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Frozen-Density-Embedding Theory (FDET) is a formalism to obtain the upper bound of the ground-
state energy of the total system and the corresponding embedded wavefunction by means of Euler-
Lagrange equations [T. A. Wesolowski, Phys. Rev. A 77(1), 012504 (2008)]. FDET provides the
expression for the embedding potential as a functional of the electron density of the embedded
species, electron density of the environment, and the field generated by other charges in the en-
vironment. Under certain conditions, FDET leads to the exact ground-state energy and density of
the whole system. Following Perdew-Levy theorem on stationary states of the ground-state energy
functional, the other-than-ground-state stationary states of the FDET energy functional correspond
to excited states. In the present work, we analyze such use of other-than-ground-state embedded
wavefunctions obtained in practical calculations, i.e., when the FDET embedding potential is ap-
proximated. Three computational approaches based on FDET, that assure self-consistent excitation
energy and embedded wavefunction dealing with the issue of orthogonality of embedded wavefunc-
tions for different states in a different manner, are proposed and discussed. © 2014 AIP Publishing
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Il. INTRODUCTION

Frozen-Density Embedding Theory (FDET) provides
the formal foundations for computational methods to study
ground-states of embedded species, which are described by
quantum-mechanical descriptors such as: (a) reference system
of non-interacting electrons,"? (b) interacting wavefunction,’
and (c) one-particle reduced density matrix,* in the pres-
ence of an environment which is described by means of the
charge densities: frozen electron density (pg) and the poten-
tial generated by the nuclei (vz(7)). FDET is not an alterna-
tive to Density Functional Theory (DFT) formulation of many
electron problem. It is rather a formal basis of multi-level
computer simulations using quantum mechanical descriptors
only for a selected subsystem. Although for some choices
for pp the ground state energy can be obtained, FDET as-
sures only reaching the upper limit of the ground-state energy
for the total system for arbitrarily chosen density pp and ob-
taining the corresponding quantum mechanical descriptor for
the embedded species self-consistently from Euler-Lagrange
equations. Formal frameworks and computational methods
closely related to FDET targeting the exact ground-state en-
ergy were proposed in the literature, in which pp is not an
input quantity but the result of calculations. They include par-
tition methods such as subsystem formulation of DFT? intro-
duced originally for studies of ionic solids which found its
principal domain of applicability for studies of intermolec-
ular complexes,® the partition DFT’ which is also a DFT
formulation and the recently introduced partition method us-
ing embedded wavefunctions for different subsystems.® All
these frameworks share the same feature with FDET—some
local potential coupling the subsystems. Concerning extend-
ing FDET to the excited states, the Linear-Response Time-
Dependent Density Functional Theory (LR-TDDFT) formal
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framework® does not involve construction of excited state
wavefunction. Such extension of FDET was proposed and
tested for local excitations.'” It has been shown to be a pow-
erful tool in modeling the effect of environment on local exci-
tations in embedded chromophores.!®!> References 13 and
14 provide comprehensive recent reviews. The FDET/LR-
TDDFT framework can be seen as introduction of an addi-
tional approximation, namely, Neglect of the Dynamic Re-
sponse of the Environment in the LR-TDDFT generalization
of the ground-state subsystem DFT formulation® to excited
states.'> For review of generalization of subsystem DFT to
excited state, see Ref. 13 and the references therein.
Embedding methods using the charge-densities as the
only descriptors for the environment, in which the wavefunc-
tion is explicitly constructed,'® attract increasing attentions as
an alternative for excited states.'’~!° They were pioneered by
Carter and co-workers'!” as an ad hoc combination®” of the
embedding potential derived for embedding a non-interacting
electrons reference system in a frozen density environment'
with the wave-function based methods of quantum chemistry.
Reference 3 provides the formal justification of such combi-
nation and identification of additional approximations made if
used for ground-state. Perdew-Levy theorem on the meaning
of stationary states of the ground-state energy functional as
excited states?' provides the justification for interpreting the
other-than-ground-state stationary solutions as excited states.
The use of explicit wavefunction for the excited state, in con-
trast to the methods based on the LR-TDDFT framework, has
an obvious advantage. Besides the possibility to overcome
the known flaws of approximate LR-TDDFT methods (disap-
pointing results for charge-transfer or double excitations and
excitations from open-shell ground-state, for instance), it is
possible to obtain excitation energies as differences of expec-
tation values of conventional quantum mechanical operators.

