years. The Minamata convention on Mercury entered 

into force in 2017 and, at the time of writing, it has been signed by 128 countries. By 4th October 

2021, only 16 parties have submitted their NAP out of the 31 Parties who have notified the 

Secretariat of recording more than insignificant ASGM activity in their territory. 

To create effective NAPs, countries need to have a comprehensive approach that includes 

policy, regulatory, institutional, technical, environmental, health and socio-economic aspects 

and to propose tailored solutions that are context-specific rather than using a common 

strategy. To facilitate countries’ implementation of Article 7 of the Convention, international 

organisations have created a series of tools such as the planetGOLD Project (led by UNEP 

and Conservation International with specific international programmes in 23 developing 

countries), the Socio-economic ASGM Research Methodology (United Nations Institute for 

Training and Research - UNITAR) and the UNEP Global Mercury Partnership (stakeholders 

include governments, industry, NGOs, and academia).   

According to UNEP (UNEP, 2019), ASGM activities are most common in tropical and 

subtropical countries. Examples of areas of occurrence include East and Southeast Asia, 

South America, and Sub-Saharan Africa (Tsang et al., 2019). From the mid-1990s, most Sub-

Saharan African countries started developing and implementing policy initiatives and 

legislative instruments that would support the development of the ASGM sub-sector. Central 

issues addressed in these policy frameworks include lack of strong governmental initiatives to 

support ASGM operators, and insufficient attention to ASGM associated environmental 

issues. As proposed in the Socio-economic ASGM Research Methodology (UNITAR), 

countries should harvest information on several aspects such as social dynamics, role of 

women in the mining population, health, environment, and many others, to have a clear 

understanding of the ASGM phenomenon in their country. Many member countries have 

started this process amidst several challenges as is discussed in the next section and 

illustrated in Table 1. 

Table 1. Examples of actions at national level on the ASGM sub-sector 

Country Period Objective Partners 
 

Reference 

Brazil 1988 Establish control over the 
ASGM sector by making it 

_ (Telmer et al., 
2006) 
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legal 

Colombia 2015 Detect and characterize the 
activity of alluvial gold mining 
artisanal sites 

The Ministry of 
Justice and Law of 
Colombia and 
UNODC 

(UNODC, 2016) 

Colombia 2016 Characterize the socio-
economic aspects of the 
ASGM sector and develop 
policies 

The Ministry of 
Justice and Law of 
Colombia and 
UNODC 

(UNODC, 2020) 

Colombia 2018 Law 1658 of 2013 established 
a ban on the use of mercury 
in mining in Colombia, 
granting a period of five years 
for miners to make the 
transition to the use of clean 
technologies to obtain 
responsible gold. On July 16, 
2018, and after this deadline, 
the country officially banned 
the use of mercury in gold 
mining 

_ (Ibrahim et al., 
2020) 

French Guiana 2004 Governmental decision: 
control and regularize the 
ASM sector 

Region Guiana, 
Forest Department 
of the French 
Agricultural 
Research Centre 
for International 
Development 
(CIRAD), ONF 

(Brognoli, 2004; 
Linarès et al., 

2008) 

Ghana 1989 ASM formalization _ (Gallwey et al., 
2020) 

Ghana 2013 Stop all ASM operations _ (Gallwey et al., 
2020) 

Ghana 2015 Train GNASSM members on 
various technical, 
management, health and 
safety aspects of ASM 

University of Mines 
and Technology 
(UMaT), Ghana 
National 
Association of 
Small-Scale Miners 
(GNASSM) 

(Hilson & 
Mcquilken, 2016) 

Ghana 2015 Review the categorization of 
ASM mining licenses to 
account for changes in 
characteristics and enable 
foreign investment 

Ministry of Lands 
and Natural 
Resources 
(MinCom) 

(Hilson & 
Mcquilken, 2016) 

Ghana 2017 Stop all ASM operations _ (Gallwey et al., 
2020; Nyamekye 

et al., 2021) 

Ghana 2017 Sanitize illicit mining activities Ministry of Lands (MLNR, 2017) 
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- 
2022 

in Ghana and Natural 
Resources 

Ghana 2021 Sanitize illicit mining activities 
in Ghana 

Ministry of Lands 
and Natural 
Resources 

National Dialogue 
on Small-scale 

mining 

Peru 2002, 
2004 

Combat illegal mining _ (Malca & Ruesta, 
2019) 

Peru 2011, 
2013, 
2014 

Combat illegal mining _ (Malca & Ruesta, 
2019) 

Peru from 
early 
2019 

Combat environmental 
crimes in the Amazon 

USAID (MAAP, 2020) 

Sierra Leone _ Evaluate the location and 
activity of ASGM sites for the 
development of their NAP 

Government, UNs (Environment 
Protection Agency 

Sierra Leone, 
2019) 

South Africa 1994 Legal recognition of the ASM 
sector 

_ (Mhangara et al., 
2020) 

South Africa 2008 Mineral and Petroleum 
Resources Development 
Amendment Act (MPRDA), 
No. 49 of 2008 (Ledwaba and 
Nhlengetwa, 2016) 

_ (Mhangara et al., 
2020) 

Suriname, 
Guyana, 
French Guiana 
and the 
Brazilian state 
of Amapá 

2014 (1) Monitor the impact of gold 
mining on forest cover and 
freshwater in the Guiana 
Shield 

Forestry and 
environmental 
services of 
Suriname (SBB), 
Guyana (GFC), 
Amapá (SEMA) 
and French Guiana 
(ONF). Co-funded 
by WWF Guianas, 
it was conducted 
under the 
supervision of ONF 
International in the 
framework of the 
REDD+ for the 
Guiana Shield 
project 

(Rahm et al., 
2015) 

(2) Develop a robust, reliable 
and transparent regional 
methodology 

(3) Encourage regional 
cooperation, dialogue and 
knowledge sharing 

Tanzania 1989 
- 

1997 

Combat illegal 
  mining 

_ (Dreschler, 2001) 

Zimbabwe 2006 
- 

2009 

Combat illegal mining _ 
  

(Kamete, 2008; 
Spiegel, 2009, 
2014, 2015; 
Spiegel et al., 
2015) 
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1.2.2. Challenges of national initiatives 

In the last decades, countries have tried to contrast the health, environmental and socio-

economic consequences issued by the ASGM practices with a policy approach often oriented 

towards the criminalization of artisanal miners. Unfortunately, these actions have generally led 

to negative consequences such as generating conflicts between the local population and the 

competing large companies, decreasing the trust towards governments, favoring infiltrations 

of criminal groups into the socio-economic layers of the local populations, and so far not 

succeeding in reducing the health and environmental issues caused by the ASGM practices 

(Gallwey et al., 2020; Kamete, 2008; MAAP, 2020; Nyamekye et al., 2021; Spiegel, 2009, 

2014, 2015; Spiegel et al., 2015). 

Although the regularisation process of artisanal miners might seem an additional cost to 

governments, this approach would not only benefit human health and environment but it would 

also benefit governments in terms of budget by (1) moving in the money generated from the 

sale of minerals extracted in the artisanal mines that are generally sold internationally and (2) 

favoring foreign investments given a more stable social and political context (IIED, 2002). For 

instance, Tanzania’s liberal politics 1989 to 1997 resulted in mining licenses passing from 17 

to 2000 and money gained from minerals exportation by the country from 16 to 184 million US 

Dollars (Dreschler, 2001). Unfortunately, most regularization processes promoted by 

governments in the past decades (e.g., Brazil (1988), Ghana (1989), South Africa (1994), Peru 

(2002, 2004, 2011, 2013, 2014)) did not succeed as artisanal miners found the regularization 

process unappealing or disfavored by complex bureaucratic processes (IIED, 2002).  

Based on the collected evidence, national and international policies of ASGM are still weak, 

and regulation of this mining sector remains problematic. Studies suggest that national policies 

of ASGM would benefit (1) a collaborative writing process of governments with local 

populations and mining associations (IISD, 2019; Kamete, 2008; MAAP, 2020; planetGOLD, 

2021 ; Rahm et al., 2015; Spiegel, 2009, 2014, 2015; Spiegel et al., 2015); (2) the 

regularization of artisanal miners rather than their criminalization (Clifford, 2010; Dreschler, 

2001; Kamete, 2008; Spiegel, 2009, 2014, 2015; Tschakert & Singha, 2007) even by 

proposing fiscal advantages and making an effort to buy them minerals at an equal price to 

that of the black market (IIED, 2002) and by decreasing the bureaucratic process to get the 

licenses (Mhangara et al., 2020); (3) the recognition of the property rights of local (especially 

indigenous) populations (Hook, 2019); and (4) the inclusion of post-mining land-reconversion 

processes (Asamoah et al., 2017).  

1.3. Goal and scope of this document 

1.3.1. Scope and boundaries 

This guidance document aims to show the benefits and challenges of using RS technologies 

to support ASGM policy development, implementation and evaluation. It provides insights on 

monitoring ASGM activities and related pollution, and reports on the evolution of ASGM 

activities. It identifies RS techniques to detect ASGM sites, to characterize the evolution of 
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ASGM activities, and to monitor mercury pollution to inform decision makers. It also highlights 

the national measures taken to address ASGM challenges. 

More specifically, the guidance document provided in this report can help countries to 

implement the Minamata Convention in ASGM environments. The Minamata Convention on 

Mercury addresses ASGM in which mercury amalgamation is used (Article 7) and requires 

that any party with more than insignificant ASGM develop and implement “a national action 

plan in accordance with Annex C” (Article 7.3(a)). The formulation of the NAP should be based 

on Convention’s obligations and current technical and scientific understanding of the ASGM 

sector, including the use of mercury and processing of gold amalgam, including its health and 

environmental effects, as well as social and economic analysis of the ASGM sector. This 

guidance document provides detailed information on RS possible contributions to elaborate 

and implement NAPs. 

The approaches described in this document rely on analyzing the scientific literature on the 

use of geographic information systems (GIS) and RS technologies in assessing ASGM 

activities and its impacts, as well as "grey" literature produced by organisations and institutions 

specialized in environmental management. This guidance document aims at providing clear 

guidance on what is feasible with such technologies and how to implement them and for which 

objective. It also includes recommendations targeting decision makers, providing them with 

evidence-based insights to support decision making and policy implementation. Finally, it 

features two concrete case studies in ASGM activities in the Democratic Republic of the 

Congo and in Peru, illustrating how RS can support the identification and quantification of 

mining activities impacts occurring in remote areas. 

In summary this guidance document can enable users to: 

● Understand how to use RS to detect and monitor ASGM activities. 

● Identify challenges and limitations in using RS technologies to monitor ASGM 

activities. 

● Raise awareness of decision makers of the potential for RS to be applied as a tool for 

monitoring ASGM. 

● Provide tangible insights on the use of RS to support decision making. 

1.3.2. Who is this guidance for? 

This guidance document has been designed in priority to assist governments and 

policymakers in ASGM countries. It provides them with insights on RS technologies to better 

prepare and implement the NAPs for reducing, and where feasible eliminating, mercury use 

in ASGM as required by the Minamata Convention. Researchers, international and civil society 

organisations, as well as the private sector, may also find in these guidelines relevant insights 

to investigate and document their activities in the ASGM sector. This document is designed 

as a supplement to the UNEP guidelines on Developing a National Action Plan to Reduce, 

and Where Feasible, Eliminate Mercury Use in Artisanal and Small-Scale Gold Mining, which 

offers overarching guidance to countries formulating ASGM NAPs for the Minamata 

Convention. 
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This document was developed under the assumption that users have limited but existing 

knowledge of GIS and RS. However, if some aspects remain too technical, users are 

encouraged to review additional sources of information provided further in the document. 

1.3.3. Challenges 

Unlike large-scale mining activities, it can be challenging to obtain reliable information about 

the location and spatial extent of ASGM activities. Artisanal mining is often informal, and 

sometimes illegal, with little government oversight and few reliable statistics on location and 

production. Most often, finding reliable information on ASGM sites, mercury use, gold 

production, and tailings disposal requires extensive site visits, multiple interviews with miners, 

gold buyers, local government officials, and other categories of stakeholders, plus additional 

observations and physical measurements on ASGM sites. For this reason, a successful and 

accurate understanding of the ASGM activities will likely rely on a variety of direct and indirect 

types of information, provided by a diverse sample of practices. Satellite images offer a 

powerful tool for monitoring the territory, especially areas that are remote, difficult to access, 

and hidden by the forest canopy, such as those where ASGM occurs. The regular analysis of 

satellite images provides decision-makers with a tool to intervene, if feasible, in a short time, 

and the immediacy of the information produced opens the door to an efficient monitoring 

system of the territory. It is a relevant tool for collecting geographic information about artisanal 

mining sites, such as the surface extent, distribution, accessibility, land use, and tailing waste. 

RS is particularly useful when collecting information in environments where low accessibility 

makes it difficult to collect field information. 

Specifically, RS technologies are relevant for observing ASGM activities at various spatial 

scales and contribute real-time and historical data and information for monitoring associated 

environmental impacts. For example, RS tools can sense and determine land use change, soil 

and water contamination and associate biodiversity degradations due to ASGM.  

1.4. Structure of the document 

In the first section of this guidance document, a general background on ASGM, its positive 

and negative impacts as well as key terminology concepts on RS are provided. Challenges of 

governments’ actions on ASGM monitoring are discussed and examples of actions at national 

level are listed. The intended audience of the document is specified as well as its goals and 

scope and the structure of the document is introduced. 

The second section of the guidance document starts from the extensive literature review that 

was achieved and draws the main findings on the state-of-the-art use of RS applied to ASGM 

contexts in application projects and in research. An overview of the literature review is 

provided, describing its scope and the methodology that was used to conduct it. An overview 

of the main RS methods is provided as well as a list of case studies using RS applied to ASGM, 

associated results and possible indicators in the context of ASGM monitoring. 

The third section presents the proposed conceptual framework for ASGM policy development, 

implementation, and evaluation. This section is at the heart of the technical guidance 

document. After having presented the vision and objectives of the proposed conceptual 

framework and discussed the definition of a reference period for monitoring, a methodology 
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for ASGM monitoring is provided, including precise guidelines. The section ends with the 

presentation of two case studies that were developed in 2021 by UNEP/GRID-Geneva in 

Eastern Democratic Republic of the Congo and in the region of Madre de Dios, Peru, to 

showcase how it is possible to monitor land cover changes using RS open-source 

technologies. 

The fourth section of the document gives as summary of the potentials and challenges of using 

RS for ASGM monitoring. 

The last section provides conclusions and recommendations for different typologies of end 

users: government officials and policymakers in ASGM countries; researchers; International 

Organisations and funders; and data and software providers. 
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2. Literature review and main findings on the 

state-of-the-art use of Remote Sensing applied 

to Artisanal and Small-Scale Gold Mining 

contexts 

2.1. Overview of the literature review 

2.1.1. Scope 

A review of scientific and grey literature on the use of satellite and aerial RS analysis, and GIS 

technologies as the primary means of monitoring ASGM activities was carried out. The 

reviewed publications refer to the use of RS techniques for very specific purposes (e.g., to 

monitor the extent of mining areas) or explore the potentials of RS technologies applied to 

ASGM contexts. This literature review also includes publications referring to numerous 

initiatives on ASGM and containing insights and recommendations on suitable methods and 

technologies to address ASGM pollution, including –but not limited to— the use of RS 

methods. 