© 2014 AIP Publishing LLC
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For an isolated species comprising N, electrons in an exter-
nal potential (v4(r)), the excitation energy can be evaluated
as the difference of expectation values of the corresponding
Hamiltonian (H,4) (not to mention the possibility to evaluate
expectation values of two-particle operators):

Ej—E;= <‘I’?” I:IA|‘I"1A"> - (‘I’? [:]A|"I’?U>* ()

where ‘llf" is the wavefunction for the /th state obtained from
an adequately chosen quantum chemistry method in the ab-
sence of any environment.

If the same species is embedded and the approximate em-
bedding potential used to represent the environment (ﬁgm »(7))
is pa-independent (for example, if 9, is the Coulomb poten-
tial generated by the charges in the environment), the above
formula can be trivially generalized and the excitation ener-
gies can be also obtained as differences of expectation values
of two different wavefunctions,

E;zmb Eemb (‘IJA|HA+ gmb|\IJ}A)

- <\Ijj‘ |HA + ﬁemb|ql.¢>' (2)

Unfortunately, the exact embedding potential given in Eq. (5)
and derived in Refs. 3 and 23 depends on the embedded wave-
function. The simple formula given in Eq. (2) is, therefore, not
applicable. The FDET embedding potential assures that the
optimization of the total energy functional in Euler-Lagrange
equations for the embedded wavefunction yields the total
electron density which minimizes the total energy functional
subject to the additional constraint: the total electron density
is larger or equal to the arbitrarily chosen electron density as-
sociated with the environment of the embedded species (pp).
As noticed in Ref. 22, Perdew-Levy theorem,’! that associates
stationary points of the density functional for the total en-
ergy with electronic states, other-than-ground-state solutions
of the Euler-Lagrange equations for the embedded wavefunc-
tion correspond to excited states. In the present work, we an-
alyze how this observation might be implemented in practice.
The present work is the sequel to Ref. 3, where the Frozen-
Density Embedding Theory embedding potential was derived
for the case of an arbitrary choice for pp to assure obtain-
ing the upper bound of the ground state energy of the whole
system. The provided equations concerned the case of the
exact functionals, and arbitrarily chosen pg, and embedded
wavefunction of the form corresponding to some variational
principle based method of quantum chemistry. The practi-
cal implementation of the formalism introduced in Ref. 3 for
ground-state calculations is straightforward even if approx-
imate functionals are used. The situation is different in the
case of excited states. The use of approximations might affect
different states differently. Three computational strategies to
deal with this issue are proposed.

Il. FROZEN-DENSITY EMBEDDING THEORY

A. Euler-Lagrange equations for the embedded
wavefunction: Ground state

For embedded wavefunction of any form, the FDET ex-
pression for the total energy functional depending on the em-
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bedded wavefunction (W*) and electron density of the envi-
ronment (ppg) reads

ELYFIWA, ppl

= (WA Hp W) + AFMPp4)

/pA(r)vB(r)dr+// pa(F)pp () .

—F|

+ T p4, ppl + E"[pa, p5]

+EJ ¥ [ps] +/p3(?)vA(;7)d?, 3)

where (a) ps denotes the electron density corresponding to
WA (b) X"[p,, pg] denotes the bifunctional X"*“[p4, pa]
= X[pa + psl — Xlpal — Xlpsl (with X[p] = Ts[p] or
E,.[p]—density functionals for the non-interacting reference
kinetic energy and exchange-correlation energy, respectively,
defined in the constrained search procedure?*23), (c) the func-
tional AFMP[p,] represents the part of the correlation energy
functional which is not taken into account by a wavefunction
based method (see Ref. 3 for details), and (d) E/'X[pp] de-
notes the Hohenberg-Kohn energy functional®® corresponding
tov B(? )

In FDET, the minimization of E§YF[W4, pp] with re-
spect to W4 is performed by means of Euler-Lagrange equa-
tions:

8EEWF \IIA ,
AB [ pt ,OB] _awA —o. (4)

t
AW °p

This assures full self-consistency of the minimizer ‘-IJOPZ,
the embedding potential given in Eq. (5), and the energy
EEWF[\II(%, ppl. The energy EEWF[\IJ(W, pp] is the upper
bound of the ground-state energy of the total system. For
some choices for pg, Euler-Lagrange equations might even
lead to the exact ground-state energy and density for the total
system.?

Equation (4) corresponds to the one of many variational-
principle based methods of quantum chemistry (Hartree-
Fock, MCSCEF, truncated or full CI). The working equations
for each of these methods are different and will not be given
here. The present work deals with the common issues related

to the embedding potential. For such methods, the multiplica-
HEAB F[‘Paprpf?]

opt

differs from the external potential in the absence of the envi-
ronment (v (7)) by the following additional term:

tive part of the derivative (effective potential)

vemb[:oAa PB; ;]

,OB()
A7
|F" — 7|

8T [pa, pp]
8pa(r)

= vp(r) +

SE™ [py, pgl

SAFMP [p4]
8pa(r) )

8pa(r)
(5)

The non-electrostatic terms in the embedding potential:
ST [pa,pp]  SE"[pa,p5) and SAFMP[p,]
Spar)y dpa®) 3pa(r)

depend on p4. This
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originates from the fact that the functionals T;“‘d [oa4, o8],
E" [pa, pgl, and AFMP[p,] are not order-one homoge-
neous in p4. The case uniform electron gas, for which the
exact functionals T[p] and E,[p] are known, provides an ob-
vious example the inhomogeneity of such functionals. The
inhomogeneity lies at the origin of the fact that excitation en-
ergy cannot be obtained as the difference of two expectation
values of the Hamiltonian as in Eq. (2), which is applicable
only for p4-independent embedding potentials.

B. Euler-Lagrange equations for the embedded
wavefunction: Excited state

On the virtue of Perdew-Levy theorem on the station-
ary states of the ground-state energy functional,”' other
than ground-state solutions of the FDET version of the
Euler-Lagrange equations (Eq. (4)) correspond to excited
states.

We underline that, all subsequent considerations concern-
ing the excited states apply strictly only if the density pp is
such that pg < p?,,; and pp < pl., ;. where p?, , and pl
denote the exact ground state and excited state of the whole
system, respectively. Only for such densities FDET leads to
exact solutions (energy and density). If the density pp does
not satisfy these conditions, FDET leads to the upper bound
of the ground-state energy of the whole system. For excited
states, however, interpreting the stationary solutions of the
Euler-Lagrange equations of FDET as an approximation for
excited states, remains an unproven Ansatz.

Since the functionals Ts”“d [oa, o8], E)’ng [04, pgl, and
AFMP[p,] are not order-one homogeneous in p4, the em-
bedding potential depends on the state. We underline that the
functional for the FDET embedding potential, which is given
in Eq. (5), is the same regardless the state but the embedding
potential is different because the functional is evaluated for
pa which is different for each state. As a result, the embed-
ded wavefunctions for different states are not orthogonal. This
reflects the main feature of FDET which considers the em-
bedded wavefunction merely as an auxiliary quantity used to
perform constrained optimization of the total electron density.
Such interpretation of the embedded wavefunction is correct
from the formal point of view but calls for more detailed anal-
ysis. Any FDET based method used in practice uses some
approximations for the functionals for the potentials (or di-

S : 8Tlpa,p8]  SE%[pa,psl
rectly a[ﬁrommatlng the potentials) TG Soath
and W. (The last of these potentials is usually set to

zero in practical calculations.) There is no reason to assume
that the errors in such approximated potentials evaluated with
different p,4 are the same. Since the quality of the embedding
potential affects directly the quality of the embedded wave-
function, the overlap between the embedded wavefunctions
for different states might reflect not the real effect but the
differences in the errors in the used approximations made to
evaluate the FDET embedding potential for different states.
We notice also that accurate calculations of excitation ener-
gies, even for isolated species of medium size, are usually
quite a challenge for quantum chemistry methods. Any stud-
ies of embedded species should use a carefully chosen type of
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the wavefunction describing adequately the excited states of
the isolated species. Usually, the environment provides a mi-
nor correction to the excitation energy and it is very likely that
allowing for non-orthogonality of embedded wavefunctions
might affect the performance of the chosen wavefunction-
based method in an uncontrollable manner. Enforcing orthog-
onality might be, therefore, a “brute force” method to safe-
guard that the errors depend less on the state which might,
however, over-correct these errors.