In this review, we consider artisanal mining activities, licensed or unlicensed, but excluding 

large scale mining activities. Regarding the type of minerals, although this document focuses 

on gold mining, some work on other types of minerals (such as emeralds) provides interesting 

insights and has been included in our search. However, they remain a minority as the vast 

majority of the work reviewed is concerned with gold mining activities. 

A large number of papers report on the use of RS technologies and GIS for mining purposes, 

including exploration, mineral prospecting, applied geological purposes and pre-mining risk 

assessment. We chose to not consider this work in our literature review. Therefore, this review 

focuses only on works that use RS as a core component of their analysis, that is to say for 

which spatial analysis is an essential element of the study. Works referring to spatial analysis 

in general as a secondary technique or input have been excluded. 

The literature shows a long history between the use of RS technologies and mining activity. 

To limit the scope of the literature review, we have chosen to focus on relatively recent 

literature (mostly from the last decade) whose technical developments allow us to address our 

concerns. Our literature review encompasses different types of works, mainly from the 

scientific literature, but also works that have not been peer-reviewed, such as technical reports 

from various UN agencies, or policy guidelines. The search was not limited by geographical 

extent or scale and includes inputs coming from contributions not focusing on any country. 

2.1.2. Methodology 

The review presented in this section follows the general methodology proposed for systematic 

reviews. This type of review is particularly useful when a subject is the focus of considerable 

research in recent years and where a comprehensive view can be useful for orienting future 

research methods. This is the case for ASGM.  
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The approach taken for searching relevant peer-reviewed and non-peer-reviewed literature 

consisted of a set of keywords used to query different repositories such as scientific libraries 

(e.g., Science Direct, Web of Knowledge, Google Scholar), personal databases of the 

researchers and their research groups, and the Internet (such as Google searches). The 

following list of keywords were used individually and combined with each other for each query: 

"Remote sensing", “Satellite”, “Detection”, “Imagery”, “Mines”, “Mining”, “Gold”, “Extractive”, 

“Extraction”, “Artisanal”, “Minamata”, and produced a comprehensive list of articles. To refine 

results three additional criteria were used: articles should address artisanal types of mining 

activities, the keywords should be at least in the title, keywords or abstract; and articles should 

be written in English, French or Spanish. Following the recommendations for systematic 

literature reviews on the internet, the first 50 records were screened within online scientific 

libraries to identify the most relevant publications addressing applications of RS and/or GIS 

for the monitoring and assessment of ASGM activities. Additional 100 publications, whose 

main objectives focus on the applications of RS and or GIS for the monitoring of formal or 

informal, small- or large-scale mining activities, were also looked at for relevance. A general 

consideration for publications and other published records that seek the applications of RS 

and GIS for the monitoring, evaluation and decision-making with respect to formal or informal, 

small- or large-scale mining in Latin America, Asia and Africa were also considered for the 

review. 

The combined results of these various searches account for more than 200 references over 

the last three decades. About half were excluded because they were beyond the scope of this 

study. The remaining articles were filtered manually to avoid duplications and screened to 

ensure that they are relevant to the topic. A final list of 81 publications was used.  

Aside from the state-of-the art literature search, about 50 other publications were used to 

illustrate the concepts, arguments, examples and case studies presented in this technical 

guidance document.  

2.2. Use of Remote Sensing for the monitoring of Artisanal 

and Small-Scale Gold Mining 

Since the entry into force of the Minamata Convention on Mercury in 2017, many governments 

must develop and implement an effective NAP capable of reducing or eliminating the use of 

mercury in ASGM. To facilitate governments in this process, UN agencies and NGOs are 

contributing to the development of capacity and frameworks for governments on the 

assessment of the status of the ASGM sector by implementing projects at national and sub-

national levels (planetGOLD, 2021 ; UNEP b., 2021 ; Brognoli 2004; Linarès, Joubert, and 

Gond 2008; Rahm et al. 2015; UNITAR 2016; UNODC 2016; IISD 2019). In these projects, 

the monitoring of the environment in relation with the ASGM sector is often central and it is 

generally based on integrated approaches that include field work, interviews with locals, 

analysis of mercury concentration in water samples and, especially, RS data. This is the case 

in Colombia, (UNODC, 2016), French Guiana (Brognoli, 2004; Linarès et al., 2008; Rahm et 

al., 2015), Indonesia (UNEP b., 2021 ; UNITAR, 2016), Sierra Leone (Environment Protection 

Agency Sierra Leone, 2019), Guyana (Rahm et al., 2015), Suriname (Rahm et al., 2015) and 

Brazil (Rahm et al., 2015).  



27 

The importance of using RS data to identify and follow the evolution of artisanal mines has 

been largely demonstrated by research (Baghdadi et al., 2004; Barenblitt et al., 2021; Bruno 

et al., 2020; Caballero Espejo et al., 2018; Ibrahim et al., 2020; Lobo et al., 2016; MAAP, 2020; 

Malca & Ruesta, 2019; Nyamekye et al., 2021; Telmer et al., 2006) and it is crucial for 

monitoring the ASGM sector where mines are often found in the most remote and inaccessible 

sectors of the countries. Furthermore, one of the most peculiar characteristics of the use of 

RS data is the possibility to analyze situations back in time - given the availability of RS data 

for at least 4 decades - and reconstruct the evolution of artisanal mining sites through time.  

RS data are mostly applied to the ASGM sector on two main topics:  

(1) The evaluation of the deforestation or land cover change caused by the mining process 

(generally related to alluvial mines and open hard rock mines), and the effects of soil 

contamination on plant growth due to the presence of mercury. 

(2) The evaluation of water pollution caused by the mining activity in proximity to rivers by 

detecting turbidity changes of river streams.  

The identification of mining sites using RS data generally relies on a land cover analysis 

approach, which means applying image-classification algorithms to the pre-processed 

multispectral imagery to identify mining-related land cover classes (Baghdadi et al., 2004; 

Barenblitt et al., 2021; Caballero Espejo et al., 2018; Gallwey et al., 2020; Nyamekye et al., 

2021; Song et al., 2020; UNODC, 2016). The evaluation of water pollution relies, instead, on 

the quantification of water turbidity which is usually derived using specific multi-band indexes 

(Brognoli, 2004; Linarès et al., 2008; Lobo et al., 2016; Rahm et al., 2015; Telmer et al., 2006; 

UNODC, 2016) and can be analysed with image-classification techniques (UNODC, 2016). 

RS data can be integrated with environmental data to generate more accurate results and 

better analyze the influence of the mining process on the biota / mercury content in the 

environment. For instance, the location of mining sites from existing datasets or from field work 

can be utilized to create label data that can be used to train the supervised classification 

models or to refine the results of the model with the assumption that a non-existing mine in 

recent high-resolution 1images implies the mine was not present in the past (Brognoli 2004; 

Le Tourneau and Albert 2005; Linarès, Joubert, and Gond 2008; Gallwey et al. 2020; 

Nyamekye et al. 2021). Similarly, the turbidity of water could be used as a proxy for mercury 

content in water if the RS data are combined with in-situ water sample data taken on specific 

dates that correspond with the available RS data (Telmer et al. 2006; Lobo et al. 2016). In a 

project run in Colombia (UNODC, 2016), additional data were derived from the results of the 

RS study such as (1) the direction of expansion of the mining sites through time, (2) the amount 

of people being affected by the polluted waters resulting from the mining activity, and (3) the 

 

1 Resolution refers to the smallest unit area an object or detail can be represented in an image. Spatial resolution 

refers to the size of the smallest possible Earth surface feature that can be detected by a sensor. That is the size 

of one pixel on the ground. A pixel is that smallest ‘dot’ that makes up an optical satellite image and basically 

determines how detailed a picture is. High resolution means that pixel sizes are smaller, providing more detail. With 

high resolution images, small objects can be detected. For example, 30cm resolution satellite imagery can capture 

details on the ground that are greater than or equal to 30cm by 30cm 
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coexistence of illegal cultivations and ASGM sites. This could be done by (1) analyzing time-

series data on mines size and location, and (2) integrating external GIS data such as the 

delimitation of watersheds, the gridded population data, and the location of illegal cultivation 

spots. The information obtained could be used to orient government policies and actions 

towards specific directions that deserve the highest priority. 

Among the countries that have run assessment projects on the status of the ASGM sites in 

their territory (e.g., Colombia, Peru, Indonesia, Mongolia, Philippines, Suriname, Guyana, 

French Guiana, Brazil), Colombia and those part of the “REDD+ for the Guiana Shield” project 

have developed frameworks to facilitate governments carrying on the monitoring plan in the 

future using RS techniques (Rahm et al. 2015; UNODC 2016).  

The identification of mining sites using RS data can involve manual inputs, especially in the 

data preparation and in the post-classification steps. Manual editing of the results of 

classification models is generally more present in government and UN-managed projects 

compared with research studies (Brognoli 2004; Le Tourneau and Albert 2005; Linarès, 

Joubert, and Gond 2008; UNODC 2016). This is generally present in the post-classification 

part of the workflow in order to best differentiate bare soil land cover type from mines as the 

two have a similar spectral composition of the signal (UNODC 2016; Caballero Espejo et al. 

2018; Malca and Ruesta 2019). In some cases, the process of identification of mining sites is 

completely based on visual identification on aerial photos and satellite imagery from Google 

Maps and similar providers, or on bands-compositions from multispectral data (Rahm et al. 

2015; Lobo et al. 2016). 

The involvement of non-automated steps in monitoring projects can be explained (1) by the 

fact that not all steps involving the use of algorithms for multispectral image-classification 

techniques are automated, and (2) the difficulty of application scientists in dealing with the 

those algorithms. Image classification techniques, but also GIS in general, are, in fact, 

scientific methods that require knowledge and capacity that might be lacking in the local 

population and the local mining associations that are, in theory, required to collaborate in the 

policy development process and the environmental monitoring using a “collaborative mapping 

process” (Spiegel et al., 2012). Probably due to these difficulties, only Sierra Leone has yet 

included the RS methodology in its NAP: "Remote sensing was not originally planned to be 

that important, but it emerged as a crucial methodology to better understand the scale of the 

scattered artisanal mining sector in Sierra Leone." (Environment Protection Agency Sierra 

Leone, 2019).   

 

2.3. Overview of Remote Sensing methods and indicators in 

the Artisanal and Small-Scale Gold Mining sub-sector 

2.3.1. Remote Sensing techniques 

Optical remote sensing considers the range of the electromagnetic spectrum that covers the 

visible, near infrared and short-wave infrared parts. It is based on sensor systems mounted 

on platforms, such as satellites, to detect solar radiation that is reflected from targets on the 

Earth’s surface. As various materials are characterized by their specific reflectance spectra, 
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target can be thus differentiated depending on their reaction to certain wavelengths. Optical 

remote sensing systems are classified into various types such as multispectral and 

hyperspectral systems, and this characterization depends on the number of spectral bands 

and their spectral properties. Most current spaceborne systems are multispectral (such as 

ASTER, Landsat 8 OLI and Sentinel-2 MSI) while hyperspectral missions are currently being 

tested (such as PRISMA) or are planned (such as ESA’s CHIME and NASA’s SBG). 

Available data for optical image processing are commonly available as top of the atmosphere 

(TOA) level or as surface reflectance after considering atmospheric influences. The availability 

of surface reflectance data can vary depending on location and date. If not available, the end-

user could need to carry out atmospheric correction. Depending on the methodology for image 

analysis, certain levels might be required where certain indices have been designed for 

specific level or have been known to perform best at certain levels of processing (Soudani et 

al., 2006; Du et al., 2016) When utilizing optical spaceborne data, cloud coverage can be a 

hindering factor, and thus cloud and cloud-shadow detection is essential prior to using the 

imagery. In various cases, the footprints of bare excavated areas are of relatively high 

reflectance while when coupled with water ponds for certain cases of ASGM activities, cloud 

and cloud-shadow detection can become challenging (Ibrahim et al., 2021).  

Once the imagery is analysis-ready, various techniques can be utilized to extract information. 

The approaches are very diverse and include image classification (e.g., supervised and 

unsupervised approaches), image transformation using indices, and feature targeting 

approaches. Image processing can be pixel or object-based techniques, by means of artificial 

intelligence algorithms such as simulated, and annealing classifiers, machine/deep learning, 

artificial neural networks, and fuzzy logic classification systems.  

Numerous software and tools abound for the processing of spaceborne imagery and spectral 

geo-spatial data. These include ArcGIS, ERDAS IMAGIN, ENVI, ILWIS, IDRISI, Orfeo 

ToolBox (OTB), SNAP, Multispec, and QGIS. Among these, OTB, SNAP, Multispec, and QGIS 

are open-source software for image processing. Furthermore, open-source packages in R 

programming (Bivand, 2020) and Python are available (Ibrahim et al., 2021). As the datasets 

can be large, especially in the case of time-series analysis, cloud computing has become 

essential. Various solutions using Python, R programming, and Javascript APIs are available 

and include Google Earth Engine, the Open Data Cube, OpenEO, and SentinelHub with all 

having their benefits and constraints (Gomes et al., 2020). 

2.3.1.1. Pixel-based Image Analysis Technique 

In the past, the most common approach to land cover mapping was through a pixel-based 

image-classification model using machine-learning algorithms (Gallwey et al., 2020). Classical 

examples of pixel-based algorithms are minimum-distance/nearest neighbour, parallelepiped 

and maximum likelihood classifiers (MLC). Detailed description of these algorithms can be 

found in Lillesand et al., 2015. A subset of these methods, used primarily in deforestation 

studies, are capable of detecting sub-pixel changes, which eventually reduces the problems 

caused by spectral mixture analysis (Asner et al. 2013; Asner and Tupayachi 2017; Caballero 

Espejo et al. 2018). The major challenges with pixel-based image classification include 

misclassification of features with similar spectral properties such as open mines with bare soil 

and mine ponds with isolated water bodies (Myint et al., 2011). This can be improved using 
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an object-based classification approach as this takes spatial context into account (Gallwey et 

al., 2020).  

2.3.1.2. Object-based Image Analysis Technique 

Object-based image classification comprises of two procedures, namely: (1) segmentation 

and (2) classification, usually done on high resolution images. In image segmentation, image 

objects are delineated based on homogeneity of pixels and spatial contingencies; continuous 

and contiguous objects (Blaschke et al., 2014). Image objects are then classified using visual 

techniques such as colour, texture, form, and context properties. The classification is done 

using two classifiers algorithms: a (standard) nearest neighbour (NN) classifier, and fuzzy 

membership functions. It is also possible to combine both algorithms depending on the level 

of accuracy required in the classification. A detailed description of image segmentation and 

classification is provided in (Hofmann, 2001) and (Yan et al., 2006). The object-based 

approach is very promising and generally increases the performances of the classification 

algorithms when applied to the detection of features with a unique shape and topography  

(Isidro et al., 2017; Myint et al., 2011; Gallwey et al., 2020). The choice of the parameters to 

be used for the initial segmentation is, however, crucial and can dramatically affect the results 

of the classification algorithm (Liu & Xia, 2010; Nuijten et al., 2019). The major challenge of 

the object-based image classification technique is that it only produces high accuracy in case 

of (1) availability of a near perfect segmentation and (2) availability of a high spatial resolution 

image. It works well on images with pre-defined boundaries. Thus, it is not a suitable method 

for classifying areas with no clear boundaries readily available, such as semi-natural areas.  

2.3.1.3. Image-classification algorithms 

Machine-learning (ML) algorithms are generally chosen for image-classification models in RS 

applications as they are able to model complex class signatures, can accept a variety of input 

predictor data, and do not necessarily require knowing the data distribution (i.e., are 

nonparametric) (Maxwell et al., 2018). ML algorithms can operate supervised and 

unsupervised learning with the first ones requiring labelled training data while the second ones 

operate through clustering and association techniques (Alloghani et al., 2020). On supervised 

learning the user must feed the model with interpreted (i.e., labelled) training data. These can 

be retrieved from existing land cover datasets if they are available with resolution compatible 

with that of RS data but can also be created by manually picking spots on satellite imagery 

that belongs to a given land cover class with a certain confidence. This process can be run by 

integrating field work with local knowledge (“collaborative mapping”) and the visual 

interpretation of very high-resolution imagery. On unsupervised learning, the model can be 

trained with unlabeled data using a smaller portion of the area that should be classified as the 

model is allowed to act on that data without any supervision (Alloghani et al., 2020). The 

machine-learning algorithms that are most used in multispectral image-classification are 

Random-Forest (RF) Classifier, Support Vector Machines (SVMs) (supervised), Decision 

Trees (DT) and Artificial Neural Networks (ANN) (Mhangara et al., 2020). Recent studies on 

Deep Learning (DL) techniques (i.e., neural networks algorithms involving a higher number of 

hidden layers) suggest that the Convolutional Neural Network (CNN) is a valid candidate for 

land cover classification purposes and can outperform the aforementioned ones having 

omission and commission errors as low as 8% (Gallwey et al., 2020). Unfortunately, the 
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literature showing how the CNN should be applied for land cover tasks is still limited (Gallwey 

et al., 2020). 

Although the accuracy of ML algorithms is generally higher than that of traditional parametric 

classifiers, the latter are still commonly used especially in application articles and remain one 

of the major standards for benchmarking classification experiments (Maxwell et al., 2018). For 

instance, the parametric maximum likelihood classifier was the most used method in RS 

studies until 2014 (Yu et al., 2014). This has been found to be related to the uncertainties 

regarding how to use and implement machine-learning techniques by many application 

scientists and the wide availability of traditional classifiers in conventional RS image-

processing software packages (Maxwell et al., 2018).  

It is, therefore, important to note that there is no stand alone, one-size-fit-all methodology for 

image classification. The choice of techniques is contingent upon but not limited to: (1) the 

objective of the study, (2) image data accessibility for the area of interest and objectives and, 

(3) availability of and access to relevant image processing software.  

2.3.2. Input data for the models 

Classification models do not necessarily need the totality of the spectral information. An 

effective band selection process would result in enhanced performances of the model in terms 

of costs and accuracy of the results (Torres et al., 2020). The performance of bands can be 

evaluated in a subset region before the model is run. For instance, it has been shown in a 

case study in Ghana that the Sentinel-2 Band 5 (band center 705 nm) was the highest 

contributor to the overall accuracies of the land cover classification and, more importantly, it 

contributed most to delineating mines sites (Nyamekye et al., 2021). Classification models can 

also use multi-band indexes as input data such as the Normalized Difference Vegetation Index 

(NDVI) (MAAP 2020; Mhangara, Tsoeleng, and Mapurisa 2020; Barenblitt et al. 2021; 

Nyamekye et al. 2021) but attention should be paid when using NDVI as it is very influenced 

by many environmental factors such as topography, bare soil conditions, atmospheric 

conditions, vegetation association, rainfall, and non-photosynthetic materials (Qi et al. 1994; 

Bannari et al. 1996; Huete 2012; Verrelst et al. 2015). Other indexes such as the Soil Adjusted 

Vegetation Index (SAVI), the Modified Soil Adjusted Vegetation Index (MSAVI) and the 

Transformed Soil Adjusted Vegetation Index (TSAVI) can be used instead to feed the 

classification models with enhanced performances especially in low vegetation areas 

(Mhangara et al., 2020).  

Other bands and indexes have been shown useful in detecting water turbidity and should be 

prioritized to identify mining hotspots along rivers (e.g., the Modified Normalized Difference 

Water Index (MNDWI) (UNODC, 2016), the Band 8A - VRE 4 and the Band 3 (Green) in 

Sentinel-2-A data (Nyamekye et al., 2021), combination of Landsat 8 bands to distinguish 

deep water from shallow water (4,3,2), water from ground (5,6,4) and bare ground from ponds 

(6,5,2) (UNODC, 2016)). The effects of precipitations on water turbidity, and on the values of 

the index that is used to infer it, can be minimized by determining the threshold between 

naturally and human induced turbidity (UNODC, 2016). In this case, the MNDWI values were 

collected at different times, within the dry season, at specific locations along a river in proximity 

to a known artisanal mine in order to identify the effects of the mining activity. The collected 

values were analyzed statistically using the K-means algorithm to group values into classes 
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and the results were eventually analyzed on the basis of an unsupervised image classification 

process.  

2.3.3. Post-classification methods to refine the models’ results 

Features with similar spectral properties that are potentially misinterpreted by the classification 

model can be corrected in the post-classification stage with different methods handling manual 

to automated operations. Some studies use manual decisions based on visual identification 

of critical features located next to the misinterpreted features based on a defined framework 

(e.g., Colombia in UNODC 2016).  

Another approach is to define an automated process that can analyse the land cover classes 

of features and convert them to another class based on the defined conditions. For instance, 

another study in Colombia revealed the utility of performing an automated proximity analysis 

on the output data of the model to refine the interpretation of feature classes that were difficult 

to interpret (Ibrahim et al., 2020). In particular, “isolated water bodies” that were in proximity 

to pixels classified as “open mines” were converted to the class “mine-pond” and, similarly, 

“open mines” that did not fall near “isolated water bodies” were converted to the class “bare-

soil”. Features/pixels that experienced land cover variation due to seasonal change can be 

grouped if the typical seasonal change effects on time-series data is known/determined. This 

can be done by performing a sequential pattern analysis on time-series data to discard the 

high frequency land cover change and associate them to the seasonal effect rather than the 

mine's activity (Ibrahim et al., 2020).  

As the multispectral signature of bare-soil and open mines is relatively similar, in very dry 

environments the presence of mines can be very difficult to detect (Mhangara et al., 2020). 

For this reason, a morphological profiling that is run on the output of the classification model 

can better differentiate mining sites from bare-soil due to its ability to delineate edges 

effectively on high spatial resolution imagery. The success of the morphological profile could 

be attributed to its ability to isolate bright and dark structures in images, by exploring a range 

of different spatial domains as well as brightness and darkness contrast (Mhangara et al., 

2020). This approach allows to properly distinguish non-vegetated areas that could have been 

identified quite simply with a classifier that is relatively insensitive to the illumination and 

albedo effects common in rugged terrains such as the Spectral Angle Mapper (SAM) 

(Mhangara et al., 2020). 

Finally, NDVI could also be used in post-classification steps to reduce the uncertainty over 

land cover changes after the determination of a threshold that separates seasonal change 

influence from artificial influence on the land cover change (Malca & Ruesta, 2019).   

2.3.4. Change detection 

The images produced using classification methods can eventually be used to determine where 

land cover has changed through time and calculate areas that evolved into artisanal mining 

sites. This can be achieved performing a change detection process over pairs of images and 

determine the evolution of land cover between two times. 
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The detection of the activities of the ASGM sector is not a monopoly of optical RS methods. 

The feasibility of the Intermittent Small Baseline Subset (ISBAS) interferometric synthetic 

aperture radar (InSAR) method together with Sentinel-1 imagery for monitoring ASGM 

activities has been done by (Ji et al., 2011). The study found a high level of subsidence based 

on surface motion values, which is a clear indicator of mining activity. Several simulation 

results show that the European Space Agency Copernicus Sentinel-1A/B constellation is 

capable of mapping rapid ASGM activities in the landscape. For instance, Forkuor et al. (2020) 

used annual time-series Sentinel-1 data to map and monitor ASGM activities along major 

rivers in South-Western Ghana. A change detection approach based on three time-series 

features was used to compute a backscatter threshold value suitable for detecting mining-

induced land cover changes and water pollution in the study area. Thus, Radarsat-2 and 

Sentinel-1 C-band data can detect water contamination over dry surface with sparse 

vegetation. However, ground survey data must be integrated with synthetic aperture radar 

data for detecting mining locations and monitoring activities.   

2.3.5. List of Remote Sensing methods and possible indicators 

A list of RS methods illustrated with use cases, associated results and possible indicators is 

presented in Table 2. Most studies relate to ASGM, a few of them to ASM. 

Table 2. List of RS methods and possible indicators 

Paper Methods Results/indicators No. ASGM 
sites 

(Manu et al., 

2004) 

RS and GIS Time series analysis indicated the study 

area was a healthy ecosystem in 1986. 

By 2001, over 60% of the land in the 

study area was degraded beyond use for 

other activities such as farming. An 

additional 35,000 ha of land/soil has 

been polluted within the same period 

_ 

(Schueler et 

al., 2011) 

Landsat satellite images 

from 1986–2002 to map 

land cover change due to 

surface mining 

Surface mining resulted in about 58% 

deforestation, about 45% of farmland 

losses within mining concessions, and 

widespread spill-over effects due to the 

expansion of farmlands into forests 

One Block 

(Asner et al., 

2013) 

Combined field surveys, 

airborne mapping, and 

high-resolution satellite 

imaging to assess road 

and river-based mining 

The geographic extent of gold mining 

increased by 400% between 1999-2012; 

the average annual rate of forest loss 

tripled in 2008. ASGM operations were 

identified to be more than half of all gold 

mining activities throughout the region. 

One 
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These rates of ASGM activities are far 

higher than previous estimates that were 

based on traditional satellite mapping 

techniques. The results prove that 

ASGM is growing more rapidly than 

previously thought, and that high-

resolution monitoring approaches are 

required to accurately quantify the 

impacts 

(Abood et al., 

2014) 

250 m spatial resolution 

land cover classification 

maps 

Four industries accounted for ∼44.7% 

(∼6.6 Mha) of forest loss in Kalimantan, 

Sumatra, Papua, Sulawesi, and 

Moluccas between 2000 and 2010. Fiber 

plantation and logging concessions 

accounted for the largest forest loss 

(∼1.9 Mha and ∼1.8 Mha, respectively). 

The contribution of ASGM to forest loss 

is negligible 

Regional   

Block 

(Bao et al., 

2014) 

Object-based image 

analysis (OBIA) methods 

and high-spatial 

resolution SPOT-5 

imagery, spatial 

autocorrelation, and 

normalized difference 

vegetation index (NDVI)  

A relatively high-classification accuracy 

shows the potential of SPOT-5 imagery 

for monitoring mine rehabilitation. The 

complete spatial coverage associated 

with RS data at fine spatial scales has 

the potential to complement field-based 

approaches commonly used in 

rehabilitation monitoring. SPOT-5 data 

along with OBIA can characterize 

vegetation spatial patterns at spatial 

scales appropriate for monitoring 

rehabilitated landscapes, providing an 

important tool for landscape function 

analysis 

One block 

(Cuba et al., 

2014) 

Polygon areas of 

exploration and of active 

resource exploitation 

High portions of agricultural land use in 

both countries are located within areas 

that are subject to mineral or 

hydrocarbon concessions (38% in Peru, 

39% in Ghana), predominantly within 

leases (36% in Peru, 35% in Ghana); 

overlaps between concessions and 

protected areas (10% for Perú, 2% for 

Ghana), concessions overlap with titled 

indigenous communities in Peru (35%) 

Regional 

Block 
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(Elmes et al., 

2014) 

Landsat 5 imagery via 

decision tree 

classification; Spectral 

mixture analysis; 

WorldView and QuickBird 

l imagery  

A large proportion of illicit ASM activity 

(~65% of all ASM in the study area) 

occurring outside the permitted 

concessions 

Regional 

Block 

(Lüthje et al., 

2014) 

A multi-scale analysis; 

multi-temporal analyses 

of very high-resolution 

(VHR) satellite data; 

Geographic Object-

Based Image Analysis 

(GEOBIA) techniques to 

identify hot-spots of 

mining activities 

Detailed multi-temporal analyses of very 

high-resolution (VHR) satellite data 

demonstrates the capabilities of 

GEOBIA techniques for providing 

information about the activities of illicit 

ASGM between September 2010 and 

March 2011. Land cover change 

between two or more satellite images 

does not in itself produce evidence of 

ASGM activities. A combination of field 

observations and image data, provides 

enough evidence that ASGM activities 

exist in an area 

Regional 

Block 

(Alvarez-

Berríos & 

Aide, 2015) 

Land Mapper web 

application and images 

from the MODIS satellite, 

MOD13Q1 vegetation 

indices 250 m product. 