The notion of state-specificity of the embedding po-
tential is also known in methods (not necessarily based on
FDET), which take into account differential polarization of
the environment for different electronic states of the embed-
ded species. In terms of FDET, this contribution to state-
specificity arises from the pg-dependence of the potential
given in Eq. (5). To our knowledge, the first comprehensive
study of significance of differential polarization of the en-
vironment in a FDET based method is reported in Ref. 27.
The contribution to the excitation energies due to the pa-
dependence was also estimated in Ref. 27. It was found to
be at least one order of magnitude smaller than the contribu-
tion due to the pg-dependence. The relative importance of the
two effects might be quite different for other systems and ex-
citations. Moreover, the procedure applied in Ref. 27 most
likely overestimates the importance of the pg-dependence.
According to the analysis provided in Ref. 28, simultaneous
optimization of ps and pg reflects both the physical effect of
electronic polarization and the artificial effect - minimization
of the error in the approximation to the non-additive kinetic
energy functional.

lll. FDET AND BEYOND-FDET APPROXIMATE
METHODS FOR EXCITED STATES

Solving Eq. (4) cannot be made without further approx-
imations. The p4-dependence of the FDET embedding po-
tential does not cause any significant problems for practical
calculations in which these functionals are approximated for
the ground-state besides the necessity to update the embed-
ding potential during the self-consistent procedure for solv-
ing Euler-Lagrange equations. Equations (3)—(5) remain the
same. The only difference between the exact and approximate
case is that these functionals are replaced by their approxi-
mate counterparts (denoted with tildes throughout the present
work). The situation is different for excited states because the
errors in these approximate functionals might also depend on
the state.

We note that AFMP[p4] does not depend on any quan-
tity associated with the environment. It is a matter of seman-
tics to count this term as part of the embedding potential or
be considered as correction for the correlation energy in the
variational method used to obtain the embedded wavefunc-
tion. This term disappears if the form of the embedded wave-
function allows for taking into account the correlation en-
ergy fully. In other cases, omitting this term completely (in
the energy functional and in the embedding potential) does
not invalidate the key feature of FDET: the energy evaluated
with this potential will still be the upper bound of the ground-
state energy of the total system. Numerical examples show
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that neglecting this term in the total potential leads to a minor
error in energy® even if the simplest form (single determi-
nant) of the embedded wavefunction. Until now, we kept the
AFMP[p,] term in all equations for the sake of completeness
and generality—to include methods which do not take into ac-
count the correlation effects within the embedded subsystem
completely. In the subsequent part dealing with approximate
methods, this term will be neglected in all equations and dis-
cussions.

We assume that the considered computational method
uses some approximations for the non-electrostatic compo-
nents of the FDET embedding potential for each state (de-
noted with 7):

8T [pa, p5l ~ o

A(S—"B ~ Ultnad(r), (6)
pA(r) pa=p

SE™M [py, ppl ~ .

XCS—_. ~ 0!y enaa(r) (7
0a(r) pa=p!

are used instead of its exact counterparts.

The above approximations make possible to implement
excited state generalization of FDET in practice following
various practical schemes dealing with the issue of orthog-
onality of embedded wavefunctions in a different manner. In
Secs. IIT A-III C three such schemes are introduced and dis-
cussed.

A. Straightforward application of FDET

In such a case, using the approximations to the rele-
vant functionals does not affect the equations for energy and
embedding potential. The relevant formulas are the same as
the ones given in (Eq. (3) for energy and Eq. (5) for the
embedding potential). The exact functionals T;’“d [oa, o8],
E"d[p,, pp] are just replaced by 7" [p4, pp] and
E"[p,, pp] and the functional AF¥P[p,] is neglected.