Annual maps of forest 

cover used to model 

incremental change in 

forest in ~1600 potential 

gold mining sites between 

2001–2006 and 2007–

2013 

1680 km2 of tropical moist forest was lost 

in these mining sites between 2001 and 

2013; More than 90% of the 

deforestation occurred in four major 

hotspots; active zones of gold mining 

deforestation occurred inside or within 

10 km of ~32 PAs 

Four major 

hotspots 

(Lobo, 2015) Total suspended solids 

(TSS), in situ data and 

historical Landsat-

MSS/TM/OLI data, 

Measurements of 

radiometric data to 

calibrate satellite 

atmospheric correction 

and establish an empirical 

relationship with TSS 

The role of the temporal changes of 

ASGM area in the water siltation; ASGM 

increased from 15.4 km2 in 1973, to 

166.3 and 261.7 km2 in 1993 and 2012, 

respectively 

Four sub-

basins 
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(DeWitt, 2016) Land Use / Land Cover 

(LULC) classified from 

Landsat between 1984 

and 2014; Corona 

imagery extends LULC 

analysis; ASGM 

interpreted from Very 

High-Resolution (VHR) 

satellite imagery and 

integrated into regional 

analysis 

Regional land cover trends: cashew 

orchards, uncultivated forest, urban 

space, mining/ bare, and mixed 

vegetation, were produced; the locations 

of ASM activity in the study area 

One Block 

(Patel et al., 

2016) 

Mapping spatial overlaps 

between large and small-

scale miners; 

Classification tree 

analysis of 2013 and 

2015 Landsat 7 and 8 

imagery to identify small-

scale mine sites 

52% of identified small-scale mining 

activity occurs within large-scale 

concessions. The northwest corner of 

the study area contains 50% of the 

identified overlaps; the southwest corner 

contains 40%; and the northeast corner 

contains 10%; land use conflicts 

Four blocks 

(Weisse & 

Naughton-

Treves, 2016) 

Examines the efficacy of 

buffer zones in the 

Peruvian Amazon to (a) 

prevent deforestation and 

(b) limit the extent of 

mining concessions from 

2007 to 2012. Employed 

covariate matching to 

determine the impact of 

13 buffer zones on 

deforestation and mining 

concessions 

Despite variation between sites, the 13 

buffer zones have prevented ~320 km2 

of forest loss within their borders during 

the study period and ~1739 km2 of 

mining concessions. A closer look at the 

buffer zone around the Tambopata 

National Reserve reveals the difficulties 

of controlling illegal and informal 

activities 

13 buffer 

zones 

(Amadi et al., 

2017) 

Geological mapping, soil 

analyses 

High concentrations of mercury, 

cadmium, lead and arsenic, a westward 

groundwater flow direction; area was 

dominated by schist and granite 

Regional 

Block 
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(Asamoah et 

al., 2017) 

Classified and analyzed 

high-quality Landsat 

image data (1986–2016) 

to monitor processes and 

changes in the river basin 

and adopted the 

Ecosystem Service Value 

(ESV) model to quantify 

the forgone value in 

monetary term 

The initial ESV of 17.69 million US$ in 

1986 was shown to have increased to 

18.40 million US$ in 2002 for the study 

landscape. The ASGM accounted for 

8.4% of trade-off costs. In 2016, out of 

the total ESV of 14.63 million US$ 

obtained, ASGM activities accounted for 

36.8% of the trade-off costs 

Regional 

Block 

(Dewitt et al., 

2017) 

Unmanned aerial system 

(UAS); structure-from-

motion (SfM) 

photogrammetric 

techniques; very high-

resolution imagery and 

digital surface models 

(DSMs); wide-angle and 

narrow field of view 

camera systems 

Moderate-scale categories of LULC, 

including cashew orchards, uncultivated 

forest, urban space, ASM, and mixed 

vegetation, were produced through 

supervised classification of Landsat 

multispectral imagery from 1984, 1991, 

2000, 2007, and 2014. The fine-scale 

ASM land use was identified through 

manual interpretation of high-resolution 

satellite imagery. The mining/ bare class 

in the integrated analysis exhibits a 

substantially different spatial distribution 

than in the original classifications. This 

information regarding the locations of 

ASM activity in the Tortiya area is 

important from a policy and planning 

perspective 

Regional 

Blocks 

(Kranz et al., 

2017) 

Very high-resolution 

(VHR) optical stereo 

satellite data analysis; a 

combination of object-

based change detection 

(OBCD) based on optical 

VHR data and generated 

digital surface models 

(DSM) 

Land cover changes as analysed by 

OBCD reveal an increase in bare soil 

area by a rate of 47% between April 

2010 and September 2010, followed by 

a significant decrease of 47.5% of bare 

soil area October 2010 and March 2015; 

DSM characterization of pits and 

excavations 

Regional 

Block 

(Markham, 

2017) 

Random forest 

classification and 

Multicriteria evaluation 

Models pollutant transport from ASGM 

sites to predict locations and species 

assemblages at risk; determines how 

flow accumulation, distance from mining 

area, total suspended sediment load, 

and soil porosity influence the 

vulnerability of regions to mercury 

Regional 

Block 
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pollution. The resulting risk map 

identifies areas of greatest risk of 

mercury pollution 

(Snapir et al., 

2017) 

Multi-date UK-DMC2 

satellite images to map 

the extent and expansion 

of illegal artisanal and 

small-scale gold mining 

(galamsey) from 2011 to 

2015 

Area of illegal ASGM (galamsey) has 

more than tripled from 2011 to 2015, 

from 10,907 to 36,696 ha; River network 

with downstream pollution affecting both 

land and water; In 2013, an estimated 

area of 551,496 ha was affected; In 

2015, galamsey encroached into at least 

603 ha of protected forest reserve 

Multiple 

(Wyatt et al., 

2017) 

Analysis of time series 

satellite imagery for 

ASGM site identification 

and exposures to mercury 

contaminations 

ASGM has increased 4–6 fold over a 

decade, communities located hundreds 

of kilometers from ASGM are vulnerable 

to chronically elevated mercury 

exposure 

Regional 

Block 

(Caballero 

Espejo et al., 

2018) 

A fusion of CLASlite and 

the Global Forest Change 

dataset, two Landsat-

based deforestation 

detection tools, in 1984–

2017 period 

Nearly 100,000 ha of deforestation due 

to ASGM in a 34-year study period, an 

increase of 21%; 10% of deforestation 

occurred in 2017, 53% occurred since 

2011 

One block 

(Hausermann 

et al., 2018) 

Combining geospatial, 

ethnographic, and 

quantitative 

methodological 

approaches 

The total extent of mining increased by 

2,772.6% to cover 998.23 Ha between 

2008 and 2013; “mine water” increased 

by 13,000% to cover 200 Ha within the 

same period 

Regional 

Block 

  

(Lobo et al., 

2018) 

Multi-satellite data ASGM attributes revealed and varied 

from region to region. Mining areas 

derived from validated S2A classification 

totals 1084.7 km2 in the regions 

analyzed. ASGM (617.8 km2) comprises 

up to 64% of total mining area detected. 

The large extension of ASGM areas 

detected raises a concern regarding its 

socio-environmental impacts for the 

Regional 

Block 
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Amazonian ecosystems and for local 

communities 

(Markham & 

Sangermano, 

2018) 

Geographic information 

science; a spatial model 

of pollution risk from 

mining sites; Multicriteria 

evaluation; flow 

accumulation 

RS data used to create a spatial model 

of pollution risk from mining sites, predict 

locations and species assemblages at 

risk, highlights the need for future ASGM 

research to consider more than 

deforestation risk alone while protecting 

biodiversity 

Regional 

Block 

(Kyba et al., 

2019) 

Detecting known artisanal 

and small-scale mining 

sites via Artificial night 

light emissions by Visible 

Infrared Imaging 

Radiometer Suite 

Day/Night Band (DNB) 

Known ASGM sites in the Democratic 

Republic of the Congo (DRC) are 

associated with observations of night 

light emissions by the Visible Infrared 

Imaging Radiometer Suite Day/Night 

Band (DNB). Light emissions from the 

mining sites were not observed. DNB 

night lights’ products provide useful data 

in other resource extraction contexts, but 

they could not identify ASGM sites in the 

DRC probably due to thick forests cover 

Regional 

Block 

(Mensah et 

al., 2019) 

Sentinel-1 and Sentinel-2 

data; 

The illicit mining area increased from 

13,456 hectares to 29,275 hectares 

between 2015 and 2018. In 2016 and 

2017 the extent of illegal mining was 

29,026 and 24,323 hectares 

respectively; As of 2018, the total extent 

of forest degradation in these reserves 

was about 10 hectares 

Regional 

Block 

(Obodai et al., 

2019) 

Multi-spectral Landsat 

images of 30 m 

resolution; spectral angle 

mapping algorithm 

Closed forest which occupied 40.4% of 

the total basin area in 1991 reduced 

drastically to 22.8% in 2016 due to 

ASGM activities in area. 

Regional 

Block 

(Rodrigue, 

2019) 

A combination of spatial 

analysis, questionnaires 

administration and 

Destruction of habitats; decrease in 

quantity of forested area; and high 

turbidity 

One site 
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Leopold’s grid of impact 

assessment 

(Usman et al., 

2019) 

Landsat image (Landsat 

ETM 1998, Landsat ETM 

2008, Landsat ETM 2018) 

of the study location was 

utilized to determine the 

trend of the land use and 

land cover in the study 

area 

Vegetation land decreases from 486.324 

(Km2) (42.96 %) in 2008 to 367.6473 

(Km2) (32.47%) in 2018 which may be 

attribute to the influx of people for ASGM 

activities, leading to increased 

deforestation activities as well as 

pressure on other available vegetation 

resources. Agricultural land on the other 

hand has increased further to 362.8728 

(Km2) (32.05%) in 2018, from 311.7456 

(Km2) (27.54 %) in 2008, which can be 

attribute to the conversion of vegetation, 

open surface as well as other land uses 

to agricultural land to meet the increase 

demand for food supply in the area as a 

result of increasing ASGM activities and 

associated influx. Water turbidities 

increased from 8.8956 (Km2) (0.79%) in 

2008 to 15.5025 (Km2) (1.37%) by 

spatial extents due to various mining 

activities going in the study area 

Regional 

Block 

(Ammirati et 

al., 2020) 

Sentinel-1 data, the 

differential interferometric 

synthetic aperture radar 

(DInSAR) technique has 

been used to study terrain 

deformation related to 

ASGM in Ecuador 

Detected surface deformations that 

occurred in the ASGM area from 2015 to 

2019. Deformations of the order of five 

centimeters were revealed both in 

correspondence of known exploitation 

tunnels, but also in areas where the 

presence of tunnels had not been 

verified 

Regional 

Block 

(Brown et al., 

2020) 

Intermittent Small 

Baseline Subset (ISBAS) 

interferometric synthetic 

aperture radar (InSAR), 

teamed with Sentinel-1 

imagery, 

A high level of subsidence (i.e., negative 

ISBAS pixel value) is a clear   indicator 

of ASGM activity 

Regional 

Block 

(Bruno et al., 

2020) 

RS techniques The documented spatial extent of ASGM 

is ~9175 km2 along the Marupa River 

and ~30,427 km2 along the Kahayan 

Two sites 
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River. It was established these activities 

change rapidly (2–3 years) in space 

(Csillik & 

Asner, 2020) 

Satellite RS, airborne 

LiDAR, and deep learning 

models to create high-

resolution, spatially 

explicit estimates of 

aboveground carbon 

stocks and emissions 

from gold mining  

For an area of ∼750 000 ha, it is found 

to have high variations in aboveground 

carbon density (ACD) with mean ACD of 

84.6 (±36.4 standard deviation) Mg C 

ha−1 and 83.9 (±36.0) Mg C ha−1 for 

2017 and 2018, respectively. Alarming 

1.12 Tg C of emissions occurred in a 

single year affecting 23,613 hectares. 

The tested methods and findings are 

preparatory steps for the creation of an 

automated, high-resolution forest carbon 

emission monitoring system that will 

track near real-time changes and will 

support actions to reduce the 

environmental impacts of gold mining 

and other destructive forest activities 

Regional 

Block 

(Feemster et 

al., 2020) 

Omnibus Q-test Change 

Point Detection Algorithm 

to identify changes in 

Synthetic Aperture Radar 

(SAR) monthly-

aggregated temporal data 

from the Sentinel-1 

satellite; PlanetScope 

and Landsat 8 OLI 

through Collect Earth 

Online 

ASGM-related deforestation detection; 

19% of change detected were due to 

mining activity. 

One Block 

(Forkuor et al., 

2020) 

Time-series Sentinel-1 

data 

A backscatter threshold value of +1.65 

dB found suitable for detecting illegal   

mining activities; illegal mining area 

extents of 102 km2, 60 km2 and 33 km2 

for periods 2015/2016–2016/2017, 

2016/2017–2017/2018 and   2017/2018–

2018/2019, respectively 

Regional 

Block 

(Gallwey et 

al., 2020) 

Multispectral U-Net 

convolutional neural 

network to detect 

artisanal scale mining; 

open-source Sentinel-2 

Mining related deforestation increased 

by 15,000 ha over the study period; 

mining and urban land use changes 

6 million 

hectares 
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MSI imagery; traditional 

machine learning 

methods 

(Mhangara et 

al., 2020) 

SPOT 6 satellite imagery; 

Spectral Angle Mapper; 

Morphological 

classification 

Changes in vegetation cover, bare soil, 

and mined open pits; continuous 

decrease of vegetated areas and 

expansion of bare soil surfaces 

Regional 

Block 

(Ngom et al., 

2020) 

Sentinel-2 data and the 

Google Earth Engine; 

Principal component 

analysis (PCA); 

Separability and 

threshold (SEaTH), 

automatic classification 

and mapping of scenes 

with support   vector 

machine (SVM) classifier 

Spectral signatures for ASGM sites 

against other types of land use; 

categories of land use 

Two artisanal 

mining sites 

(Barenblitt et 

al., 2021) 

Landsat image archive 

via Google Earth Engine 

Vegetation loss due to artisanal gold 

mines; New mining extent dominated by 

ASM (~89%); Over 700 ha of ASM 

detected in protected areas 

Regional 

Block 

(Ibrahim et al., 

2021) 

Two-step machine-

learning approach using 

freely available tools to 

detect clouds and 

shadows in mapping 

small-scale mining areas; 

supervised   support-

vector-machine 

classification; geometry-

based improvement of 

cloud-shadow detection; 

Sentinel-2 (S2A and S2B) 

data 

50% more detection of clouds and 

shadows than Sen2Cor; detection of 

water ponds; and small-scale mining 

sites 

Regional 

Block 

(Nyamekye et 

al., 2021) 

Sentinel-2 data, four ML 

and DL models (Artificial 

Neural Network –ANN, 

Random Forest – RF, 

Changes in LULC; ASM increased by 

59.17 km2 within the period of the study 

Regional 

Block 



43 

Support Vector Machines 

–SVM, a pixel-based 

Convolutional Neural 

Network-CNN) and image 

segmentation 

(Owolabi et 

al., 2021) 

Normalized difference 

vegetation index (NDVI); 

normalized difference 

water index (NDWI); and 

land surface temperature 

(LST) were used to 

assess the impacts of 

ASGM operations on 

environmental 

degradation 

A gradual decrease in the NDVI values 

was observed across two sampled areas 

with a corresponding change in the 

highest NDVI values while one area 

witnessed a higher NDVI value in 2017 

relative to the previous years. NDWI 

values for 2017 were above 0 in all host 

communities. Mean LST values are in 

the order 24.63 °C (1986) < 25.26 °C 

(2002) < 26.32 °C (2017) for one study 

area; while mean LST values are in the 

order 24.30 °C (1986) < 24.46 °C (2002) 

< 25.82 °C (2017) in another study area. 

Modified Normalized Difference Water 

Index (MNDWI) seemed a more reliable 

indicator as the index was able to 

enhance the water surfaces more clearly 

Regional 

Block 

(Ibrahim et al., 

2020)  

Image classification, post-

processing using field 

knowledge, time series 

(2016 to 2019) and NDVI  

The finds a slight reduction in the 

detected mining areas from 2016 to 

2019. More mining activities detected in 

the dry season than in the wet season.  

The finds about 35% loss of vegetative 

cover due to ASGM. Only 7% of 

vegetative recovery was observed at the 

ASGM areas in June 2019. An analysis 

of abandoned sites using NDVI shows 

that it takes a much longer period than 

the one considered in this paper for 

potential natural recovery of vegetation 

Regional 

Block 
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3. Conceptual framework for Artisanal and 

Small-Scale Gold Mining monitoring for policy 

development, implementation and evaluation  

3.1. Framework vision and objectives 

RS techniques have unique capabilities and resources for addressing some ASGM-related 

issues. RS techniques allow a comprehensive understanding of resource potential and 

extraction, and the environmental impacts of legal and informal ASGM operations at various 

geographical scales, especially at the local scale. Integrating RS tools when monitoring ASGM 

activities can alert governments and communities of the need to increase security, to create a 

path towards socially and environmentally responsible resource extraction and management, 

and to move towards safe and environmentally sustainable mining practices. According to 

Mutemeri et al. (2016), the current regulatory and policy frameworks for monitoring activities 

of the ASGM sub-sector in Africa needs reform and there is a need for information for inclusive 

policymaking and implementation. This includes appropriate extraction of the ore body, and 

the sustainable use and management of natural resources, such as water, soils, food and 

wood. Mainstreaming policy development and implementation across relevant sectors is also 

required. For example, policies that create economic incentives and disincentives for the 

industrial sector (e.g., manufacturing of electronics) that rely on gold have an important role to 

play in the regularization of ASGM activities. As a good knowledge base is the backbone to 

formulate and implement appropriate policy decisions to address the problems associated with 

mercury and ASGM; using RS systems can be a good starting point.  