A practical procedure to obtain fully self-consistent en-
ergies and the embedded wavefunction for each state can
proceed in an iterative manner. At the first step, the ground-
state embedded wavefunction is obtained and the correspond-
ing ground-state embedded density (o) is generated. At this
step, all quantities in the Euler-Lagrange equations: embed-
ded ground-state wavefunction, the corresponding o4, the em-
bedding potential, and the upper-bound of the total energy are
self-consistent. The excited state embedded wavefunction ob-
tained with this potential is, however, not self-consistent be-
cause the embedded density corresponding to the excited state
differs from p¢. In the next step, the embedded density corre-
sponding to the excited state obtained in the previous step is
used to generate a new embedding potential. The procedure
of updating the embedding potential to the actual embedded
excited state density can be repeated until self-consistency
is reached. It cannot be expected that such procedure pre-
serves the orthogonality of the embedded wavefunction for
the considered excited state and that for the ground state. If
the same self-consistent procedure is applied to another ex-
cited state, the orthogonality between the embedded wave-
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functions for different excited states is also expected to be
lost. Although, even the exact FDET formal framework al-
lows for non-orthogonality of the embedded wavefunctions
for different states, the use of approximations might introduce
to state-specific errors in the approximated embedding poten-
tial. As the result of different errors in embedding potentials
for different states, the overlap between embedded wavefunc-
tions for different states might artificially increase. Below, the
key advantages and disadvantages of such computational pro-
cedure are summarized:

+ The procedure is a straightforward practical imple-
mentation of FDET leading to self-consistent energy
and excited state wavefunction for each analyzed state
without introducing any additional approximations be-
side the use of approximate density functionals.

+ This strategy is suited, for studies of photochemical
processes, where a particular excited-state potential
energy surface is the target.

+ If the targets are energy differences for different ex-
cited states, for which the corresponding electron dis-
tributions differ significantly (charge-transfer excita-
tions, for instance) this strategy might be also the
method of choice.

— The procedure has to be applied for each state. The
time of calculations is proportional to the number of
analyzed states.

— The procedure is based on Perdew-Levy theorem,?!
which does not guarantee that each excited state can
be found.

— The order of states might be interchanged during the
iterative calculations leading to convergence problems.

— The quality of the excited state energy might be dif-
ferent for different states because of the fact that the

. L -1 8T p,pp)
errors in approximations to the potentials Ry

nad
and 2 1oa0s] might be different for different states.

8pa(r)

B. Linearization of the functionals '7'5"""’[,0,4, 08l
and EY29pa, psl

Compared to the direct strategy discussed in Sec. IIT A,
this approach uses as an additional quantity—some reference
electron density (o) which does not differ significantly
from the densities corresponding to the considered excited
states. Linearization of Ts"“d [pa, o] and E)’C’gd [oa, p51°

leads to the following approximation for the exact quantities:

1o, pp) ~ T [, p5]

re afvnad [PA, ,OB] >
oyt

Spa(r) pa=p'
3

Epa, ppl ~ Ef?d[/?:ff, 05|

re SEf?d[,OA, pB] -
b [ (o) Sl

8pa(r) pa=p'’
)



18A530-5 Tomasz A. Wesolowski

The corresponding embedding potential is p4-independent
and reads

i}emb [p;ef’ PB; 7]
G )
T
8T [py, ppl
8pa(r)

= vA(F) +

SE™[py, psl
pa=py’ 30a(r) pa=py’

(10)

We underline that, compared to the strategy discussed in
Sec. III A (straightforward application of the FDET equa-
tions) where these energy components are evaluated just as

T [y, ppl ~ T [pa, p5l, (11)

EX4 [pa, ppl ~ EW [pa. ps]. (12)

the energy expressions for the linearized functionals are dif-
ferent. Only using Egs. (8) and (9) in Eq. (3) assures self-
consistency between the embedded wavefunctions, energy,
and the linearized FDET embedding potential. Besides this
modification of the FDET working equation there is also
another qualitative difference between the two strategies—
linearization of the non-electrostatic components of the func-
tional for the embedding potential assures orthogonality of
the embedded wavefunctions. The embedding potential is the
same for each state.

The embeddmg potent1al depends on the ch01ce of the
reference density o/, /. The obvious choice for p/, h 7 is the optl—
mal ground-state density. Another possibility is to use as p/, A
the density which is the average of several states. This might
be a good strategy for studies of spectra where it is important
that the quality of the embedding potential is similar for each
analyzed state. Below, the key advantages and disadvantages
of such a computational procedure are summarized:

+ The calculations assure orthogonality of embedded
wavefunctions for each state.

+ Linearization strategy is most likely suited for such
cases where the electrostatic interactions between the
environment and the embedded species dominate. The
electrostatic component of the FDET embedding po-
tential is p4-independent!

+ Equations (8)—(10) lead to self-consistent energy and
the embedded wavefunction.

— The procedure is based on Perdew-Levy theorem.”! It
does not guarantee that each excited state is found.

— Previous knowledge of the nature of the investigated
state is needed to choose the reference density. The
electron distributions in the reference state and in the
investigated state must be similar.

C. Enforcing orthogonality by means
of projection operators

This can be achieved by addition to the FDET embedding
potential (Eq. (5)) a non-local operator projecting out from the

J. Chem. Phys. 140, 18A530 (2014)

embedded wavefunction of interest the contributions from all
embedded wavefunctions for all lower-lying states,

Ny
~ local 2 o - -
0o =" Bomploar 3 FI8 (7 — 77)

Nitates

= 2 vyl (13)
J

where J = 1, ..., Nyues the embedded wavefunctions for
which the orthogonality condition is strictly enforced. Below,
the key advantages and disadvantages of such a computational
procedure are summarized:

+ Owing to replacing the FDET embedding potential by
a non-local operator, excited states that are not station-
ary states of the ground-state energy functional, for
which Perdew-Levy theorem does not apply, might be
found.

+ The artificial increase of the overlap between embed-

ded wavefunctions for different states arising from

8T [ps,pp]

state-specific errors in the potentials and

8pa(r)
SErlpa.pp]
TG make the errors less state-dependent.

+ Self-consistency between the embedded wavefunction
and energy is assured for each state.

— Such method is an ad hoc modification of the FDET
equations. The embedding operator is no longer a po-
tential (multiplicative operator). The condition of or-
thogonality of embedded wavefunctions is not needed
in the case of exact functionals in FDET. As a result,

the errors in the energy of each state due to approxi-
8T [pa,ps] SE"[ps,p5]

o A0d 55

mations for
corrected.”

might be “over-

IV. DISCUSSION AND CONCLUSIONS

The considerations presented in this work are based on
Perdew-Levy theorem, which states that other than ground-
state extrema of the ground-state density functional for en-
ergy yield density and energy of excited states. This theorem
is relatively little known (Web of Science Index lists just 69
citations, Ref. 21). In the recent overview of DFT methods,>'
Perdew and co-workers refer to this theorem as a formal re-
sults rather than as a basis for successful numerical applica-
tions. In fact, attempts to use Perdew-Levy theorem in prac-
tice were not encouraging. The discussion on this issue made
in a comprehensive review by Singh and Deb*? ends with the
following summary: ... there is little practical utility in the
viewpoint which says that, since the ground-state density de-
termines the Hamiltonian, it also determines the ground state
and all excited states of the system. The skepticism concern-
ing practical usefulness of this theorem originates probably
from the following reasons. First of all, the reverse is not true.
Not all excited states are extrema of the ground-state density
functional for energy. Even with the exact density functional
for energy, Perdew-Levy theorem would, therefore, not yield
the complete information about the system. Moreover, for
densities which are not pure-state v-representable, Perdew-
Levy theorem yields only the lower bound of the excitation
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energy. Arguably, this can be treated as a warning against the
use of Perdew-Levy theorem in order to obtain the excited
states. But this argument holds only if one wishes to obtain
the exact density of a given excited state. The analytically
solvable model systems? provide examples of series of po-
tentials v, which yield a series of the corresponding densi-
ties p approaching arbitrarily closely a target density which
is not v-representable. The second reason is more related to
the computational practice. The domain of excited-state den-
sities is larger than the domain of ground-state densities. It in-
cludes densities which are not v-representable. The approxi-
mate density functionals are usually constructed/parametrized
for ground-state properties of representative molecules or tak-
ing into account exact properties of model systems in ground
state. The errors of the energy evaluated for densities belong-
ing to a larger domain might be, therefore, uncontrollable.
The known difficulties in obtaining the “divine functional”
for ground-state energy indicates that perspectives to develop
a universal approximation for the density functional, which
would yield the ground- and excited- (all of them) energies
with a comparable accuracy seem, therefore, bleak. The above
skepticism concerns the use of Perdew-Levy theorem in DFT
calculations for the whole system, i.e., when both the embed-
ded species and the environment are treated as one quantum
system. Concerning the first from the above two reasons, the
FDET does not differ from DFT. Concerning the second one,
however, the situation is rather different in FDET and in DFT.
The availability of the embedded wavefunction makes it pos-
sible to evaluate one part of the total energy exactly, i.e., as the
expectation value of the environment-free Hamiltonian (the
first term in the right-hand-side of Eq. (3)). In typical appli-
cations of FDET, this part dominates and the remaining one
provides a small correction. Moreover, the electrostatic com-
ponent of this correction is known exactly. It can be expected,
therefore, that FDET based methods using a properly chosen
form of the embedded wavefunction might yield energies of
different states with comparable accuracy.