The following framework defines a methodology that can be suitably applied to monitoring 

ASGM sites to support policymaking and implementation. It describes analytical and non-

analytical monitoring techniques that integrate RS data, field work/measurements, and the 

knowledge of the local population. In particular, the framework starts with an excursus on the 

most suitable time period for monitoring. This, being dependent on the external variables, is 

covered with a case-by-case approach with the most important scenarios being highlighted. It 

then proposes a brief description of techniques that should be employed for ASGM monitoring 

projects; and it continues with a list of relevant data sources and processing platforms for RS 

data. The framework finally provides an overview of the most suitable processing techniques 

for RS data that can be employed by governments or implementing agencies. Two case 

studies focusing on the identification/quantification of land cover change due to mining 

activities in the Democratic Republic of the Congo and in Peru are also reported as examples 

of monitoring techniques.  

3.2. Defining a reference period for monitoring 

A reference period for the monitoring of ASGM that fits all cases does not exist and cannot be 

defined a priori. The most suitable monitoring period depends on factors such as the objective 

of the study, the type of mining activity (e.g., alluvial vs bedrock mines), the climate of the area 

(e.g., the frequency of cloud coverage of the area and the rate of vegetation growth) to name 
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only a few. Nevertheless, a few suggestions can be given and must be considered when 

planning a monitoring study of the ASGM sector. 

First, the use of RS data allows one to analyze the situation retroactively using one of the 

available datasets that cover the area on a given period of time. 

To monitor the effects of a government action over time, a before/after comparison of the 

status of ASGM sites can be suitable. This can be performed by selecting a dataset 

immediately before the action (this might be difficult to know exactly - one can refer to the 

legislation date to which the action is based on) and another one at a time when the 

consequences of the law can be evaluated. This is generally done across a relatively short 

time period (e.g., 2 years in (MAAP, 2020)). 

ASGM sites are created and abandoned within a period of months (Isidro et al., 2017), 

especially if they are located along rivers (e.g., alluvial type). In addition to this, depending on 

the climate of the area, vegetation can grow quite rapidly in abandoned mining areas, so far 

making the detection of abandoned mines difficult after some time (Le Tourneau & Albert, 

2005). Therefore, the monitoring would benefit a selection of datasets at a high frequency 

(e.g., one every year or even more frequently) rather than simply comparing two datasets far 

from each other in time if the main objective of the study is to monitor ASGM activity through 

time. 

As seasonal change plays a role in the vegetation status, the spectral signature of vegetated 

land can change in datasets that are taken at different periods of the years depending on the 

region. Therefore, datasets across years should ideally be selected from the same season. 

This is sometimes obliged in very humid areas where cloud cover is very often present and so 

far, reduces the time window for land cover analysis to the dry season (Gallwey et al., 2020).  

Finally, depending on the selected source of satellite data, the available period for monitoring 

can be constrained by the availability of data. For instance, the first Landsat satellite was 

launched in 1972 while Sentinel data are only available since 2015. In terms of frequency of 

availability of images in a given place, Landsat 1–3 cover the Earth every 18 days, Landsat 4, 

5, 7 and 8 have a coverage cycle of 16 days, and Sentinel-2 images the globe every 5 days.

  

 

3.3. Methodology for Artisanal and Small-Scale Gold Mining 

monitoring 

3.3.1. Methodology 

To monitor the use of mercury in ASGM, two methods are available: the technical and non-

technical methods. 

● Technical methods require the use of RS technologies, sometimes combined with 

laboratory-based mercury analyzers to detect the presence of mercury, for example, 
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in fish, sediments, and water. These methods are more resource intensive and, for this 

reason, may not be appropriate in all contexts. 

● Non-technical methods include participatory community-based monitoring of the 

applications of mercury by ASGM practitioners in ore processing. These methods are 

typically more sustainable as they have knowledge transfer to, and higher buy-in of 

local communities through the active engagement of ASGM practitioners. 

 

Scientists who conduct field mapping, use geomorphological and RS techniques to map, 

monitor, and evaluate mineral deposits, ASGM activities and mercury pollution. These 

methods require transferable expertise to acquire meaningful knowledge in developing areas. 

In particular RS techniques allow a detailed mapping and monitoring of ASGM activities and 

the development of high-resolution geomorphic models for identifying host resource deposits. 

High-resolution satellite imagery enables scientists to identify active informal or illegal alluvial 

ASGM pits, estimate production, and monitor changes over time. Satellite image analysis is 

integrated with ground-truthing data. The use of Unmanned Aerial System (UAS) imagery 

(such as drones) to map alluvial deposits in ASGM regions has also been explored in recent 

scientific studies (Martin et al., 2015). A combination of these technologies enhances a rapid 

assessment and mapping of environmental, social, and economic impacts of the ASGM 

activities. Important variables could be added to the analysis, such as protected areas, critical 

ecosystems and populations vulnerability. 

3.3.1.1. Data sources and collection 

Given the nature of ASGM, governments require extensive data resources and analysis to 

monitor and enforce applicable laws and policies. There are two principal sources of primary 

data collection for ASGM monitoring. These are: (1) image-based and (2) field-based sources. 

Image-based primary sources of data include but not limited to: multi-spectral satellites such 

as the United States Geological Survey (USGS) Landsat sensors, ASTER-Derived Global 

Digital Elevation Model (GDEM) Versions, Light Detection and Ranging (LiDAR), Google Earth 

interface, SPOT-2, CBERS-2, QuickBird, the Japanese Aeronautics Exploration Agency 

(JAXA), European Space Agency (ESA), Africa Regional Data Cube, the Global Earth 

Observation System of Systems (GEOSS), Conservation X Laboratory, regional governments’ 

databases, and International bodies like UNEP, UNDP, and UNIDO. Most of data sources 

require subscriptions for free download of data. Examples include the USGS Earth Explorer, 

ESA Copernicus Sentinel Satellite Data, ESRI Open Data Hub, NASA’s Socioeconomic Data 

and Applications Center (SEDAC), Open Topography, Open Street Map, UNEP 

Environmental Data Explorer, Natural Earth Data, and NASA Earth Observations (NEO), Terra 

Populus, FAO GeoNetwork, and Global Map GitHub. Some of these data sources are listed 

in Table 3, with key characteristics. 

Table 3. Relevant characteristics of RS data sources 

Database / 
Provider 

Cost per 
tile / Km2 

Type of imagery Website of 
Provider 

Spacecraft / 
Data 

Frequency 

Scope 

Google Earth Free 
access 

High-resolution https://earth.googl
e.com/web/ 

Largely from 
airplanes and 
satellite. 

Global 

https://earth.google.com/web/
https://earth.google.com/web/
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Available 3-4 
years. 

ESA Sentinel 
Hub 
Copernicus 
Open Access 
Hub 

Free 
Sentinel-
1/2 
images.  

High/medium 
resolution 

https://www.sentin
el-hub.com/  
https://scihub.cop
ernicus.eu/  

Satellite. Every 
5 days 

Global 

NASA/USGS Free 
access 
Licensing 
for 
commerci
al use 
required 

High/medium 
resolution - 
Landsat, MODIS, 
and ASTER data 
Hyperspectral 

https://earthexplor
er.usgs.gov/ 
 

Satellite. Every 
7 days. Aerial, 
and UAV 

Global 

NOAA  Free 
access 

GEOS-R and 
NOAA-20 data. 
Very low resolution 
(250m and above) 

https://www.nesdi
s.noaa.gov/conte
nt/imagery-and-
data  

Real-time 
satellite data. 
Every 15 
minutes 

America 

Earth on 
AWS 

Free 
access 

Medium resolution. 
Sentinel-2, 
Landsat-8, GEOS, 
NOAA, Sentinel-1 
and China-Brazil 
Earth Resources 
Satellite (CBERS) 

https://aws.amazo
n.com/earth/  

Satellite. Every 
7 days 

Global 

Zoom.Earth 
 

Free 
access for 
non-
commerci
al 
applicatio
ns 

Near real-time 
satellite data and 
high-resolution 
archival data 
 

https://zoom.earth
/  

Every 10 
minutes from 
NOAA GOES 
and JMA 
Himawari-8 
satellites, and 
every 15 
minutes via 
EUMETSAT 
Meteosat 
satellites 

Global 

NASA 
Worldview 

Free 
access  

Low resolution, 
open data only 

https://worldview.
earthdata.nasa.go
v/  

Near real-time 
satellite data 

Global 

NASA 
EarthData 
GIBS  

Free 
access 

Low resolution, 
open data only 

https://earthdata.n
asa.gov/eosdis/sc
ience-system-
description/eosdis
-components/gibs  

Available 
within a few 
hours after 
satellite 
observation 

Global 

Remote Pixel Free 
access 

Landsat 8 
 

https://search.rem
otepixel.ca/  

Satellite. 5-7 
days. 

Global 

INPE Image 
Catalog 

Free 
access 

CBERS-4, 
alongside U.S., UK, 
and 
India’s Earth-
observing missions: 
Aqua, Terra, 
Landsat-8, 
ResourceSat, 
Suomi-NPP, 
DEIMOS, and UK-
DMC 2 

http://www.dgi.inp
e.br/catalogo/  

Satellite. 5-7 
days 

S. and C. 
America, 
Africa 

https://www.sentinel-hub.com/
https://www.sentinel-hub.com/
https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://www.nesdis.noaa.gov/content/imagery-and-data
https://www.nesdis.noaa.gov/content/imagery-and-data
https://www.nesdis.noaa.gov/content/imagery-and-data
https://www.nesdis.noaa.gov/content/imagery-and-data
https://aws.amazon.com/earth/
https://aws.amazon.com/earth/
https://zoom.earth/
https://zoom.earth/
https://worldview.earthdata.nasa.gov/
https://worldview.earthdata.nasa.gov/
https://worldview.earthdata.nasa.gov/
https://earthdata.nasa.gov/eosdis/science-system-description/eosdis-components/gibs
https://earthdata.nasa.gov/eosdis/science-system-description/eosdis-components/gibs
https://earthdata.nasa.gov/eosdis/science-system-description/eosdis-components/gibs
https://earthdata.nasa.gov/eosdis/science-system-description/eosdis-components/gibs
https://earthdata.nasa.gov/eosdis/science-system-description/eosdis-components/gibs
https://search.remotepixel.ca/
https://search.remotepixel.ca/
http://www.dgi.inpe.br/catalogo/
http://www.dgi.inpe.br/catalogo/
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JAXA’s 
Global ALOS 
3D World 

Free 
access 

30 m horizontal 
resolution; DSM, 
SRTM HGT 

https://www.eorc.j
axa.jp/ALOS/aw3
d30/l_map_v2003
.htm  

Satellite. Every 
7 days 

Global 

VITO Vision 
 

Free 
access 

Proba-V, Spot-
vegetation, 
Sentinel-2, Metor-
AVHRR, Envisat-
Meris). Resolution: 
100m to 1km 

https://vito.be/en  Satellite. 5-7 
days 

Global 

DigitalGlobe 
Open Data 
Program 

Free 
access 

High-resolution 
satellite imagery 

https://www.digital
globe.com/compa
ny/about-us/  

Satellite. Daily 
image capacity 
of more than 
three million 
km2 

Global 

Geo-Airbus 
Defense 

 
$30-40 

Very High-
resolution, SPOT, 
Pleiades, 
RapidEye, 
TerraSAR-X, 12-
meter WorldDEM 

https://www.airbu
s.com/space/eart
h-
observation.html  

Satellite. Daily 
and on 
demand 

Global  

SPOT 6/7 $5-8 High-resolution https://eos.com/fin
d-satellite/spot-6-
and-7/ 

Satellite. Daily. 
On demand 

Global 

KOMPSAT-
3A 

$15-48 Very high-resolution https://www.satim
agingcorp.com/sa
tellite-
sensors/kompsat-
3a/ 

Satellite. Daily. 
On demand 

Global 

WorldView $18-52 Very high-resolution https://www.satim
agingcorp.com/sa
tellite-
sensors/worldvie
w-3/ 

Satellite. Daily. 
On demand 

Global 

QuickBird $10-50 Very high-resolution https://www.satim
agingcorp.com/sa
tellite-
sensors/quickbird/ 

Satellite. Daily. 
On demand 

Global 

IKONOS $25-50 Very high-resolution https://www.satim
agingcorp.com/sa
tellite-
sensors/ikonos/ik
onos-stereo-
satellite-images/ 

Satellite. Daily. 
On demand 

Global 

Since the last decade, most studies have used Landsat data to analyze land cover changes 

through time given their availability since the 70s (Hemati et al., 2021; Wulder et al., 2019). 

Recently, the availability of satellite imagery is growing in number, frequency of available 

images per region, and resolution (Li & Roy, 2017). Among the freely available data, the 

Copernicus Sentinel-2 multispectral datasets offer a reasonably high-resolution for the ASGM 

sector: 10 to 60m depending on bands but interpolations can be run to increase the resolution 

of the 20m resolution bands to 10m (Gallwey et al., 2020; Nyamekye et al., 2021). Several 

platforms offer pre-processed satellite data that is analysis-ready with the possibility to 

combine multiple images into mosaics. This includes Google Earth Engine (GEE), Microsoft 

Planetary Computer, Food Agriculture Organisation (FAO) and SEPAL. This can help obtain 

https://www.eorc.jaxa.jp/ALOS/aw3d30/l_map_v2003.htm
https://www.eorc.jaxa.jp/ALOS/aw3d30/l_map_v2003.htm
https://www.eorc.jaxa.jp/ALOS/aw3d30/l_map_v2003.htm
https://www.eorc.jaxa.jp/ALOS/aw3d30/l_map_v2003.htm
https://vito.be/en
https://www.digitalglobe.com/company/about-us/
https://www.digitalglobe.com/company/about-us/
https://www.digitalglobe.com/company/about-us/
https://www.airbus.com/space/earth-observation.html
https://www.airbus.com/space/earth-observation.html
https://www.airbus.com/space/earth-observation.html
https://www.airbus.com/space/earth-observation.html
https://eos.com/find-satellite/spot-6-and-7/
https://eos.com/find-satellite/spot-6-and-7/
https://eos.com/find-satellite/spot-6-and-7/
https://www.satimagingcorp.com/satellite-sensors/kompsat-3a/
https://www.satimagingcorp.com/satellite-sensors/kompsat-3a/
https://www.satimagingcorp.com/satellite-sensors/kompsat-3a/
https://www.satimagingcorp.com/satellite-sensors/kompsat-3a/
https://www.satimagingcorp.com/satellite-sensors/kompsat-3a/
https://www.satimagingcorp.com/satellite-sensors/worldview-3/
https://www.satimagingcorp.com/satellite-sensors/worldview-3/
https://www.satimagingcorp.com/satellite-sensors/worldview-3/
https://www.satimagingcorp.com/satellite-sensors/worldview-3/
https://www.satimagingcorp.com/satellite-sensors/worldview-3/
https://www.satimagingcorp.com/satellite-sensors/quickbird/
https://www.satimagingcorp.com/satellite-sensors/quickbird/
https://www.satimagingcorp.com/satellite-sensors/quickbird/
https://www.satimagingcorp.com/satellite-sensors/quickbird/
https://www.satimagingcorp.com/satellite-sensors/ikonos/ikonos-stereo-satellite-images/
https://www.satimagingcorp.com/satellite-sensors/ikonos/ikonos-stereo-satellite-images/
https://www.satimagingcorp.com/satellite-sensors/ikonos/ikonos-stereo-satellite-images/
https://www.satimagingcorp.com/satellite-sensors/ikonos/ikonos-stereo-satellite-images/
https://www.satimagingcorp.com/satellite-sensors/ikonos/ikonos-stereo-satellite-images/
https://www.satimagingcorp.com/satellite-sensors/ikonos/ikonos-stereo-satellite-images/
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cloud-free images made from multiple times data falling in an acceptable interval length. A 

detailed presentation of such platforms is provided in Table 4. 