Turning back to practical, i.e., using approximations, cal-
culations based on FDET for excited states, the embedded
wavefunction is considered as an auxiliary quantity and the
non-orthogonality of embedded wavefunctions for different
states do not violate any exact condition. The lack of strict or-
thogonality of embedded wavefunctions might be seen, how-
ever, as an undesired feature. We analyzed this issue in more
detail. Three computational strategies are proposed to deal
with the state-specificity of the embedding potential and the
orthogonality issue in practical calculations where the FDET
embedding potential is not exact because of replacing the
functionals 77 [p4, pp] and E™ [p4, pp] in ps (and/or
their functional derivatives) by their approximate counterparts
(T4 [pa, pg] and ET4 [p4, pg)).

(i) The straightforward strategy which used the same
equations for energy and potential as the formal framework
of FDET

This strategy would lead to the exact solution if exact
functionals were used. It assures self-consistency of energy
and embedded wavefunction but leads to non-orthogonality
of embedded wavefunctions for different states. It is prob-
ably best suited for studies of the potential energy surface
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for a particular state for which the electron distribution at
ground- and excited states differ significantly. This strategy
involves performing independent self-consistent solutions of
the Euler-Lagrange equations for each state. It is also possi-
ble that the error in the embedding potentials for the ground
state and excited state which is the same will accumulate dur-
ing the self-consistent procedure leading to artificial increase
of the overlap between embedded wavefunctions for different
states. In this strategy, Egs. (3) and (5) retain the same form
as in FDET. The use of approximations is reflected just by
tildes in 7" [p4, pg] and E"? [p4, pp] and neglecting the
AFMP[p,] term.

(i) Linearization of the approximated functionals
T [py, ppl and E" [pa, pplin pa

This strategy retains the FDET formal framework. The
embedded wavefuctions for different states remain orthog-
onal. The expressions for the FDET energy functional and
the embedding potential must be, however, modified to re-
tain self-consistency about the quantities obtained from the
Euler-Lagrange equations: energy, embedded wavefunction,
and embedding potential. Linearization hinges, however, on
an arbitrary choice for the reference density ,offf used to eval-
uate the common embedding potential for all investigated
states. This strategy is probably most adapted for studies of
several excitations where the electron densities of each state
do not differ significantly.

(iii) Beyond-FDET framework with non-local embedding
potential

In this strategy, the FDET expression for the total energy
is retained but the embedding potential is replaced by a non-
local operator. The projection operator added to the FDET
embedding potential is used to assure the orthogonality of em-
bedded wavefunctions for different states. Such addition is an
ad hoc “beyond-FDET” approach to deal with state-specific
errors due to approximations in the FDET embedding poten-
tial. This approach leads to self-consistent energy and embed-
ded wavefunctions for different states and assures their or-
thogonality. It might also yield such excited states which are
not stationary states of the ground-state energy functional. On
the other hand, it might “over-correct” the energies if suffi-
ciently accurate approximate functionals are used in Eq. (5).

Although the present considerations lead to identification
of the domain of applicability of each of the three strategies,
the adequacy of each of them depends on a particular case
(type of excitations of type of interactions between embedded
species and its environment) which must be put to scrutiny by
numerical simulations.
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