The field-based primary sources of data include ground truthing, reconnaissance, and citizen 

science techniques. These consist of the use of simple tools such as focus group discussions, 

indigenous knowledge, community surveys, key informant interviews, field observations, site 

surveys, and public participatory mapping. When conducting interviews as part of field data 

collection, stakeholders who represent various interests of the locality are selected. If possible, 

groups or individuals who are objective about the issues of ASGM may be selected. 

Questionnaires and interviews are the most useful tools for detailed data collection on people’s 

opinion on the use of mercury ASGM operations in a locality. The interview questions may be 

structured or open ended and should be simple, and comprehensible. Another quick way to 

collect relevant data on the situation is a simple observation of what is visible in the ASGM 

host locality. During fieldwork, a site characterization may be conducted. This entails the 

collection of geologic and geomorphic data through measurement, sampling, and observation. 

Photograph taking is recommended. Sources of field-based secondary data include miners 

(both large and small-scale), central government agencies, local government, local people, 

the private sector, and the general public.  

However, a combination of fieldwork with imagery will build a database that would span spatial 

and temporal scales greater than possibly through field-based data alone.  

3.3.1.2. Database development and monitoring of Artisanal and Small-Scale Gold 

Mining using Remote Sensing 

Time-series multiple-scenes satellite imagery are essential to document the transformation of 

a landscape from ASGM. Image classification techniques can be employed to delineate 

distinctive land-cover classes in mine sites. These classes may include affected waters (ponds 

and filled pits), exposed sands (mining sites) and exposed soils (from mining and forest 

clearcutting and burning). With reference to the different kinds of methods presented already, 

variables that can be detected through image classification include: (1) spatial dynamics 

(everything that is mappable in the Earth’s surface), (2) biogeochemical parameters like 

turbidity and mercury concentrations in biotic and abiotic matrixes and (3) aspatial and 

population/community-based information. Each of these variable groups are associated with 

one of the earlier discussed methodologies. If data collection using these three methods is 

planned and performed in a coordinated manner, the ability to establish connections between 

the three parameter classes becomes easier. Field techniques such as aerial photography, 

interviews with ASGM miners, and sediment samples can be used additionally to model and 

develop statistics on the use of mercury and gold production in a locality. However, high-

resolution imagery is recommended for detecting ASGM operations. Examples of high-

resolution satellite imagery include QuickBird and PLANET data. 

Satellite images can reveal the existence and emergence of tailings, which can be a sign of 

ASGM. Historical images show the host region and its existing conditions before the 

emergence of ASGM, while current scenes reveal the growth of ASGM and its related effects. 

The Australian Data Cube, the Swiss Data Cube and the Africa Regional Data Cube are a 

strong promise in this perspective. However, atmospheric conditions (cloud cover and 

seasonal burning) disturb the use of even high-resolution satellite imagery in mine pits and 
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environmental effects observations. Thus, the use of radar can overcome the challenges of 

optical satellite imagery in monitoring ASGM. Radar is able to penetrate cloud-cover to retrieve 

ground data in terms of pit subsidence and land use and land cover changes. However, 

attention must be paid as high precipitations have been proven to affect the accuracy of the 

data (Forkuor et al., 2020). 

Radar Interferometry uses multiple radar images of the same area, which have been taken on 

different dates and times for change detection. In this regard, two general approaches can be 

used. These are: (1) InSAR, which typically uses succeeding Radar images to increase the 

information in a scene or to develop a Digital Elevation Model (DEM) data and, (2) Repeat 

Pass Interferometry, which also uses Radar scenes of the same area but on different passes 

of the satellite. It is possible to identify changes in topography caused by ASGM with the use 

of geometrically corrected repeat-pass scenes taken on different dates. Change detection 

indicators include deforestation as well as water and soil pollution. Changes detected from 

Radar images can be used to quickly understand the extent and movements of ASGM 

operations in near real time (time scales of weeks, months, or years, depending on the 

objectives of a study). 

Table 4. RS data processing platforms, their benefits and limitations 

Platform Link Benefits Limitations 

ASM Spotter https://business.esa.int/proje
cts/asmspotter 

- Relies on Planet Labs 
imagery 
- Localisation of ASM sites, 
their spatial extent and 
shape 
- Full-service solution, 
including support to the 
client in analysis and 
interpretation of results 

- Images are provided 
manually by the user 
- Currently focused on 
Suriname 
- Not free 

Google Earth 
Engine 

https://earthengine.google.co
m 

- Rich data catalog: 
https://developers.google.co
m/earth-engine/datasets/ 
- Computing power of 
Google 
- AI component 
(TensorFlow) 
- Free 
- Ease of use 
- User community 
- Python and JavaScript 
APIs 

- Dependent on what they 
offer 
- Future pricing plans 
(Google Maps Story) 

Open Data 
Cube 

https://www.opendatacube.or
g 

- Ease of use 
- User community 
- Widely adopted solution 
- Flexibility of ingestion of 
different raster data types 
- Python API and Open 
Geospatial Consortium 
(OGC) services 
- Variety of out-of-the-box 
algorithms 

- Installation can be 
complex 
- Many dependencies with 
other open-source 
packages 

https://business.esa.int/projects/asmspotter
https://business.esa.int/projects/asmspotter
https://earthengine.google.com/
https://earthengine.google.com/
https://developers.google.com/earth-engine/datasets/
https://developers.google.com/earth-engine/datasets/
https://developers.google.com/earth-engine/datasets/
https://developers.google.com/earth-engine/datasets/
https://www.opendatacube.org/
https://www.opendatacube.org/
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Planetary 
Computer 

https://planetarycomputer.mi
crosoft.com 

- AI component 
- Computing power of 
Microsoft 
- Free 

Restricted data catalog 
(as of 2021) > not all 
Landsat archive is there 

Remap https://remap-app.org  
 
Publication: 
https://www.biorxiv.org/conte
nt/10.1101/212464v2  

- Computing power of 
Google Earth Engine 
- Free 

- Limited datasets (mostly 
Landsat) 
- Focuses on Ecosystems, 
IUCN Red List 
- Dependency to Google 
Earth Engine 

SentinelHub https://www.sentinel-
hub.com  

- Rich data catalog 
- Mature solution 
- APIs 
- Not dependent to Google 
or Microsoft 

Commercial service (but 
not super costly) 

SEPAL https://sepal.io  - Ease of use 
- User community 
- Computing power of 
Google Earth Engine 
- R integration 
- Recipe system 

Dependency to Google 
Earth Engine  

 

3.3.2. Proposed guidelines 

The guidelines proposed in this document focus on the use of RS for monitoring the 

applications of mercury for ore processing at ASGM activity areas and close neighbourhood. 

Maximizing the development benefits of ASGM while improving the social and environmental 

responsiveness of the sector was first addressed in the Johannesburg Plan of Implementation 

(JPOI) of the World Summit on Sustainable Development in 2002. The following three priority 

areas were identified in the JPOI: 

1. The environmental, economic, health and social impacts and benefits of mining 

throughout their life cycle. 

2. Enhancing the participation and beneficiation of local and indigenous communities and 

women in the mining sector policymaking. 

3. Fostering sustainable mining practices through the provision of financial, technical and 

capacity-building support to developing countries and communities. 

The guidelines herein proposed, therefore, suggest that first, local practitioners of ASGM, their 

associations and host communities should be involved in the policymaking process. Note that 

to properly enhance the participation of the local participants in ASGM sub-sector 

policymaking, they must first understand the implications of the different effects of mercury on 

both environmental and human health. This may be backed by scientific evidence that can be 

used to develop measures for improving the ASGM sub-sector towards enhancing 

endogenous growth and achieving the sustainable development of indigenous communities. 

Secondly, they may be introduced to the RS protocols for monitoring the use of mercury at the 

ASGM sites. The RS protocols introduced here, basically, start with environmental monitoring. 

https://planetarycomputer.microsoft.com/
https://planetarycomputer.microsoft.com/
https://remap-app.org/
https://www.biorxiv.org/content/10.1101/212464v2
https://www.biorxiv.org/content/10.1101/212464v2
https://www.sentinel-hub.com/
https://www.sentinel-hub.com/
https://sepal.io/
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The principal environmental variables considered in the context of the widespread applications 

of mercury in ore processing by the ASGM practitioners and local communities are: (1) 

vegetation, (2) soil and (3) water. Using RS for environmental monitoring can be a complex 

activity. However, the following protocols provided in this proposed guide for regulatory 

policymaking would make the process easier.  

1. Identify source of pollution. That is, track the specific location where the ASGM is taking 

place. Depending on the objective of the monitoring (water contamination, air pollution 

or soil contamination) and depending on the availability of resources in terms of money 

and accessibility of the area of interest, the most appropriate RS data source should 

be selected. An integrated use of high-resolution optical imagery, current and historical 

aerial photographs, SAR images and DSMs could be helpful in situations where mines 

are not easily distinguishable from the surrounding areas. 

Embark on fieldwork and sampling trips by first undertaking reconnaissance to the site. 

During reconnaissance and subsequent fieldworks, take notes and select sites for 

sampling. It also works utilising indigenous knowledge (IK) during fieldwork. Take soil, 

vegetative, and water samples using appropriate containers and safety equipment. 

That is in-situ data. These samples must be safely stored and well protected. It is also 

advisable to take photographs and videos during field visits to sites. These would serve 

as training data for RS image classification, calibration, and validation. 

The model should ideally be fed with training data consisting of a large set of labelled 

data. The higher the number of training data, the higher the performance of the model. 

The attribution of labels is a process that can be based on (1) existing and historical 

geographical datasets of mine extents at a given time, (2) existing and historical water, 

air, soil and vegetative cover data, (3) collaborative mapping of artisanal mine sites on 

high resolution true-color images by local people and, (4) evidence from fieldwork. 

Post-classification processing (automated where possible) should be defined in order 

to improve the distinction between ASGM sites and bare soil. Here, the location 

association technique can be employed. This is a spatial analysis technique which can 

determine the levels of water or soil mercury contamination with respect to the distance 

from an identified ASGM site. This technique can be executed in a GIS platform for 

passive monitoring. It is based on the hypothesis that the existence of ASGM activities 

in a particular place is an indicator of the presence of mercury in nearby waterbodies, 

soils, food crops and plants, ASGM activities being closely associated with the use of 

mercury. 

If seasonality has a role in land cover changes in the area throughout the selected 

series of images, its role could be quantified with statistical methods using the RS data 

after the classification. In case of dry environments, a morphological analysis could be 

helpful in further separating bare soil from mining sites. This might be useful in case of 

bed-rock mines as they are likely to feature a depressed morphology compared to the 

surroundings, but it would not make a huge difference when looking for alluvial mining 

sites which are generally located along rivers. 
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2. Identify the potential contaminant; in this case, mercury, from the RS data you have 

obtained. This requires a basic knowledge of the physical and chemical properties of 

the geology of the area (rocks and soils). It also requires an understanding of the 

chemical and physical properties of mercury to differentiate between, for example, 

acidic soils and water on one hand, and mercury contaminated soils and water on the 

other hand. That is, understanding the spectral signature of mercury, healthy 

vegetation, healthy soils and clear water. Indices such as NDVI, NDWI, MNDWI, and 

SAVI are mostly used to aid analysis and understanding. For instance, the presence 

of iron minerals in soils is an indicator for soil fertility and a potential for food crop 

farming in the area. The physical and chemical properties of mercury will help to 

determine: (1) its spectral reflectance and signatures in a given geological area, (2) the 

extents of surface, subsurface, and structural contamination in the environment, (3) an 

estimate of the associated potential health and/or environmental impacts, and (4) 

decisions on mitigation, remediation, and reclamation action measures needed at 

ASGM sites. 

Take samples to an approved laboratory for test and analysis. Compare the laboratory 

results with standard indices and guidelines for robust decision making. For a proper 

understanding of the laboratory results, seek expert opinion or IK. Expert opinion and 

IK are good sources for RS data and results validation. These protocols are suitable 

for both passive and real-time ASGM site monitoring of mercury contaminations. 

3. Identify the “age” of mining activities to map hotspots of mercury contamination. This 

leverages on the temporal archives of RS data. Using historical data, it is possible to 

identify areas which have been mined for a long time or previously mined and 

abandoned. Such places with long history of ASGM operations can be mapped as 

hotspot areas due to the accumulation of mercury in the soils and both underground 

and surface water reservoirs. This is an important mechanism for detecting hotspots 

and building mitigation protocols. 

4. Assess mercury pollution through linking it to turbidity and suspended matter in the 

rivers. That is to simply link with field samples as in objectives two and three above. A 

reverse analysis of historical RS data baseline conditions of existing and previous sites 

would facilitate linking the spectral signatures of samples from trees and shrubs to 

satellite data as mercury contamination produces a unique colouration in the spectra. 

5. Establish real-time Satellite monitoring station. This presents a unique opportunity for 

regulatory agencies to directly collaborate with RS data providers. Further establish 

sub-stations across ASGM zones to transmit 24/7 high resolution satellite data to main 

receiver station. These data should be processed on the spot for (1) mercury hazard 

identification, (2) monitoring the emergence of new activities and/or expansions of 

existing activities and spillage beyond standard thresholds, and (3) real-time feedback 

mechanism to regulators, host communities, and miners.  

6. With respect to real-time monitoring of ASGM activities and the presence of mercury 

contamination using RS methods, identify enclaves and delineate these into zones. 

Train local regulatory operations and supervisory teams in the zones on the use of 

GPS and mechanised mobile phones for prompt reporting to sub-stations and onward 
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transmission to the main station. Deploy quick response team to sites to address 

intrusion and observed changes in plants, soils and waterbodies. These are indicators 

of mercury presence in unknown sites. This model is demonstrated in Figure 2. 

 

Figure 2. Proposed Guide for Monitoring Mercury Contamination in ASGM sites 

 

3.3.3. Providing relevant information through science-policy interfaces 

RS has an important role to play in terms of providing trusted, scientific-based, multi-scale 

(both spatial and temporal) and open data to decision makers.  

Importantly, this supposes that we transform raw data into information and knowledge to 

inform decisions, investments, consumers and citizens. One challenge is to update this 

transformation process frequently, because environmental issues (hence related decisions) 

may change rapidly.  

Another challenge is to include stakeholders in the design and implementation of the entire 

science-policy process. This is particularly important in the case of ASGM for building trust 

between the different stakeholders. 
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An additional challenge is the need to understand the uncertainties involved. Good policy 

decisions can only be made with an understanding of the underlying complexity and 

probabilistic nature of the presented conclusions and recommendations. This is relevant 

particularly to remedy certain limitations like accuracy of RS techniques and crime mapping, 

as presented in the next Section. Not all data, information and knowledge need to be certain 

or even high quality (even if it is certainly preferable) to be useful, as long as the level of 

confidence is understood by whomever is making a decision based on it. Ultimately a good 

decision will be based on multiple lines of evidence, some of which are stronger, some weaker 

– and all of which are useful. 

In addition to providing actionable information, one of the key challenges related to the 

science-policy gap is for scientists to develop smart interfaces for those end users. If they want 

to facilitate the navigation into those interfaces, it is critical to understand the typology of the 

end users and to collect their requirements. A good practice can consist in consulting various 

types of end users of the future interface, including local communities and local mining 

associations. This can be done for instance through stakeholder workshops, webinars, or 

questionnaires, to determine their typology and to inventory their technical capacity. 

When developing an end user interface that has a geospatial component, as this is the case 

with RS, user friendliness and simplicity of the navigation are often strong requests from users, 

as many of them are not experts in GIS, especially local communities and local mining 

associations. An interface must then be visually attractive; thus, user experience and user 

interface (UX/UI) testing can be conducted by early adopters of the interface at different steps 

of its development. 

Furthermore, some of the technological choices in the development of the interface can be 

guided by the need to have specific functions in place for efficient and smart visualization and 

use of ASGM related information. In many cases, the capacity to provide dashboards for 

monitoring environmental information over time in a smart way, to support multiple languages 

and to tell stories are perceived by the user community as key functionalities of the interface. 

Data quality is also a key challenge that needs to be addressed by providing the necessary 

tools to the end users through the interface. This can include tools for documenting the data 

(metadata) and for informing about their degree of reliability, openness, technical accessibility, 

and accuracy –the latter being important to communicate to end users in the case of RS. 

From a technical perspective the development of the interface must consider the low Internet 

connectivity that can be encountered in the targeted end users’ countries (which is often the 

case in areas where ASGM occurs). 

3.4. Case studies 

3.4.1. Introduction 

UNEP/GRID-Geneva has implemented two case studies to show concretely how RS tools and 

methods can be used to generate key indicators on mining activity. The first case study is 

focused on the Kamituga region in the Democratic Republic of the Congo and for RS analysis, 
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UNEP/GRID-Geneva used an in-house implementation of the Open Data Cube2. The second 

one focuses on the Madre de Dios region in Peru and is based on the use of GEE. 

3.4.2. Case study using the Open Data Cube 

This first case study aims to show how RS analysis can support policymakers to monitor 

mining activities at the local and / or regional level and to design interventions to reduce 

negative impacts of mining by quantifying the extent of land cover/land use changes over time. 

Kamituga is a mining town located in the province of South Kivu in Eastern Democratic 

Republic of the Congo. Its mining history dates to the 1920s when gold deposits were first 

discovered with industrial gold production starting in the 1930s (Buraye et al., 2017). Since 

the 1960s, Kamituga has seen the development of artisanal mining and informal trade 

networks. During the two Congo wars, artisanal mining activities expanded and Kamituga's 

population more than doubled (Buraye et al., 2017). In 2002 the gold concession of Kamituga 

was acquired by Banro and exploration activities started in 2011 (Stoop & Verpoorten, 2021). 

Nowadays, artisanal mining is the main source of income for the inhabitants of Kamituga 

(Geenen, 2011). According to the 2015 population census, the population of Kamituga is 

around 130,000 inhabitants (187,000 counting neighboring villages) and between 13,000 and 

15,000 artisanal miners operate on Banro's concession (Stoop & Verpoorten, 2021). 

3.4.2.1. Methodology 

Study area 

A first selection of artisanal gold mines that could be good candidates for the study case was 

made from the catalog of “Artisanal mining site visits in Eastern DRC”3 published by The 

International Peace Information Service (IPIS). This dataset contains the locations of several 

hundred mines as well as information collected in the field. To keep the best candidates, only 

gold mines visited since 2016 with a number of workers greater than 1,000 were selected. 

Then, each site was studied using Google Earth satellite imagery to ensure that its extent and 

its environment (e.g., proximity to dense vegetation, rivers, water bodies, urban area) allow 

RS analysis. One region stood out, the city of Kamituga with no less than five eligible gold 

mines in its surroundings, i.e., mines with more than 1,000 artisanal miners. 

A first study area was defined in the Western part of Kamituga where the Bipasi and Kazibe 

mines are located (Figure 3. ). The map on the bottom-left corner (Geenen et al., 2021) allows 

locating this study area within the country. A first set of results was produced by applying the 

vegetation fractional cover algorithm to this area and was presented by UNEP/GRID-Geneva 

to the IPIS team that provided the ASGM data for Eastern Democratic Republic of the Congo. 

The relevance of the use of Kamituga as a study case was confirmed during this interview with 

IPIS as the city is a major place for mining and trading activities in South Kivu. In addition, the 

IPIS team recommended using a larger study area for the analysis to cover the entire city as 

 

2 https://www.opendatacube.org/  

3 http://geo.ipisresearch.be/geoserver/web/wicket/bookmarkable/org.geoserver.web.demo.MapPreviewPage?  

https://www.opendatacube.org/
http://geo.ipisresearch.be/geoserver/web/wicket/bookmarkable/org.geoserver.web.demo.MapPreviewPage
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well as the region to the South. The reason is that a larger study area would allow better 

analysis in land cover changes, provided there are several dozen artisanal gold mines located 

in the South of the city –most of their ore being sold at Kamituga-- and that the mining activity 

in the region is very fluctuating over time. Therefore, a second study area was defined 

according to IPIS recommendations (see Figure 3. ). 

 

Figure 3. Study areas. In red, the study area covering the Bipasi and Kazibe mines. In green, the study 
area covering Kamituga and the region South of the city.  

 

Infrastructure 

To perform RS analysis, a Data Cube on Demand (DCoD) (Giuliani et al., 2020) was deployed 

in a virtual machine (4 CPU, 32GB RAM, 250GB HDD) on the infrastructure of the University 

of Geneva. GeoServer and the online, open-source cartographic platform MapX4 (Lacroix et 

al., 2019) are used to publish and visualize the results generated by the DCoD. The complete 

architecture of the system used for the case study is as follows (Figure 4): 

 
4 https://www.mapx.org/  

https://www.mapx.org/
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Figure 4. Technical components of the infrastructure set up for the case study and data processing 
workflow. 

 

- Python and R scripts to index Sentinel-2 scenes from Google Cloud5. 

- Data Cube on Demand (DCoD) for RS analysis. 

- GeoServer to publish results in compliance with Open Geospatial Consortium (OGC) 

services. 

- MapX frontend to visualize the results. 

 

Algorithm and data 

Land cover changes across large areas can be monitored over time using Vegetation 

Fractional Cover (VFC) that estimates the fractions of Photosynthetic Vegetation (PV), Non-

Photosynthetic Vegetation (NPV) and Bare Soil (BS) for each pixel. The sum of the three 

fractions should be 100% and VFC is shown in Red/Green/Blue (RGB) colors. Although 

originally developed for Landsat 5/Landsat 7 products, the vegetation fractional algorithm 

(Guerschman et al., 2015) was implemented by UNEP/GRID-Geneva and tested on Sentinel-

2 products as they have a 10m resolution, which is more suitable for monitoring artisanal 

mining activities than Landsat products (30m resolution). These tests being conclusive, 

Sentinel-2 products covering the study areas were downloaded from Google Cloud and 

indexed in the DCoD using R and Python scripts developed by UNEP/GRID-Geneva. 

According to research carried out, the dry period in eastern Democratic Republic of the Congo 

usually runs from early June and late August leading to less cloud cover. Therefore, the 

indexation was carried out for these three months specifically from 2016 (1st year available) 

 
5 https://cloud.google.com/storage/docs/public-datasets/sentinel-2  

https://cloud.google.com/storage/docs/public-datasets/sentinel-2
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to 2021. Jupyter notebook was used to interact with the DCoD and process Sentinel-2 

products as follows: 

1. Data was cleaned by creating a clean mask for clear land and water pixels. Shadow, 

snow, cloud, and ‘No Data’ pixels were masked out. 

2. As the region is quite cloudy, generation of an image mosaic using all the indexed 

scenes for a year (3-month period: June 1 to August 31). 

3. VFC calculation (at this stage, the output is in RGB colors). 

4. To facilitate the interpretation of VFC, each pixel of the output produced in Step 3 was 

assigned the most represented fraction as a value. The final VFC output is therefore a 

raster6 composed of three classes: BS = 1, PV = 2 and NPV = 3. 

5. VFC transitions from one year to the next were calculated using rasters produced in 

Step 4: 

transition = VFCyear + (VFCyear+1 x 10) 

In the end, the following outputs were generated by the notebooks: one image mosaic per 

year; VFC (per year) including one raster (3 classes) and a CSV compiling the pixel count by 

class; VFC transition (per couple of successive years) including one raster (9 classes) and a 

CSV compiling the pixel count by class. 

 

3.4.2.2. Results 

First, the VFC products generated using the DCoD were compared with the location of the 

mines visited by IPIS using satellite images to ensure that the classification fits what was 

observed in the field. This verification showed a good correspondence between the model and 

the observations. VFC products can be used to monitor mining activity by making the following 

hypothesis on the three classes:  

- Photosynthetic vegetation = green vegetation (e.g., leaves, grass, and growing crops). 

- Non-photosynthetic vegetation = mining area. 

- Bare soil = urban area. 

The classification made with the VFC algorithm allows monitoring of mining activities with 

better confidence when the study area is defined at site level. Indeed, by comparing the two 

study areas, the land cover is more homogeneous at the site level (Bipasi and Kazibe mines) 

and the hypothesis that the NPV class represents mining areas is more accurate. For VFC 

calculated at the larger scale, the land cover is more heterogeneous. Some fields and river 

sections rich in alluvium are classified ‘NPV’, making the results less accurate.  

 
6 This type of data shows an image made up of a matrix of pixels, each pixel having its own values 
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The VFC and VFC transition rasters from both study areas were published in GeoServer7 as 

this technology allows visualization in cartographic platforms such as MapX. For each of the 

study areas, a layer was developed in MapX to visualize land cover changes in an interactive 

and comprehensive way. The delimitation of the study area is displayed in the map, and VFC 

and VFC transition results are displayed in a dashboard composed of 5 features (Figure 5): 

1. Interactive map that allows to swipe between two rasters and so to compare VFC 

between two years. 

2. Bar chart showing the distribution of the vegetation cover fractions over time. 

3. Line chart showing the trends of the vegetation cover fractions since 2016 (change in 

percent). 

4. Table summarizing the VFC transitions from one year to the next. 

5. Interactive map that allows to swipe between two rasters and so to compare image 

mosaics between two years. 

 

Figure 5. Screenshot of the layer developed for the study area covering the Bipasi and Kazibe mines. 

 

The “Artisanal mining site visits in Eastern DRC” dataset (IPIS, 2021) was also published in 

the project as it is sometimes difficult to identify mines on the MapX aerial base map. These 

field observations can also be used to verify the VFC classification for a specific mining area. 

It should be noted that the IPIS dataset does not list all the mines in the region. 

The three geospatial layers developed in the frame of the case study can be accessed using 

the following link: 

 
7 
https://datacore.unepgrid.ch/geoserver/rs_for_asgm/wms?service=WMS&version=1.1.0&request=GetCapabilities
&format=text/xml  

https://datacore.unepgrid.ch/geoserver/rs_for_asgm/wms?service=WMS&version=1.1.0&request=GetCapabilities&format=text/xml
https://datacore.unepgrid.ch/geoserver/rs_for_asgm/wms?service=WMS&version=1.1.0&request=GetCapabilities&format=text/xml
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https://app.mapx.org?project=MX-IY9-QCF-ILZ-UVO-07Y&views=MX-BD2ZB-CPRZ6-

ISSWP,MX-QSNYV-VWM4T-1T4NT,MX-RQ6YP-SP29M-Z01X6&lat=-

3.899&lng=20.376&z=5.256&viewsListFlatMode=true&language=en 

In MapX, the products derived from the VFC classification show a significant decrease in the 

area assigned to the NPV class for both study areas. Assuming that this class mainly 

represents mining area, this can be interpreted as a decrease in the impact of ASGM activity 

on the land use / land cover. However, it should be noted that the BS class, interpreted as 

urban area, has been increasing since 2016. This shows that the urban growth observed in 

the region since the end of the 1990s has not stopped. 

3.4.3. Case study using Google Earth Engine 

To showcase the benefits of the GEE platform here are two basic examples showing how 

processing of RS images can be done with this cloud-based platform. 

The targeted area is near Huaypetue in the Madre de Dios region of Peru. It is an area with 

well-known ASGM activities.  

UNEP/GRID-Geneva created a time-series movie using yearly Landsat true-color composites 

from 1984 to 2020 (see Figure 6Error! Reference source not found.). 

The video can be downloaded at:  

https://drive.google.com/file/d/1WldWQ8zHVTgvIvDZ_sCoaV4r9PM0fdis/view?usp=sharing   

The code is available at:  

https://code.earthengine.google.com/6e3dffa0d85c542e54065eded3f5d77e   

 

https://app.mapx.org/?project=MX-IY9-QCF-ILZ-UVO-07Y&views=MX-BD2ZB-CPRZ6-ISSWP,MX-QSNYV-VWM4T-1T4NT,MX-RQ6YP-SP29M-Z01X6&lat=-3.899&lng=20.376&z=5.256&viewsListFlatMode=true&language=en
https://app.mapx.org/?project=MX-IY9-QCF-ILZ-UVO-07Y&views=MX-BD2ZB-CPRZ6-ISSWP,MX-QSNYV-VWM4T-1T4NT,MX-RQ6YP-SP29M-Z01X6&lat=-3.899&lng=20.376&z=5.256&viewsListFlatMode=true&language=en
https://app.mapx.org/?project=MX-IY9-QCF-ILZ-UVO-07Y&views=MX-BD2ZB-CPRZ6-ISSWP,MX-QSNYV-VWM4T-1T4NT,MX-RQ6YP-SP29M-Z01X6&lat=-3.899&lng=20.376&z=5.256&viewsListFlatMode=true&language=en
https://drive.google.com/file/d/1WldWQ8zHVTgvIvDZ_sCoaV4r9PM0fdis/view?usp=sharing
https://code.earthengine.google.com/6e3dffa0d85c542e54065eded3f5d77e
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Figure 6. 1984 (above) and 2020 (below) Landsat yearly true-color composite over the Madre de Dios 
region (Peru) 

 

One can see that beginning in the late 1990s, large areas around rivers turn from green (rain 

forest), to brown (cleared areas for mining). The trend seems to accelerate in the last 10-15 

years.  

The second example uses Sentinel-1 imagery to detect land changes from polarized channels 

(see Figure 7). 

The code is available at: 

https://code.earthengine.google.com/d9581816bb0ef6e8b758747898be2d81 (Earth Engine 

registration needed). 

It shows important differences between 2016 and 2021 that can be attributed to deforestation 

related to ASGM activities in the region. All the newly bare areas appear in black. 

https://code.earthengine.google.com/d9581816bb0ef6e8b758747898be2d81
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Figure 7. 2016 (above) and 2021 (below) Sentinel-1 VV weekly composite over the Madre de Dios 
region (Peru) 
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3.4.4. Conclusion and recommendations 

These case studies demonstrate that RS methods and tools can be used to monitor the impact 

of mining activities on land cover. The development of cartographic and statistical products 

allows disseminating results in a form understandable by a non-technical/non-expert audience 

and therefore, it facilitates the management of artisanal mining policies. 

For what concerns the first case study, although the VFC algorithm was not developed 

specifically to monitor artisanal mining activities, it produced results allowing to quantify (within 

a certain margin of error) the evolution of the surface exploited by the mines, the gain or loss 

of vegetation and urban development. The accuracy of the VFC classification has been 

assessed using visual inspection. UNEP/GRID-Geneva recommends implementing a 

quantitative accuracy assessment that would allow to identify and quantify classification errors 

(Congalton, 2001) for better informed decision-making. UNEP/GRID-Geneva also 

recommends using the VFC algorithm on an area focused on a single mine to ensure a more 

accurate classification. Other implementations of VFC or even other land cover classification 

methods may be more suitable for monitoring artisanal mining activities. Although going 

beyond the scope of this case study, it would be relevant to identify and to implement these 

methods in the DCoD to compare their results and thus find the most suitable method 

available.  

The second case study shows the ease of use of the GEE platform to quickly monitor 

(potential) impacts of ASGM activities in a given region. The analyses performed under this 

case study can be further refined to get more detailed information such as the percentage of 

changes but still from a decision maker perspective this can already be powerful 

communication means to understand the issue at stake. 
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4. A summary of the potentials and challenges 

of using Remote Sensing for Artisanal and 

Small-Scale Gold Mining monitoring  

The use of RS data in ASGM monitoring has several benefits but also some limitations, mostly 

related to the technical competences that are required to properly employ RS techniques and 

obtain the most accurate results out of them. 

Benefits can be summarized as: 

- Analyze large geographical areas at the same time. 

- Analyze back in time (e.g., time-series analysis). 

- Study inaccessible/remote areas. 

- Multispectral information (optical and radar) can be combined to extract different 

information on a given area. 

- Integrate the results of ASGM monitoring with field data in order to calculate proxy data 

at past times or in large space (e.g., mercury concentration in water can be calculated 

using a correlation function between mercury concentration at times and RS index 

values from satellite imagery). 

- Integrate the results of ASGM monitoring with other geographical data in GIS software 

in order to understand cause/consequence relations between different factors. 

- Collaborative mapping can help define the labelled training data for supervised image 

classifications of RS data. 

- Large and increasing availability of processing platforms, pre-processed data and 

available tools can facilitate the workflow compared to previous times. 

- LULC methods applied to ASGM are being studied in research and will likely increase 

their accuracy and ease of use through time. 

- RS data of higher resolution and frequency of coverage on a given area has increased 

considerably in the last decade. 

- The use of medium-resolution satellite images such as Landsat (30m), Sentinel-2 

(10m) SPOT (5m), and CBERS-2 (260m), are capable of revealing ASGM operations 

at a large-scale with a single scene than high-resolution sensors. 

Limitations can instead be summarized as: 

- RS techniques require technical competences that are present in scientific 

communities but can instead be absent or not high enough in policy agencies and 

governmental agencies. 

- Technical competences can be rarely present in local mining associations and local 

communities, so far decreasing the involvement of the latter in the monitoring project 

and the policy development. This can often undermine local trust, inflame tensions, 

and render alternative “grassroots GIS” strategies impracticable. 

- Accuracy of RS techniques depend largely on human choices and should, therefore, 

be proof checked before policies are designed based on its results. 
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- RS technology used for environmental surveillance purposes may lead to “crime 

mapping”, which prioritized enforcement over engagement with communities and can 

enhance socio environmental disputes. 

- Not all types of satellite sources perform the same way. For instance, single band radar 

data (e.g. RADARSAT sensor) seem to have lower accuracy than multi-band radar 

data (e.g. SIR-C) in detecting gold mining washing sites. 

- Use of optical imagery can be hampered by clouds. Consequently, the use of radar 

and/or dense time-series analysis techniques are relevant choices to overcome this 

issue.   

- RS data cannot easily distinguish mining areas from bare soil due to similar spectral 

signatures. 

- Low vegetated areas might require a more complex approach compared to the 

vegetation change monitoring workflow that can be applied in most tropical places 

where ASGM occurs. 

- The medium-resolution sensors do not fully capture activities in smaller areas such as 

along the shores of rivers. Such resolutions fail to separate linear features along river 

edges from natural river shorelines.  

- The exposure of natural river shorelines depends on water depth and season. 

- Medium-resolution images do not account for ASGM river dredging.  

- Medium-resolution satellite images are available on a longer time span compared to 

high-resolution imagery, but their limited frequency does not easily allow following the 

rapid evolution of ASGM activity in a given area.  

- The limited size of single scenes of high-resolution satellite images could result in 

expensive prices for projects that require several scenes to cover a large area. 

- Large forest canopy cover can affect the visibility of satellite sensors.  

- Comparability of a hotspot from one season to another is difficult. Seasonality limits 

the use of remotely sensed satellite data on ASGM monitoring.  

- ASGM activities are not always detectable by night light emissions. 

- ASGM is an activity, which can quickly move from one area to the next one since 

artisanal mining communities often consist of migrants without any roots in local 

villages next to the ASGM active spots. This dynamic nature should be carefully 

considered, mostly depending on local circumstances, to get a realistic sense of the 

reactivity of ASGM tracking by RS to allow government officials to act/intervene rapidly 

(often in remote areas), while ASGM is still going on, instead of just taking note of long 

gone ASGM activities. 
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5. Conclusions and recommendations 

5.1. Conclusions 

This guidance document is based on an extensive review of scientific and grey literature that 

use satellite and aerial RS analysis, and GIS technologies as the primary means of monitoring 

ASGM activities. It served as an input to develop this technical guidance document aiming at 

showing the benefits and limitations of using RS technologies to support ASGM monitoring, 

policy development, implementation and evaluation, with a special focus on the context of the 

Minamata Convention on Mercury.  

This guidance provides insights on benefits and challenges of RS techniques based on a 

comprehensive literature review on the various uses of RS for ASGM detection and 

monitoring, protocols and guidance on satellite image analysis. This document also includes 

recommendations targeting decision makers providing them with evidence-based insights to 

support decision making and policy implementation. Finally, this document demonstrated two 

concrete case studies featuring ASGM activities in Peru and in the Democratic Republic of the 

Congo, illustrating how RS can support the identification and quantification of mining activities 

occurring in remote areas. 

This document aims at enabling users to: 

- Understand how to use RS to detect and monitor ASGM activities. 

- Identify challenges and limitations of RS technologies applied to ASGM activities. 

- Raise awareness of decision makers of the potential for RS to be applied as a tool for 

monitoring ASGM. 

- Provide tangible insights on the use of RS to inform decision making. 

RS and GIS techniques are valuable means to provide consistent information on ASGM 

activities and contribute to get complementary information from field data/measurements to 

support official/national statistics. It also helps to have harmonized information/indicators at 

different geographical scales. These techniques offer, simple, replicable, cost-effective, 

synoptic, scalable and rapid alternative to derive information on ASGM activities. It can be 

combined with other geospatial and socio-economic data to help contextualize the generated 

information. 

5.2. Recommendations 

5.2.1. For government officials and policymakers in Artisanal and Small-

Scale Gold Mining countries 

Government officials and policymakers are encouraged to include GIS and RS tools in 

programmes that aim to monitor ASGM activities and/or to define related policy.  

RS can be used to identify and monitor ASGM activities, and that information is useful in 

establishing baseline of mercury use in ASGM, and plan/evaluate policies to address it. RS 
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tools are capable of providing reliable and up-to-date data on the environmental impacts of 

areas surrounding ASGM activities. The dissemination of RS outputs in the form of 

cartographic and statistical products and information makes them understandable by a non-

technical audience and therefore, it facilitates the design of artisanal mining policies. 

Since RS techniques require technical competences that are usually present in scientific 

communities but not necessarily in governmental agencies or policy agencies, government 

officials and policymakers are encouraged (1) to develop capacity building among mining 

administrations lacking technical knowledge and (2) to solicit the know-how of researchers 

from local universities.  

More widely, multidisciplinarity is highly recommended. From a very practical perspective, 

combining RS data/information with survey/interview results on the one hand and with other 

geographical data (e.g., social, health, conflict, demography etc.) in GIS software on the other 

hand is relevant to understand cause/consequence relations between different factors. 

Another source of useful data to consider is locally obtained biogeochemical parameters 

collected in-situ. Those can indeed help understanding the effects of mining-induced pollution 

over biota using RS-derived proxies. Such approach requires the different techniques to be 

tuned in order to reduce the errors induced in the deriving process. 

Technical competences are not always present in local communities and local mining 

associations. This can decrease or compromise their involvement in the monitoring 

programmes and in the policy development. Sometimes this can undermine local trust and 

exacerbate tensions. Government officials and policymakers are therefore encouraged to pay 

extra attention to include local communities and artisanal miners in the elaboration of ASGM 

policies and programmes based on RS analyses and outputs. 

Finally, it is recommended that government bodies keep in mind that using RS techniques can 

have unintended consequences as they can favor crime mapping and lead to prioritizing 

enforcement over engaging with local communities. This is mostly associated with 

investigative (e.g., to understand what has happened once a crime has been committed) and 

evidentiary processes (e.g., the collection of evidence to be used in court). If a law 

enforcement agency has adopted intelligence based policing strategies, utilising RS data to 

better understand the ASGM phenomenon on a general level would be similar to the needs of 

general ASGM policy development.  

5.2.2. For researchers 

Concerning scientific research efforts should be directed towards improving LULC 

methodologies applied to ASGM. In particular, the use of ML/DL techniques together with data 

fusion techniques (e.g., optical, radar, UAV, lidar, in-situ, crowded-sourced), time-series 

analysis and stack of analysis ready data organized in Data Cubes are relevant means to 

reliable and consistent LULC information. 

Additionally, the development of models integrating satellite data with in-situ measurements 

can help, first, to provide better estimates of pollutant contents, and second, training and 

validating outputs of ML/DL algorithms. 
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Further research is also needed to build models based on data from intensively in-situ 

monitored sites where relationships between mercury concentrations found in different 

environmental matrixes and parameters detectable by RS can be made. These relationships 

could be used to predict mercury concentrations in remote areas with similar site-

characteristics based on RS data alone. 

Finally, great advantage could bring the development of a methodology able to identify 

different types of ASGM activities by the recognition of their characteristic geographical shape, 

dimension and distribution. 

5.2.3. For International Organisations and funders 

International organisations and funders are encouraged to build on RS methods in projects 

and monitoring programmes for policy development, implementation and evaluation in the 

ASGM sector. This approach is recognized to be particularly useful especially in remote or 

difficult-to-access areas. International Organisations are therefore encouraged to foster 

collaborations with RS scientists while conducting ASGM monitoring projects, but also to 

develop a broader reflection on its usages and consequences.  

While RS has proven to be highly relevant for land cover changes and pollution monitoring, it 

is crucial to be cautious when using such technologies and its outputs in policies and 

programmes. The use of RS by International Organisations can be perceived as explicitly 

supporting a top-down approach for decision making and measures enforcement. 

International Organisations and funding programmes are therefore encouraged to engage 

discussions on the consequences of RS, especially in terms of surveillance and crime 

mapping, to dissociate direct law enforcement from application of RS produced knowledge.  

Additionally, International Organisations are encouraged to develop a reflection on the role of 

RS in emphasizing ASGM as a source of dispute. Evidence from the literature shows that the 

outputs of GIS and RS tend to bring a focus on one or several particular dimensions of an 

object or a situation. In the case of the ASGM sector, RS analysis points out the negative 

effects of such activities on the environment. However, by doing so, RS contributes to highlight 

some aspects of the sector but obscures others, acting as a source of friction between various 

dimensions of the ASGM activities. This can be detrimental to local populations as it 

contributes to undermining trust in both ASGM monitoring programmes and in the very 

institutions themselves. To mitigate those effects, International Organisations and donor 

programmes are encouraged to include other ASGM dimensions in their RS analysis where 

possible, and to include other stakeholders (researchers, government officials, local 

communities’ representatives, artisanal miners) in the elaboration of RS-based funding 

programs and projects to allow equitable ASGM monitoring policies.  

5.2.4. For data and software providers 

One of the largest barriers against wide use of RS data for ASGM monitoring is the data 

collection process, which involves the choice of the most suitable data source, the download 

of several scenes that cover the area of analysis and the pre-processing of the images to be 

able to start the image-classification process. This whole process has fortunately been greatly 

improved in the last decade with the creation of platforms that propose pre-processed “ready-
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to-use” satellite imagery from different sources such as GEE and technologies that facilitate 

the whole process such as the Data Cube. This is the direction to go as it considerably reduces 

the time required to perform RS analysis in ASGM monitoring projects. The large availability 

of free-satellite data should also be seen as an incentive for software developers to offer pre-

processed data and tools to facilitate the data pre-processing given the likely increasing data 

availability in the future and the increasing problems for users to navigate through the vast 

amount of different types of RS data that will be available. The same can be said for the 

processing capabilities that are offered by some platforms such as GEE, which externalize the 

data processing so far allowing everyone to perform RS image classification no matter what 

their hardware capabilities are. 

Although the research focusing on RS techniques applied to ASGM monitoring encourages 

the use of machine-learning algorithms with its positive results, application articles and reports 

on monitoring projects generally do not fully exploit the potential of machine-learning 

algorithms in image-classification of RS data but rather use less performant image-

classification algorithms and/or involve manual decisions in the process. It has been 

recognized that the uncertainty on how to use and implement machine-learning techniques is 

a blocking factor for their use with RS data  and that this is influenced by algorithms’ availability 

in software that allow image-classification processing of RS data. Therefore, platforms and 

software allowing image-classification processing should keep up with the advancement in 

research on ML algorithms and facilitate, where possible, the parameterization of those 

algorithms to users. 

Finally, one of the key challenges towards efficient the science-policy gap is for scientists to 

develop smart interfaces for those end users. If they want to facilitate the use of software, it is 

critical to understand the typology of the end users and to collect their requirements. When 

developing an end user interface that has a geospatial component, as this is the case with 

RS, user friendliness and simplicity of the navigation are often strong requests from users, as 

many of them are not experts in GIS, especially local communities and local mining 

associations. 
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